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dissecting the functions triggered by this mechanism, as well as the proteins involved 

in this important cellular control mechanism. Following, an introduction was given 

about drugs that use the targeting of mitosis for cancer therapy, namely through 

microtubules, providing an overview of current approaches, their limitations and 

future directions. Finally, a correlation was made between xanthones and cancer, 

demonstrating how this class of compounds (as well as their derivatives) is already 

used as a starting point in the development of new anticancer drugs. 

Chapter II concerns what motivated the project, as well as its specific objectives. 

Chapter III refers to the materials and methods used throughout the study, so that it 
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Chapter VI provides general conclusions about the mechanism of action of PX2 and the 

prospects for future research. 
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Abstract 

Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of 

several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic 

arrest followed by cell death. This antimitotic activity of MTAs is dependent on the 

spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle 

and proper chromosome attachments to microtubules in order to ensure accurate 

chromosome segregation and timely anaphase onset. However, the cytotoxic activity 

of MTAs is restrained by drug resistance and/or toxicities, and had motivated the 

search for new compounds and/or alternative therapeutic strategies. Here, we have 

determined the mechanism of action of the xanthone derivative pyranoxanthone 2 

identified as a potent inhibitor growth of cancer cells. We found that cancer cells 

treated with the pyranoxanthone 2 exhibited persistent defects in chromosome 

congression during mitosis that were not corrected over time, which induced a 

prolonged SAC-dependent mitotic arrest followed by massive apoptosis. Importantly, 

pyranoxanthone 2 was able to potentiate apoptosis of cancer cells treated with 

nanomolar concentrations of paclitaxel. Our data identified the potential of the 

pyranoxanthone 2 as a new potent antimitotic with promising antitumor potential, 

either alone or in combination regimens.                                                    

 

Keywords: mitosis, kinetochore-microtubule attachments, pyranoxanthone, paclitaxel, 

cancer, apoptosis 
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Resumo 

O cancro é uma doença em ascensão, e sua incidência e mortalidade aumentaram 

consideravelmente nos últimos anos. Como a idade é o principal fator etiológico, é 

possível relacionar a população mais longeva atualmente como um dos indicadores 

desse aumento, bem como as mudanças no estilo de vida no mundo e fatores 

ambientais. As taxas de mortalidade têm sido tão altas que em muitos países 

ultrapassam as taxas de mortalidade por acidente vascular cerebral e doenças 

coronárias. Os fatores de risco do cancro podem incluir exposições ocupacionais, 

agentes infecciosos, determinantes sociais, fatores de estilo de vida e mudanças 

genéticas e epigenéticas, tornando-se uma doença de alta complexidade. Muitas 

interações heterotípicas ocorrem no ambiente tumoral e as células estromais normais 

associadas a tumores são participantes ativos no desenvolvimento tumoral. A 

compreensão das muitas etapas do processo tumorigênico é necessária para que 

novas abordagens terapêuticas surjam, como resultado da compreensão da evolução 

da doença e de seus mecanismos adjacentes. 

Os tratamentos mais comumente usados para combater o cancro são quimioterapia, 

radioterapia e cirurgia, ou uma associação de ambas. Uma importante abordagem 

quimioterapêutica usa a interrupção da maquinaria mitótica para potencializar a 

paragem do ciclo celular e/ou morte das células cancerígenas. Os “microtubule-

targeting agents” (MTAs) são os principais agentes antimitóticos utilizados em clínica 

atualmente, isto porque os microtúbulos são parte essencial no processo de divisão e 

inibir sua dinâmica de polimerização acaba por ativar checkpoint mitótico  (SAC), que 

monitora a integridade do fuso mitótico e as ligações cromossômicas adequadas aos 

microtúbulos, a fim de garantir a segregação cromossômica precisa e o início oportuno 

da anáfase. Com o SAC ativo, não é possível ocorrer a transição da metáfase para a 

anáfase e ocorre uma paragem do ciclo celular seguido, na maioria das vezes, de 

morte celular.  

Entretanto, a atividade citotóxica dos MTAs não está limitada apenas às células 

cancerosas, e por este motivo, as toxicidades frequentemente se manifestam de 

maneira negativa, causando efeitos adversos, como, por exemplo, neuropatia 
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periférica. Além disso, em todas as fases do tratamento, pode haver mecanismos de 

resistência à droga, onde a célula cancerígena tenta emitir rotas de escape no contexto 

de morte celular.  

O interesse agora é encontrar novas moléculas que contornem os mecanismos de 

resistência e que sejam mais direcionados a determinados alvos. Aqui, determinamos 

o mecanismo de ação do derivado da xantona pyranoxantona 2 identificado como um 

potente inibidor do crescimento de células cancerosas. Descobrimos que as células 

cancerígenas tratadas com a pyranoxantona 2 exibiram defeitos persistentes no 

processo de congressão cromossômico durante a mitose que não foram corrigidos ao 

longo do tempo, o que induziu uma paragem em mitose dependente de SAC seguida 

por apoptose maciça. É importante ressaltar que a pyranoxantona 2 foi capaz de 

potenciar a apoptose de células cancerosas tratadas com concentrações clinicamente 

relevantes de paclitaxel. Nossos dados identificaram o potencial da pyranoxantona 2 

como um novo antimitótico potente com potencial antitumoral promissor, sozinho ou 

em regimes de combinação. 

 

Palavras-chave: mitose, ligações cinetocoro-microtúbulos, piranoxantona, paclitaxel, 

cancro, apoptose 
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1 The eukaryotic cell cycle - General overview 

Cell cycle is the set of processes that occur in the cell from its appearance to the cell 

division process, where a parental cell will gives rise to two daughter cells (Sullivan and 

Morgan, 2007; Harashima, Dissmeyer and Schnittger, 2013). In eukaryotic cells, this 

process is divided into two main phases: interphase and mitosis. This process is 

responsible for the renewal of damaged or aged cells. During this period, a cell goes 

through several processes, such as cell growth, multiplication of its genetic material 

and cell division (Harashima, Dissmeyer and Schnittger, 2013). 

Interphase is the longest period of cell cycle and occurs between two consecutive cell 

divisions. The interphase is divided into three stages: Gap1 (G1); synthesis phase (S); 

and Gap2 (G2) (Nigg, 2001; Sullivan and Morgan, 2007; Harashima, Dissmeyer and 

Schnittger, 2013) (Figure 1). At this stage, a cell is in intense metabolic activity for its 

growth. The chromosomal filaments remain disconnected within the nucleus, 

constituting a complex of DNA chromatin and proteins of eukaryotic cells. It is during 

the interphase that the chromosomal DNA is active and in constant production of RNA 

molecules. It is also during interphase that cell grows and chromosomal DNA 

duplicates, preparing the cell for further division. Mitosis is also divided in stages, 

simply: Prophase, Prometaphase, Metaphase, Anaphase and Telophase (Figure 1). 
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The G1 phase is usually the longest and most variable phase (depending on the cell 

type) that precedes the duplication of chromosomal DNA. It is at this stage that the 

membrane, structural proteins, cytoplasmic organelles and RNAs increase in size, 

although there is only one copy of chromosomes per cell (Harashima, Dissmeyer and 

Schnittger, 2013). Because of this characteristic of structural duplication, this stage is 

recognized by cell growth. There are cells that do not go through this state and remain 

in it until their death, when the cell receives no stimulus to perform its division and 

ends up fulfilling only its cellular role with normal metabolism, without duplicating the 

genetic material or dividing. 

It is also in the G1 phase that the restriction point (R) occurs, which is known as a 

decisive point for the cell to enter in the cell cycle. This restriction point is responsible 

Figure 1 Cell cycle representation. The interphase is divided into G1, S and G2 phases. G0 is a resting 

phase. Mitosis is divided into Prophase, Prometaphase, Anaphase and Telophase. Cytokinesis ends the 

process with the cytoplasmic division of the cell. 
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for dictating the fate of most cells and is regulated by extracellular growth factors 

(Vermeulen, Berneman and Van Bockstaele, 2003; Malumbres and Barbacid, 2009). 

Through the reception of extracellular growth factors, some cells pass the restriction 

point and proceed to the S phase, while some cells, in the absence of suitable growth 

factors, leave the cell cycle and enter a non-proliferative state called G0. In this stage, 

the cells are inactive and can remain in G0 or reverse this state and return to their 

activity (Figure 1) (Sanchez et al., 1997; Sullivan and Morgan, 2007). 

It is in the S-phase that the process of duplication of genetic material occurs. In this 

stage, the cell is performing its metabolic functions and, in the end, the centrosomes 

and DNA are completely replicated (Doxsey, 2001; Nigg, 2001; Sullivan and Morgan, 

2007; Harashima, Dissmeyer and Schnittger, 2013). In the G2 phase, occurs the 

duplication of centrioles, production of glycolysis to form the mitotic spindle, the cell 

completes growth and is prepared for mitosis.  

Mitosis, or M phase, is the step that results in nuclear division and cytokinesis, the next 

step, occurs cytoplasmic division that generates daughter cells (Weinert, 1997; 

Harashima, Dissmeyer and Schnittger, 2013). 

The order of the events in the cell cycle must be controlled, so that the time and 

direction are accurate. This is because it is a unidirectional process, on which 

subsequent events depend directly on the success of previous events to be carried out 

in the correct way (Murray, 2004; Sullivan and Morgan, 2007). There is, therefore, a 

network of regulatory proteins responsible for this control of the cell cycle that occurs 

through signal transduction pathways allowing events with a high level of complexity 

that are separated in time or space to also be connected. 

The main regulatory proteins are cyclin-dependent kinases (CDKs), which refers to a 

family of serine/threonine protein kinases that are activated at the cycle checkpoints 

to regulate the process of entry and exit between phases (Figure 2) (Vermeulen, Van 

Bockstaele and Berneman, 2003; Malumbres and Barbacid, 2009; Lim and Kaldis, 

2013). When activated, CDK is responsible for inducing downstream processes through 
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the phosphorylation of selected proteins (Morgan, 1995; Malumbres and Barbacid, 

2009; Lim and Kaldis, 2013).  

CDK activity is regulated by cyclins, but also by phosphorylation in conserved threonine 

and tyrosine residues (Vermeulen, Van Bockstaele and Berneman, 2003; Lim and 

Kaldis, 2013) that end up inducing conformational changes that consequently increase 

the binding of cyclins (Jeffrey et al., 1995; Paulovich and Hartwell, 1995; Murray, 

2004).  

Cyclins are a family of proteins that control the progression of a cell through the cell 

cycle. These can be divided into four classes: G1 (D) cyclins, G1/S (E) cyclins, S (A) 

cyclins and G2/M cyclins (A and B) and are produced and degraded depending on the 

phase, where cyclin-CDK interactions are considered to be largely responsible for 

controlling the progression of the cell cycle (Figure 2) (Nigg, 2001; Murray, 2004).  

The three type D cyclins (cyclin D1, cyclin D2, cyclin D3) bind to the CDK4 and CDK6 and 

CDK-cyclin D complexes, being essential for entry into G1 (Kato et al., 1994). Another 

G1 cyclin is cyclin E, which binds to CDK2 and functions as a regulator of G1 to S phase 

progression (Ohtsubo et al., 1995). G1 cyclins stimulate and control cell cycle entry in 

response to extracellular factors, and G1/S cyclins trigger cell progression through the 

restriction point and initiate DNA and centrosome replication (Doxsey, 2001; Nigg, 

2001; Murray, 2004). 

Cyclin A binds to CDK2 forming an important bond that occurs during the S phase 

(Girard et al., 1991; Walker and Maller, 1991). Cyclins A are responsible for DNA 

replication and their expression remains high throughout the S, G2 phase and in early 

mitosis to promote early mitotic events. At the end of phase G2 and at the beginning 

of phase M, the cyclin A complex is associated with CDK1 to promote entry into mitosis 

(Nigg, 2001; Murray, 2004).  

Mitosis is regulated by cyclin B in the CDK1 complex (Arellano and Moreno, 1997). 

Cyclins A and B contain a complex responsible for their destruction, while cyclins D and 

E contain a PEST sequence (proline-rich segment (P), glutamic acid (E), serine residues 

(S) and threonine (T)), which are protein sequences that allow efficient proteolysis of 
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ubiquitin-mediated cyclin at the end of a cell cycle phase (Glotzer, Murray and 

Kirschner, 1991; Rechsteiner and Rogers, 1996; Dacatur and Portnoy, 2000). Cyclin B 

increases its expression levels as the cell approaches mitosis while its degradation in 

return after ubiquitination by the anaphase/cyclosome promoter complex (APC), 

followed by destruction in the proteasome that leads to the mitotic exit (Nigg, 2001; 

Murray, 2004). 

Unlike the levels of CDK protein that remain stable during the cell cycle, the levels of 

its activating proteins, cyclins, increase and decrease during the cell cycle, so that they 

activate the respective CDKs at the precise moment (Evans et al., 1983; Malumbres 

and Barbacid, 2009; Lim and Kaldis, 2013). 

For this complete CDK activation to occur, a CAK (CDK activating kinase) needs to 

phosphorylate an amino acid in its active site, which in this case is a threonine residue 

160 (Thr 160). On the other hand, an additional double phosphorylation regulated by 

the protein kinase Wee1 ends up inhibiting CDK activity, requiring dephosphorylation 

that is performed by means of a phosphatase known as Cdc25 used for reactivation 

(Mailand et al., 2000). 

Cell cycle inhibitory proteins, called CDK inhibitors (CKI), can neutralize CDK activity, 

binding only to CDK or the CDK-cyclin complex (Vermeulen, Van Bockstaele and 

Berneman, 2003). CKIs perform inhibitory phosphorylation on the tyrosine residue 15 

(Tyr 15) and threonine residue 14 (Thr 14) of CDKs and work as brakes to stop the 

progression of the cell cycle (Sanchez et al., 1997; Lim and Kaldis, 2013). 

CKIs are regulated by internal and external signals. The expression of p21 depends on 

transcriptional control of the p53 tumor suppressor gene. The p53 gene acts 

transcriptionally under the p21 gene, where the p21 gene promoter contains a p53 

binding site that allows this action (El-Deiry et al., 1993; Lim and Kaldis, 2013). The 

expression and activation of the p15 and p27 proteins leads to an increased response 

to the transforming growth factor β (TGF-β), which contributes as an important 

regulatory factor in cell growth (Waga et al., 1994; Reynisdóttir et al., 1995; Dewidar et 

al., 2019). 
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Each checkpoint has a primary focus. The checkpoint that occurs in G1 aims to review 

DNA damage. The checkpoint that occurs during the S phase is intended to verify that 

adequate DNA duplication has occurred. The checkpoint for the G2 phase consists of 

an additional check of the DNA content for non-replicated DNA or damage to it. 

Finally, the checkpoint that occurs during mitosis, called the spindle assembly 

checkpoint, which prevents the cell from dividing while all the chromosomes are not 

aligned along the metaphase plate. It is concluded that the cell frequently checks 

during the cell cycle whether the DNA transmitted to the daughter cells is of good 

quality and in adequate quantities (Figure 2) (Clarke and Giménez-Abián, 2000; 

Vermeulen, Van Bockstaele and Berneman, 2003; Musacchio and Salmon, 2007). 
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These control mechanisms in each phase transition that are known as checkpoints 

have a function of detecting errors and causing a stop until the damage is repaired 

(Weinert, 1998). In turn, a loss of function causes genomic instability, a typical 

characteristic in the development of tumorigenesis (Hartwell, 1992; Visconti, Della 

Monica and Grieco, 2016). Cell cycle checkpoints can be grouped according to their 

role in DNA damage, during interphase or in mitosis progression. These checkpoints 

stop or delay the progression of the cell cycle from phase G1, before DNA replication, 

in phase S, during DNA replication or in phase G2, before mitosis (Weinert, 1998; Zhou 

and Elledge, 2000; Nigg, 2001). 

Checkpoints in response to DNA damage occur when the checkpoints interrupt the cell 

cycle with the intention of providing time until DNA repair is complete. Sometimes, 

DNA damage checkpoints occur during the cycle, that is, before the cell enters the S 

phase (checkpoint G1-S) or after DNA replication (checkpoint G2-M) (Zhou and Elledge, 

2000). There also appear to be other checkpoints for DNA damage during the S and M 

phases (Vermeulen, Van Bockstaele and Berneman, 2003). 

The restriction point (R) is known as a point of no return in the G1 phase, which is 

decisive for the cell to enter the cell cycle (Vermeulen, Van Bockstaele and Berneman, 

2003). In case of DNA damage, the checkpoint in phase G1 generates an accumulation 

of tumor suppressor p53 and cells with damaged DNA are prevented from entering 

phase S until the error is repaired (Shieh et al., 1997; North and Hainaut, 2000). 

The Rb protein plays an essential role in regulating G1 progression and is probably 

involved as a key component of the molecular network that controls the restriction 

point. Rb binds and regulates a large number of cellular proteins, including members of 

Figure 2 CDK/Cyclin interactions and checkpoints throughout the cell cycle. Cyclin D binds with 

CDK4/6 during the G1 phase and cyclin E with CDK2. These interactions are decisive to dictate whether 

or not to enter G0 through the checkpoint that occurs in G1 check for cell size, nutrients, growth factors 

and DNA damage (p53, p21and p16). Cyclin A binds with CDK2 during phase S and Cyclin B with CDK1 

during phase G2 where a new decisive checkpoint occurs to check for cell size, nutrients, growth factors 

and DNA damage (p53, p21and p16). In mitosis there is the Spindle Assembly Checkpoint that verifies a 

correct alignment of the chromosomes in the mitotic spindles and allows the advance from metaphase 

to anaphase. 
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the E2F family of transcription factors, which in turn regulate the expression of many 

genes that encode proteins involved in cell cycle progression and also in DNA synthesis 

(Figure 3) (DeGregori, Kowalik and Nevins, 1995; Johnson and Walker, 1999; Nevins, 

2001; Sherr and McCormick, 2002). 

Through activation of the transcription factor E2F, cyclin E is induced during the 

progression of cells by the G1 phase (Ohtani, Degregori and Nevins, 1995; Geng et al., 

1996) and is associated with CDK2 so that the cells make the transition from phase G1 

to phase S and, in addition, cyclin E/CDK2 participates in the maintenance of Rb in the 

hyperphosphorylated state, causing a positive feedback loop for the accumulation of 

active E2F (Figure 3) (Johnson and Walker, 1999). In turn, cyclin A is also partially 

regulated by E2F, where its accumulation in the G1/S phase transition is observed, a 

characteristic that persists in phase S. Cyclin A is initially associated with CDK2 and, in 

sequence, in phase S, is associated with CDK1. The kinase activity associated with 

cyclin A is critical for entry into phase S, completion of phase S and entry into phase M 

(Johnson and Walker, 1999; Nevins, 2001; Sherr and McCormick, 2002; Giacinti and 

Giordano, 2006; Burkhart and Sage, 2008). 
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Phase G2, as in the other phases, contains a checkpoint that responds to DNA damage 

and causes a delay in the entry of mitosis, so that DNA repair is possible. Mitosis, in 

turn, is regulated by CDK1 in association with cyclins A, B1 and B2 (King, Jackson and 

Kirschner, 1994; Arellano and Moreno, 1997; Zhou and Elledge, 2000). For cells to get 

out of mitosis cyclins A and B must be degraded and the association of cyclins B/CDK1 

kinases is responsible for regulating this process of destruction. After mitosis, cells 

return to the starting point and return to G1 and, sequentially, at the restriction point, 

they must decide whether to start a new cell cycle (Johnson and Walker, 1999). 

Figure 3The role of RB protein in the progression of the G1 phase. The Rb protein plays an essential 

role in regulating G1 progression and is involved as a key component of the molecular network that 

controls the restriction point. Rb binds to the transcription factor E2F which in turn regulates the 

expression of many genes that encode proteins involved in the progression of the cell cycle and also 

induces the activation of cyclin E which is associated with cdk2 so that cells make the transition from 

the G1 phase to the S phase. 
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The spindle assembly verification point (SAC), responsible for mitosis, certifies that 

there was bipolar fixation of the chromosomes with the spindle microtubules and 

alignment in the metaphase equatorial plate in the transition from metaphase to 

anaphase (Musacchio and Salmon, 2007). 

2 Mitosis 

2.1 General description 

Schrader in 1944 was already kicking off the complex study of mechanisms involving 

the cell cycle, in particular mitosis, when he said: "We came to the conclusion that 

mitosis is composed of a large complex of mechanisms. As previous investigations tend 

to be made in the composition of the entire mitotic mechanism, when exposed, it 

appears to be quite simple. One can explain the fact that almost all hypotheses were 

built around the idea that a single type of force underlies all mitotic activity and that 

changes and adjustments in that force and on mobile devices explain the entire 

execution cycle". 

