
ARISTIDES FAUSTO ROSA MIGUEL

OTIMIZAÇÃO DA APLICAÇÃO COMERCIAL -
CONCEPT SPA & LEISURE

UNIVERSIDADE DO ALGARVE
Instituto Superior de Engenharia

2020

ARISTIDES FAUSTO ROSA MIGUEL

OTIMIZAÇÃO DA APLICAÇÃO COMERCIAL -
CONCEPT SPA & LEISURE

Mestrado em Engenharia Elétrica e Eletrónica
Especialidade em Tecnologias de Informação e Telecomunicações

Trabalho efetuado sob a orientação de:
Prof. Doutor Roberto Lam

Prof.ª Doutora Gabriela Schütz

UNIVERSIDADE DO ALGARVE
Instituto Superior de Engenharia

2020

OTIMIZAÇÃO DA APLICAÇÃO COMERCIAL -
CONCEPT SPA & LEISURE

Declaração de autoria de trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consul-
tados estão devidamente citados no texto e constam da listagem de referências incluída.

I hereby declare to be the author of this work, which is original and unpublished. Authors and
works consulted are properly cited in the text and included in the reference list.

(Aristides Fausto Rosa Miguel)

©2020, ARISTIDES FAUSTO ROSA MIGUEL

A Universidade do Algarve reserva para si o direito, em conformidade com o dis-
posto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e
publicar a obra, independentemente do meio utilizado, bem como de a divulgar através
de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente
educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito
ao autor e editor respetivos.

The University of the Algarve reserves the right, in accordance with the terms of the
Copyright and Related Rights Code, to file, reproduce and publish the work, regardless of the
methods used, as well as to publish it through scientific repositories and to allow it to be copied
and distributed for purely educational or research purposes and never for commercial purposes,
provided that due credit is given to the respective author and publisher.

iii

Abstract

The applications dedicated to the spa and leisure are in huge demand due to the

latter growth in developed countries. This type of application has been designed to

manage activities at hotels, health spas and leisure venues. Usually, appointments are

booked quickly and efficiently via a series of flexible grid control screens or through an

availability search, where the system automatically finds available times. This project

presents a solution to the problem of SPA & Leisure (SPA) application. Nowadays it

generates thousands of records daily, which leads to increase data on the database.

Currently, the application is facing a performance challenge due to the amount of data

involved in the booking process. The objective of the present work is to propose a

dedicated notification framework to optimize the SPA application. The main goal of this

framework model is to reduce traffic on the network between the client application and

database server. This would be achieved by using as much as possible data stored locally,

rather than requesting it from the database every time it is needed. The search engine

process is speeded up, keeping as many data as possible within the client application.

A message broadcast framework will be created to maintain local data synchronized

with the database. The main idea is to have a parallel system to keep watching data

changes on the database and as soon as data change, a message will be sent to processes

to inform that current data held is out-of-date and must be refreshed before use in the

client application.

In the meantime, the Message Broadcast Framework was implemented. The tests

v

performed and the analysis of their results, are presented in Chapter 5.

Keywords: Messages broadcast, Network, Optimization, Spa & leisure, Thread,

Cache.

vi

Resumo

As aplicações dedicadas ao spa e lazer estão em grande demanda devido ao crescimento

destes nos países desenvolvidos. Esse tipo de aplicação foi projetado para gerir ativida-

des em hotéis, spas e locais de lazer. Normalmente, os compromissos são agendados de

forma rápida e eficiente por meio de uma série de ecrãs com grelhas flexíveis ou por

meio de pesquisa de disponibilidade, na qual o sistema encontra automaticamente os

horários disponíveis. Este trabalho apresenta uma solução para o problema da aplicação

SPA & Leisure (SPA). Atualmente, a aplicação enfrenta um desafio de desempenho

devido à quantidade de dados envolvidos no processo de reserva. O objetivo deste

trabalho é propor uma forma de notificação dedicada para otimizar a aplicação SPA. O

principal objetivo deste modelo é reduzir o tráfego na rede entre a aplicação cliente e o

servidor da base de dados. Isto será obtido usando os dados armazenados localmente,

sempre que possível, em vez de solicitá-los à base de dados sempre que for necessário.

Uma estrutura de transmissão de mensagens será criada para manter os dados locais

sincronizados com a base de dados. O intuito é ter um sistema paralelo a observar

continuamente as mudanças de dados na base de dados e assim que forem alterados,

uma mensagem será enviada às aplicações para informar que os seus dados estão

desatualizados e devem ser atualizados antes de serem utilizados.

Entretanto, o sistema de mensagens foi implementado. Os testes efetuados e a

análise dos resultados são apresentados no capítulo 5.

Palavras chave: Difusão de mensagens, Rede, Otimização, “Spa e lazer”, Thread,

vii

Armazenamento local

viii

Ikaponomeha

Do the right thing,

be in the right place at the right time

and live the moment in the right way.

— Hawaiian Culture

ix

To my wife, my son

and my parents

x

Acknowledgments

The elaboration of this work was only possible due to the support I received from

several people and institutions that I would like to thank:

To my supervisors, Professor Doutor Roberto Lam and Professora Doutora Gabriela

Schütz, for their guidance, feedback, correctness and friendship.

