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Abstract

Species of the genera Cystoseira, Ericaria, Gongolaria, and Sargassum (family Sargassaceae) are key components of the
Mediterranean-Atlantic marine forests, essential for biodiversity and ecosystem functioning. Populations of these foundational
species are particularly vulnerable to anthropogenic impacts, likely to be intensified under future scenarios of climate change. The
decline and even disappearance of these species have been reported in different areas of the world. At Madeira Island (NE
Atlantic), populations of Gongolaria abies-marina, Ericaria selaginoides, Sargassum vulgare, and Sargassum filipendula, the
most ecologically relevant species in Macaronesian marine forests, have been suffering a drastic decline during the last decades,
especially on the southern coast of the island, where anthropogenic pressure is higher than on the north coast. The lack of
sufficient temporal coverage on qualitative and quantitative studies of Sargassaceaec communities in Madeira poses a challenge to
establish a specific period for this decline. Consulting qualitative studies and historical records, we have set for the first time a
timeline that shows an evident decrease in Sargassaceae populations in the last 20 years on Madeira Island. Following this
timeline, we pinpoint the start of this decline in the first decade of the 2000s. This can be particularly confirmed for places like
Funchal and Reis Magos, with significantly higher historical records. Currently, most benthic communities on shallow subtidal
rocky reefs along the south coast are dominated by sea urchins and crustose coralline algae, the so-called sea urchin barrens.
However, in some cases, they are entirely covered by a layer of sediment. We discuss the possible factors contributing to these
drastic changes, bringing Madeira’s marine forests to a dramatic decline. As many animal species rely on marine forests, the
decline of Sargassaceae populations represents an invaluable ecological loss for the coastal ecosystem of the island.
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Introduction

Macroalgal forests (order Laminariales Migula, 1909, and or-
der Fucales Bory, 1827) represent one of the most productive
habitats along temperate rocky coasts worldwide (Dayton
1985). These marine forests alter the physical, chemical, and
biological conditions of the environment (Ballesteros 1992;
MARE-Marine and Envi l el Centre. Asénci Hoffmann et al. 1992; Ballesteros et al. 1998; Hirsh et al.
Regional paf: gel;e?senvlgﬁlri(r)nmelrllig ga Irclfens(t;iigsag:;: Tzzzn(‘)gizr;i:;ae 2020_) _Wlth their hlg_h rate_s of I?rlmary productivity and by
Inovagio (ARDITI), Madeira, Portugal providing complex biogenic habitat, shelter, food, and nurser-
ies for numerous species (Boudouresque 2004; Fraschetti
et al. 2011; Giakoumi et al. 2012; Smale et al. 2013).
Moreover, they are considered biological indicators of water

o o ] and ecosystem quality (Gros 1978; Panayotidis et al. 1999;
Faculty of Life Sciences, Marine Biology Station of Funchal, Pinedo et al. 2006).
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temperate and subtropical areas. In pristine environments,
these key species may become dominant (Schiel and Foster
20006), forming large canopies essential for biodiversity and
ecosystem functioning (Bermejo et al. 2018 and references
therein). The decline of fucoids (as well as kelp, mainly in
the orders Laminariales and Tilopteridales, Ochrophyta) is a
global tendency directly or indirectly induced by human ac-
tivities (Wernberg et al. 2011; Franco et al. 2015). In recent
decades, studies have detected the decline and even the disap-
pearance of entire populations of the family Sargassaceae,
across European waters, due to different human pressures,
namely habitat destruction, overgrazing, sedimentation, inva-
sive species, pollution, and ocean warming (Soltan et al. 2001,
Airoldi 2003; Hill et al. 2003; Tuya et al. 2004; Clemente
2007; Roleda and Dethleff 2011; Scherner et al. 2013;
Gianni et al. 2017). As a result, these marine forests are re-
placed by simple and less productive communities dominated
by opportunistic taxa, such as turfs or barrens, in many areas
worldwide (Vergés et al. 2014; Valdazo et al. 2017; Verdura
et al. 2018).