Mitosis represents a phase of the cell cycle where the genomic material is equally 

distributed to daughter cells in order for the genome to be successfully transmitted. 

Mitosis is divided into five stages, which occur continuously and are respectively 

named: prophase, prometaphase, metaphase, anaphase and telophase (Figure 4). 
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In the initial stage of the prophase, the cell begins to break some structures and form 

others, setting the stage for the division of chromosomes. Chromosomes initiate a 

condenser with a recognized chromosome end where two sister chromatids hold 

together by the centromere. Attachment and condensation employ the cohesion and 

condensin complexes, which associate with replicating DNA and become additionally 

active in preparation for mitosis (Lavoie, Hogan and Koshland, 2002).  

The centrosomes separate and begin to migrate to opposite sides of the cell to initiate 

the matrix of bipolar microtubules for the assembly of the mitotic spindle. The 

centrosome is a large organelle consisting of a pair of centrioles that are orthogonally 

positioned and surrounded by amorphous pericentriolar material and which are 

referred to as the main microtubule organizing center (MTOC) (Ou and Rattner, 2004). 

The mitotic spindle, in turn, is a structure made of microtubules, strong fibers that are 

Figure 4 Cell morphology during phases of mitosis. Mitotic division begins with prophase through the 

condensation of chromatin on chromosomes and the initial formation of the spindle. In prometaphase, 

microtubules carry out the process of ‘’search and capture’’ of kinetochores in chromosomes in order 

to align them along the metaphase plate. Metaphase is established by the bipolar orientation of all 

chromosomes and their alignment midway between the cell poles. In anaphase there is the separation 

of sister chromatids and their direction to the poles by microtubules. In telophase, the chromatin 

decondense and reorganizes the nuclear envelope. Cytokinesis ends the division process with the 

cytoplasm being distributed throughout the daughter cells causing their separation. 
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part of the cell's "skeleton", whose function is to organize the chromosomes and move 

them during mitosis. The mitotic spindle grows between the centrosomes as they 

separate (Conduit, Wainman and Raff, 2015). 

Still in prophase, the nucleolus, a part of the nucleus where ribosomes are formed, 

disappears, and this is a sign that the nucleus is about to break. Cdc2 phosphorylates 

and leads to depolymerization of the nuclear lamina, followed by the fragmentation of 

the nuclear membrane into particles, which eventually fuse to form new child nuclei in 

the telophase. In addition, the endoplasmic reticulum and the Golgi apparatus also 

fragment into vesicles, and can, at the end of the cell cycle, be distributed to daughter 

cells in cytokinesis (De Matteis and Luini, 2008). 

At the end of the prophase and the beginning of the prometaphase, the mitotic spindle 

begins to capture and organize the chromosomes. Prophase ends and prometaphase 

begins (by definition) when the chromosomes start to interact with spindle 

microtubules. In many organisms this occurs when the nuclear envelope break down. 

The chromosomes complete the condensation and, therefore, become very compact 

and the nuclear envelope breaks, causing the release of the chromosomes. The mitotic 

spindle grows larger and some microtubules begin to "capture" chromosomes. The 

microtubules bind to chromosomes through the kinetochore, an arrangement of 

proteins found in the centromere, regions of the DNA of each sister chromatid (Kline-

Smith et al., 2004). The kinetochores of the sister chromatids are positioned on the 

opposite sides of the chromosome, so that they are connected to the microtubules 

that come out of the opposite poles of the spindle. The chromosomes move back and 

forth until they line up on the metaphase plate in the center of the spindle (Chng et al., 

2008). 

Metaphase starts from the moment when the captured chromosomes establish 

bipolar connections with microtubules of opposite poles of the axis. This bi-orientation 

process until the chromosomes reach alignment in the equatorial region of the axis is 

known as a congress (Silva et al., 2011). 

The transition from metaphase to anaphase is a delicate and important moment of 

mitosis. An important checkpoint of the cell cycle monitors the alignment of 
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chromosomes on the metaphase axis. Once this alignment is verified, the cell begins 

anaphase. The transition from metaphase to anaphase is the result of ubiquitin-

mediated proteolysis of the main regulatory proteins, triggered by the activation of an 

ubiquitin ligase, which is the so-called anaphase promoter complex (Lub et al., 2014). 

In anaphase, the sister chromatids are segregated and pulled towards the opposite 

poles of the axis. During telophase, the spindle is disassembled so that a single 

centrosome is associated with a set of chromosomes. At this moment, the nuclear 

envelope reorganizes and re-involves chromosomes and other nuclear components in 

two daughter nuclei (Maciejowski and Hatch, 2020). 

A contractile groove forms between the nuclei and causes the cell to divide in two 

through the action of actin and myosin, characterizing the step of cytokinesis, part of 

the cell division process during which the cytoplasm of a single eukaryotic cell divides 

into two daughter cells (Green, Paluch and Oegema, 2012). 

2.2 Kinetochore-microtubules interactions 

Microtubules (MTs) are hollow cylindrical polymers of heterodimeric α-tubulin and β-

tubulin subunits, where the tubulin dimers are polarized, with β-tubulin exposed at 

one end (positive end) and α-tubulin at the other end (negative end) (Allen and Borisy, 

1974; Nogales et al., 1999). It is through this polarity that motor proteins are able to 

transport charges in vivo (Wittmann, Hyman and Desai, 2001). Microtubules have a 

highly dynamic activity, being able to polymerize and depolymerize over many cycles, 

this activity being responsible for several cellular functions such as cell division, 

polarization and migration. The transitional process, which goes from polymerization 

to depolymerization, is caused by the rapid loss of GTP-tubulin subunits and oligomers 

from the end of the microtubules, and is called catastrophe, while the reverse 

transition receives the name of rescue (Figure 5) (Walker et al., 1988; Akhmanova and 

Steinmetz, 2015). 
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The microtubules of the mitotic spindle, during metaphase, are arranged in a 

symmetrical and fusiform structure with the negative ends oriented towards the poles 

and the positive ends facing the cellular cortex. It is through the orientation of the 

positive ends that the spindle microtubules are divided into three classes: astral, 

interpolar and kinetochore microtubules (McIntosh and Euteneuer, 1984). 

The astral microtubules leave the centrosomes and diffuse into the cytoplasm with the 

positive ends in contact with the cellular cortex. They are assistants in the separation 

and positioning of the spindle poles in the cell. The interpolar microtubules go from 

the centrosomes towards the cell center and remain in the middle zone of the spindle, 

serving as a connection point between the two poles, providing stability to the spindle 

(Mastronarde et al., 1993; Sharp, Rogers and Scholey, 2000). The kinetochore 

Figure 5 Microtubules dynamics. Microtubules have a highly dynamic activity, being able to polymerize 

and depolymerize. The process, which goes from polymerization to depolymerization, is caused by the 

rapid loss of GTP-tubulin subunits and oligomers and is called a catastrophe, while the reverse 

transition is called a rescue. 
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microtubules are responsible for connecting the spindle poles to the chromosomes 

through initial lateral fixation in the kinetochore which is then converted into a mature 

final fixation for the bi-orientation of the chromosomes (Rieder and Salmon, 1998). 

The dynamic instability of microtubules and their interactions with other cell 

structures are controlled by numerous factors, which are grouped into a large group of 

proteins associated with microtubules (MAPs) (Akhmanova and Steinmetz, 2008). 

Some microtubules from neighboring asters interact through engines and MAPs to 

form interpolar fibers that are directly linked in keeping the shaft poles separate 

(McIntosh and Pfarr, 1991). 

The kinetochore plays a central role in the microtubules attachments to chromosomes 

and has a trilaminar proteinaceos morphology: the innermost layer, known as internal 

kinetochore plate, which is composed of a disc of densely compacted material and 

continuous with centromeric heterochromatin, the kinetochore plate external, which 

is a structure without DNA, dense in electrons, being the main binding site of the 

spindle microtubules and the third middle layer, which is responsible for separating 

and connecting the inner and outer regions of the kinetochore (Rieder, 1982; McEwen 

et al., 1998). 

Mature kinetochores can connect and put pressure on microtubules, their mounting 

characteristics and original signals that delay or start the operation until they are 

silenced by the MT axis coupling (Rieder and Salmon, 1998). To perform these 

functions, countless proteins are needed (Yu et al., 2000). 

Located in the fibrous crown of the kinetochore are the proteins involved in the SAC 

signaling pathway, such as Bub1, BubR1, Bub3, Mad1, Mad2 and Mps1 that target 

Cdc20 and APC/C. Also located in the fibrous crown of the kinetochore are some 

components involved in the fixation of kinetochore-microtubules and/or silencing of 

SAC as RZZ complex (Rod, Zw10, Zwilch), Spindly, dinein, dinactin, Lis1, CENP-E, CENP-F 

and Ska complex (Ska1, Ska2, Ska3), besides of microtubule tracking proteins plus end 

(+ TIPs) (Barbosa et al., 2011). 
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The kinetochore proteins network is responsible for favoring the efficient alignment of 

chromosomes in the metaphase plate and consequently promoting the proper 

segregation of chromosomes (Wittmann, Hyman and Desai, 2001). 

The “search and capture” model proper the capture of chromosomes, through their 

kinetochore, by the spindle microtubules is obtained gradually after the nuclear 

envelope is broken in the prometaphase, where the chromosomes are released in the 

cytosol and are accessible to the microtubules by the mitotic spindle. The microtubules 

probe the cytoplasm, through episodes of stretching and shortening its positive 

extremities, to find and capture the chromosome (Maiato, Sampaio and Sunkel, 2004). 

Chromosomes are successfully aligned on the metaphase plate when they become bi-

oriented, a condition known as amphitelic attachment, obtained at the moment when 

the sister kinetochores are connected to opposite poles of the spindle. It is this 

geometry that manages to guarantee that an accurate segregation of the sister 

chromatids to the daughter cells will be carried out in anaphase (Maiato and Sunkel, 

2004; Cheeseman and Desai, 2008). 

However, some errors can occur and cause improper connections that compromise the 

correct segregation of chromosomes. There are three types of incorrect connections of 

known kinetochore microtubules: monotelic, syntelic and merotelic (Figure 6) (Tanaka 

et al., 2005; Tanaka, Stark and Tanaka, 2005; Tanaka, 2008). Monotelic attachment of 

the kinetochore is caused when one sister kinetochore is disconnected and the other 

remains connected to the microtubules from just one pole. The syntelic attachment is 

when the two sister kinetochores are connected to microtubules on the same pole as 

the spindle. Merotelic attachments occur when one sister kinetochore binds to 

microtubules at both poles (Kelly and Funabiki, 2009). 
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Adequate tension between sister kinetochores is a factor that influences the detection 

and correction of merotelic and syntelic bonding errors that distinguishes the different 

bonding states of sister kinetochores. Aurora B kinase acts as a voltage sensor to 

correct connection errors by destabilizing them (Nicklas, Ward and Gorbsky, 1995; 

Kelly and Funabiki, 2009), as well as the polo-like kinase 1 (Plk1), located in 

kinetochores during prometaphase (Ahonen et al., 2005; Liu, Davydenko and Lampson, 

2012; Suijkerbuijk et al., 2012). 

2.3 The spindle assembly checkpoint 

The stable union between sister chromatids is mediated by Cohesin, a multimeric 

protein ring structure that surrounds replicated sister chromatids (Nasmyth and 

Haering, 2009). Cohesin is maintained throughout the S, G2 phase and in the initial 

mitosis, when the chromosomes are aligned in the center of the cell in the microtubule 

spindle apparatus. In anaphase the Cohesin ring opens and the union between sister 

chromatids is lost by the proteolytic activity of the enzyme Separase, allowing the 

spindle forces to pull them to opposite sides of the cell. Separase is under the control 

of Securin, which when connected prevent the cleavage of Cohesins, thus delaying the 

onset of anaphase. Securin levels are regulated by the anaphase/cyclosome promoter 

complex, APC/C, which is a multi-subunit E3 ubiquitin ligase that targets proteins for 

degradation by the 26S proteasome (Morgan, 1999; Reddy et al., 2007; Stegmeier et 

Figure 6 Representation of attachments errors between microtubules and kinetochores of the 

monotelic, synthetic and merotelic type. The monothelic fixation of the kinetochore represents a 

disconnected sister kinetochore and the other connected to the microtubules from just one pole. The 

synthetic bond is when the two sister kinetochore are connected to microtubules in the same pole as 

the spindle. Merothelic bonds occur when a sister kinetochore binds to microtubules at both poles. 
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al., 2007). The ubiquitination of APC/C leads to Securin being degraded causing the 

activation of Separase, responsible for the cleavage of one of the Cohesin subunits, 

Scc1. The sister chromatids are then able to segregate in the mitotic spindle and 

anaphase is possible to occur (Nasmyth, 2001; Holland and Cleveland, 2009; Przewloka 

and Glover, 2009). The central role of the spindle assembly checkpoint is to prevent 

anaphase from entering until all the chromosomes are precisely positioned and 

attached to the axis (Musacchio and Salmon, 2007; Nezi and Musacchio, 2009). 

SAC was discovered and initially described after pioneering work that led to the 

concept of cell cycle checkpoints (Hartwell and Weinert, 1989), through genetic 

screening in the yeast Saccharomyces cerevisiae (Hoyt, Totis and Roberts, 1991; Li and 

Murray, 1991) that managed to identify most of the main components, such as Mad1, 

Mad2, Mad3, Bub1 and Bub3. Later, other components of SAC such as Mps1 were 

described (Weiss and Winey, 1996). 

This discovery showed that all of them were located in unattached kinetochores, and 

that the downstream targets were the APC/C, which is an ubiquitin E3 ligase that acts 

in association with various proteins for degradation proteolytic, including mitotic 

cyclins (Santaguida and Musacchio, 2009). 

Since then, SAC has been described as the main responsible for monitoring the 

presence of misaligned chromosomes and preventing the onset of anaphase 

(Musacchio and Salmon, 2007) and involves the performance of different proteins in 

this process, such as Aurora B located in the internal kinetochore, Mad1 and Mad2 

that identifies kinetochores and microtubules disassociated or with coupling errors, in 

addition to Mad2 also being part of the Mitotic Checkpoint Complex (MCC) signaling, 

among others (Li et al., 1997; Luo et al., 2002). 

MCC is the main APC/C inhibitor generated by SAC and its substrate securin elucidates 

the securin-separase-cohesin pathway (Nasmyth and Haering, 2009), that provide a 

structure that describes how SAC regulated the onset of anaphase and the mitotic exit. 

The understandings arising from this discovery expand to questions that involve how 

the SAC is assembled in kinetochores, how it generates the MCC and how the MCC 

inhibits APC/C (Figure 7). 



20 
 

 

 

 

 

 

Regarding the assembly of the SAC, the proteins belonging to it are recruited to the 

kinetochores in a gradual manner, with Bub1 (Hoyt, Totis and Roberts, 1991; Meraldi, 

Draviam and Sorger, 2004; Perera et al., 2007) connecting first in the initial prophase 

and recruiting most of the downstream SAC components, such as BubR1, Bub3, Mad1 

and Mad2 (Acquaviva et al., 2004; Kim et al., 2012). 

Mad2 was the first SAC component identified in vertebrate cells (Li and Benezra, 1996; 

Luo et al., 2004) and it is important to understand that Mad2 adopts two distinct 

conformations, one when it is decoupled, and adopts an open conformation which is 

called O-Mad2, however after binding to Mad1 (or Cdc20), create the closed 

conformation, which is called C-Mad2 (Sironi et al., 2001; De Antoni et al., 2005). 

Figure 7 SAC pathway representation. When there are unconnected kinetochores Bub3, Mad2 and 

BubR1 bind to CDC20, forming the MCC. This prevents the activation of APC/C and inhibition of cell 

progression to anaphase due to the sequestration of CDC20. With the alignment of all chromosomes, 

the MCC is disassembled and the CDC20 is free to activate the APC/C, which causes the degradation of 

Cyclin B and Securin in the proteasome, releasing the Cdk1 that promotes the mitotic exit and the 

Separase that separates the sister chromatids. 
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O-Mad2 is attracted and linked to the Mad1-C-Mad2 complex that captures Cdc20, 

thus creating a C-Mad2-Cdc20 complex, completing the first step in assembling the 

MCC (De Antoni et al., 2005). Thus, the activity of the Mad1-C-Mad2 nucleus in the 

kinetochore is extremely important in the SAC mechanism to demonstrate that a 

kinetochore is detached. 

Mps1 emerged as an important regulator of the Mad2 model mechanism that led to 

the understanding that in mitosis, concomitant with the kinetochore set, the activity of 

this protein is responsible for attracting the recruitment of the RZZ complex, which, in 

turn, is the responsible for recruiting Mad1-C-Mad2 (Hewitt et al., 2010; Maciejowski 

et al., 2010; Santaguida et al., 2010). 

Generating the C-Mad2-Cdc20 complex may be enough to alert the cell to the 

presence of unbound kinetochores, but it is not enough to block the onset of 

anaphase. BubR1/Mad3 are responsible for acting downstream of Mad1-C-Mad2 to 

block the onset of anaphase (Hardwick et al., 2000; Nilsson et al., 2008). In fact, the 

formation of the C-Mad2-Cdc20 complex is only the beginning of the APC/C activation 

cascade, that is, the formation of the MCC (Sudakin, Gordon K.T. Chan and Yen, 2001). 

The MCC is assembled from two subcomplexes, the Mad2-Cdc20 complex and the 

Mad3/BubR1-Bub3 complex (Musacchio and Salmon, 2007). And while the formation 

of Mad2-Cdc20 is catalyzed by unattached kinetochores, BubR1-Bub3 are present 

throughout the cell cycle (Hardwick et al., 2000; Chen, 2002). It is well established that 

Mad2 is important for BubR1/Mad3 to be bound to Cdc20 (Hardwick et al., 2000; Fang, 

2002; Davenport, Harris and Goorha, 2006; Burton and Solomon, 2007; Nilsson et al., 

2008; Sczaniecka et al., 2008). 

As for the inhibition of APC/C, kinetochore-activated Mad2 is an important inhibitor of 

anaphase, through binding to Cdc20 that prevents it from activating APC/C (Li et al., 

1997; Fang, Hongtao and Kirschner, 1998). Even with the discovery of MCC (Sudakin, 

Gordon K.T. Chan and Yen, 2001) and the demonstration that BubR1 potentiates 

Mad2-mediated inhibition of APC/C (Fang, 2002), the view remains that Mad2 is the 

ultimate inhibitor of APC/C downstream. However, there is some current evidence to 

show that BUBR1, and not Mad2, is the main APC/C inhibitor. 
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The MCC-activated APC/C has the ability to recruit cyclin B1 and lower securin (Herzog 

et al., 2009), which suggests that MCC, and therefore BubR1, interfere in some way in 

substrate binding. The Cdc20 and APC/C link is mediated by different subunits of the 

APC/C, which change depending on whether the SAC is active or disabled (Acquaviva et 

al., 2004). 

It has already been proven that the shape and composition of kinetochores directly 

affect the fixation of microtubules (Howell et al., 2004). Even though the shape 

changes are mainly carried out by traction forces, in the upper eukaryotic discharges, a 

subset of kinetochore components is removed through the stable fixation of the 

microtubule. The removal of Mad1 and Mad2 from kinetochores is essential for the 

efficient inactivation of SAC (Maldonado and Kapoor, 2011) and is mediated by the 

microtubule motor protein called dynein (Howell et al., 2004). 

Spindly dynein-mediated removal of connected kinetochore is a key point for the 

removal of RZZ, Mad1 and Mad2 from connected kinetochore. After the microtubules 

are attached, the removal of Mad1-C-Mad2 from the kinetochores prevents the 

formation of new MCC complexes. In addition to preventing the assembly of a new 

MCC complex, extinguishing the SAC signal requires that several existing inhibitory 

complexes be disassembled to release Cdc20 to activate APC/C and promote mitotic 

exit (Henriques et al., 2019). 

Taking into account the role of SAC in preventing cells from prematurely segregating 

their genetic material, its accurate activity is of great importance as a guarantee that 

mitotic events will occur correctly, preventing the genomic imbalance and abnormal 

cell proliferation that characterizes the tumor tissue (Bharadwaj and Yu, 2004), which 

suggests a relationship between the malfunctioning of the SAC and CIN of tumors. 