To the Universidade do Algarve, for the monetary support through the UID/Mul-

ti/00631/2019 project of the Portuguese Science and Technology Foundation (FCT).

To Conceptek Information Systems S.A., for their consent to use their information

infrastructure to execute the technical part of this work.

To Shiji Group, for the monetary support through the full tuition payment of the

second year of the Master’s degree.

To all who contributed in some way to the accomplishment of this work: family,

colleagues, and friends.

Last but not least, I would like to thank my parents and, in particular, my wife and

son, for their love, support and patience.

Thank you!

xi

Contents

List of Tables . xvi

List of Figures . xviii

Glossary . xxi

Acronyms . xxv

Chapter 1 Introduction . 1
1.1 Motivation and scope . 1
1.2 Objectives . 2
1.3 State-of-the-art . 3

1.3.1 Data caching . 3
1.3.2 Broadcasting . 4
1.3.3 FirebirdSQL database notification approach 5
1.3.4 Conclusion . 6
1.3.5 Report structure . 6

Chapter 2 Current system and proposed solution 7
2.1 Overview . 7
2.2 Application structure . 10
2.3 Booking . 14

2.3.1 Active booking status . 14
2.3.2 Cancelled booking status . 15
2.3.3 On-Hold status . 16
2.3.4 Booking status transitions . 16

2.4 Search Engine . 17
2.4.1 Availability times . 18
2.4.2 Availability modes . 19
2.4.3 Availability calculation . 20

2.5 Online Search Engine . 24
2.6 Daily operations . 27

2.6.1 Manual booking process . 28
2.6.2 Creation of multi-bookings using the booking engine 28

2.7 Problem description . 28
2.8 Proposed solution . 31

xiii

CONTENTS

Chapter 3 Implementation Model . 35
3.1 Overview . 35
3.2 Communication flow . 38
3.3 Server Applications . 40
3.4 EventAlerter Application . 41

3.4.1 Memory Data Structures . 44
3.5 Logger Application . 48
3.6 Client Application . 50

3.6.1 Broadcast messages client support classes 55
3.6.2 Application UI workflow . 57
3.6.3 Client Identification . 58
3.6.4 Client Listeners . 59
3.6.5 Listeners in Action . 60

3.7 Messages . 65
3.7.1 Messages Encoding . 65
3.7.2 Messages Format . 66
3.7.3 RegisterMessages . 67
3.7.4 UnregisterMessages . 67
3.7.5 PostMessage . 68

3.8 Security . 68

Chapter 4 Application Integration . 69
4.1 Overview . 70
4.2 Architecture . 70
4.3 Implementation . 73
4.4 Integration . 75

4.4.1 Definition of cache class TStaffTimeList 77
4.4.2 Utilization of cache class TStaffTimeList 78

Chapter 5 Performance tests and results analysis 81
5.1 Overview . 81
5.2 Assumptions . 82
5.3 System Model . 82
5.4 Workload Model . 84
5.5 Profiling data . 86
5.6 Test Results . 87

5.6.1 Comparison between new and old systems 88
5.6.2 Comparison between weekly cache and daily cache 90
5.6.3 Weekly cache vs daily cache evolution over the week days 92
5.6.4 Results Analysis . 94

Chapter 6 Conclusions . 97
6.1 Publications . 99
6.2 Future Work . 99

Bibliography . 101

xiv

CONTENTS

Appendix A Results . 105
A.1 Batch 1 . 105

A.1.1 Daily results . 105
A.2 Batch 2 . 106

A.2.1 Weekly results . 106
A.2.2 Weekly results partition by test of the day 106
A.2.3 Daily results . 109

A.3 Batch 3 . 111
A.3.1 Weekly Results . 111
A.3.2 Daily results . 111

xv

List of Tables

5.1 Captured parameters . 86

A.1 Daily average results (old system) . 106
A.2 Daily average results (new system with daily cache) 106
A.3 Weekly average results (old system) . 106
A.4 Weekly average results (new system with daily cache) 106
A.5 Weekly average results of test No. 1 of the day (old system) 107
A.6 Weekly average results of test No. 1 of the day (new system with daily

cache) . 107
A.7 Weekly average results of test No. 2 of the day (old system) 107
A.8 Weekly average results of test No. 2 of the day (new system with daily

cache) . 107
A.9 Weekly average results of test No. 3 of the day (old system) 107
A.10 Weekly average results of test No. 3 of the day (new system with daily

cache) . 108
A.11 Weekly average results of test No. 4 of the day (old system) 108
A.12 Weekly average results of test No. 4 of the day (new system with daily

cache) . 108
A.13 Weekly average results of test No. 5 of the day (old system) 108
A.14 Weekly average results of test No. 5 of the day (new system with daily