A noticeable regression of marine forests has been de-
scribed along some temperate and subtropical rocky shores,
including the Mediterranean Sea and the Canary Islands
(Thibaut et al. 2005; Bonaviri et al. 2011; Valdazo et al.
2017; Verdura et al. 2018). The archipelagos of the Azores,
Madeira, Canary Islands and Cabo Verde are distributed along
a latitudinal gradient in the Atlantic Ocean, with differences in
climate and water temperature (Freitas et al. 2019).
Nevertheless, all of them have recently experienced signifi-
cant alterations in their coastal ecosystems and macroalgae
formations (Sangil et al. 2018). In the last few decades, a
severe decline in the populations of Gongolaria abies-marina
(S.G.Gmelin) C.Agardh 1820 has been extensively docu-
mented in Gran Canaria Island (Valdazo et al. 2017).

Although previous studies have mentioned a possible de-
cline in the populations of the family Sargassaceae in
Madeira (Bianchi et al. 1998; Sangil et al. 2018), none has
examined the magnitude and scale of this loss, probably due to
the lack of data for these populations in the past. To properly
document this collapse, we compile the available historical
knowledge reporting the regression of macroalgal populations
from intertidal and subtidal coastal areas of Madeira.

From marine forests to collapse: the case
of Madeira

The island of Madeira (32.7° N, —17° E), which together with
Porto Santo and the uninhabited islands of Desertas forms the
Madeira Archipelago, has a mainly rocky coastline (Alves
et al. 2001), made up of platforms and boulders. Sea
surface-water temperatures usually range between 17.0 and
23.5°C (Abreu and Biscoito 1998; Schéfer et al. 2019). Our

@ Springer

study concentrates on the strongly human-influenced south-
cast coast of the island, from Calheta to Baia d’Abra, covering
a shoreline of approximately 70 km. The southeast shore of
Madeira has been the most studied part of the island over
decades due to higher accessibility and better oceanic condi-
tions throughout the year.

Before and during the 1980s, the south coast of Madeira
was characterized by large habitat-forming species, mainly
Cystoseira spp., Gongolaria spp., Ericaria spp., and
Sargassum spp. (Levring et al., 1974; Canning-Clode, Wirtz,
Kaufmann pers. obs; Bianchi et al. 1998). The brown algae
Gongolaria abies-marina was the dominant algal species on
the rocky coasts, generally distributed from the infralittoral to
the upper circalittoral zone (Levring 1974; Augier 1985;
Wildpret et al. 1987; Bianchi et al. 1998; Tuya and Haroun
2006). Other relevant species such as Ericaria selaginoides
(Linnaeus) Molinari & Guiry 2020, Cystoseira humilis
Schousboe, Cystoseira foeniculacea (Linnaeus) Greville
1830, Sargassum vulgare C.Agardh, and Sargassum
filipendula C.Agardh were also abundant in shallow rocky
sublittoral and intertidal exposed areas decades ago (Levring
1974; Augier 1985; Bianchi et al. 1998). Most of the species
mentioned above were present in great abundance in Funchal,
Garajau, Reis Magos, Machico, and Canigal, highlighting
G. abies-marina as the dominant species (Table 1).
Especially in Funchal, the most studied location, from 1974
to 1998, E. selaginoides, G. abies-marina, S. vulgare, and
S. filipendula were dominant species. The same appears to
be true for less studied locations in the past: photographs from
the 1990s (Fig. 1) show the presence of marine forests at the
south coast of Madeira, at least from Baia d’Abra (Fig. 1A) to
Calheta (Fig. 1E), passing through other sites such as Machico
(Fig. 1B), Santa Cruz (Fig. 1C), and Reis Magos (Fig. 1D). In
later studies (2008—2009), our target species were classified as
occasional, rare, or even absent (Freitas Ferreira 2011; Alves
et al. 2019). A more recent study evaluating the coast of
Madeira almost completely (Friedlander et al. 2017) indicates
that canopy-forming species are absent on the southeast coast.
In those few areas where they were still present, their coverage
never exceeded 15%. The bottoms were dominated by coral-
line crustose algae (CCA) and turfs up to 20 m depth
(Friedlander et al. 2017). Sangil et al. (2018) found only
Sargassum vulgare, in an extremely low coverage in the is-
land (0.002 £ 0.002%); the other species of the family were
absent. In a recent habitat mapping study of the Cabo Girdo
natural marine park, located on the south coast of Madeira,
marine forests were not reported and species of the family
Sargassaceae were totally absent from the species list for the
area (Ribeiro and Neves 2020). Nowadays, benthic rocky bot-
toms are dominated by CCA or turfs and barrens, generally
with a layer of sediment covering the benthos (Fig. 1).
Currently, species of the family Sargassaceae are rare to find
at the southeastern coast and seem to be restricted to intertidal
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Table 1 Presence/absence of different species of Sargassaceae family in 4 levels according to the descriptions of the consulted sources:
from 1974 to the present in different localities on the southeast coast of dominant, abundant, occasional, present, and absent
Madeira (from Calheta to Baia d’Abra). The presence has been quantified