3 Cancer 

3.1 Overview 

Cancer is a rise disease, and its incidence and mortality have increased considerably in 

recent years (Bray et al., 2018). As age is the main etiologic factor, it is possible to 

relate the longest-lived population currently one of the indicators of this increase, as 
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well as changes in lifestyle in the developing world. Mortality rates have been so high 

that in many countries it exceeds death rates from stroke and coronary heart disease 

(Bray et al., 2018). According to the World Health Organization (WHO), there were 

18.1 million new cases in 2018 and 9.6 million deaths. Lung cancer represents the 

highest incidence rates (11.6% of total cases) and also mortality (18.4% of total 

deaths), followed by breast cancer (11.6%), colorectal cancer (10.2%) and prostate 

cancer (7.1%) in relation to the incidence, and colorectal cancer (9.2%), stomach 

cancer (8.2%) and liver cancer (8.2%) in relation to mortality (Bray et al., 2018).  

Incidence rates vary, with higher rates of prostate, colorectal, breast and lung cancer 

considerably higher in the most affected countries compared to the least used 

countries. On the other hand, liver, stomach and cervical cancer are more common in 

less developed countries, because these cancers often have etiological factors 

attributed to the infection (Iarc., 2012; World Health Organization, 2012).  

These regional differences directly interfere with patients’ prognosis and treatments 

when looking at the overview. A good example is shown through data related to the 

numbers of liver cancer, which is very common in underdeveloped countries, and 

because it displays a high mortality rate, it ends up increasing disproportionately the 

cancer mortality rates in the countries. As global demographic and epidemiological 

transitions signal an increase in low and middle income countries in the coming years, 

they indicate a trend of socioeconomic influence in mortality rates (Siegel, Miller and 

Jemal, 2019).  

Cancer risk factors can include occupational exposures, infectious agents, social 

determinants, lifestyle factors and genetic and epigenetic changes (Toporcov and 

Wünsch Filho, 2018). Tobacco, alcohol and diet are some of the etiological factors 

related to several types of cancer (Vineis and Wild, 2014).  

Neoplasm is a type of change in normal cells that can give rise to the tumor or not. The 

benign tumor grows locally without invading adjacent tissues, whereas the malignant 

tumor consists of invasion of neighboring tissues and eventually metastasis, which is 

the growth in distant and distinct locations from the primary tumor (Evan and d’Adda 

di Fagagna, 2009; Hanahan and Weinberg, 2011). There are tumors arising from 



24 
 

different cell types, namely: carcinoma, sarcoma, neuroectodermal and 

hematopoietic, which originate in cells of the epithelial tissue, cells of the connective 

tissue, cells of the central and peripheral nervous system and blood cells, respectively. 

The tumor progression process happens due to a sequence of mutations that occur at 

random and epigenetic changes that in turn will control the proliferation of cells, their 

survival and other characteristics related to the phenotype. The tumorigenic process is 

in fact a process that involves several steps, that is, it is a chronic process. The best 

example to demonstrate this evolution in a multi-step process is the intestinal 

epithelium (Loupakis et al., 2009). 

Involved genes code for proteins with various functions that complement each other in 

transforming a normal cell into a cancer cell. Tumor progression is divided into four 

main phases: initiation, carcinoma in situ, invasion and metastasis (Figure 8) (Evan and 

d’Adda di Fagagna, 2009; Hanahan and Weinberg, 2011). At initiation, normal cells 

mutate and initiate processes of uncontrolled division.  

This process occurs over several generations and will give rise to a first tumor. In 

carcinoma in situ, the tumor has not yet invaded other adjacent tissues and is where 

additional mutations occur that give cells the ability to evade apoptosis, however at 

this stage the presence of nutrients is limited. The invasion is a phase marked by 

angiogenesis, where the tumor cells start to access blood vessels and from there 

obtain the necessary nutrients for their growth. In metastasis, which is the final stage, 

the tumor acquires capacities that allow it to spread to other tissues, even if they are 

far from the place of origin (Figure 8) (Evan and d’Adda di Fagagna, 2009). 
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The three types of cancerous genes are oncogenes, tumor suppressor genes and DNA 

repair genes. Mutations are abnormal changes in the DNA of a gene. The building 

blocks of DNA are called bases and it is this sequence of bases that determines the 

gene and its function. Mutations are nothing more than changes in the arrangement of 

the bases that make up a gene (Loeb, Loeb and Anderson, 2003). 

A genetic mutation can affect the cell in several ways, either by interrupting the 

production of proteins, or by altering the protein itself or causing it to no longer 

function as it should or not work at all (Loupakis et al., 2009). We have 2 copies of 

most genes, one from each chromosome in a pair. For a gene to stop working 

completely and potentially cause cancer, both copies must have mutations. 

Figure 8 Tumor progression. Four main phases mark tumorogenesis: initiation, carcinoma in situ, 

invasion and metastasis. In the beginning, normal cells mutate and initiate processes of uncontrolled 

division and give rise to a first tumor. In carcinoma in situ, the tumor has not yet invaded other adjacent 

tissues. Invasion is a phase marked by angiogenesis, where tumor cells begin to access blood vessels. In 

metastasis, the tumor acquires abilities that allow it to spread to other tissues. 
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There are 2 main types of genetic mutations: somatic and germline. Somatic mutations 

are acquired by a somatic cell and these mutations are passed on to daughter cells 

during cell proliferation, that is, each time a cell divides it needs to replicate its DNA, 

mistakes happen at random. Germline mutations are present in the germ cells and 

passed on to the descendants (Salk, Fox and Loeb, 2010).  

Somatic mutations, regardless of their structural nature, can be classified according to 

their consequences that cause cancer. Driver mutations are the ones that give rise to 

the growth advantage of the cells that carry them. The rest of the mutations are 

passengers, which means that they do not confer growth advantage, but were already 

present in an ancestral cancer cell when it acquired one of its drivers. An important 

driver subclass is a mutation that confers resistance to therapy, which generally gives 

cancer cells limited growth advantage in the absence of therapy (Stratton, Campbell 

and Futreal, 2009). The genes involved in the process of tumorigenesis can be: 

oncogenes, tumor suppressor genes and DNA repair genes (Loeb, Loeb and Anderson, 

2003).  

3.2 Molecular basis  

Given the numbers indicated, it is very clear the need to advance in understanding the 

biological and molecular aspects of cancer. Six characteristics, described by Hanahan & 

Weinberg in 2000, provide a logical structure that allows us to understand the various 

steps of tumor pathogenesis in humans, which demonstrate the evolution that 

happens from a cell in its normal state to a neoplastic state, progressively. Despite 

understanding the complexity of cancer, an innate and indisputable resource is a high 

rate of abnormal cell proliferation, which is considerably higher than normal cells, as 

well as the ability of these invading cells from other tissues to spread to any other 

organ (Hanahan and Weinberg, 2000; Evan and d’Adda di Fagagna, 2009).  

What increases the complexity of the disease, when one imagines which tissues are 

treated in several different cell types, promotes heterotypic interactions with each 

other. In these interactions, normal stromal cells associated with tumors are active 

participants in tumors, not passive spectators, directly contributing to the 

development and expression of certain striking features of tumors (Hanahan and 
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Weinberg, 2011). To manage its migration and proliferation, a cancer cell can avoid 

patterns of use, in order to contribute to cell proliferation, cell survival and cell 

communication. These processes are regulated in normal cells by redundant routes, 

which makes it understood that a cell to become cancerous needs several mutations in 

different genes. 

The characteristics described for Hanahan & Weinberg in 2000 and 2011 are 

responsible for maintaining proliferative signaling, and are the consequences of 

genetic mutations in various genes. Cancer cells develop their own proliferation rate 

by manipulating positive signals to stimulate growth. Cancerous cell communication, 

whether paracrine or autocrine, increases the display of receptors on the cell surface 

or allows activation of receptors downstream of the pathway. Through sequestration 

in the pericellular space and extracellular matrix and the actions of a complex network 

of proteases, sulfatases and possibly other enzymes that release and activate them, 

the bioavailability of growth factors is regulated in a highly specific and localized 

manner (Hanahan and Weinberg, 2011). This proliferative signaling in cancer cells can 

be sustained in several ways, such as through the production of growth factor ligands, 

which produce an autocrine proliferative stimulation response through the expression 

of cognate receptors. Cancer cells can also send signals to stimulate normal cells within 

the stroma tumor-associated, which reciprocate by providing cancer cells with various 

growth factors (Bhowmick, Neilson and Moses, 2004; Cohen et al., 2008).  

Several oncogenes directly influence cellular behavior through signals in the 

cytoplasm. The cancer cell acts by mimicking the normal growth signal, ranging from 

quiescence in normal tissue to motility. Changes in extracellular growth signals, 

transcellular transducers of these signals and intracellular circuits that convert these 

signals into action, are molecular strategies that aim to reach the signal. The 

manufacture of its own growth factors (GF) by the cancer cell makes it independent of 

GFs from other cells within the tissue. For example, the production of PDGF (platelet-

derived growth factor) and TGFα (tumor growth factor α) by glioblastomas and 

sarcomas, respectively, adequately demonstrate this production (Alimandi et al., 

1997). In addition, cancer cells can alter the expression of extracellular matrix 

receptors (integrins) favoring those that transmit signs of progress (Lukashev and 
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Werb, 1998; Giancotti and Ruoslahti, 1999). The SOS-Ras-Raf-MAP kinase pathway can 

be activated through GF receptors activated by ligands and pro-growth integrins 

coupled to the components of the extracellular matrix (Figure 9) (Howe et al., 1998; 

Giancotti and Ruoslahti, 1999).  

 

 

 

 

 

 

 

The SOS-Ras-Raf-MAPK signaling pathway has its role considered essential in 

tumorogenesis, according to Medema & Bos, in 1993, “25% of human tumors, Ras 

proteins are present in structurally altered forms that enable them to release a flux of 

mitogenic signals into cells, without ongoing stimulation by their normal upstream 

regulators”. Going against the above, in 2010, Davies & Samuels confirmed that “40% 

Figure 9 SOS-Ras-Raf-MAP kinase pathway. The binding of growth factors to receptor tyrosine kinases 

stimulates the autophosphorylation of specific tyrosines at receptors. The phosphorylated receptor 

binds to GRB2, which is an adapter protein that removes SOS from the plasma membrane. SOS is a 

factor that changes guanine nucleotides and displaces the GDP of Ras and thus allows the binding of 

GTP. Ras linked to GTP recruits and activates Raf which initiates a cascade of protein phosphorylation 

by the first phosphorylation of MEK which in turn phosphorylates ERK. Phosphorylated ERK goes from 

the cytoplasm to the nucleus, where it phosphorylates a number of transcription factors. 
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of human melanomas contain activating mutations affecting the structure of the B-Raf 

protein, resulting in constitutive signaling through the Raf to mitogen-activated protein 

(MAP)-kinase pathway”.  

The role that this signaling pathway plays interferes with several other pathways, 

through connections that allow extracellular signals to influence multiple biological 

effects in cells, such as the direct interaction of the Ras protein with PI3-kinase, which 

sends growth signals into the cell generating its survival (Downward, 1998). Some 

mutations in the catalytic subunit of the phosphoinositide 3-kinase (PI3-kinase) 

isoforms have already been found in several types of tumors, and play an important 

role in the signaling of the cancer cell, by hyperactivating the PI3-kinase signaling 

circuit, including its main Akt/PKB signal transducer (Figure 10) (Medema and Bos, 

1993; Jiang and Liu, 2008; Yuan and Cantley, 2008).  
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Hanahan & Weinberg in 2011 concluded that defects in these feedback mechanisms 

can increase proliferative signaling. The consequent excessive proliferative signaling 

can trigger cellular senescence. This demonstrates the importance of negative 

feedback loops that often play a fundamental role in controlling different types of 

signaling to ensure homeostatic regulation of the signal flow that occurs within 

intracellular circuits (Amit et al., 2007; Cabrita and Christofori, 2008; Mosesson, Mills 

and Yarden, 2008; Wertz and Dixit, 2010). For example, PTEN phosphatase, which 

controls the levels of PI3-kinase through the degradation of its product, 

phosphatidylinositol (3,4,5) triphosphate (PIP3), where the loss-of-function mutations 

in PTEN, often lost through methylation of the promoter, end up amplifying the PI3K 

signaling (Figure 10) (Jiang and Liu, 2008; Yuan and Cantley, 2008). Excessively high 

signaling by oncoproteins such as RAS, MYC and RAF can generate responses contrary 

to cells, induction of cellular senescence and/or apoptosis (Wendel et al., 2004; Evan 

and d’Adda di Fagagna, 2009; Collado and Serrano, 2010). 

The cancer cell also needs to survive, to generate certain insensitivity to the anti-

growth signals of the cancer cells. These signals come through soluble growth 

inhibitors and immobilized inhibitors embedded in the extracellular matrix and on the 

surfaces of nearby cells. Anti-growth signals manage to block cell proliferation through 

two distinct mechanisms: forcing a cell out of the active proliferative cycle to the 

resting state (G0) - which is reversible - and can return to its active state when 

extracellular signals permit, or inducing the cell to permanently abandon its 

Figure 10 PI3K-AKT-mTOR and RAS pathways association. The PI3K-AKT-mTOR pathway is triggered by 

the activation of several growth factor receptor tyrosine kinases. PI3K proteins are recruited to the 

plasma membrane through adapter proteins, such as members of the insulin receptor substrate (IRS) 

family. This interaction leads to phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to 

generate phosphatidylinositol 3,4,5-triphosphate (PIP3) which in turn activates AKT which 

phosphorylates the protein complex formed by TSC1 and TSC2, dissociating it O. The TSC1-TSC2 

complex in turn acts in the negative regulation of the activity of the mTOR1 kinase (which performs a 

negative feedback loop to prevent over activation of AKT. The PI3K-AKT-mTOR pathway can be 

increased by activating molecular changes in the subunits PI3K, AKT and mTOR or even some loss of 

function changes in PI3K, PTEN, TSC1, TSC2 and LKB1 regulatory subunits. The activation of the tyrosine 

kinase growth factor receptor and also induces KRAS-RAF-MEK-ERK signaling The active ERK can further 

contribute to the activation of mTORC1 through the dissociation of the TSC1-TSC2 complex, while KRAS 

can in parallel reinforce the activation of PI3K.  
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proliferative potential when induced to enter post-mitotic states (Hanahan and 

Weinberg, 2000).  

The retinoblastoma protein (pRb) and its two relative’s proteins p107 and p130 exhibit 

a fundamental role in anti-proliferative signals. In its hypophosphorylated state, pRb 

blocks proliferation by sequestering and altering the function of E2F transcription 

factors, which are responsible for controlling the expression of essential genes that 

allow progression from the G1 to the S phase (Geng et al., 1996). The RB protein plays 

a fundamental role in the cell's decision to continue or not continue in cycle of growth 

and division, through the integration of signals from several extracellular and 

intracellular sources (Sherr and McCormick, 2002; Deshpande, Sicinski and Hinds, 

2005; Burkhart and Sage, 2008).  

TGFβ suppresses the expression of the c-myc gene which regulates the G1 cell cycle 

machinery (Barnard, Lyons and Moses, 1990). TGFβ synthesizes the proteins p15Ink4b 

and p21, which are responsible for blocking the cyclin CDK complexes which are 

responsible for the phosphorylation of pRb (Waga et al., 1994; Datto et al., 1997).  

The pRb and p53 protein are considered the two canonical suppressors of 

proliferation, but in reality they are just operators that are part of a much larger 

network, connected to functional redundancy (Soussi, 2000; Hanahan and Weinberg, 

2011). Cancer cells must avoid negative regulation of cell proliferation, causing 

deregulation of cell proliferation suppression, and this happens through mutations in 

tumor suppressor genes, such as p53, pRB and TGF-β (Hanahan and Weinberg, 2000). 

The main types of somatic mutations that lead to inactivation of tumor suppressor 

genes are those that lead to changes in the structure of the protein encoded by the 

gene in question and mutations that lead to a decrease in the protein-methylation 

expression of promoters, translocations. Several classes of tumor suppressor genes are 

related, with several levels of regulation.  

The main types of somatic mutations lead to the activation of proto-oncogenes are 

those that cause changes in the structure of the protein encoded by the gene in 

question and mutations that lead to increased protein expression. For example, RAS, 
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WNT and Myc involved in the healthy cell cycle and can become oncogenic when they 

promote tumorigenesis (Hunter, 1991).  

The capacity of evading apoptosis is crucial in the malignant development of cancer 

cells and increases with resistance to therapy (Adams and Cory, 2007; Hanahan and 

Weinberg, 2011). Apoptotic machinery has as main regulators components upstream 

and effector components downstream (Adams and Cory, 2007).  

These regulators are part of two main circuits: one responsible for receiving and 

processing extracellular death-inducing signals (the extrinsic apoptotic program, which 

has components, for example, the Fas ligand/Fas receptor), and the other responsible 

for detecting and integrate intracellular signals (the intrinsic program). The intrinsic 

apoptotic program is recognized as a major barrier to cancer pathogenesis (Thornberry 

and Lazebnik, 1998; Hanahan and Weinberg, 2011). This process ends up activating a 

normally latent protease (caspases 8 and 9, respectively), and from there begins a 

proteolytic cascade that involves effector caspases responsible for the apoptosis 

execution phase, where the cell is disassembled and then consumed by its neighbors 

and by phagocytic cells (Thornberry and Lazebnik, 1998).  

The mitochondria have a fundamental role in the apoptotic process, receiving pro-

apoptotic signals and release a potent catalyst for apoptosis, the cytochrome C (Figure 

11) (Green and Kroemer, 1998; Wallace, 2012). The p53 protein is an important agent 

in the apoptosis process, but even though it is functional, it is not always able to repair 

the cell. This gene is classified as an apoptotic regulator, which inhibits pro-apoptotic 

genes, allowing the proliferation of cells that contain DNA damage. Anti-apoptotic Bcl-

2 inhibits Bax, which consequently induces apoptosis and induces the release of 

cytochroma C. In the case of overexpression of Bcl-2, even though p53 is functional, 

there will be no apoptosis, resulting in a positive stop in the process and the 

consequent overexpression of p53 that allows the proliferation of cells that contain 

DNA damage (Figure 11) (Harris, 1996; Downward, 1998; Soussi, 2005).  
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Resistance to apoptosis can be acquired by cancer cells in several ways, but the most 

common form is through a mutation involving the tumor suppressor gene p53, 

considered an important pro-apoptotic regulator. The functional inactivation resulting 

from its product has been observed in several types of cancer, and for a long time. In 

1996, Harris reported that "more than 50% of human cancers result in the removal of a 

key component of the DNA damage sensor that can induce the cascade of apoptotic 

effectors”.  

Some anti-apoptotic genes are intended to promote survival, such as those involved in 

the PI3K/AKT pathway, and these genes depend on extracellular factors such as IGF 

1/2 and IL-3, for intracellular signals emanating from Ras (Downward, 1998), or by the 

Figure 11 The role of p53 pathway in apoptosis. The scheme shows that in case of DNA damage or 

cellular stress, the p53 protein plays a central role in the regulation of apoptosis that goes beyond its 

role in regulating gene transcription. The Bcl-2 demonstrated is an anti-apoptotic gene that acts by 

inhibiting Bax, which consequently induces apoptosis and induces the release of cytochroma C by the 

mitochondria. 
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loss of the tumor suppressor PTEN, which is a phospholipid phosphatase that 

attenuates the signs of AKT survival (Figure 10) (Cantley and Neel, 1999). 

Autophagy is a cellular physiological response that, like apoptosis, operates at low 

basal levels in cells, but can be strongly induced in certain states of cellular stress, such 

as nutrient deficiency. Autophagy machinery is similar to apoptosis, and has regulatory 

and effector components (Mizushima, 2007; Levine and Kroemer, 2008). In contrast to 

apoptosis, which is a process by which the cell becomes almost invisible and is soon 

consumed by neighbors, necrotic cells become swollen and explode (Zong and 

Thompson, 2006). Necrosis is historically known as organismic death, as a form of 

exhaustion and collapse throughout the system. However, currently, the conceptual 

landscape is changing and Galluzzi & Kroemer in 2008 defined necrosis as a cell death 

clearly under genetic control in some circumstances, and not as a random, undirected 

process. In addition, necrotic cells can recruit inflammatory cells from the immune 

system as a consequence of necrosis (Galluzzi and Kroemer, 2008; Grivennikov, Greten 

and Karin, 2010; Rabinowitz and White, 2010). 