cache) . 108
A.15 Average results of Monday (old system) 109
A.16 Average results of Monday (new system with daily cache) 109
A.17 Average results of Tuesday (old system) 109
A.18 Average results of Tuesday (new system with daily cache) 109
A.19 Average results of Wednesday (old system) 109
A.20 Average results of Wednesday (new system with daily cache) 110
A.21 Average results of Thursday (old system) 110
A.22 Average results of Thursday (new system with daily cache) 110
A.23 Average results of Friday (old system) . 110
A.24 Average results of Friday (new system with daily cache) 110
A.25 Weekly average results (new system using weekly cache) 111
A.26 Average results of Monday (new system using weekly cache) 111
A.27 Average results of Tuesday (new system using weekly cache) 111
A.28 Average results of Wednesday (new system using weekly cache) 111
A.29 Average results of Thursday (new system using weekly cache) 112
A.30 Average results of Friday (new system using weekly cache) 112

xvii

List of Figures

2.1 Booking status: on the left, active status; on the right cancelled status. . . 14
2.2 Booking status transition. 17
2.3 Availability calculation categories. 18
2.4 Availability search methods. 21
2.5 Availability workflow. 23
2.6 Online booking process overview. 26
2.7 Top 10 day bookings. 29
2.8 Oracle TNS ping utility communication test results. 30
2.9 Network structure with the proposed Broadcast Message Server. 31
2.10 Cache implementation. 32

3.1 Message framework architecture. 37
3.2 Communication between client and server. 39
3.3 Communication between client, server and logger. 40
3.4 Server applications with internal components. 41
3.5 Message Server control structures. 47
3.6 Logger process workflow. 49
3.7 Client Application (SPA & Leisure), interaction of a workstation with

database server and Message Server. 50
3.8 Overview of interaction of Event Alerter Server application (EAS) and

Client components. 51
3.9 Messages flow between client components and server. 53
3.10 Client classes overview. 55
3.11 Client application messages workflow. 58
3.12 Application identification. 59
3.13 Client listeners within SPA and Point of Sale (POS) applications. 61

4.1 The cached data integration model used in the search engine, with cache
classes showing the type of information they keep in local memory. . . . 71

4.2 Integration class templates hierarchy. 72
4.3 Example of class for storing data in memory. 73
4.4 Data management within a cache class. 74
4.5 Example of the staff timetable classes used on integration. 78
4.6 Example of staff timetable availability algorithm. 79

5.1 Tests architecture model. 84
5.2 Average of the payload algorithm. 87
5.3 Average gain of new system with daily cache over the old system Batch 2. 89
5.4 Average gain of the new system with daily cache over the old system. . 90

xix

LIST OF FIGURES

5.5 Average gain of weekly cache over daily cache. 91
5.6 Average gain of weekly cache over daily cache break down by day. . . . 92
5.7 Evolution of TotalTime parameter over the week. 93
5.8 Evolution of Cached parameter over the week. 94
5.9 Evolution of MemSize results over a week. 94

xx

Glossary

Activity In the spa industry the term “activity”, “treatment” refers to services provided

by the hotel or spa business.

Application In this document, the terms, application, application program or simply

program are treated as synonymous. An application is a collection of bytes

representing code and data which are stored in a file (Glass, 1993, p. 6). When an

application is running, it is called a process (Stallings, 2018, p. 132).

Booking A Booking refers to an activity appointment. Abraham Pizam (2005, p. 540),

calls reservations for bookings made in advance (from a few hours to several

months). However, both terms can be used. A booking contains the following

(mandatory) information: the place (complex), date, time, staff, location (room),

and customer. It can often contain extras (resources), like products, equipment,

and hired items.

Business Rules These are statements (or conditions) that tell a person whether they can

perform a specific action that relates to how the business operates (Walsh, 2020).

The application software working in this area facilitates the business operations

and also controls business functions in real-time (Pressman, 2009, p. 7) (e.g., SPA

appointment scheduling, POS transaction processing).

Complex In the spa industry, the term “complex” refers to the places where spa treat-

ments or any other type of activities are executed. For example, it can be a building,

xxi

Glossary

an open space, a set of massage rooms, fitness centres, tennis courts among others.

Data Encapsulation Data encapsulation refers to sending data where the data is aug-

mented with successive layers of control information before transmission across a

network. The reverse of data encapsulation is decapsulation, which refers to the

successive layers of data being removed (essentially unwrapped) at the receiving

end of a network. When a network device sends a message, the message will take

the form of a packet. Each OSI (open system interconnection) model layer adds a

header to the packet. The packet is then covered with some information directing

it onward to a destination; this is analogous to the address on a letter in which the

actual message is carried inside the envelope. Similarly, the message in the packet

is encapsulated with some information such as the address of next node, protocol

information, the type of data and the source and destination addresses.

Event The term “event” in the network context usually refers to the message sent

over the network. However, “event” and “message” can be used interchangeably

because, in this context, both refer to a message.

Message See Event.

Operator The term “Operator” is used to designate the person responsible for opera-

tions related to handling of activity appointments using a computer program.

Outlier An outlier is an observation or measurement which seems to be different from

other values contained in a given dataset.

Overbooking The concept of overbooking—accepting more reservations than the avail-

able capacity (Bardi, 2002, p. 137).