Year Taxa SW <> SE
Calheta Ribeira Brava Funchal Garajau Reis Magos Santa Cruz Machico Canical Baia' dAbra

1974 Levring, 1974

C. humilis ° °

C. foeniculacea oo

E. selaginoides °

G. abies-marina eooe [T [YYY) XYY
S. vulgare (11} oo eoe oo

1985 Augier, 1985

C. humilis oo

E. selaginoides (IYY}
G. abies-marina (IY Y}
S. vulgare (Y1}

1991 Reed & Serrio (Per. Obs.)
G. abies-marina oo
Sargassum sp. (11}

1995 Wirtz (Per. Obs.)
C. humilis oo
G. abies-marina eoe eoe
S. filipendula eoe ooe

1998 Bianchi, 1998
G. abies-marina ecee

S. filipendula eocee

2000 Haroun et al., 2003

C. humilis °
C. foeniculacea °
G. abies-marina .
S. filipendula °
2007 Canning-Clode (Per. Obs.)
G. abies-marina °
2008 Alves et al., 2019
Cystoseira sp. o o o o
E. selaginoides o o o o
G. abies-marina o o o o
Sargassum sp. . o o o
2009 Ferreira, 2009
Cystoseira sp. oo . oo
E. selaginoides
G. abies-marina oo °
Sargassum sp.
S. filipendula eoe
2016 Friedlander et al., 2017
G. abies-marina o o o o o o o o o
Sargassum sp. o o . o . . o . o
Sargassum vulgare o o ° o o o o o
2020 Bernal-Ibaiiez (Per. Obs.)
C. humilis o . . . ) o .
C. foeniculacea o ° ° . . . o
E. selaginoides o o o o o o o
G. abies-marina o . o o o o o
Sargassum sp. o ° . o ° o o
2021 Bernal-Ibaiiez et al. (in prep.)
C. humilis o o ° ° o o . o °
C. foeniculacea o o ° . . o . ° o
E. selaginoides o o o o o o o o o
G. abies-marina o o o o o o o o o
Sargassum sp. o o . . . o o o o

eeee Dominant, eee Abundant, ee Ocasional, ® Present, o Absent
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rockpools in specific locations. The only macroalgae found
covering larger areas nowadays are Asparagopsis
taxiformis (Delile) Trevisan, Padina pavonica (Linnaeus)
Thivy, and other Dictyotales (Friedlander et al. 2017;
Sangil et al. 2018).

Marine forests in Madeira have gone from dominating
large rocky areas to being replaced by a simple and less
productive system with a high presence of CCA and fila-
mentous algae (Friedlander et al. 2017; Sangil et al. 2018).
Everything seems to indicate that this phase change began
in the first decade of the 2000s, at least in the vicinity of
Funchal bay, a date very similar to that provided by similar
studies in the Canary Islands (Valdazo et al. 2017). This is
most evident at Funchal (the area most studied), where
Sargassaceae species went from being dominant to rare in
less than 10 years (Table 1). Other places along the SE
coast of Madeira seem to follow the same pattern.
Despite the lack of time-series data for these populations
in Madeira, the scenario appears to be very similar to the
one in the Canary Islands, where G. abies-marina popula-
tions declined 99% (Valdazo et al. 2017).

Possible causes and impacts

Changes in the distribution and extension of Sargassaceae
species in Madeira in the last decades are evident and dramat-
ic. Very few algal species in the world have been adequately
evaluated over decades due to a lack of historical data
(Blanfuné et al. 2016). Madeira is no exception; its remote-
ness, oceanic conditions, and cliff-lined coast have been a
challenge for the development of phycological studies in the
past. Despite the limitations of our study due to the lack of
time series, our results are in agreement with studies published
in the Canary Islands (Hernandez et al. 2008a; Valdazo et al.
2017), in the Mediterranean Sea (Thibaut et al. 2005;
Mangialajo et al. 2008; Thibaut et al. 2015), and in general
for canopy-forming brown macroalgae around the world
(Wahl et al. 2015). The area occupied by these species in the
past could be underestimated due to the lack of techniques and
procedures evaluating these communities over the years, in-
cluding populations below 20 m depth. Despite this, we can
assume these inaccuracies since the regression is evident, es-
pecially in the intertidal and shallow subtidal zones. This de-
cline is a general pattern on the southeast coast of Madeira,
regardless of levels of anthropogenic pressure or protection,
because even in those protected areas (such as Garajau), it has
been dramatic.