In addition to the characteristics already mentioned, mention should also be made of 

the unlimited replicative potential of cancer cells, where the cell is able to evade 

senescence or apoptosis by maintaining telomeric DNA. This happens through the 

expression of Telomerase, an enzyme whose activity extends the telomeres and 

protects the DNA preventing the triggering of states of senescence or apoptosis 

(Hanahan and Weinberg, 2011). Telomerase is an enzyme that adds repetitive 

sequences to the 3 'end of the chromosome using an RNA template for DNA 

production (it is a type of reverse transcriptase or RNA-dependent DNA polymerase). 

Multiple evidences are indicative that telomeres, the structures made up of repetitive 

rows of proteins and non-coding DNA that form the ends of chromosomes, are 

centrally involved in the capacity for unlimited proliferation (Wright and Shay, 2000; 

Blasco, 2005). Senescence and apoptosis are therefore considered crucial anti-cancer 

defenses of our cells, representing two important barriers to proliferation implanted to 

prevent the growth of clones of pre-neoplastic and neoplastic cells.  
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Like normal tissues, tumors require sustenance in the form of nutrients and oxygen as 

well as an ability to evacuate metabolic wastes and carbon dioxide. The tumor-

associated neovasculature, generated by the process of angiogenesis, addresses these 

needs (Hanahan and Folkman, 1996). The well-known prototypes of angiogenesis 

inducers and inhibitors are vascular endothelial growth factor-A (VEGF-A) and 

thrombo-spondin-1 (TSP-1), respectively. The well-known prototypes of angiogenesis 

inducers and inhibitors are vascular endothelial growth factor A (VEGF-A) and 

thrombo-spondin-1 (TSP-1), respectively (Hanahan and Weinberg, 2011).  

The angiogenic process begins to happen when a quiescent vessel receives an 

angiogenic signal such as VEGF, FGFs or chemokines and from there pericytes separate 

from the blood vessel wall, and are freed from the basement membrane by proteolytic 

degradation mediated by matrix metalloproteinases. Endothelial cells will move apart 

and the nascent vessel expands and VEGF increases the permeability of the endothelial 

cell layer causing the extravasation of proteins and the establishment of a temporary 

extracellular matrix. Endothelial cells migrate to this extracellular matrix in response to 

integrins. Proteases release angiogenic molecules stored in the ECM (VEGF, FGF) and 

remodel the ECM in a medium that supports angiogenesis to form an infused tube and 

to prevent a massive displacement for the angiogenic signal, a single endothelial cell is 

selected to lead the beginning of the nascent vessel (Hanahan and Folkman, 1996; 

Carmeliet, 2005; Gabhann and Popel, 2008; Ferrara, 2009).  

Maturation occurs through a process in which endothelial cells return to a quiescent 

state and secrete proteins that induce recruitment and lining of new blood vessels 

with pericytes/vascular smooth muscle cells. Namely, platelet derived growth factor 

(PDGF), heparin-binding EGF (heparin-binding EGF), Angiopoietin (Ang-1), transforming 

growth factor β (TGF-β) and ephrin-B2. Metalloprotease inhibitors and plasminogen 

activator inhibitor (PAI-1) promote deposition of the basement membrane. Junctions 

between cells are re-established to ensure optimum perfusion and blood vessel 

waterproofing. Pericytes/vascular smooth muscle cells provide structural stability and 

the ability to resist the forces exerted by blood pressure. VGF gene expression can be 

over-regulated by both hypoxia and oncogene signaling (Hanahan and Folkman, 1996; 

Carmeliet, 2005; Gabhann and Popel, 2008; Ferrara, 2009).  
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The hypoxic response leads to the production of angiogenic factors by cancer cells, for 

example, VEGF, angiopoietin and erythropoietin. Hypoxic cancer cells secrete 

chemoattractive molecules for recruiting macrophages, such as VEGF, Endothelial 

monocyte-activating polypeptide II (EMAPII) and Endothelins (ET-2, ET-RA, ET-RB). 

Macrophages recruited to hypoxic areas of the tumor will also express and secrete 

VEGF, increasing angiogenesis and recruiting more macrophages. Hypoxia induces a 

dramatic change in macrophage gene expression. TNFα, TGFβ, IL-1 and IL-6, which are 

cytokines secreted by inflammatory cells associated with the tumor, play an important 

role in the stabilization of HIFα and induction of hypoxia-regulated EMT. TNFα induces 

the activation of the transcription factor NF-kb, which stabilizes SNAIL and induces 

HIFα transcription. IL-6 lowers cell adhesion generating induction of SNAIL and TWIST 

expression leading to a decrease in E cadherin expression and increased cell mobility 

that induces vimentin and cadherin N expression. IL-1 induces HIF1-α transcription 

through NF-κb activation and lowers cell adhesion, inducing SNAIL expression that 

lowers cadherin E expression. TGF-β increases the stability of HIF-1α protein by 

inhibiting the expression of PHD2 protein (hydroxylase proline 2) (Hanahan and 

Folkman, 1996; Carmeliet, 2005; Gabhann and Popel, 2008; Ferrara, 2009).  

Cancer cells tend to progress to higher pathological degrees of malignancy, leading to 

local invasions and metastases, as a consequence of changes in the shape of the cells 

and impairment of their connection to other cells and to the extracellular matrix 

promoted by E-cadherin. E-cadherin promotes unregulated growth, because it lowers 

the expression on the cell surface of proteins that induce growth inhibition by contact. 

That is, if we lower the expression of E-Cadherin, which is a transmembrane and 

cytoskeleton protein that connects cells to each other, they continue to grow even 

close to each other, as the cells become mobile. This protein, when mutated or 

deregulated, arouses stronger invasive cancer characteristics, while the increased 

expression of this protein has been identified as an antagonist of invasions and 

metastases (Hanahan and Weinberg, 2011). 

Sooner or later, primary masses of tumors generate pioneer cells that move and 

invade adjacent tissues and travel to distant sites to establish new colonies (Sporn, 

1996). The cancer cells have separated from the primary tumor, invade the circulatory 
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and lymphatic systems, manage to evade the immune attack, leak into distant capillary 

beds and invade and proliferate in other distant organs. For the metastatic process to 

be completed, many steps need to happen, involving an epithelial mesenchymal 

transition, an accumulation of mutations in stem cells, a macrophage facilitation 

process and a macrophage origin involving transformation or fusion hybridization with 

neoplastic cells (Seyfried and Huysentruyt, 2013). 

The interaction between cancer cells and neoplastic stromal cells has been identified 

as essential in the acquired capacity for invasive growth and metastasis (Kalluri and 

Zeisberg, 2006; Joyce and Pollard, 2009; Egeblad, Nakasone and Werb, 2010; Qian and 

Pollard, 2010). Associated cancer cells typically developed changes in their shape and 

in their connection to other cells and to the extracellular matrix (Hanahan and 

Weinberg, 2011). 

As already mentioned, the expression of E-cadherin helps to maintain cell quiescence 

and its increased expression is considered an invasion and metastasis antagonist, while 

its low expression potentiates these phenotypes. The low expression and occasional 

mutation of E-cadherin seen in human carcinomas demonstrate its link as a key 

suppressor in the ability to invade and metastasize (Cavallaro and Christofori, 2004; 

Van Roy and Berx, 2008). Macrophages also play an important role in this process, 

promoting local invasion on the periphery of the tumor and providing matrix degrading 

enzymes, such as metalloproteinases and cysteine-cathepsin proteases (Mohamed and 

Sloane, 2006; Palermo and Joyce, 2008; Joyce and Pollard, 2009; Kessenbrock, Plaks 

and Werb, 2010). 

For many years, pathologists have recognized that some tumors are invaded by cells of 

the innate and adaptive arms of the immune system, which is reflected in 

inflammatory conditions that arise in non-neoplastic tissues (Flier, Underhill and 

Dvorak, 1986). Thus, inflammation has an opposite effect to that of defense, 

contributing to factors that support proliferative signaling, survival factors that limit 

cell death, pro-angiogenic factors, extracellular matrix-modifying enzymes that 

facilitate angiogenesis, invasion and metastasis and inductive signals that lead to EMT 

activation (Karnoub and Weinberg, 2006; DeNardo, Andreu and Coussens, 2010; 
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Grivennikov, Greten and Karin, 2010; Qian and Pollard, 2010). Most tumors are 

infiltrated with immune cells. These cells release reactive chemical oxygen species 

(ROS), which are actively mutagenic, accelerating the tumor process (Qian and Pollard, 

2010). 

The chronic cell proliferation that represents the essence of the neoplastic disease 

involves not only the unregulated control of proliferation, but also the corresponding 

adjustments of the energy metabolism, which perform a reprogramming of the 

metabolism in order to stimulate cell growth and division. Normal cells break down 

glucose through a biochemical process called glycolysis, which occurs only under 

anaerobic conditions. Tumor cells, in turn, prefer to degrade glucose through aerobic 

glycolysis, that is, what happens even in the presence of oxygen, which even though it 

is not as efficient in the production of ATP, compensates for the production of 

intermediates necessary for the biosynthesis of macromolecules.  

Glycolytic fuel has been associated with several activated oncogenes, such as the RAS 

and MYC genes, and also with mutant tumor suppressors, such as p53 (DeBerardinis et 

al., 2008; Jones & Thompson, 2009). The dependence on glycolysis as an energy 

generator may be even greater in hypoxic conditions, common in tumors. In this case, 

the hypoxia response system acts by pleitropy to positively regulate glucose 

transporters and various enzymes in the glycolytic pathway (DeBerardinis et al., 2008; 

Jones and Thompson, 2009; Semenza, 2010). Thus, hypoxia increases the levels of the 

transcription factors HIF1α and HIF2α, which in turn positively regulates glycolysis 

(Kroemer and Pouyssegur, 2008; Semenza, 2010). 

Genomic instability is an important factor that directly influences the process of tumor 

progression, through the ability of genome maintenance systems to detect and resolve 

defects in DNA that ensure that spontaneous mutation rates are generally very low 

during each cell generation. Throughout the mutagenic process in order to accumulate 

the mutant genes necessary to orchestrate tumorigenesis, cancer cells are able to 

generate an increase in mutation rates (Negrini, Gorgoulis and Halazonetis, 2010; Salk, 

Fox and Loeb, 2010). There is a diverse variety of defects that affect various 
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components of DNA maintenance machinery, often referred to as "caregivers" of the 

genome (Kinzler and Vogelstein, 1997). 

Any understanding of this multi-step tumorigenic process is necessary for new 

therapeutic approaches to emerge as a result of understanding the evolution of the 

disease and its adjacent mechanisms (Potenta, Zeisberg and Kalluri, 2008). 

4 Targeting mitosis in cancer therapy 

4.1. Classical antimitotic drugs (antimicrotubules) 

The treatments most commonly used to fight cancer are chemotherapy, radiation 

therapy and surgery, or an association of both. Immunotherapy has also emerged as 

an important ally in the fight against cancer, which implies biotherapeutic treatment 

resulting in an increase in the capacity of cancer cells to recognize cells of the immune 

system (Vanneman and Dranoff, 2012). 

An important chemotherapeutic approach uses the interruption of mitotic machinery 

to potentiate death or arrest of the cell cycle. Thus, traditional antimitotic agents are 

those that directly interfere with the dynamics of microtubules, which play a central 

role in the assembly of the mitotic spindle and the subsequent alignment and 

segregation of DNA in the daughter cells. 

The antimicrotubule agents in use for cancer treatment today are taxanes, vinca 

alkaloids and epothilones, having already been used in the treatment of several types 

of cancer as unique agents or in association with other oncological drugs. 

Maintaining the symmetrical and always orderly appearance of the spindle 

microtubules during cell division requires highly accurate dynamics for this critical 

event during mitosis to occur correctly. As important allies in this organization and 

execution of the division, there is a huge variety of proteins that cooperate in this 

alignment and later in the locomotion of chromosomes along the microtubules 

(Dumontet and Jordan, 2010). 

Microtubules are targets of most antimitotic agents, because as they are an essential 

part in the division process, inhibit their polymerization dynamics end up activating the 
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spindle assembly checkpoint and preventing the transition from metaphase to 

anaphase, causing a cell cycle arrest (Masawang et al., 2014; Teixeira et al., 2014). Cells 

that undergo mitotic arrest and in the face of interruption of spindle formation and 

chromosomal orientation, the cells remain in a state of prolonged arrest that ends up 

inducing apoptosis or in a G1 state in cellular senescence (Mitchison, 2012). 

Microtubules are structures formed during interphase and are primarily responsible 

for correct chromosomal segregation and, therefore, mitosis. Due to their rapid 

dynamics during mitosis compared to interphase, they become an ideal drug target, 

since cancer cells have increased proliferative activity (Dumontet and Jordan, 2010). 

Most MTAs bind to specific sites in microtubules that trigger mechanisms that affect 

tubulin stability, the main four being called: the laulimalide (stabilizing) site, the 

taxane/epothilone (stabilizing) site, the colchicine site (destabilizing) or the vinca 

alkaloid location (destabilizing).  

The binding of free β-tubulin to vinca alkaloids and colchicine prevents polymerization 

in microtubules. Furthermore, if the binding occurs to β-tubulin at the ends of the 

microtubules, it will trigger the depolymerization of the microtubules and the 

formation of spirals made of one or two rolled protofilaments (Liu et al., 2014). In 

contrast, taxanes and epothilones are mainly bound to β-tubulin in microtubules and 

prevent their depolymerization, leading to uncontrolled formation of microtubules. 

In addition, both tubulin polymerization and microtubule depolymerization inhibitors 

end up significantly lowering the dynamic activity of microtubules in concentrations 

well below those that would be necessary to affect the total mass of the microtubules 

and, therefore, become the ideal target, since the effects on mitotic progression are 

more easily achieved (Liu et al., 2014). 

The effect caused by these interruptions in the dynamics of the microtubules and their 

subsequent cascade leads to a stop in metaphase and apoptosis. Both colchicine and 

Paclitaxel (the main taxane used in cancer treatment) bind to the side of the tubulin 

heterodimer facing the lumen of the microtubule, with the location of colchicine being 

close to the α-β interface and that of Paclitaxel attached to the β monomer. Vinca 
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alkaloids, on the other hand, bond through a longitudinal contact between the tubulin 

dimers in or near β-tubulin. 

Paclitaxel (Taxol) was discovered in yew bark extracts from Pacifi in the early 1960s, 

being the first taxane identified, and was approved for use in the treatment of ovarian 

cancer three decades later, specifically in 1992. Paclitaxel is a drug used for years in 

anticancer therapy, being approved for use in several types of tumors, such as in the 

treatment of breast cancer (Bishop et al., 1999), ovarian cancer (Ozols et al., 2003) and 

lung cancer (Sandler et al., 2006). This drug has the mechanism of action to promote 

the assembly of tubulin in dysfunctional microtubules, through its connection, which 

consequently generates a chromosome missegregation in multipolar spindles (Zasadil 

et al., 2014). Consequently, microtubule dysfunction will inhibit mitosis and cell 

proliferation, leading to cell death by apoptosis of rapidly proliferating tumor cells. 

Despite its effectiveness and proven toxicity, the synergistic action is an important ally 

to the use of this drug, which is widely used in combination with other 

chemotherapeutic agents. Clinical protocols can vary from patient to patient, and 

depend on prior planning of the dosages and periodicity that should be used. Adverse 

events are different from patient to patient, although frequency and severity are 

common among types of cancer. The most common and problematic adverse event in 

clinical practice is peripheral sensory neuropathy (Zasadil et al., 2014). 

Docetaxel (Taxotere) is a semi-synthetic derivative of paclitaxel, with the difference 

that it is more soluble and has started to be used in some types of cancer due to its 

response to increase prognostic success, such as in metastatic breast cancer (Jones et 

al., 2005). Both Paclitaxel and Docetaxel have a similar spectrum of clinical activity, 

including cancer of the ovary, breast, bladder, lung, and among others. Although both 

have been used clinically for many years as the main therapeutic agents associated 

with chemotherapy, their usefulness continues to expand to new indications through 

the verification of effectiveness and new combinations have been proposed with other 

agents to potentiate associated cell death. 
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The signaling pathway associated with the HER2 gene influences multiple forms of 

taxane resistance, such as cell survival, drug efflux and drug metabolism (de Hoon et 

al., 2012). 

Abraxane is paclitaxel with the difference that it is formulated in nanoparticles that are 

linked to albumin, and that consequently end up, eliminating the need for Cremephor 

EL in the formulation, which is a vehicle that in itself has demonstrated toxicity and 

requires pre-medication (Ibrahim et al., 2002). Despite the modest effectiveness of 

these agents, there are still many associated problems, such as issues related to water 

solubility, bioavailability, toxicity profile and resistance. 

The first vinca alkaloids were extracted from the catharamthus roseus plant, native to 

Madagascar, and in 1960 its anticancer activities were identified (Liu et al., 2014). 

Originally they were considered antidiabetic agents, however, it was identified that 

they had antiproliferative activity. These compounds act by binding to β-tubulin close 

to the binding sites to guanosine triphosphate (GTP) (vinca domain) that are at the 

interface of β-α-tubulin heterodimers (Liu et al., 2014). The connection in the vinca 

domain prevents the straightening of the curved tubulin and consequently ends up 

interfering in the growth and assembly of the spindle microtubules (Ravelli et al., 

2004).  

The biochemical effects of vinca alkaloids cause microtubule disruption, elevate 

oxidized glutathione, alter lipid metabolism and lipid content in the membrane, 

elevate cAMP and inhibit calmodulin-regulated cAMP phosphodiesterase. However, 

they have no impact on cellular respiration, glycolysis, nucleic acid or protein synthesis 

(Bates and Eastman, 2017). 

Vinca alkaloids are hydrophobic substances and can be divided into lipid bilayers when 

they are not loaded, leading to a change in the structure and function performed by 

cell membranes. The most commonly observed mechanism of action is the ability to 

interrupt microtubules through high affinity bonds to tubulin. The vinca alkaloids 

family consists of: vinblastine, vincristine, vinorelbine, vindesine and vinflunine, three 

of which are all semi-synthetic derivatives of vinblastine (Bates and Eastman, 2017). 
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Vincristine and Vinblastine are the two oldest microtubule destabilizers in this class of 

microtubule binding agents and are used in the standard treatment of several types of 

cancer. Vincristine, for example, is used to treat Non-Hodgkin and Hodgkin's 

lymphoma and certain types of pediatric cancer, while vinblastine is used to treat 

Hodgkin's lymphoma, head and neck, lung and breast. 

Vinorelbine, a semi-synthetic alkaloid from vinca, has a better preclinical profile than 

other family members (Moudi et al., 2013) and has been approved for the treatment 

of lung cancer, in addition to having shown promising activity in breast carcinoma, 

head and neck, ovary and squamous cells (Burstein et al., 2003; Infante et al., 2009). 

Adverse effects associated with members of the vinca alkaloids class include mainly 

neutropenia and peripheral neuropathy, limiting the dose. 

Epothilones are a class of 16-membered macrolide compounds targeting microtubules 

recently identified and isolated for the first time in the 1990s from the myxobacterium 

Sorangium cellulosum (Bollag et al., 1995). So far, eight epothilone derivatives have 

been reported, called epothilone A (EPO A), epothilone  B (EPO B), epothilone  C (EPO 

C), epothilone D (EPO D), epothilone E (EPO E), epothilone F (EPO F), epothilone G 

(EPO G) and epothilone H (EPO H) (Cheng, Huang and Huang, 2018). 

Epothilones have their mechanisms of action similar to taxanes, promoting the stability 

of microtubules and, in fact, both share the same binding site. In contrast, some 

advantages are perceived over taxanes, including greater potency and lower 

probability of resistance resulting from bombs and drug efflux and mutations in tubulin 

(Kowalski, Giannakakou and Hamel, 1997; Wartmann and Altmann, 2002), in addition 

to being formulated in more modern vehicles well tolerated than the cremophore that 

is used, for example, for Paclitaxel (Watkins et al., 2005; Sessa et al., 2007).  

There are differences in toxicities and clinical activity between different types of 

epothilones and also compared to taxanes. For example, epothilones A and B, 

cytotoxic metabolites that stabilize microtubules and which are derived from 

mycobacterium sorangrum cellulosum, demonstrate greater cytotoxicity than taxanes 

(Jordan and Wilson, 2004). Epothilone B inhibits paclitaxel, because both bind in the 

same place to tubulin-β, generating competition for this binding. Despite sharing this 
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point in common, epothilones and taxanes do not show common resistance 

mechanisms (Rogalska et al., 2013).  