Polling Polling in computer science, among others, refers to an operation that actively

checks the status of an input/output (I/O) operation.

xxii

Glossary

Process The name Process is vague and can have different meanings depending on the

context where it is being used. Stallings (2018, ch. 5) suggests several definitions

for “process”, including:

• A program in execution.

• An instance of a program running on a computer.

• The entity that can be assigned to and executed on a processor.

• A unit of activity characterized by the execution of a sequence of instructions,

a current state, and an associated set of system resources.

In software engineering, the term “process” is also used to describe application

data flow. A process is a task that changes data and produces an output. It might

perform computations, sort data based on logic, or direct the data flow based on

business rules (Lucid Software Inc., 2019, sec. Symbols and Notations Used in

DFDs).

Property In Hospitality terms, “property” refers to the place where services are offered,

e.g., building, hotel, resort. In a programming language, it refers to a variable of a

structure or a class.

Reservation See Booking.

Template In C++, the template implements the concept of a parameterized type. In-

stead of reusing object code, as with inheritance and composition, a template

reuses source code. When a template is used, the parameter is substituted by the

compiler (Eckel, 2000, p. 731). Templates are functions or classes that are written

for one or more types not yet specified.

Time slot The term “time slot” refers to the time interval configured for a complex in

the application. It specifies the interval of time to accommodate a reservation. As

an example, if a complex has a “time slot” of 15 min, it stands that a reservation

must start at intervals of 15 min starting from the complex opening time.

xxiii

Glossary

Transaction As per Silberschatz et al. (2006), transaction is a collection of operations

that performs a single logical function in a database application.

xxiv

Acronyms

ACID Atomicity Consistency Isolation Durability

AES Advanced Encryption Algorithm

ANSI American National Standards Institute

API Application Programming Interface

CPU Central Processing Unit

CSV Comma Separated Values

EACAPI Event Alert Client API

EAS Event Alerter Server application

EDS Embarcadero RAD Studio

EI Event Inspector application

FCFS First come, First served

FIFO First-in-First-out

GDPR General Data Protection Regulation

GUI Graphical User Interface

xxv

Acronyms

GUID Globally Unique Identifier

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IM Instant Messaging

ISO International Standards Organization

JSON Javascript Object Notation

LAN Local Area Network

LOG Logger application

MBDM messaging-based data management

MBF Message Broadcast Framework

MBN Message Broadcast Network

MBS Message Server

OSI Open System Interconnection

PCI Payment Card Industry

PCI DSS PCI Data Security Standard

POD Plain Old Data

POS Point of Sale

RAD Rapid Application Development tool

RDBMS Relational Database Management System

SDF System Data Format

xxvi

Acronyms

SOAP Simple Object Access Protocol

SP Script-parser application

SPA SPA & Leisure

SQL Structured Query Language

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol over Internet Protocol

UDDI Universal Description, Discovery and Integration

VCL Visual Component Library

WINAPI Windows Application Programming Interface

XML Extensible Markup Language

xxvii

We are what we repeatedly

do. Excellence, therefore, is

not an act but a habit.

Aristotle, (384 BC – 322 BC)

1
Introduction

1.1 Motivation and scope

The spa and leisure industry has a considerable impact on the world economy. It is

the main economic engine for many countries. For example, the revenue in the South

African spa industry has more than tripled since 2008 according to Spa Business Hand-

book (2015, p. 70). The growth of tourism combined with the constant development of

technology, promoted the creation of tools and applications to respond to the growing

needs of the sector.

One of the market applications dedicated to the spa and leisure is the SPA & Leisure

(SPA) application. Being developed for about twenty years, and installed in more than

60 countries around the world (Shiji Group, 2020), SPA is an application that has been

1

1.2. OBJECTIVES

designed to manage activities at hotels, health spas and leisure venues.

Appointments are booked quickly and efficiently via a series of flexible grid control

screens or through an availability search, where the system automatically finds available

times. The system controls an unlimited number of services that are linked to their

associated resources such as locations, equipment or employees (staff). Due to the

program’s flexibility and booking controls, reservations can be made for a wide range of

diverse activities, either for one person or for groups. Activities include spa treatments,

massages, tennis and padel court rental, tour bus rental, scheduled activities (e.g.,

master cook classes, gym classes, karate classes), and many others (Conceptek, 2019) .

SPA application generates thousands of records daily, which leads to an increase of

data on the database. Currently, the application is facing a performance challenge due

to the amount of data involved in the booking process. This project has the purpose to

give the best user experience, independently of the amount of data involved, through

optimization of the application.

1.2 Objectives

The objective of the present work is to create a dedicated notification framework to

integrate with the SPA application. The main goal of this system is to reduce communi-

cation between the application and database server. This would be achieved by using

as much as possible data stored locally, in place of gathering it from the database every

time it is needed.

It is expected that this framework would take an important role in the optimization

of the application. To accomplish this, the project will consist of the following phases:

• Implementation of the notification framework.

• Definition of messages structure.

• Integration with the application.

• Performance tests and analysis of results.

2

1.3. STATE-OF-THE-ART

The messaging system will be integrated into the reservation creation process, con-

cretely in the search engine component. We opted to start with the search engine

operation because: (a) the search operation involves a significant number of queries

submitted to the database in a short period of time, (b) with some of them getting the

same data with low change frequency, and (c) the storage of data in local memory from

the different queries can share the same storage mechanism.