The decline of these species seems to have occurred in a
period of greater urbanization and tourism development and,
therefore, many local impacts, as has happened in the Canary
Islands (Tuya et al. 2014; Ferrer-Valero et al. 2017). In recent
decades, several human pressures, particularly coastal

development on the shoreline of Madeira, have increased con-
siderably, especially on the more heavily inhabited and acces-
sible southeast coast. The numerous constructions that have
taken place in recent decades (e.g., hotels, artificial pools,
ports, marinas, private houses, and roads) are human activities
with a clear impact on the coastal environment. These con-
structions are especially important in the Bay of Funchal,
where the coastline has been intensively modified. Popular
knowledge recognized that debris generated from the con-
struction of new coastal infrastructure created a layer of mud
on the bottom, impacting the habitats (Martinez-Escauriaza
et al. 2020a). Intensive urbanization causes substantial sea-
weed species declines, particularly among Phaeophyceae, as-
sociated with habitat destruction and the degradation of water
quality (Scherner et al. 2013; Cacabelos et al. 2016). After a
monitoring program to assess the impact of urban wastewater
discharges through submarine outfalls and to explain the
processes that determine water quality in the south coast of
Madeira Island, Campuzano et al. (2010) concluded that nu-
trient dynamics were mainly related to mesoscale events and
land-based inputs are unlikely to play a strong role in the
ecological processes of the region. The disappearance or mod-
ification of continuous coastal shores (or natural rocky plat-
forms) can disable the normal development of macroalgal
species and reduce the habitat available for recruitment and
settlement (Steneck et al. 2020; Perkol-Finkel and Airoldi
2010; Blanfuné et al. 2016; Cacabelos et al. 2016; Ferrario
et al. 2016). This can even have consequences at the genetic
level. For example, the genus Cystoseira, Ericaria, and
Gongolaria are species with low dispersion, and reproductive
drifting thalli in floating rafts is the main mechanism of con-
nectivity between populations (Susini et al. 2007). If connec-
tivity is restricted, isolated small populations with poor gene
pools are more vulnerable to possible impacts (Buonomo et al.
2017). In addition, modifications of the coastline can lead to
changes in the light and turbidity regimes due to changes in
hydrodynamics (Tuya et al. 2002). These stressors have been
impacting the seagrass Cymodocea nodosa that has almost
disappeared along the southern coast of Madeira, where it
was already extremely reduced by coastal construction impact
before 2007 (Cunha et al. 2013; Kaufmann and Maranhéo
2017; Schifer et al. 2020).

Another detrimental impact on canopy-forming algae may
be a large amount of sediment loads from land after intense
rainfalls, also affecting light availability and turbidity regimes.
The mean annual precipitation varies between 600 and
800 mm on the south coast versus 1500-2000 mm on the
north, reaching 3000 mm on top eastern mountains (Baioni
etal. 2011) but sometimes leading to severe torrential rains, as
occurred in February 2010 when rainfall attained 500 mm in a
single day (Fragoso et al. 2012). The increase in floods is
directly related to human activity on the south coast of
Madeira (Baioni et al. 2011). Due to the loss of forest mass
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on the island, as a consequence of urbanization and agriculture
(Baioni et al. 2011; Fernandez-Palacios et al. 2016), the reten-
tion of sediments has been greatly diminished, increasing river
sediment loads that reach the coast in greater quantities
(Baioni et al. 2011; Quartau et al. 2018). During these events,
the water turns brownish with high turbidity, contrasting with
the typical crystalline waters of the island, and this can nega-
tively affect photosynthetic organisms (Bernal-Ibafiez per.
obs.; Kaufmann and Maranhao 2017). Moreover, these sedi-
ments end up deposited on the sea bed, which represents a
mechanical impact for all sessile species and prevents the
settlement of algae propagules (Schiel and Gunn 2019). The
negative impact of turbidity and sedimentation on macroalgae
has already been studied in other locations (Airoldi and Cinelli
1997; Airoldi 2003). Further research is necessary to evaluate
the impact of turbidity and sediment deposition on the re-
sponse of benthic communities in Madeira, as not only pho-
tosynthetic organisms can be affected (Kjelland et al. 2015).