Returning to the starting point, we can understand that it is well established that 

antimitotic compounds compromise the ability of cells to divide causing prolonged 

mitotic arrest that leads directly to cell death or divide abnormally, with an uneven 

distribution of DNA (Rieder and Maiato, 2004; Weaver and Cleveland, 2005; Gascoigne 

and Taylor, 2008), that is, this unsuccessful division can effectively keep cells in cycle, 

causing the cycle to stop or the cell cycle to die. 

The results after treatment with antimitotic agents will depend on the type of cell, 

tissue and obviously the concentration of the agent used (Gascoigne and Taylor, 2008; 

Shi, Orth and Mitchison, 2008). 

Cell death from apoptosis can occur both during mitosis and in the interphase 

following mitosis (Gascoigne and Taylor, 2008; Shi, Orth and Mitchison, 2008) due to 

double strand breaks of DNA after treatment with antimitotic agents (Dalton et al., 

2007; Lei and Erikson, 2008). 

However, apoptosis is not the only means of cell death in solid tumor treatments 

(Abend, 2003), and there are other forms of cell cycle arrest that contribute 

substantially to antitumor efficacy in preclinical models, such as senescence (Roninson, 

Broude and Chang, 2001). For this reason, caution should be exercised when analyzing 

apoptosis indices as indicators of sensitivity or resistance to the medication. 

As the reactionary effects to antimitotic agents are not limited to cancer cells only, 

dose-limiting toxicities often manifest in the rapid division of tissue, and are 

accompanied by adverse effects such as, for example, peripheral neuropathy in the 

case of anti-microtubule agents. 

The multidrug resistance gene 1 (MDR1 or ABCD1) is responsible for the production of 

P-gp, part of the ABC family, which is responsible for the efflux of many hydrophobic 

antimitotic drugs, such as taxanes and vinca alkaloids (Nobili et al., 2012). 

Overexpression of ABCD1 and P-gp are important genes involved in both intrinsic 

resistance and acquired resistance to the drug (Rebucci and Michiels, 2013). 
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Multiresistant protein 1 (MRP1) in turn is responsible for a resistance mechanism that 

transports vinca alkaloids out of the cell. Multiresistant protein 2 (MRP2) is responsible 

for a resistance mechanism that exports taxanes, while multiresistant protein 7 (MRP7) 

is responsible for a resistance mechanism that acts on the transport of epothilone B 

(Dumontet and Jordan, 2010). 

Due to the resistance mechanisms, the need arose for the development of drugs that 

are not sub-extracts of P-gp, such as second and third generation taxanes and 

epothilones. Through structural modifications, these compounds allow the avoidance 

of P-gp, being essential to overcome obstacles to cancer resistance (Nobili et al., 2012). 

Another possible and used strategy is to make use of molecules that reinforce the 

overexpressed P-gp efflux pumps (Rebucci and Michiels, 2013). 

βIII-tubulin is another protein associated with resistance mechanisms, expressed in 

stressed cells deprived of oxygen and nutrients, which increases the dynamic instability 

of microtubules and neutralizes the stabilizing action of taxanes and also affects the 

effectiveness of vinca alkaloids (Kavallaris, 2010; Rebucci and Michiels, 2013). Kinesins 

associated with mitotic centrosomes (MCAK), stathmin and tau, which are microtubule 

regulatory proteins, are also frequently associated with resistance to antimitotic drugs 

(Rebucci and Michiels, 2013). 

There are also, resistance mechanisms related to the deregulation of SAC proteins via 

gene amplification, such as Aurora kinase protein via Aurora-A amplification, which 

increase cell survival, lower levels of apoptosis induction and improve efflux drugs 

(Anand, Penrhyn-Lowe and Venkitaraman, 2003; Park et al., 2008). 

Overexpression of the HER2 gene is associated with more aggressive tumors and the 

types of cancer amplified by HER2 are resistant to taxanes, through the regulation of P-

gp efflux pumps (de Hoon et al., 2012). 

Hypoxia is another important factor of drug resistance to be overcome, as it potentially 

hinders access and, consequently, the effectiveness of medicines. The state of oxygen 

deprivation in solid tumors is related to several signaling pathways responsible for 

controlling the cell cycle and angiogenesis, causing invasion and metastasis to spread. 
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For example, an increase in resistance due to hypoxia in the treatment with Paclitaxel 

is overcome by the increase in the levels of cyclin B1, thus, hypoxia reduces the 

antimitotic activity of Paclitaxel by the negative regulation of cyclin B1 (Teicher, 1994; 

Dong et al., 2012). 

The resistance mechanism varies depending on which medication is being 

administered. In vinca alkaloids and other drugs that inhibit microtubule assembly, 

MDR predominates. In contrast, in paclitaxel, epothilone and other drugs that promote 

the assembly of microtubules, mutations that happen in tubulin occur more frequently 

(Ganguly, Yang and Cabral, 2011). 

Tubulin mutations can confer resistance to antimitotic drugs by distinct mechanisms. 

One of them, the drop in drug binding as a result of genomic instability, and it is 

possible that tumors have functionally altered the β-tubulin locus, making it haploid 

and, therefore, capable of resisting therapy through the acquisition of mutations that 

have lowered the binding to the medicine. Understanding this mechanism becomes 

simpler if we consider that microtubules are metastable and highly dynamic structures 

that can only function within a limited range of stability (Ganguly, Yang and Cabral, 

2011). 

The mechanisms of anticancer drugs have been predominantly evaluated to determine 

the influence of these drugs on the real physiology of the human tumor (Kamb, 2005). 

This can lead to several mechanisms of action to be detected and from this knowledge 

new compounds can be developed that are able to evade these mechanisms and 

improve the prognosis of treatment. 

4.2 Second generation of antimitotic drugs  

With the progress of specialized medicine in oncology, which aims to create drugs that 

can act on specific targets, several targets for antimitotic drugs have been studied and 

developed, acting in different phases of the cell cycle (Figure 12). 
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Aurora kinases and Polo type kinases (PLKs) play key roles in normal cell cycle 

progression through mitosis and represent the two families of kinases that are the best 

examples of second generation antimitotic targets. 

Aurora kinases were identified for the first time in Yeasts (Ipl1), Xenopus (Eg2) and 

Drosophila (Aurora) and are considered critical regulators of mitosis and are therefore 

determinants for the normal continuation of the cell cycle (Chan and Botstein, 1993; 

Glover et al., 1995; Andrésson and Ruderman, 1998; Roghi et al., 1998). 

Figura 12 Proteins involved in advancing the cell cycle as targets for antitumor drugs. Many proteins 

are necessary for the cell cycle to function properly, especially in mitosis, where a multitude of 

regulatory proteins are responsible for the correct advance of its phases. Some of these proteins that 

act at different stages of the cell cycle have been approached as important therapeutic targets for new 

anti-tumor drugs. Inhibitors of these proteins, mentioned in the figure above, are in preclinical or 

clinical development. 
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There are three known isoforms of Aurora kinase in humans: Aurora A, Aurora B and 

Aurora C. Aurora A and Aurora B have their functions associated with mitosis and are 

structurally interrelated, unlike Aurora C which has its function associated with 

meiosis. Its catalytic domains are at the C-terminus, being differentiated by only a few 

amino acids. Greater diversity can be observed in the non-catalytic N-terminal domains 

and the different sequences presented in this region of Aurora A and Aurora B end up 

being decisive in directing their interactions with different proteins. This allows them 

to have different and unique subcellular locations and functions in mitotic cells at 

different stages. 

Some attempts are underway to develop inhibitory drugs for molecules targeting 

Aurora A, Aurora B or both kinases simultaneously, as they may present different 

approaches in relation to different types of tumors. 

The Aurora A gene (AURKA) is commonly amplified or overexpressed in a variety of 

tumor types (Bischoff et al., 1998; Crosio et al., 2002; Camacho et al., 2006; Ikezoe et 

al., 2007; Chng et al., 2008), and this has been an important feature related to the 

etiology of cancer and a worsened prognosis (Miyoshi et al., 2001; Sakakura et al., 

2001; Crosio et al., 2002; Fraizer et al., 2004; Jeng et al., 2004; Guan et al., 2007; 

Landen et al., 2007). The therapeutic potential in developing drugs that are related to 

this protein goes against the important oncogenic role of Aurora A in tumor 

development. The same occurs with Aurora B overexpression, which has also been 

observed in several types of tumors (Ikezoe et al., 2007) and correlated with a worse 

prognosis. 

This overexpression of Aurora A and B proteins may be related to the increase in 

protein levels per mitotic cell or also due to an increase in the mitotic index 

characteristic of tumor cells. Aurora A is expressed several times during the normal cell 

cycle, the first time being in the G2 stage where it is located in the centrosomes and 

acts on the maturation and separation of the centrosomes, showing a controversial 

role in the entry of cells in mitosis, because although Aurora Kinase results in a late 

mitotic entry (Marumoto et al., 2002), sometimes cells enter mitosis even though this 

kinase is inactive. 
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In mitosis Aurora A is located in the centrosomes and in the proximal portion of the 

incipient mitotic spindles where several proteins interact and phosphorylate that 

collectively serve to perform different functions in mitosis and cytokinesis (Bischoff 

and Plowman, 1999; Carmena and Earnshaw, 2003; Giet, Petretti and Prigent, 2005; 

Barr and Gergely, 2007). 

Aurora A inhibition initially leads to the formation of abnormal mitotic, monopolar, 

bipolar or tripolar spindles with misaligned chromosomes, commonly associated with 

defects in the separation of centrosomes, which lead to a mitotic stop determined by 

the activation of the checkpoint of the axis set. Some cells may undergo prolonged 

mitotic arrest and be taken to apoptosis, while others may come out of mitosis 

without undergoing cytokinesis, resulting in G1 tetraploidy or may divide at high 

frequency even with severe chromosomal segregation defects. Both in the case of 

tetraploidy and in the case of accelerated mitotic divisions, they result in deleterious 

aneuploidy and subsequent death or arrest of the cell cycle (Gascoigne and Taylor, 

2008). 

In turn, Aurora B is located in the centromeres in the prophase cells where it plays an 

important role in defining the spindle bipolarity and in establishing and maintaining 

the spindle assembly checkpoint (Adams et al., 2001; Murata-Hori and Wang, 2002; 

Ditchfield et al., 2003). Already in anaphase and telophase, it is located in the central 

zone and middle body spindle, respectively, and acts in cytokinesis (Giet and Glover, 

2001; Yokoyama et al., 2005). 

The inhibition of Aurora B through the use of genetic mutations, RNA interference or 

competitive inhibitors of ATP molecules can lead to several defects in the connection 

of the spindle microtubules to kinetochores, chromosomal segregation and cleavage 

groove formation (Adams et al., 2001; Giet and Glover, 2001; Murata-Hori and Wang, 

2002; Ditchfield et al., 2003; Honda, Körner and Nigg, 2003; Yokoyama et al., 2005), in 

addition to preventing the proper formation of the spindle assembly checkpoint, 

causing the cells come out of mitosis before completing cytokinesis, without a mitotic 

arrest (Ditchfield et al., 2003). This would result in the formation of G1 tetraploid cells, 

similar to the inhibition of Aurora A, and would eventually generate death, stop or 
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undergo additional rounds of DNA replication (duplicate replication), generating a DNA 

ploidy>4N. 

Taking this into account, many Aurora kinase molecule inhibitors have been developed 

in clinical trials with cancer patients, including selective Aurora A inhibitors, selective 

Aurora B inhibitors or inhibitors that work together to inhibit both kinases. 

Understanding that Aurora kinases have a mandatory function in all dividing cells, they 

can be used in a wide variety of tissues, acting in different treatments of solid and 

hematological cancers, both in a single agent and in combination. 

On the other side of the second generation antimitotics that concern the proteins 

Polo-kinases Quantum (PLK) initially identified in Drosophila melanogaster (polo) with 

orthologists also found in yeasts (cdc5 and plo1) and Xenopus (Plx) (Sunkel and Glover, 

1988; Llamazares et al., 1991; Kumagai and Dunphy, 1996), it is known that it 

represents an important regulator of mitosis and that it is structurally and functionally 

related to the member of the PLK1 mammal family. 

The family is still composed of three additional members, PLK2, PLK3 and PLK4. PLK4 

has a similar function to PLK1 and acts during mitosis while PLK2 and PLK3 have roles 

not associated with mitosis (Winkles and Alberts, 2005). 

Of all the members of the family of this kinase, PLK1 is the one with the most reported 

mechanism and, therefore, there are inhibitors of molecules developed against this 

isoform in preclinical and clinical contexts. 

PLKs are highly conserved serine/threonine kinases and differentiated by non-catalytic 

C-terminal domains that have 60 to 70 amino acids called polo-box domain (PBD) that 

serve as a binding module through phosphorylation in other proteins mediating 

interactions protein-protein (Lee et al., 1998; Elia et al., 2003). 

The kinase domain and the PBD act mutually to inhibit themselves through 

intermolecular interaction that occurs in the stages of phases G1 and S, rendering the 

kinase inactive. During the period in G2 there is phosphorylation of the kinase domain 

that relieves the interaction with the PBD and makes the temporal control of PLK1. 
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Cdk1 cyclin can perform the function of phosphorylating proteins by creating 

anchorage sites for PLK1 PBD (Santamaria et al., 2007; Fu et al., 2008). 

The spatial regulation of PLK1 depends on the recruitment of PBD to different regions 

of the mitotic cell. This allows PLK1 to perform the function of phosphorylating 

different substrates that consequently trigger divergent mitotic functions. In the G2 

phase, PLK1 is located in the centrosomes and in the metaphase in the centromeres 

and kinetochores, while in anaphase it is present in the middle zone of the spindle and 

in the middle of the body at the end of the whole process, in cytokinesis. 

PLK1 plays several roles, such as regulating the maturation of centrosomes, entering 

mitosis, anaphase-promoting complex activity, forming and maintaining a bipolar 

mitotic spindle, cytokinesis and mitotic output (Lane and Nigg, 1996; Toyoshima-

Morimoto et al., 2001; Sumara et al., 2004; Eckerdt and Strebhardt, 2006; Petronczki, 

Lénárt and Peters, 2008). 

The inhibition of PLK1 causes activation of the SAC, due to the impediment of being 

located in the centrosomes and kinetochores, which manifests itself as a mitotic delay 

of prometaphase that is characterized by a phenotype composed of monopolar or 

bipolar misaligned mitotic spindles that do not bind stable way to kinetochore 

(Gilmartin et al., 2009). 

In addition to the roles developed within the cell cycle, PLK1 is also involved in 

regulating the stabilization of telomeres, regulating DNA topoisomerase II and 

repairing DNA (Li, Wang and Liu, 2008; Svendsen et al., 2009). 

Molecule inhibitors that target the catalytic active site of PLK1 are being evaluated in 

clinical trials for solid and hematological malignancies. The clinical benefit has been 

observed for some types of tumors both as a single agent and in combination 

(Schöffski, 2009). 

Science has created many promising approaches to cancer treatment in recent 

decades. Studies of the biochemical processes that occur in the cell cycle exclusive to 

cancer cells have favored the development of many drugs. Even with the discovery of 

these new selective agents, cytotoxic drugs will continue to be the basis of 
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chemotherapy for cancer in the coming years, and of these, compounds with 

antimitotic activity are among the main cytotoxic agents under development due to 

the success of taxanes and the widespread use of vinca alkaloids in clinical oncology. 

The interest now is in finding new molecules that make resistance mechanisms softer 

and that are more targeted at certain targets. The renewed interest in 

antimicrotubules agents was generated by the hope that non-MDR substrates will be 

discovered that interact with tubulin in close, overlapping or different locations from 

taxanes or vinca alkaloids that are already widely used in clinical practice.  

5 Xanthones and cancer 

Xanthones are secondary tricyclic metabolites with a symmetrical structure, derived 

from dibenzo-γ-pyrone (El-Seedi et al., 2009). Its name comes from the Greek 

“xanthosin”, which means blonde, due to its yellow color. Xanthones are called 

"promiscuous binders" because they have the ability to bind to different receptors and 

exercise a variety of pharmacological activities, acting on a variety of diseases (Masters 

and Bräse, 2012). 

Xanthones were initially identified in only six groups of four families: Gentiana L. and 

Swertia L. from Gentianaceae Juss.; Garcinia L. and Platonia Mart., from Clusiaceae 

Lindl.; Calophyllum L. from Calophyllaceae J. Agardh; and Mangifera L. from 

Anacardiaceae R. Br. (Roberts, 1961).  

However, it is now known that xanthones are widely present in higher plants and in 

endophytic species of fungi (El-Seedi et al., 2010). In 2005 Matsumoto et al. described 

xanthones as biologically active phenols that are found naturally in a restricted group 

of plants. In 2007, Wätjen et al. they said that approximately 200 xanthones were 

found in nature. However, today, about 1225 xanthones were isolated between 2012 

and 2019 from 23 plant families (Matsumoto et al., 2005; Kampkötter et al., 2007; 

Klein-Júnior et al., 2020).  

The xanthones found in nature have their nucleus originating from the acetate and 

shiquimate pathways, however it is liable to undergo additional metabolic steps that 

end up leading to a wide range of chemical entities, which can be classified according 
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to their chemical adjectives such as: bis-xanthones, glycosylated xanthones, prenylated 

xanthones, simple xanthones, xanthonolignoids and various xanthones (El-Seedi et al., 

2010). 

Xanthones are compounds formed by a six-carbon conjugated ring structure with 

multiple carbon double bonds (Figure 13). The prenyl group found in these phenols 

plays a central role in internalization in the cell, which consequently leads to 

interaction with signal transduction molecules and proteins involved in the 

permeability transition of mitochondria (Ozols et al., 2003; Kampkötter et al., 2007). 

 

 

 

 

 

Several primitive medicinal plants and some dietary factors have served as a starting 

point to find new substances that have an antitumor activity so that they can be used 

as leading compounds in the development of drugs that increase the effectiveness of 

treatments. A huge number of natural products have already been evaluated as 

chemopreventive or therapeutic agents, and it was from there that drugs that are used 

today in clinical practice such as paclitaxel and vincristine have emerged. 

Figure 13 Chemical skeleton of Xanthone. Chemically, Xanthone (9H-xanten-9-one) is formed by two 

benzene rings and a central γ-pyrone, which gives symmetry to the compound.  
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Some evidence-based bio-factors for cancer prevention are needed to come to 

practical use. Polyphenols, for example, were idealized as chemopreventive agents 

because they already have proven antioxidant activity and possible anti-cancer activity 

(Sun, 2002) due to inducing cell apoptosis when reaching mitochondria and 

consequent activation of signal transduction intrinsic apoptotic (Nakagawa et al., 2007; 

Akao et al., 2008). 

Most xanthones were found in natural resources of plant origin, however, some 

derivatives were isolated from species of marine fungi. For example, 

Monodictyxanthone analogues isolated from marine algicolous fungus Monodictys 

putredinis that have shown effective inhibition of the cytochrome P450 (CYP) 1A iso 

enzyme that converts xenobiotics into carcinogens (Krick et al., 2007). Another 

example concerns α-mangostin which is found in the pericarps of mangosteen, 

Garcinia mangostana, and which demonstrated a potent inhibition of cell growth in 

human cancer through induction of apoptosis (Matsumoto et al., 2005; Nakagawa et 

al., 2007).  

Lee et al. in 2016 demonstrated that α-mangostine treatment lowered the viability of 

YD-15 tongue mucoepidermoid carcinoma cells and induced cell apoptosis by 

inhibiting the ERK1/2 and p38-MAPK signaling pathway. Kritsanawong et al. in 2016 

they demonstrated very similar results where treatment with α-mangostine in human 

breast carcinoma (T47D) cells inhibited cell proliferation and induced apoptosis 

associated with the HER2/PI3K/Akt and MAPK signaling pathways (Franceschelli et al., 

2016; Kritsanawong et al., 2016; Pérez-Rojas et al., 2016).  

Some studies have also shown that xanthone γ-mangostine also has antiproliferative 

capacity, and Chang, Wu and Yang in 2013 described that this compound inhibited the 

proliferation of human colorectal adenocarcinoma (HT-29) cells by apoptosis and has 

elimination activities free radicals, antiproliferative and apoptotic in hepatocellular 

carcinoma (HepG2) cells (Chang, Wu and Yang, 2013). 