1.3 State-of-the-art

Distributed applications connected to a database system implies data exchange over a

network. The quantity of data transmitted depends on the type of system. There are

systems where clients store a full copy of data locally, and others, where clients store

only a subset of the data.

Two types of client-server architectures can be distinguished: “fat servers” and “fat

clients”. In the architecture with fat servers, the logic is implemented in the server, hence

clients send requests to the server and the server provides the results. With powerful

workstations as we have today, the architecture with fat clients has gained popularity.

In this architecture, clients can cache necessary objects and perform intensive data

processing, distributing the computation between the system components (Bukhari,

2012).

1.3.1 Data caching

Data caching in a buffer is a technique used in database systems to reduce disk latency,

by storing objects in easily accessible storage at client-side (if there is sufficient storage

available), so eventually, system response time is improved because objects do not have

to be retrieved from the original source (Bukhari, 2012), (Silberschatz et al., 2006, p. 790).

In mobile environments where connectivity is not always guaranteed, keeping data

cached locally permits applications to keep working in offline mode. However, this

situation creates problems related to data recoverability and with consistency. The

3

1.3. STATE-OF-THE-ART

former refers to the loss of data and the latter to stale data. There are some techniques

to solve these problems when mobile hosts reconnect. For example, propagation of

the local updates or broadcast of invalidation reports informing of out-of-date entries.

However, these solutions have also issues like miss of invalidation reports, leading to

loss of consistency (Silberschatz et al., 2006, p. 926). Our framework is not designed

to operate in disconnected mode, therefore such limitations do not apply. But as a

consequence, if the client-server connection is broken, non-committed transactions will

be lost, meaning that user operations started but not completed will be aborted.

Bukhari (2012) in his thesis refers to three options existing in the literature about

caching consistency: invalidation, propagation, and mix of the two options. Cache

invalidation is the process to remove out-of-date local copies of objects (records) as a

result of persistent changes in the database. To achieve consistency, the commit of the

update transaction has to be delayed until all client caches have been invalidated. Only

when the client application wishes to access an object that has been removed, it must

request a copy from the database. In contrast, cache propagation relies on the replacement

of the out-of-date copy with a fresh one from the database, soon the updates have been

committed at the database server.

Our proposed model uses cache invalidation technique to keep cached objects up to

date. Moreover, it is the issuer of the commit of the updates (client application) that

initiates notification process. Other clients are notified after the commit of the updates

has been completed.

1.3.2 Broadcasting

Local cached objects must be synchronized between clients and server otherwise, data

will be out of sync, resulting in inconsistency issues. One of the techniques to address

cache coherency, is broadcasting (Silberschatz et al., 2006, pp. 925-926).

Broadcasting is a mechanism to keep local data synchronized between clients and the

server(s), by propagating notifications about data that have changed. Those notifications

can be sent directly by the server or by clients. In the first case, the server sends a

4

1.3. STATE-OF-THE-ART

notification to clients after the updates have been committed (Bukhari, 2012). In the

second case, the client sends a notification after updates have been committed. In our

model, the Message Broadcast Framework acts as an auxiliary system to maintain the

information on clients up to date. Therefore, the server is used for synchronization

messages delivery only. Moreover, the server knows nothing about the composition of

objects transmitted and cached by client applications.

1.3.3 FirebirdSQL database notification approach

The FirebirdSQL open-source database (FirebirdSQL, 2019), implements a broadcast

system, known as “Firebird Events”, directly in its core engine. Those events are simple

notification messages sent asynchronously by the database server to clients, through

a secondary channel. This approach allows clients to complete normal tasks while

waiting for notifications. The FirebirdSQL incorporates an Event Manager running

in background, to broadcast notification events to the applications connected to the

database server (Babuškov, 2005).

The main advantage of the FirebirdSQL events, resides on the fact that messages are

sent directly by the database server, in response to a write operation on the database.

Clients are immediately notified about changes, soon the transaction is committed.

However, it has some drawbacks to work as a solution for our problem. First, it works

only for clients connected to the FirebirdSQL database engine, thus not applicable

for clients using another database systems, for example, Oracle, and MSSQL. Second,

event notifications cannot carry other information than the event name and a useless

counter1, forcing clients to adopt the “polling” method to identify which records have

been updated in the database.

1The counter contains the number of post-event method calls (for each type of event) in the context of
a transaction. At transaction commit time, only one notification is sent per event type.

5

1.3. STATE-OF-THE-ART

1.3.4 Conclusion

There are many books and papers written about caching objects in client-server database

systems. Even so, the existing models have too much complexity, not necessary to

integrate into our application. In most of the available models, the server is an active

component in the system. It not only keeps the objects cached in memory but also is

responsible to enforce their consistency.

In our proposed model, the server acts as a simple message delivery system. Soon

all clients have been notified upon a received request, the server removes the request

data from memory. The integrity of data is guaranteed by the database server and by

the application, being accepted that some transactions may fail due to stale data on

client at transaction commit time.