In Madeira, barrens are dominated by the sea urchin,
Diadema africanum Rodriguez, Hernandez, Clemente &
Coppard, 2013, cited as the main driver of the variability in
the shallow benthic communities (Hernandez et al. 2008b),
reaching densities of up to 6 + 4.8 individuals/m? in the south-
east coast (Alves et al. 2001, 2019; Gizzi et al. 2020).
Overfishing is one of the main reasons underlying the dis-
placement of large macroalgal formations by sea urchin bar-
rens (Guidetti et al. 2005; Sangil et al. 2011). The intense
coastal fishing activity promotes the capture of top predators
in the systems, which can be direct predators of settling stages
and juveniles of sea urchins. Subsequently, sea urchin popu-
lations flourish as more individuals are recruited, and they
reach larger sizes. The high recreative fishing activity on the
coast of Madeira has been studied (Martinez-Escauriaza et al.
2020a, 2020b) in addition to the effect of the predation of
D. africanum on macroalgae (Alves et al. 2003). Other
grazers, such as the sea urchins Arbacia lixula and herbivo-
rous fishes (Sparisoma cretense and Sarpa salpa), also con-
tribute to the consumption of Sargassaceae species (Verges
et al. 2009).

In the current context of climate change, ocean warming
implies a global impact on coastal benthic communities and
especially on marine forests (Wernberg et al. 2013; Filbee-
Dexter et al. 2020; Smale 2020), producing the decline of
fucoids and their displacement to cold waters (Wernberg
et al. 2011). Regional studies have shown the negative effect
of warming on brown macroalgae (Sansén et al. 2013). In
addition to rising temperatures, the role of extreme high-
temperature events (marine heatwaves) also has a negative
impact on fucoid populations (Vergés et al. 2014; Arafeh-
Dalmau et al. 2020). As the magnitude and frequency of ex-
treme events are expected to increase under climate change
(Gaines and Denny 1993; Coumou and Rahmstorf 2012;
Frolicher and Laufkoétter 2018), this should be taken into
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consideration in future experiments testing their effects on
canopy-forming algae in Madeira.

The degradation of the marine forests in Madeira appears to
be the result of a set of drivers interacting across regional and
local scales that have increased in frequency and magnitude in
recent decades: increase of overgrazing (especially
D. africanum) as a consequence of imbalanced food chains
by overfishing, increase of turbidity and sedimentation, habi-
tat loss and fragmentation, climate change effects, among
others. All this has led to a considerable recession of the pop-
ulations of family Sargassaceae, making them taxa that are
very difficult to find nowadays. This ecological loss brings
with it the invaluable loss of numerous associated species, as
well as all the ecosystem services provided by these
macroalgae, from which society benefits both directly and
indirectly (Ballesteros et al. 1998; Boudouresque 2004;
Buonomo et al. 2018). Marine forests represent a vital habitat
for nesting, establishment, and development of numerous as-
sociated species (some of them of economic interest) threat-
ened with the regression of their habitat. The associated loss of
biodiversity is likely to have a negative effect on the ecosys-
tem services produced by marine forests in Madeira.

It is time to assess and understand all the ecological mech-
anisms and processes involved in this recession, taking into
account the different interacting human pressures and the re-
sistance of remnant populations. More efforts should be made
to protect Madeira’s coastal systems, following successful ex-
amples from the region such as the MPA in La Palma Island
(Sangil et al. 2012) or Selvagens Islands (Friedlander et al.
2017). These cases show the important effect of active protec-
tion over benthic beds, presenting well-preserved macroalgal
communities and even recovering communities lost in the past
in less than 4 years (Sangil et al. 2012).

This study highlights the need to monitor the remaining
populations of the species belonging to the family
Sargassaceae in Madeira. Their decline appears to be a general
pattern in the Macaronesian region, especially in Madeira and
the Canary Islands. It is obviously necessary to collect more
data to monitor this decline and to evaluate the state of these
populations in the coming years. The information provided in
this study is a basis to evaluate the conservation of the family
Sargassaceae on the island of Madeira.
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Fundo Azul, FA_06_2017_067 to CCMAR and UMa. This is contribu-
tion 73 from the Smithsonian’s MarineGEO and Tennenbaum Marine
Observatories Network.
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