Mangiferin is another xanthone that has shown promising biological activity for the 

treatment of cancer, where the main mechanism of action is through the inhibition of 

the NF-κB pathway, which regulates inflammation and manages to block the progress 
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of the disease (Núñez Selles, Daglia and Rastrelli, 2016). This compound can induce 

apoptosis by suppressing the activation of NF-κB and Bcl-xL and XAIP expressions and 

increasing caspase-3 activity (Shoji et al., 2011), in addition to being able to induce cell 

cycle arrest in the G2/M phase through negative regulation of the CDC2-CyclinB1 

pathway in human breast carcinoma cells (MCF-7) (Li et al., 2013).  

Psorospermin is a xanthone extracted from the African plant Psorospermum 

febrifugum (Schwaebe, Moran and Whitten, 2005) and has demonstrated anti-cancer 

activities through the intercalation of the xanthone group with base pairs of DNA and 

alkylation of the epoxide by N7-guanine in the presence of topoisomerase II (Hansen et 

al., 1996; Kwok and Hurley, 1998). 

Phomoxanthones are structurally unique xanthone dimers identified in endophytic 

fungus Phomopsis species and have demonstrated excellent cytotoxic activity against 

tumor cell lines (Isaka et al., 2001). 

Another type of xanthones found in plants and found in abundance in nature is 

prenylated xanthones. Some specimens of this type have been isolated from Garcinia 

cantleyana in the Malaysian Peninsula. These analogs are polyprenylated derivatives, 

and the main examples are 7-hydroxy-forbesione, cantleyanone B and cantleyanone C 

were considered to be potent cytotoxic agents (Shadid et al., 2007). 

Still on this pre-alkylated group of xanthones, gambogic acid is found, which is isolated 

from the resin of the Garcinia hurbury tree and which has been proven as a potent 

anticancer agent through the induction of apoptosis (Zhang et al., 2004) and also as an 

anti-angiogenic that inhibits angiogenesis by suppressing tyrosine phosphorylation 

induced by vascular endothelial growth factor (VEGF) of VEGF-A receptor 2 (KDR/Flk-1) 

(Lu et al., 2007).  

Several in vivo and in vitro studies have already been carried out to demonstrate the 

potent anticancer activity of gambogic acid, which acts on several targets, including 

inducing apoptosis, stopping cell proliferation and autophagy and inhibiting 

telomerase, having effects anti-metastatic, anti-metastatic, anti-angiogenesis and anti-

inflammatory drugs (Kashyap et al., 2016). One of the main mechanisms of action 
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associated is due to an increase in p53 expression and the consequent suppression of 

the MDM2 protein (Gu et al., 2009). 

Gambogic acid has been studied as an ally to resistance to docetaxel, since this 

xanthone acts by carrying out negative regulation of survivin, which is an inhibitor of 

apoptosis protein. The inhibition of topoisomerase II catalytic activity has also been 

shown to important suppression performed by this xanthone by binding to the ATP 

domain in the enzyme (Qi et al., 2008). 

Although naturally isolated xanthones have been identified as potential new 

candidates for anticancer drugs, their low amounts found in nature in the face of 

demand and also their structural limitations have brought the need to develop 

efficient synthetic methods to modify them and calibrate their pharmacological 

structures in order to solving the problems. In contrast to this identified variety, 

xanthones are difficult to obtain and are present in low concentrations in plants. 

The biological activity of xanthones depends on the position and types of substituents 

on the ring nucleus. Structural changes occur through the introduction of various 

substituents on the aromatic ring portions in the nucleus to provide a greater 

spectrum of biological activity. 

This is how oxygenated xanthones, with a flat structure and known for using DNA 

intercalation, show their anticancer activity through non-covalent interaction with 

DNA. Starting from this principle of activity, some compounds conjugated to two 

xanthone rings by means of appropriate ligands were synthesized.  

Bis-xanthones are one example, tied by a 6-carbon unit that effectively inhibits the cell 

cycle of cancer cells and that the inclusion of a lipophilic ligand in its structure has 

been improved to increase the penetration of the blood-brain barrier and thus 

increase its effectiveness (Genovese et al., 2016). Some xanthones such as 

bisfuranoxanthones are comparable to psorospermin in the cytotoxicity test, but have 

not shown the same efficiency as DNA alkylators mediated by topoisomerase II. 

Oxime and methyloxime coupled xanthones that have been prepared and tested for 

cytotoxic activity and that have been shown to be potent inhibitors of cancer cell 
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growth (Liu et al., 2016; Klein-Júnior et al., 2020). Some synthetic oxygenated 

xanthones have demonstrated anticancer potential through the inhibition of α-

glucosidase (Liu et al., 2006).  

Protein kinase C (PKC) is also a pharmacological target for some xanthone compounds, 

namely 3,4-dihydroxy- and 1-formyl-4-hydroxy-3-methoxyxanthones (Saraiva et al., 

2003). Synthetic xanthones modified with imidazole substituents showed aromatase 

inhibitory activity in upper breast cancer compared to fadrozole drug which is used 

with the same functionality (Recanatini et al., 2001).  

5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a xanthone that has held high 

scientific interest since its discovery due to its excellent pharmacological profile of 

known potential anticancer drugs (Ching et al., 1991). DMXAA is a vascular rupture 

agent that can influence the blood supply to the tumor tissue, lowering it and resulting 

in tumor regression (Gaya and Rustin, 2005). 

Xanthones with an epoxy group effectively inhibited the growth of cancer cells (Liou et 

al., 1993). Epoxide appears to play an important role in the cytotoxicity of this series of 

xanthones (Lin et al., 1993, 1996). 

The structural diversity and biological aspects described identified in xanthones make 

these secondary metabolites important allies in the search for new and potent 

anticancer drugs (Matsumoto et al., 2005). Its anticancer and anti-inflammatory 

activity has shown exciting results due to its effectiveness and low toxicity in normal 

cells (Gutierrez-Orozco and Failla, 2013; Pérez-Rojas et al., 2016). 

The various anticancer and cytotoxic properties of these compounds have been 

evidenced in several studies in vitro and in vivo, elucidating that xanthones can act in 

all stages of carcinogenesis: initiation, promotion and progression (Ibrahim et al., 2016; 

Liu et al., 2017).  

In view of everything described, it can be said that xanthones, are among the oldest 

structures found in the chemical world, are seen as an important ally in the 

development of anticancer drugs due to their structural diversity and biological 
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aspects. The biological activities of synthetic xanthone derivatives are dependent on 

the various substituents and their position. 

With all that described, we came to the conclusion that xanthones can be considered 

potential anticancer therapeutic agents, acting on several mechanisms of action in 

carcinogenesis (Klein-Júnior et al., 2020) (Figure 14). Xanthones have shown hope in 

anticancer therapy, as they present cytotoxic effects through different mechanisms, 

such as those mentioned above, for example, inhibiting angiography, through the low 

expression of vascular endothelial growth factor (VEGF). The anti-metastatic potential 

is also of great interest, and is achieved by xanthones by inhibiting the expression of 

matrix metalloproteins. The anti-inflammatory activity also has a multifunctional anti-

cancer effect, through a cascade of events that influences tumorigenesis.  

 

 

 

 

 

 

 

Figure 14 Mechanisms affected by xanthones. Xanthones operate their anticancer activity by 

interfering with various mechanisms of the tumor cell: Blocking the cell cycle, preventing the 

proliferation of the tumor cell, directing apoptosis, triggering DNA repair, functioning as an anti-

inflammatory agent and preventing the recruitment of cells necessary in angiogenesis and 

consequently metastasis. 
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Further studies like ours, which involve biological targets and demonstrate toxicity 

effects of xanthones will be responsible for the identification and development of 

these compounds. The elucidation of the exact biological target of xanthone 

compounds and their mechanisms of action will provide the development of more 

potent anticancer drugs. As well as the modification of natural xanthone derivatives to 

target specific targets through the elaborate design of new xanthone analogs with the 

help of modern medicinal techniques, including molecular modeling, will be 

responsible for expanding the biological spectrum of these compounds. 
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Chapter II 
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The pyranoxanthone 1 (Figure 15) was identified which exhibited a potent growth 

inhibitory activity against the human tumor cell lines MCF-7 (breast adenocarcinoma) 

and A375-C5 (melanoma) (Azevedo et al., 2013a). Even though its growth inhibitory 

mechanism is still unknow, the angular fused ring orientation without substituents 

appears to be important for the activity. Retaining these features, the pyranoxanthone 

2 was designed to assess the significance of the two alkyl groups in the chromene 

moiety for the antitumor activity (Figure 15). 

 

 

 

 

 

 

Prior to this study, in a series of xanthones, including pyranoxanthone 2, was 

performed a Sulforhodamine B (SRB) assay with the aim of determined the GI50 of the 

compound, corresponding to the concentration that was able to cause 50% cell growth 

inhibition. 

The compound pyranoxanthone 2 showed potent growth inhibitory activity against the 

three human cancer cell lines tested: melanoma (A375-C5), breast (MCF-7) and lung 

(NCI-H460) with a GI50 value of 5.29 ± 1.19, 6.61 ± 0.78 and 6.67 ± 0.20 μM, 

Figure 15 Structure of pyranoxanthone 1 and 2. The xanthone scaffold is highlighted in yellow and 
green and the benzopyran scaffold is highlighted in green and blue. 
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respectively (Table 1). This result supports the potential of pyranoxanthone 2 as 

promising anticancer agent which leads us to explore their cytotoxic mechanism.  

Cell line A375-C5 MCF-7 NCI-H460 

GI50 of PX2 (μM) 5.29 μM ± 1.19 6.61 μM ± 0.78 6,67 μM ± 0.20 

 

 

 

Hence, in the present study, we report the mechanism elucidation of the lead 

compound pyranoxanthone 2, identified as a lead compound with potent cytotoxic 

activity against cancer cells, and determined its potential to increase the sensitivity of 

cancer cells to low doses of paclitaxel. Our data highlight the potential of the 

pyranoxanthone 2 as a new and promising antimitotic with effective antitumor activity 

in vitro. 

 

 

 

 

 

 

 

 

 

 

Table 1 GI50 of compound PX2. Concentration necessary to inhibit the growth of 50% of the cells, 

initially seeded, after treatment with the compound in each cell line; 5.29 μM on A375-C5, 6.61 μM on 

MCF-7 and 6.67 μM on NCI-H460. 
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Chapter III 

 

 

 

 

 

 

 Materials and methods  
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1 Compound 

Pyranoxanthone 2 (from Faculty of Pharmacy, U. Porto) was reconstituted in sterile 

dimethyl sulfoxide (DMSO, Sigma-Aldrich) to a stock concentration of 60 mM. To 

preserve compound activity, several aliquots were prepared and stored at -20 °C. In 

the day of experiments, pyranoxanthone 2 was diluted in fresh culture medium at 

desired concentrations.  

2 Cell culture 

2.1 Cell lines 

Melanoma A375-C5, breast adenocarcinoma MCF-7 and non-small cell lung cancer 

NCI-H460 (European Collection of Cell Culture, UK) cell lines were grown in RPMI-1640 

medium (Roswell Park Memorial Institute, Biochrom), supplemented with 5% heat 

inactivated FBS (fetal bovine serum, Biochrom). All cell lines were maintained at 37˚C 

in a humidified incubator (Hera Cell, Heraeus) with 5% CO2. 

2.2 Subculture and cellular conditions 

Cell lines were grown in 25 cm³ (VWR) flasks with complete growth culture medium 

composed of RPMI-1640 (Roswell Park Memorial Institute, Lonza), supplemented with 

5% inactivated FBS (fetal bovine serum, Biochrom), and maintained at 37˚C in a 

humidified incubator (Hera Cell, Heraeus) with 5% CO2. All experiments were carried 

out in aseptic environments in a level II biosafety cabinet (Telstar, Bio-II-A/P) and the 

culture solutions used were preheated in a 37˚C water bath (Precisterm) to be at 

temperature ideal for use. 

In order for exponential growth to be maintained, avoiding metabolic stress due to 

space and nutrient restrictions, the cells were subcultured at most within 3 to 4 days. 

In this process, the RPMI medium was aspirated and the adherent cells were washed 

with approximately 2 mL of PBS 1x isosmotic saline obtained through diluted sterile 

PBS 10x. Then, 500 μL of trypsin 1x (GIBCO, Invitrogen) was added and left for 

approximately 3 minutes incubated at 37°C to promote cell detachment. After this 

time, the complete detachment of the cells was verified through an inverted 
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microscope (Zeiss Primo Vert) and the trypsin neutralized by the addition of fresh 

RPMI. The resulting cell suspension was transferred to a 15 ml conical tube from which 

30 μL of the cell suspension was removed and mixed with 30 μL of 0.4% (v/v) Trypan 

Blue dye (Sigma-Aldrich) to determine cell density and viability by counting cells per 

quadrant using a Neubauer chamber. 

Cell density (expressed in cells/mL) was determined as the number of viable cells over 

the number of quadrants considered and multiplied by the dilution factor (DF) which 

was 0.15x10⁶ and the constant of 10,000, as described in the following formula: 

(number of living cells/quadrants counted) × DF × 104. 

Cell viability (%), in turn, was determined by the percentage of viable cells over the 

total number of viable cells added to dead cells, and was checked frequently to ensure 

that the cells were healthy, as they had a viability index above 90%. All three cell lines 

initially used were subcultured at least twice a week, using a set of dilutions, ranging 

from 1:5 to 1:20, according to the specific doubling time for each cell line. 

2.3 Freezing and thawing the cell line 

In order for changes in the characteristics of the genotype and phenotype to be 

controlled, all cell lines needed to have a low number of passages, which was possible 

through regular freezes in high concentration, in exponential growth and with the 

lowest possible number of passages. 

The cell suspension was centrifuged at 1000 rpm for 5 minutes (Heraeus Biofuge primo 

R) from where the sediment containing the cells was removed and resuspended in 

RPMI culture medium preheated with 10% (v/v) sulfur dioxide dimethyl (DMSO, Sigma-

Aldrich) and finally collected in a cryotube (Thermo Scientific) that was placed in a 

freezing container (Nalgene® Mr FrostyTM Cryo 1°C) with isopropanol, at -80°C. This 

procedure prevents abrupt and aggressive freezing of the cells, gradually lowering the 

temperature by 1 °C per minute. 24 hours after this gradual freezing, the cryotube was 

switched to liquid nitrogen, where it maintained its temperature. 

Defrosting, in turn, was carried out by heating to 37°C in a gentle water bath then 

suspended by centrifugation at 1000 rpm for 5 minutes to remove the DMSO 
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cryopreservation agent. The supernatant was discarded and the pellet resuspended in 

5 mL of fresh RPMI growth medium and finally placed in a 25 cm³ culture flask and 

kept at 37°C and 5% CO2, where it was kept until use. 

3 Poly-L-Lysine coated coverslips 

Poly-L-lysine is responsible for increasing the adhesion of cells to the coverslips 

minimizing cell loss. The slides were treated with HCl 1 M submerged in a water bath 

at a temperature of 56˚C for 16 hours. Then, they were cooled to room temperature 

and washed 5 times with immersion in distilled water and 5 times with immersion in 

double distilled water. They were washed with 100% ethanol, dried and treated with 

500μg/mL of poly-L-lysine (Sigma-Aldrich), under gentle rotational agitation 

(Digisystems Laboratory Instruments Inc.) for approximately 1 hour. Finally, another 

wash by immersion in distilled water and in 100% ethanol was performed. At the 

beginning of each experiment, the slides were again submerged in 70% ethanol and 

100% ethanol sequentially, so that they were in aseptic conditions of use. 

4 Evaluation of pyranoxanthone 2 activity 

4.1 Determination of antimitotic activity 

A total of 0.15x10⁶ NCI-H460 cells were seeded in a six-well plate allowing to attach for 

24h to be adhered to the surface.  Then, cells were treated either with 1.7 μM, 3.4 μM 

and 5.1μM of the compound pyranoxanthone 2 and 1 μM of Nocodazole (Sigma-

Aldrich) as a positive control. The negative control was performed with untreated cells 

and cells treated with 5.1μM DMSO served as an additional control for the 

compound's solvent. The compound was left to act for 16 hours and then a cell 

morphology analysis was performed using phase contrast microscopy and the mitotic 

index (IM) was determined by counting the cells that showed morphology supposed to 

be in mitosis and cells that had supposed morphology of being in interphase. The 

count was established by scoring mitotic figures from ten random microscopic fields or 

from 2000 mitotic cells. The MI was calculated individually in each well indicative of 

each condition described above, using the following formula: MI (%) = (number of 

mitotic cells/Total number of cells) × 100. 
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4.2 Indirect immunofluorescence 

NCI-H460 cells growing on poly-L-lysine-coated coverslips were treated with 1.7μM of 

pyranoxanthone 2 and controls with untreated cells and 1.7μM of DMSO for additional 

control of the compound's solvent for 16 hours. Then, cells were fixed with fresh 2% 

(w/v) paraformaldehyde (Sigma-Aldrich) in PBS for 12 minutes, washed 3 times with 

PBS for 5 minutes and permeabilized to 0.5% (v/v) Triton X-100 diluted in PBS for 7 

minutes.  Then the cells were then washed 3 times with PBS for 5 minutes each wash, 

and after wash, cells were blocked with blocking solution of 10% FBS in PBST (0.05% 

Tween-20 in PBS) for 30 min at room temperature, followed by 1 hour incubation with 

primary antibodies diluted in 5% FBS in PBST. The following primary antibodies were 

used: human anti-CREST (1:4000, gift from E. Bronze-da-Rocha, University of Porto, 

Portugal); mouse anti-α-tubulin (1:2500, Sigma-Aldrich) mouse anti-BubR1 (1:200, 

Milipore Chemicon), mouse anti-Mad2L1 (1:200, Sigma-Aldrich). After washing in PBST 

to three times, cells were incubated for 1 hour with Alexa Fluor 488 and 568 

conjugated secondary antibodies (Molecular Probes, Eugene, OR, USA), diluted at 

1:1500. Two more washes were performed with PBST and one last wash with PBS. DNA 

was stained with 2µg/ml 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) diluted 

in Vectashield mounting medium (Vector, H-1000, Burlingame, CA, USA) that was 

placed on the blades before mounting with the coverslips. After drying, the coverslips 

were sealed with varnish and stored at 4˚C.  

4.3 Functional assays for kinetochore-microtubule attachments 

4.3.1 Cold treatment assay 

To assess whether kinetochore-microtubule attachments in pyranoxanthone 2-treated 

cells were cold-stable, cells in culture medium were subjected at 4°C for 5 minutes, as 

well as the respective controls. These cells were immediately processed for 

immunofluorescence using the follows antibodies: human anti-CREST (1:4000, gift 

from E. Bronze-da-Rocha, University of Porto, Portugal); mouse anti-α-tubulin (1:2500, 

Sigma-Aldrich). At the end of the immunofluorescence, with the acquisition of the 

images, the number of kinetochores linked to microtubules and the number of free 
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kinetochores of 5 cells chosen at random in different fields of each experimental 

condition were counted, generating a referring average in view of the results obtained. 

4.3.2 MG-132 proteasome inhibitor assay 

To assess the ability of chromosomes to congress at equatorial zone, cells were divided 

into two groups under the same experimental conditions, where in one group the 

addition of 10 μM of the proteasome inhibitor MG-132 (Sigma- Aldrich) for 1 hour in 

order to stop the cells at the metaphase-anaphase limit, and in the other group they 

were maintained without the addition of MG-132. Then, immunofluorescence was 

performed with anti-α-tubulin mouse antibody in the dilution of (1:2500, Sigma-

Aldrich) and with the result of the immunofluorescence, a count was performed in 10 

random fields of each experimental condition of the number of metaphase cells with 

the aligned chromosomes and the number of metaphase cells with the misaligned 

chromosomes. 

4.4. Live-cell imaging 

For live-cell imaging experiments, 0.12x10⁶ NCI-H460 cells were seeded onto LabTek II 

chambered cover glass (Nunc, Penfield, NY, USA) containing RPMI, allowed to attach 

for 24 hours at 37 °C with 5% CO2. Then, cells were treated with 1.7 μM of 

pyranoxanthone 2 and images were captured at 10 min intervals up to 48 hours under 

differential interference contrast (DIC) optics, with a 63x objective on an Axio Observer 

Z.1 SD inverted microscope, equipped with an incubation chamber with the 

temperature set to 37 °C and an atmosphere of 5% CO2. Movies were generated from 

the time-lapse images using ImageJ software (version 1.44, Rasband, W.S., ImageJ, U. 