The ultimate goal of our framework is to broadcast a subset of data sufficient for

clients to identify which objects need to be updated before next used. We believe that

our model is the right solution for improving SPA & Leisure application performance.

1.3.5 Report structure

This report comprises six chapters. The present one introduced the theme and a brief

state-of-the-art about existing related work.

The goal of this work is defined in Chapter 2, where we also describe the current

system architecture.

In Chapter 3 we present our proposed scheme. We describe the new system architec-

ture and the framework to be created.

The integration of the proposed framework in the client application is described

in Chapter 4. We explain the classes created and necessary changes to made in the

application to integrate the framework.

The performance tests model and results of the proposed architecture are described

in Chapter 5.

In Chapter 6, the final chapter is where the main conclusions are done. We conclude

with the future work to be carried on.

6

He who does not know how

to look back at where he came

from will never get to his des-

tination.

Rizal, José

2
Current system and proposed solution

This chapter introduces the theme of the present work. We describe the current system

architecture and detail some of the functionalities of the SPA application. Then we

explain with some detail how the search engine component operates. Finally, we

describe the existing problem we want to address and the proposed solution.

2.1 Overview

The SPA package is part of a suite containing several desktop applications focused on

tourism and leisure business, particularly in golf and spa areas. These applications run

on Windows environments. They were designed to work with several database systems

such as Oracle, MSSQL, Interbase/Firebird, and Informix.

The SPA package is composed of two applications: the first one is the SPA Graphical

7

2.1. OVERVIEW

User Interface (GUI) Windows desktop application and the second one is the SPA

Windows service application (Microsoft, 2019a). From here, we will use the term “SPA

service” to refer to the service application. Both applications are built on a client-server

database system architecture, i.e., some tasks are performed at the client-side and some

tasks are executed at the server-side (Silberschatz et al., 2006, p. 783). This architecture is

also known as two-tier architecture where end-user application communicates directly

with the server, i.e., there is no intermediate between client and server (Stallings, 2018,

sec. 18-9). The SPA (GUI) application implements a two-tier architecture. On the other

hand, the SPA service provides a three-tier or multi-tier architecture. The multi-tier

architecture consists typically in three layers as follows: client layer, business layer,

and data layer. The client layer contains the user interface part of the application; the

business layer contains all the business logic like the validation of data, calculations,

data insertion, etc.; the data layer is where the database comes into the picture (Stallings,

2018, sec. 18-9). The SPA service works on the business layer.

Most often, the application runs on a Local Area Network (LAN). Some installa-

tions contain only a few workstations and others may contain several hundreds of

workstations, running one or more instances of the applications, accessing the database

simultaneously. Furthermore, the SPA service adds another level of complexity because

it is called from an HTTP Web service, all over the world, increasing the number of

active connections to the database. For these reasons, the service application has strong

rules to keep the active connections to the database as low as possible by using a pool

of active connections. The active connection pool allows to conserve system resources

and improve performance due to the reuse of inactive connection slots whenever a new

connection is required by the HTTP Web Service call. The communication between

the HTTP Web service and clients, usual Web Browsers, uses SOAP format to transfer

messages. In contrast, the communication between the HTTP Web Service and SPA

service uses an internal message protocol over TCP/IP.

The concurrency control (see Silberschatz et al., 2006, p. 635), i.e., the rules governing

the parallel access to data, is performed by the database and by the application. The

8

2.1. OVERVIEW

database guarantees transaction isolation and lock control. The application implements

the business logic lock control using a central table for lock purposes. This table can be

seen as a database temporary memory table holding the necessary information about

running application instances connected to the database to prevent overbooking (Bardi,

2002, p. 137). For example, when scheduling a massage, the lock table is inquired to

check if some other application instance has locked the room for the same time. The

shared resources include staff, location, equipment, etc. Who first locks the resources,

gains control over them, which means First-in-First-out (FIFO).There are no other

policies that define priorities in the booking process. This mechanism is simple but

efficient to control the sharing of the resources available.

The SPA package applications can be deployed using three different methods. The

installation model depends greatly on the site’s business model:

• Installed on a client workstation. The application is installed in all workstations

that require a connection to the database. It has the advantage of spreading the

processing through workstations instead of concentrating on an application server.

On the other hand, it has the disadvantage of requiring workstations to have

some processing power (which is no longer a problem in current days). Moreover,

it requires installation and configuration of the application for all workstations.

However, further updates do not require manual interaction due to the built-in

update system.

• Installed on application server. The application is installed on a server computer

(or more) running a GoGlobal or Citrix virtualization solutions (Beasley & Nilkaew,

2015, chap. 13). The application is then accessed using a Web Browser or a

native tiny client. The biggest advantage is the availability of the application

through a central point. Instead of the individual installation on each workstation,

the application is accessed using a small specific client application or a Web

Browser. Consequently, client machines do not need to be robust. Furthermore, the

installation and initial setup time decrease considerably. However, if the network

bandwidth is not adequate, delays may occur while running the application.

9

2.2. APPLICATION STRUCTURE

• Installed as service application. The application is installed on a server computer

as a service. It is accessed indirectly through a Web Browser using the HTTP Web

services provided. Normally it is integrated with a Website provided by the client

(business place), which is developed by a third party company. The intention

is to offer customers a search and booking service from the World Wide Web.

The main advantage of this type of distribution is that it provides customers

with on-site services using the latest technologies, not only as a way of attracting

new customers but also ensuring greater comfort for existing customers. The

disadvantages include the cost of the infrastructure, which needs to be designed

to support higher traffic, and the rigorous management of the online services

provided.

2.2 Application structure

The SPA & Leisure application principal purpose is to provide an electronic appointment

agenda to manage a spa business. The application is divided into two main client

business operations areas:

• Back office. The configuration is an essential part for the daily operations of the

business place. Resources and rules are defined based on site business rules.

• Front office. Operators spent most of the daily time managing appointments. This

includes the creation, rescheduling, cancellation, check-in, check-out of appoint-

ments and many other operations related to bookings.

The resources included in the application are listed below:

• Complexes, are those places of a site having bookings.

• Staff, are the people performing activities.

• Locations, are the places where activities take place.

10

2.2. APPLICATION STRUCTURE

• Activity groups, arrange similar activities in groups.

• Activity subgroups, serve to organize similar activities in subgroups.

• Activities, are the activities available for clients to book. They can be spa treatments

or any other kind of activity. For example massage, manicure, pedicure, yoga

class, fitness class, and country sports.

• Equipment, corresponds to the equipment that may be required in the activity. It

can be a spinning bike, stones, and weight bars.

• Products, are optional items used in the activity. For example, massage oil, epila-

tion wax, and gloves.

• Hired items, are optional items that are hired to be used in the activity. Towel,

exercise ball, and tennis racquet are some examples of hired items.

Main activity booking rules (restrictions):

• Activity price table, defines the price over a period for a specific set of config-

urations (activity group, activity subgroup, activity, client type, client sub-type,

etc.).

• Guest from, defines the rules for a client member to book activities for a guest

over a period.

• SMS configuration, defines the text layout of communications via SMS and the

rules to notify clients.

• Activity restrictions, specify which activities can be done by a client on a period.

Usually, they refer to activities that cannot be performed in sequence (one after

the other).

• Online restrictions, specifies which resources are available for online bookings

and the rules to control operation.

11

2.2. APPLICATION STRUCTURE

• Online activity restrictions, specifies which activities can be booked over a period.

• Online staff restrictions, specifies which staff is available over a period.

• Online location restrictions, defines locations availability over a period.

• Turnaround, defines bookings gap to allow preparation and cleaning operations,

before and after the booking takes place. Turnarounds are very important for daily

operations because they simplify the creation of appointments by Operators as the

system automatically inserts blocks on the agenda for the turnaround operations.

The activities are classified into three types: (a) Standard activities, are activities

assigned to staff or a location but not to both, (b) Multilevel activities, are assigned to

staff and locations and (c) Scheduled activities are activities scheduled over a period.

These type of activities can be assigned to staff and locations simultaneously, although

many activities have only staff or location.

The booking types are divided in:

• Single bookings. A customer having a single activity at a time.

• Add-in bookings. A customer having two or more simultaneous activities per-

formed by the same therapist (staff).

• Concurrent bookings. A customer having two or more simultaneous activities

performed by distinct therapists (staff).

• Package bookings. A package booking consists of several activities for one cus-

tomer. This type of reservation has the particularity of having a sale price different

from the sum of individual activities. Usually, used for multi-session treatments

distributed along the day or week or to promote activities over a season.

• Classes. A class booking is the reservation of a scheduled activity. Abraham Pizam

(2005, p. 79) refers to some typical activity classes like fitness centres, exercise

classes, tennis, squash, racquet-ball, swimming pool, massage services, ice-skating,

etc.

12

2.2. APPLICATION STRUCTURE

• Multi-bookings. Multi-bookings refer to a group of bookings with mixed activities.

They can be composed of any of the previous booking types and are suitable

for the management of large groups of clients having various activities. Multi-

bookings are very suitable for company events, conventions, meetings, special

events (weddings, parties, etc.), tours and many others (Abraham Pizam, 2005,

p. 291). Typically, these reservations require preparation in advance to organize

the necessary resources (staff, locations, equipment, products, etc.) to ensure their

availability. Operators can specify a subset of staff, locations, equipment, hired

items, and other resources and assign them to the group. Also, the partial activity

payment functionally implemented in the SPA application, which provides several

options to handle mass group payments, simplifies considerably the check-out

process.

Application main dashboards:

• Agenda: shows the list of bookings of the day or week for a set of resources. It has

the following view modes: By staff, shows the list of staff in the grid columns; By

location, shows the list of locations in the grid columns; and last, 7-Day view which

shows the staff weekly schedule.

• Bookings List: shows bookings list using a grid similar to a spreadsheet.

• Classes: shows the scheduled activities with their participants.

Agenda dashboard is composed of:

• Resource, filters to limit what resources (staff, locations, activities, etc.) should be

visible on screen.

• Calendar, to select the date to display bookings.