S. National Institutes of Health, Bethesda, MD, USA). The number of cells arrested at 

mitosis or in cell death was scored, based on cellular morphology. Dead cells were 

classified into death in mitosis (DiM) or post-mitotic death (PMD) when death occurred 

during or following cell division, respectively. 
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4.5 Cell death  

4.5.1 Terminal staining of dUTP with deoxynucleotidyltransferase (TUNEL) mediation 

A total of 0.15x10⁶ of NCI-H460 cells were treated with 1.7 μM of compound 

pyranoxanthone 2 for 24 hours. After treatment, cells were immediately fixed in 4% 

paraformaldehyde (w/v) in PBS for 10 minutes, followed by PBS wash and 

permeabilization with 0.2% (v/v) Triton X-100 in PBS for 5 minutes. The TUNEL labeling 

was performed using DeadEnd Fluorometric TUNEL System (Promega, Madison, WI, 

USA), according to the manufacturer’s instructions. DNA was stained with 2 µg/ml 

DAPI in Vectashield mounting medium. The level of apoptosis was established by 

counting TUNEL-positive cells in a total of approximately 400 cells in 5 random fields 

under fluorescence microscope. The apoptotic index was calculated as the percentage 

of positively TUNEL-stained cells over the cells. 

4.5.2 Flow cytometry - Annexin-V-FITC 

Cells were treated as described for mitotic index determination. For cell cycle analysis, 

after 16 and 24 hours, cells were harvested, washed in PBS twice and fixed in cold 70% 

ethanol at 4˚C for at least 30 minutes. Then, cells were treated with 5 µg/ml of 

propidium iodide and 100 µg/ml of RNase in PBS for 30 minutes and analyzed in the 

flow cytometer. For apoptosis detection, cells were harvested and processed with the 

“Annexin V-FITC Apoptosis Detection Kit” (eBioscience, Vienna, Austria) according to 

manufacturer’s instructions. A positive control, for cell death, with 1 μM DTT was 

included. Data was analyzed with BD Accuri TM C6 Plus software, version 1.0.27.1 

(www.bdbiosciences.com). All flow cytometry analysis was carried out using a BD 

Accuri™ C6 Plus Flow cytometer (BD Biosciences, Qume Drive, San Jose, CA) and at 

least 20.000 events per sample were collected. 

4.5.3 Colony formation assay 

A total of 500 NCI-H460 cells were seeded in six-well plates, allowed to attach for 24h, 

and treated with 0.85 μM of pyranoxanthone 2, 2 nM of paclitaxel or with a 

combination of pyranoxanthone 2 and paclitaxel. Untreated and DMSO-treated cells 

were also included. Forty-eight hours later, cells were washed twice with PBS and 
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incubated in a drug-free RPMI medium for 8 days. The grown colonies were fixed for 5 

minutes with 3.7% paraformaldehyde (w/v) in PBS and stained for 20 minutes with 

violet crystal (Merck) 0.05% (w/v) in distilled water. The number of colonies for each 

condition was counted in duplicate dishes from three independent experiments. The 

plating efficiency (PE) was calculated as the percentage of the number of grown 

colonies over the number of cells seeded in control. For each condition, the survival 

fraction was determined as the number of colonies over the number of cells seeded × 

1/PE.  

5 Statistical analysis 

The data are presented as the mean ± standard deviation (SD) of two or three 

independent experiments and statistical analysis was performed using an unpaired 

Student's t test or two-way ANOVA with Tukey's multiple comparisons test in the 

GraphPad Prism version 6 (GraphPad software Inc., CA, USA). The level of statistical 

significance was established considering the probabilities of * p <0.05, ** p <0.01, *** 

p <0.001 and **** p <0.0001. 

6 Image acquisition and processing 

For the initial phase with phase contrast microscopy, a Zeiss Primo Vert microscope 

and a Nikon TE 2000-U microscope with a 10x objective were used. The Nikon 

microscope used a DXM1200F digital camera, with Nikon ACT-1 software (Melville, 

NY). For experiments where image acquisition was performed using fluorescence, an 

Axio Observer Z.1 SD microscope (Carl Zeiss, Germany) was used, coupled to an 

AxioCam MR3, and with the Plan Apochromatic 63x/NA 1.4 objective. The 

deconvolution was performed with the software AxioVision Release 4.8.2 SPC and the 

images were processed using ImageJ version 1.44 (http://rsb.info.nih.gov/ij/). 
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Chapter IV 
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1 The pyranoxanthone 2 induces mitotic arrest of cancer cells 

Antimitotic agents are capable of causing cell arrest in mitosis. To test the ability of 

compound pyranoxanthone 2 to interfere in mitosis, cells A375-C5, MCF-7 and NCI-

H460 were treated with the value corresponding to once the value of GI50, twice the 

value of GI50 and three times the value of GI50 in each well, for 16 hours. 

As a positive control, 1 μM of cells treated with nocodazole in a well was used. 

Nocodazole is an antimitotic agent already used in clinical practice that interferes with  

As a positive control, 1 μM of cells treated with nocodazole in a well was used. 

Nocodazole is an antimitotic agent already used in clinical practice that interferes with 

the dynamics of microtubules, binding to β-tubulin and preventing the formation of 

one of the two inter-chain disulfide bonds, culminating in stopping the cell cycle in 

mitosis. As a negative control, a well of untreated cells was used, and for solvent 

control the value referring to three times the GI50 of each respective DMSO cell line in 

a well was added. 

The analysis was performed under phase contrast microscopy, through the 

observation of cell morphology, where “rounded” cells are indicative of cells in mitosis. 

The mitotic arrest was noticeable at both concentrations in the cell lines A355-C5 

(Figure 16A), MCF-7 (Figure 16B) and NCI-H460 (Figure 16C). It is markedly larger when 

compared to untreated control cells and looks similar to the positive control for cells 

treated with nocodazole.  

The mitotic index (MI) was determined by counting the cells that showed morphology 

indicative of cells in mitosis and cells that by the morphology were supposed to be in 

interphase. The count was established by scoring mitotic figures from ten random 

microscopic fields or from 2000 mitotic cells. The IM was calculated individually in each 

well indicative of each condition described above, in cell lines A355-C5 (Figure 16A'), 

MCF-7 (Figure 16B') and NCI-H460 (Figure 16C') using the following formula: MI (%) = 

(number of mitotic cells / total number of cells) × 100. In A375-C5 the mitotic index 

was 37.63% ± 4.07 when treated with 1.3 μM of pyranoxanthone 2, of 41.83 % ± 0.47 

when treated with 2.6 μM and 50.09% ± 13.40 when treated with 3.9 μM, being 
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considerably higher when compared to the negative control with untreated cells 

where the mitotic index was 17.48% ± 0.77 and with the solvent control using DMSO 

which was 17.62% ± 0.96, and less than the positive control with nocadozole which 

was 71.49% ± 5.49. In MCF-7 the mitotic index was 47.09% ± 0.69 when treated with 

1.7 μM of pyranoxanthone 2, 53.03% ± 9.11 when treated with 3.4 μM and 43.83% ± 

2.05 when treated with 5.1 μM, being considerably higher when compared to the 

negative control with untreated cells where the mitotic index was 5.22% ± 0.01 and 

with the solvent control using DMSO which was 6.19% ± 1, 38, and less than the 

positive control with nocadozole, which was 84.02% ± 1.48. In NCI-H460 the mitotic 

index was 52.13% ± 3.84 when treated with 1.7 μM of pyranoxanthone 2, 55.71% ± 

5.95 when treated with 3.4 μM and 68.51% ± 11.27 when treated with 5.1 μM, being 

considerably higher when compared to the negative control with untreated cells 

where the mitotic index was 14.47% ± 2.64 and with the solvent control using DMSO 

which was 14.69% ± 3,72, and less than the positive control with nocadozole, which 

was 89.93% ± 0.75. Normally, the number of interphase cells is always greater than 

that of mitotic cells, this is because the duration of the interphase is abruptly greater 

than that of mitosis. After treatment with pyranoxanthone 2 the number of cells with 

morphology suggestive of mitosis was consistently similar to the number of interphase 

cells, suggesting the idea that pyranoxanthone 2 has antimitotic activity due to 

stopping in mitosis. 
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Figure 16 Cancer cells arrested in mitosis, in response to PX2 treatment. Left - Representative phase 
contrast microscopy images, after 16 hours treatment with PX2, at indicated concentrations, displaying 
accumulation of mitotic cells (rounded) in (A) A375-C5, (B) MCF-7 and (C) NCI-H460 cancer cell lines. 
Nocodazole was used as a positive control. DMSO was used as a compound solvent control. Bar, 10 µm. 
Right – Mitotic index graphs showing accumulation of mitotic cells in (A’) A375-C5, (B’) MCF-7 and (C’) 
NCI-H460 cancer cells with statistical relevance of * p <0.05, ** p <0.01 and *** p <0.001 by unpaired t-
test.  
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2 Treatment with pyranoxanthone 2 leads to chromosome congression defects 

Once it was understood that the treatment with the compound pyranoxanthone 2 

generated mitotic arrest that was sustained by the constitutive activation of the SAC, 

we performed a new immunofluorescence in order to understand the mechanism that 

led to its constitutive activation. The NCI-H460 cells were treated with 1.7 μM of 

pyranoxanthone 2, for 16 hours, and proceed to immunofluorescence, using an anti-α-

tubulin antibody, for staining the spindle microtubules and DAPI staining to visualize 

the DNA. Due controls were also carried out, negative control with untreated cells and 

solvent control with 1.7 μM DMSO. In fluorescence microscopy, we observed that the 

untreated control cells exhibited a bipolar spindle with normal microtubule fibers 

(Figure 17A). In contrast, the cells treated with pyranoxanthone 2 showed an abnormal 

morphology of the mitotic spindle, with a misalignment of the chromosomes that goes 

against the previous finding that the morphology of the cells that were stopped in 

mitosis demonstrated a state similar to that of prometaphase. The number of cells that 

presented morphology suggestive of metaphase and the number of cells that 

presented morphology suggestive of prometaphase was then counted so that these 

data could be compared in order to analyze whether treatment with pyranoxanthone 

2 leads to persistent chromosome misalignment phenotype (Figure 17B). From this 

count, a considerable number of cells demonstrated phenotype indicative of 

prometaphase with misalignment of chromosomes, representing 98.18% ± 7.80, 

compared to 67.46% ± 7.80 in untreated cells and 69.81% ± 7.99 in solvent control. 

To confirm that that the misalignment phenotype persists, a new assay was carried out 

using MG-132 (Figure 17C), which is an enzyme that works as a proteasome inhibitor 

and that consequently prevents the dissociation and cleavage of cohesins, not allowing 

the advance of metaphase for anaphase. Two groups were separated under the same 

experimental conditions, where in one group the addition of 10 μM of the proteasome 

inhibitor MG-132 for 1 hour in order to stop the cells at the metaphase-anaphase limit, 

and in the other group they were maintained without the addition of MG-132. Then, 

immunofluorescence was performed with anti-α-tubulin mouse antibody and with the 

result of the immunofluorescence, a count was performed in 10 random fields of each 

experimental condition of the number of metaphase cells with the aligned 
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chromosomes and the number of metaphase cells with the misaligned chromosomes, 

and an average was made regarding the results obtained in two independent 

experiments. The results of this accounting showed that the characteristic persistent 

phenotype of cells with the chromosomes misaligned with 100% ± 0 of metaphase cells 

with the chromosomes misaligned both in the presence of MG-132 and in the absence. 

The negative control in relation to this count showed 33% ± 0.04 when in the presence 

of MG-132 compared to 72% ± 0.05 when in absence. The solvent control was faithful 

to the results obtained, demonstrating 30% ± 0.03 when in the presence of MG-132 

compared to 77% ± 0.03 when in absence. These results meet the cell's inability to 

form or maintain a bipolar axis when treated with compound pyranoxanthone 2. The 

cell stopping in mitosis happens due to defects in the chromosome connections to the 

microtubules, which in this case are the result of a disturbance in the spindle 

arrangement of the microtubules. It is then concluded that the treatment with 

pyranoxanthone 2 in NCI-H460 could affect the morphology of the mitotic spindle by 

activating the SAC as a consequence and causing the cell to stop in mitosis. 
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3 Treatment with pyranoxanthone 2 interferes with kinetochore-microtubules 

attachments stability 

For the congress of chromosomes to occur correctly and to be able to align themselves 

in the metaphase plate, it is necessary that stable and functional attachments occur 

between kinetochores and microtubules, for this reason it was investigated whether 

these attachments were stable through a cold test. treatment where cells in culture 

Figure 17 PX2 treatment results in chromosome misalignment phenotype. (A) Immunofluorescence 
images of a untreated cell (Top), in metaphase, with all chromosomes aligned at equatorial zone, and 
PX2-treated cell (Bottom), arrested in prometaphase-like state, showing many misaligned 
chromosomes. Microtubules (green) were stained with anti-α-tubulin antibody and DNA (blue) with 
DAPI. Bar, 5 µm. (B) Graphical representation of data shown in percentage cells of metaphase state or 
metaphase with misaligned/prometaphase with statistical relevance of (****) p <0.0001 by unpaired t-
test. (C) Graphical representation of data shown in (A), in absence (-) or presence (+) of proteasome 
inhibitor MG-132 with statistical relevance of (****) p <0.0001 by two-way ANOVA with Tukey's 
multiple comparisons test.  
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medium in the wells treated with 1.7 μM of compound pyranoxanthone 2 or negative 

control with untreated cells respectively were incubated at 4 ° C for 5 minutes and 

immediately processed for immunofluorescence with anti-CREST anti-α-tubulin 

antibodies so that they were the robustness of the kinetochore-microtubule 

attachments and their ability to generate tension and conduct chromosome 

movement and alignment were tested. The temperature of 4°C induces a disassembly 

of kinetochore fibers that are unstable, due to this thermal shock (Figure 18A).At the 

end of the immunofluorescence, with the acquisition of the images, the number of 

kinetochores linked to microtubules and the number of free kinetochores of 5 cells 

chosen at random in different fields of each experimental condition were counted 

(Figure 18B).  

The percentage of kinetochores attached with microtubules in cells treated with 

pyranoxanthone 2 was 19.52% ± 2.70 while in untreated cells it was 90.08% ± 3.25 

(Figure 18C), suggesting that the connections between kinetochores and microtubules 

were unstable and was an important condition for the phenotype of chromosome 

misalignment presented by the cells and consequent stop in mitosis. 
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4 Treatment with pyranoxanthone 2 elicits spindle assembly checkpoint activation 

The increase in the number of mitotic cells when compared to the control shows an 

eventual blockage of the mitosis output, suggesting permanent activation of the 

spindle assembly checkpoint (SAC). The SAC is a checkpoint responsible for detecting 

incorrect connections of microtubules and kinetochores and can prevent progression 

Figure 18 PX2 treatment generates loss of stability of kinetochore-microtubule attachments. (A) 
Representative immunofluorescence images after cold treatment assay, showing several unattached 
kinetochores (free CREST red spots) in cells with pyranoxanthone 2 treatment, whereas most 
kinetochores were attached (red spots with attached green fibers) in untreated cells. Microtubules 
(green) were stained with anti-α-tubulin antibody, kinetochores (red) with anti-CREST antibody, and 
DNA (blue) with DAPI. (B) Example of untreated cells (right) and treated with 1.7 μM of compound PX2 
used for counting kinetochore-microtubules unattached (free CREST red spots pointed by the white 
arrows) Bar, 5 µm. (C) Quantification of cold-stable microtubules (as percentage of attached 
kinetochores per cell) after treatment with PX2 with statistical relevance of * p <0.05 by unpaired t-test.  
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to anaphase whenever these errors are detected, keeping the cells in metaphase until 

all the chromosomes are properly aligned on the metaphase plate. Only from a signal 

that the chromosomes are aligned do SAC silencing occur with the shutdown of the 

proteins that form the Mitotic Checkpoint Complex (MCC), releasing Cdc20 to activate 

the anaphase promoter complex/cyclosome (APC/C) and enable the advance to 

anaphase. Mad2 proteins are an important part of MCC and are often used to mark 

microtubule connections to chromosomes. BubR1, in turn, is often used to mark the 

tension exerted between the sister kinetochores. When these proteins are co-located 

in the kinetochore, it means that the SAC is active. Therefore, to see if SAC was active 

in cells treated with the pyranoxanthone 2 compound, we performed an indirect 

immunofluorescence assay, using anti-Mad2 and anti-BubR1 antibodies, during 16 

hours of treatment with 1.7 μM of pyranoxanthone 2, as well as in control negative 

with untreated cells. The analysis carried out by fluorescence microscopy revealed the 

presence of the Mad2 protein (Figure 19A) and the BubR1 protein (Figure 19B) in the 

kinetochores of the uncoupled chromosomes of the cells that were stopped in mitosis, 

which suggests activation of the SAC. In contrast, cells not treated with the compound 

had a kinetochore label on cells that were in prometaphase with chromosomes that 

were also not coupled, while in cells that metaphase alignment was completed, the 

staining by the antibodies of the proteins Mad2 and Bubr1 was not more visible in the 

kinetochore, demonstrating that the proteins had been removed from the 

kinetochore, generating the silencing of the SAC by interrupting the signaling that 

activated the SAC. The results described demonstrate that the SAC remained active in 

these cells that were stopped in mitosis after treatment with pyranoxanthone 2. 
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5 Cell fates of cancer cells arrested in mitosis by the pyranoxanthone 2 

In order to further understand the mechanistic underlying the cytotoxic activity of the 

pyranoxanthone 2, we analyzed the cell fate of mitosis-arrested cells by live-cell 

imaging using time lapse differential interference contrast (DIC) microscopy, over 48h 

time course. First, we found that pyranoxanthone 2-treated cells (n= 40) lasted in 

mitosis (from nuclear envelope breakdown to anaphase onset) 457.8 ± 264.2 min on 

average, more than 16-fold when compared to the duration of mitosis in untreated 

cells (28 ± 6.64 min) (Figure 20 and supplementary video S1 online at 

https://youtu.be/Lfu6tMx8fks and supplementary video S2 online at 

https://youtu.be/P9DYSUjxiIM). Then, survival fate analysis of each mitotic cell 

Figure 19 Treatment with PX2 triggers the spindle assembly checkpoint. Immunofluorescence staining 
using antibodies against (A) Mad2 (green), (B) BubR1 (green), CREST (red) and DAPI (blue) in untreated 
and PX2-treated cells, as indicated. In untreated cells, Mad2 and BubR1 is not located in kinetochores, 
consistent with their normal localization pattern. In PX2-treated cells (bottom panel), these proteins are 
present in all mitotic cells, indicating mitotic checkpoint activation. Bar, 5 µm. 

https://youtu.be/Lfu6tMx8fks
https://youtu.be/P9DYSUjxiIM
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revealed that 92.5% of pyranoxanthone 2-treated cells died in mitosis, and 7.5% of 

cells underwent post-mitotic death (Figure 20 and videos S1 and S2).  

 

 

 

 

 

Figure 20 PX2 treatment promotes death in mitosis, after prolonged arrest. (A) Mitosis duration as 
determined by time-lapse microscopy, in untreated (control) and PX2-treated cells. Each spot 
represents one cell. (B) Representative time-lapse sequences of untreated and PX2-treated cells. 
Untreated cell undertakes mitosis for about 30 min (top) while PX2-treated cell (bottom) arrests in 
mitosis during several hours (457.8 ± 264.2 min) followed by death. Numbers indicate times in 00 h:00 
min. Movies are available as Supplementary materials. (C) Quantification of cell fate after PX2 
treatment. The percentage of cells undergoing post-mitotic death (PMD) and death in mitosis (DIM), 
and cells with normal cycling, over the total number of cells are represented. 
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6 Pyranoxanthone 2 induces cell death after prolonged treatment 

During the course of characterization of pyranoxanthone 2, it was found that 

prolonged exposure led to abnormal nuclear morphology, with micronucleation, a 

characteristic that suggests that the cells were dead, either as a result of prolonged 

mitotic arrest or due to failure in cell division. To validate that this frequent occurrence 

of cells showing this morphology was even indicative of dead cells, NCI-H460 cells were 

exposed for an extended period of 24 hours to treatment with pyranoxanthone 2, and 

then stained with DAPI, for DNA evaluation. Through this assay an increase in cells with 

abnormal nuclear morphology was verified, mainly composed of micronuclei (Figure 

21). 

 

 

 

 

 

 

 

 

 

The morphology represented by these cells suggests a similarity to the morphology of  

From then on the need for answers about the mechanism responsible for the cell 

death emerged, and to answer this question, NCI-H460 cells were treated with 

pyranoxanthone 2 for 24 hours and then analyzed using a TUNEL assay, so that it was 

possible to detect cell death by apoptosis. While the untreated cells used as a negative 

control exhibited normal, largely non-apoptotic morphology, without positive TUNEL 

Figure 21 Representative death cells before treatment with PX2. On the right there is a representative 

field of control, with cells in their normal nuclear morphology, mostly interphasic. On the left the cells 

were treated with 1.7 μM of the compound pyranoxanthone 2 and many cells with a phenotype 

suggestive of chromosome misalignment can be observed, and some cells with abnormal nuclear 

morphology, with micronucleation, characteristic of dead cells. The DNA was stained using DAPI. 
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staining, cells treated with the pyranoxanthone 2 compound showed positive TUNEL 

micronucleus marking (Figure 22A). The level of apoptosis was established by counting 

TUNEL-positive cells on a total of approximately 400 cells in 5 random fields for each 

slide corresponding to an experimental point, from which the apoptotic index was 

calculated, which was the percentage of positively stained cells about total number of 

cells. The number of apoptotic cells among cells treated with pyranoxanthone 2 was 

25.53% ± 1.97, while in untreated cells it was 0.60% ± 0.50 and in solvent control 

0.27% ± 0, 12 (Figure 22B), suggesting that prolonged exposure to pyranoxanthone 2 

leads to cell death, due to apoptosis. To confirm this finding, flow cytometry was 

performed using the “Annexin V-FITC apoptosis detection kit”. Cells were treated with 

1.7μM of compound pyranoxanthone 2 in 16 hours and 24 hours of treatment. In 

addition, the positive control with 1μM DTT and the negative control with untreated 

cells were included, as well as a well with 1.7 μM DMSO for additional control of the 

compound's solvent. Apoptosis was detected through analysis using a BD Accuri ™ C6 

flow cytometer with the analysis of 20,000 events per sample and the results were 

determined using use of BD Accuri TM C6 Plus software, version 1.0.27.1. The 

percentage of apoptotic cells was 13.76% ± 2.24 in the negative control with untreated 

cells, 11.89% ± 3.49 in the solvent control, 28.49 ± 6.71 in the positive control using 

DTT, in the treatment for 16 hours with 1.7 μM of compound pyranoxanthone 2 was 

13.98% ± 2.61 and in the treatment for 24 hours with 1.7 μM of compound 

pyranoxanthone 2 was 28.67% ± 3.52 (Figure 22C). The quantification of cells was 

deferred using Q quadrants, which were defined by Q1 = live (Annexin V- and PI-

negative), Q2 = early stage of apoptosis (Annexin V-positive/PI-negative), Q3 = late 

stage of apoptosis (Annexin V- and PI-positive) and Q4 = necrosis (Annexin V-negative / 

PI-positive) (Figure 22D). 

These results support the theory that cell death due to apoptosis occurs when treated 

with pyranoxanthone 2, and demonstrates through a considerably higher percentage 

of apoptotic cells after 24 hours of treatment compared to the number of apoptotic 

cells after 16 hours of treatment, that the time is a crucial factor for apoptosis cell 

death. 
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Figure 22 Prolonged exposure to PX2 leads to apoptotic cell death. (A) TUNEL staining showing 
accumulation of apoptotic cells (green) in cells treated with the compound for 48 h. DNA was 
counterstained with DAPI (blue). Bar, 5 µm. (B) Apoptotic index in control cells and upon 48 h 
compound treatment, expressed as a percentage of total cells with statistical relevance of ** p < 0.01 
by unpaired t-test. (C e D) Flow cytometry analysis of apoptosis by Annexin V/PI co-staining, 16 and 24 
hours after PX2 treatment. (C) Representative cytogram and (D) quantification of Annexin V-positive 
cells are shown with statistical relevance of * p < 0.05 by unpaired t-test. The quadrants Q were defined 
as Q1 = live (Annexin V- and PI-negative), Q2 = early stage of apoptosis (Annexin V-positive/PI-negative), 
Q3 = late stage of apoptosis (Annexin V- and PI-positive) and Q4 = necrosis (Annexin V-negative/PI-
positive).  
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7 Treatment with pyranoxanthone 2 enhances paclitaxel cytotoxicity  

Taken into account the potent cytotoxic activity of pyranoxanthone 2 and given the 

limitations of current paclitaxel-based chemotherapy, we explored the potential of 

pyranoxanthone 2 to increase the sensitivity of cancer cells to clinically relevant 

concentrations of paclitaxel. To address this question, we performed a long-term 

proliferation assay. Cells were treated with 0.85 µM of pyranoxanthone 2 (almost 8-

fold less GI50), alone or in combination with 2 nM of paclitaxel, for 48h. Eight-days 

later, treatment with 0.85 µM of pyranoxanthone 2 had no effect on the ability of 

cancer cells to proliferate and form colonies, behaving as untreated cells (Figure 23). 

Interestingly, when pyranoxanthone 2 was added prior paclitaxel treatment, the 

inhibitory effect on cancer cell proliferation was significantly higher than that observed 

in cells treated with pyranoxanthone 2 or paclitaxel alone (Figure 23). This suggests 

that pyranoxanthone 2 treatment sensitizes cancer cells to cytotoxic effect of 

paclitaxel. Of note, the concentrations of both agents in combination regimens could 

be significantly lowered. 
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Figure 23 PX2 treatment enhances paclitaxel-mediated cytotoxicity. NCIH460 cells were treated with 
0.85 μM of PX2 and/or paclitaxel (PTX) at 2 nM, for 48h. A 8-days colony-formation assay was 
performed. After washout, the surviving colonies were stained with crystal violet and a representative 
figure is shown for each condition. Quantification of data shown was performed and the results are the 
mean from two independent experiments, expressed as % of survival fraction. Statistical relevance of 
(****) p <0.0001 by two-way ANOVA with Tukey's multiple comparisons test was used. 
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Chapter V 
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Despite the widespread clinical use in oncology of anti-mitotic drugs that function as 

anti-microtubule agents, the associated toxicities, whether hematopoietic or 

neurological, are one of the major problems to be overcome, as well as intrinsic or 

acquired resistance (Rebucci and Michiels, 2013).  This fact limits the efficacy of the 

medication and, consequently, causes a worse prognosis due to a limited or 

unspecified response to the medication used. Based on these flaws in the drugs used 

in current clinical practice, the need arose to explore new compounds that can avoid 

the mechanisms of resistance and nonspecific toxicity already mentioned.  

In this field, several natural products have been evaluated as potential therapeutic 

agents. Increasing attention has been paid to xanthone derivatives, from natural 

sources and synthetic routes, to discover new drug candidates with, among others, 

anticancer properties (Klein-Júnior et al., 2020). Xanthones are natural compounds 

found remotely in nature when compared to the high demand that would be required 

for use in clinical practice (Matsumoto et al., 2005; Suksamrarn et al., 2006). For this 

reason, and to overcome other limitations, they started to be synthesized from natural 

derivatives of modified xanthones to reach specific targets through the elaborate 

design of new xanthone analogues, with the help of modern medicinal techniques, 

including molecular modeling, by expanding the biological spectrum of these 

compounds (Genovese et al., 2016).  

In the present study, we unveiled the mechanism of the cytotoxic activity of the 

xanthone derivative pyranoxanthone 2. We demonstrated that pyranoxanthone 2 

disturbs the mitotic spindle, which lead to unstable kinetochore-microtubules 

attachments and chromosome misalignment that activate SAC, thereby leading to 

prolonged mitotic arrest and, subsequently, to cell death. 

We demonstrated in this present data the biological activity of this xanthone that 

emerges as a potent antimitotic agent, which acts through microtubules, interfering 

with microtubule-kinetochores attachments and preventing the alignment of 

chromosomes in the equatorial plane of the mitotic spindle in the metaphase plate, 

thus providing an effective anti-microtubule approach for therapeutic intervention in 

cancer. Anti-microtubule agents directly interfere with the dynamics of microtubules, 
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which are structures with a central role in the assembly of the mitotic spindle and in 

the subsequent alignment of chromosomes and DNA segregation in daughter cells 

(Masawang et al., 2014; Teixeira et al., 2014). Maintaining symmetrical and orderly 

appearance of the spindle microtubules during cell division requires highly accurate 

dynamics for this critical event during mitosis to occur correctly (Dumontet and Jordan, 

2010). 

Antimitotic agents in general are important pillars in anticancer therapy, because 

cancer cells have an increased potential for cell proliferation making the events and 

structures involved in this process important therapeutic targets (Gascoigne and 

Taylor, 2008; Shi, Orth and Mitchison, 2008). In the present study, antimitotic activity 

was perceived by calculating the mitotic index, which was determined by counting the 

cells that showed morphology indicative of cells in mitosis and cells that by the 

morphology were supposed to be in interphase. In A375-C5 cell line (melanoma 

cancer) the mitotic index was 37.63% ± 4.07 when treated with 1.3 μM of 

pyranoxanthone 2, of 41.83% ± 0.47 when treated with 2.6 μM and 50.09% ± 13.40 

when treated with 3.9 μM, being considerably higher when compared to the negative 

control with untreated cells where the mitotic index was 17.48% ± 0.77 and with the 

solvent control using DMSO which was 17.62% ± 0.96, and less than the positive 

control with nocadozole which was 71.49% ± 5.49. In MCF-7 cell line (breast cancer) 

the mitotic index was 47.09% ± 0.69 when treated with 1.7 μM of pyranoxanthone 2, 

53.03% ± 9.11 when treated with 3.4 μM and 43.83% ± 2.5 when treated with 5.1 μM, 

being considerably higher when compared to the negative control with untreated cells 

where the mitotic index was 5.22% ± 0.01 and with the solvent control using DMSO 

which was 6.19% ± 1, 38, and less than the positive control with nocadozole, which 

was 84.02% ± 1.48. In NCI-H460 cell line (lung cancer) the mitotic index was 52.13% ± 

3.84 when treated with 1.7 μM of pyranoxanthone 2, 55.71% ± 5.95 when treated with 

3.4 μM and 68.51% ± 11.27 when treated with 5.1 μM, being considerably higher when 

compared to the negative control with untreated cells where the mitotic index was 

14.47% ± 2.64 and with the solvent control using DMSO which was 14.69% ± 3.72, and 

less than the positive control with nocadozole, which was 89.93% ± 0.75. The number 

of interphase cells, which should be considerably higher than that of mitotic cells due 
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to the interphase duration time compared to mitosis, remained similar to the number 

of mitotic cells, indicating the arrest and accumulation of cells in mitosis. This phase 

microscopy assay served as a principle that pyranoxanthone 2 has antimitotic activity 

through the analysis of suggestive morphology of cells in mitosis and cells in 

interphase, however the confirmation came through flow cytometry in order to certify 

the cell fate and a immunofluorescence so that it was possible to analyze through DNA 

immunofluorescence microscopy. 

Through a new immunofluorescence using anti-α-tubulin and DNA dialing DAPI, we see 

that the treatment with the pyranoxanthone 2 cell line of lung cancer NCI-H460 

created dominant phenotype misaligned chromosomes and consequently stop mitosis 

due to its interaction with the microtubules of the mitotic spindle, consistent with 

other antimitotic agents already used in clinical practice. Paclitaxel is an example of 

antimitotic acting as anti-microtubule (Jones et al., 2005). This phenotype reinforces 

an increased antimitotic activity with considerable number of cells demonstrating 

phenotype indicative of prometaphase with misalignment of chromosomes, 

representing 98.18% ± 7.80, compared to 67.46% ± 7.80 in untreated cells as a result 

of the metaphase stop resulting from this misalignment of the chromosomes on the 

plate metaphase and that prevents progress to anaphase. This impediment of 

metaphase advance in anaphase is the result of a series of signals that are sent by the 

cell for non-alignment account of chromosomes that these failures are remedied or 

eliciting a cell death mechanism configured (Musacchio and Salmon, 2007). 

The mitotic arrest caused by pyranoxanthone 2 also demonstrates a critical role for 

SAC as demonstrated in the results. The proteins that make up the MCC are co-located 

in the coupled kinetochore when the SAC is active, and this characteristic was 

maintained after treatment with pyranoxanthone 2. This finding was demonstrated by 

marking the proteins BUBR1 and MAD2, which are a key component of the MCC and 

are located in the kinetochore when SAC is active. 

SAC is constitutively active in the presence of this chromosome misalignment 

phenotype and ends up keeping APC/C inactive and preventing progress to anaphase. 

The molecular pathway of the SAC is composed of a set of proteins that have a variety 
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of functions ranging from the detection of errors in the attachment between 

microtubules and kinetochores to the generation of the signal that inhibits the 

progression of mitosis until the errors and the SAC is silenced. This whole set of 

proteins is co-located in unbound kinetochores, and that the downstream target is 

APC/C, an ubiquitin E3 ligase that acts in association with several proteolytic 

degradation proteins, including mitotic cyclins that will allow the progress towards 

anaphase (Santaguida and Musacchio, 2009). 

As already mentioned, with the SAC active, the APC/C is inactive, this triggers a non-

degradation of the securin, which is associated with the separase and prevents the 

cleavage of cohesins that allow the advance to anaphase, as well as triggering a non-

degradation of the cyclin B1 which prevents cells from leaving mitosis. This set of 

events, mitotic block and sustained activation of SAC create conditions that trigger an 

accumulation of apoptotic signal that ends up sensitizing tumor cells to cell death due 

to apoptosis. Therefore, cells exposed to antimitotic agents have their ability to 

activate apoptosis, varying according to the time of stop (Barbosa et al., 2011). 

Therefore, different mechanisms keep SAC active due to the non-alignment of 

chromosomes in the metaphase plate, and thus prevent its silencing. The use of 

pyranoxanthone 2 xanthone ends up allowing apoptotic signals to accumulate and 

irreversibly mark the cell for death. 

Once it was concluded that this stop in mitosis was a consequence of a change in the 

cell phenotype, we decided to further analyze the dynamics of microtubules and 

kinetochore-microtubule connections, and we came to the conclusion that after 

treatment with pyranoxanthone 2 these connections became less stable, which 

justifies the non-coupling in certain points of the cells. The percentage of kinetochores 

attached with microtubules in cells treated with pyranoxanthone 2 was 19.52% ± 2.70 

while in untreated cells it was 90.08% ± 3.25, suggesting that the connections between 

kinetochores and microtubules were unstable and was an important condition for the 

phenotype of chromosome misalignment presented by the cells and consequent stop 

in mitosis. 
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This goes against, for example, treatment with Paclitaxel, which affects the dynamics 

of microtubules and kinetochore-microtubule bonds, inducing non-silencing of the 

SAC, and preventing the cell from leaving mitosis (Jones et al., 2005). 

Observing our experimental findings that demonstrated cells with morphology 

indicative of cell death, our study was directed to quantify and qualify this cell death. 

From there, the results demonstrated that this would in fact lead to a considerable 

increase in cells killed by apoptosis when treated with pyranoxanthone 2. Faced with 

the stop in mitosis of the cells and without being able to subvert this phenotype, the 

cells ended up going into apoptosis. 

This massive death as a result of stopping mitosis is the main focus of anticancer 

therapy using antimitotics (Dalton et al., 2007; Lei and Erikson, 2008). For our study we 

performed an assay with TUNEL staining where the number of apoptotic cells among 

cells treated with pyranoxanthone 2 was 25.53% ± 1.97, while in untreated cells it was 

0.60% ± 0.50, which demonstrated a very significant increase in apoptotic cells when 

cells were treated with compost. 

A flow cytometry performed using the “Annexin V-FITC apoptosis detection kit” was 

also performed with the intention of demonstrating the number of apoptotic cells, as 

well as the time it would take until these cells entered apoptosis. The results 

demonstrated the percentage of apoptotic cells was 13.76% ± 2.24 in untreated cells, 

13.98% ± 2.61 in the treatment for 16 hours with 1.7 μM of compound 

pyranoxanthone 2 and 28.67% ± 3.52 in the treatment for 24 hours with 1.7 μM of 

compound pyranoxanthone 2, demonstrating that the time of action of the drug would 

also be decisive to increase the number of apoptotic cells. 

Interestingly, when we tested nanomolar concentrations of pyranoxanthone 2 in co-

treatment with clinically relevant concentrations of paclitaxel, in a long-term colony 

formation assay, we found an enhancement of the anti-proliferative activity. This 

finding is probably due: (i) to the mitotic arrest induced by pyranoxanthone 2 

treatment which delays cell cycle progression giving time to paclitaxel in order to exert 

their its cytotoxic activity; and/or (ii) to a potentiation of chromosome segregation 

errors resulting from the additive effect of pyranoxanthone 2 and paclitaxel. Indeed, 
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both pyranoxanthone 2 and paclitaxel at nanomolar concentrations (<10 nM) promote 

missegregated chromosomes and aneuploidy (Zasadil et al., 2014).   

Importantly, enhancing chromosome missegregation and aneuploidy was previously 

reported as a possible strategy to sensitize cancer cells to paclitaxel and docetaxel 

(Janssen, Kops and Medema, 2011; Reck et al., 2014; Maia et al., 2015). 

Moreover, lowering the concentrations of both paclitaxel and pyranoxanthone 2 is 

expected to minimize cytotoxicity and side effects. Xanthone derivatives have also 

exhibited therapeutic potential in combinatorial therapeutic modalities. For instance, 

5,6-dimethylxanthone-4-acetic acid (DMXAA) exhibited either alone or in combination 

in vitro and in vivo anticancer activity in non-small cell lung cancer by the regulation of 

proteins involved in signaling pathways, such as cell cycle progression and apoptosis 

(Liu et al., 2017; Ribeiro et al., 2019). Although DMXAA alone did not show a striking 

anti-tumor activity in patients, pre-clinical results showed that a co-administration of 

DMXAA with other drugs has an increase in anti-tumor activity, through activation of 

immune system by TNF-α induction (Zhou, Yao and Joshi, 2002). In fact, co-treatment 

regimens constitute an appealing strategy to kill cancer cells more effectively than 

individual treatments, namely with chemotherapeutics (Henriques et al., 2019). 

 

 

 

 

 

 

 

 

 



95 
 

Chapter VI 

 

 

 

 

 

 

 Conclusion 
 

 

 

 

 

 

 

 

 

 

 

 



96 
 

Pyranoxanthone 2 synthesized from prior knowledge that xanthone derivatives work 

as a potent antitumor agent and appears as a potent antimitotic agent that can serve 

as a starting point for new candidates for anticancer drugs that act through 

microtubules causing stop in mitosis and consequently cell death. The mitotic arrest 

caused by pyraxanthone 2 demonstrates a critical role for SAC, as demonstrated in the 

results of the markings with the BUBR1 and MAD2 proteins. The proteins that make up 

the MCC are co-located in the coupled kinetochore when the SAC is active, and this 

characteristic was maintained constitutively after treatment with pyranoxanthone 2, 

leaving the SAC constantly active (Figure 24). It was also concluded that the stop in 

mitosis is a consequence of a change in the cellular phenotype related to the dynamics 

of the microtubules and the kinetochore-microtubule attachments that became 

unstable after the treatment, causing the non-attachment in certain points of the cells. 

The results showed a considerable increase in dead cells when treated with 

pyranoxanthone 2, because in the face of arrest in mitosis, and without being able to 

subvert this phenotype, the cells ended up going into apoptosis (Figure 24). Tests 

carried out to analyze the combinatorial action with low doses of paclitaxel 

demonstrated that the synergistic action between the drugs is positive, leading to an 

increase in cell death. In summary, the present data elucidate the mechanics 

underlying the xanthone derivative pyranoxanthone 2, identifying it as a potent 

antimitotic agent with promising potential as an anticancer drug, alone or in 

combinatorial regimens. Future studies are needed to further explore the anticancer 

potential of pyranoxanthone 2, elucidating, for example, the behavior in non-tumor 

cells. In vivo trials will also be able to deepen and bring new perspectives on how the 

drug behaves in a tumor environment and its adjacent mechanisms, in addition to 

supervising its toxicity in healthy tissues, adverse effects and resistance mechanisms. 
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Figure 24 Mechanism of action of PX2. Treatment with PX2 causes the cell arrest in mitosis due to a 

phenotype of misalignment of chromosomes in the mitotic spindle, which ends up leading to a 

constitutive activation of the SAC and preventing the advance of metaphase to anaphase. This 

prolonged stoppage of cells in mitosis ends up causing massive cell death due to apoptosis. 
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