• Quick view panel shows booking summary information about the selected day’s

calendar, staff, and location.

13

2.3. BOOKING

• Agenda, depending on view mode, it shows the reservations of the day or week

selected in the calendar.

2.3 Booking

The booking process consists of creating one or more activity reservations (bookings)

using the facilities provided by the SPA application. A booking is identified by the

place (complex), date, time, staff, location (room), customer, and a status. Bookings

go through various statuses during their life cycle, which is divided into two sets,

see Figure 2.1. The first set contains the active bookings, while the second contains the

cancelled bookings.

Figure 2.1: Booking status: on the left, active status; on the right cancelled status.

2.3.1 Active booking status

Each active booking status has a specific purpose, according to the business rules, and

are subdivided into the following types:

• Reserved. This is the first status of newly created booking. Most of the times,

no payment is required at this stage, but depending on the operations in place, a

prepayment may be required to hold the reservation.

• Confirmed. This status is optional. Some business places use the confirmed status

as part of their business flow; others use it depending on the activity or type of

customer (members, guests, visitors, and others); while others do not use it at all.

14

2.3. BOOKING

• Checked-In. When the customer arrives at the place, it makes the check-in before

having his activity. Usually, the length of time of the check-in status is associated

with the duration of the activity.

• Checked-Out. After the customer has completed its activity, the operator checks-

out the activity and the customer makes the payment. The amount to be paid

by the customer is the difference between the activity sale price and the pre-paid

amount (if any), as well as any discounts attributed. The check-out is the final

status for an active booking.

2.3.2 Cancelled booking status

On the other hand, cancelled bookings have no distinct business operations except for

the cancellation fees that may apply based on cancellation rules. The cancellations are

subdivided into the following types:

• Error. It is a generic error but generally is used when the reservation is can-

celled due to unusual circumstances. For example, bad weather, staff unavailable,

location (room) out of service or in maintenance, staff sick, or system failure

(application, database, network, and others).

• Client Request. The cancellation was requested by the client. There may be a

payment penalty due to cancellation according to the cancellation rules in place.

Generally, the amount to be paid depends on how early the reservation is cancelled.

Late cancellations, highest amount to be paid.

• Management Request. The cancellation was dictated by the management. De-

pending on the circumstances, the activity may be rescheduled for another date. It

is also generally common practice to offer a free activity session to the customer to

overcome any inconvenience caused by the cancellation.

• No Show. The customer did not appear at the appointment time. Customer. may

be charged for the cancellation, according to cancellation rules in place, like as for

15

2.3. BOOKING

the Client Request cancellation.

2.3.3 On-Hold status

The On-Hold status is a special case. It can be considered part of the active status or

part of the cancelled status, depending on the operations being performed. An on-hold

booking is a reservation that has not been completed, but instead of being cancelled,

it has been placed on hold, to be resumed and completed later. The bookings on-hold

prevent other reservations from being created at the same time for the same staff or the

same location.

2.3.4 Booking status transitions

Figure 2.2 shows the state diagram of a booking. The thick blue arrows show the most

common transition status of a reservation from its creation to its completion at check-out.

The narrow blue dashed arrows show the alternate path that is also common in some

business places. Finally, the red dotted arrows indicate the other possible paths that

reservations can take.

To close the reservation, SPA calls the Point of Sale (POS) application to proceed

with the payment. Upon completion of payment, the POS sets the final status of the

reservation to Checked-Out.

16

2.4. SEARCH ENGINE

Figure 2.2: Booking status transition.

2.4 Search Engine

The purpose of the search engine is to (a) Provide facilities to help the operator to

satisfy customer requests using processes well defined; (b) Find activity availability

times distributing them fairly by staff and (c) Reduce operator interaction during the

availability search process.

The search engine is used in many areas of the application including the booking

creation and modification forms; agenda functionalities like cut & paste, drag & drop,

change date & time, change staff or location. The search engine can handle multiple

activities in the same session, which can be assigned to one or more customers. Activities

can be individual (unrelated) or grouped (related) such as add-in, concurrent, and

package bookings.

17

2.4. SEARCH ENGINE

2.4.1 Availability times

To create a reservation, a set of validations must be executed to obtain the necessary

data to initiate the booking process. The availability calculation will determine the

reservation time, staff and location that can be assigned.

A reservation is identified in the SPA application by the mandatory attributes ac-

tivity, date, start time, duration, and client; and the optional attributes staff, location,

equipment, products and hire items. An availability time is essentially a time available

to make a reservation. We define an availability time, the attributes activity, date, start

time, staff and location, that together are available for the reservation to take place. The

availability of each attribute is obtained according to the business rules defined in the

system. For an example of availability time, we may have: activity “Acupuncture”, on

“20-April-2019” starting at “10 AM” and ending at “11 AM”, executed by staff “John

Smith” in location “Room 1”. For each activity (reservation), the search engine calcu-

lates various availability times, providing several options for making the reservation,

allowing the customer to choose the best option that suits best for him.

The calculation of the availability of the attributes is grouped into four groups:

activity, staff, location, and client. Each group contains a specific set of validations and

restrictions performed sequentially. Figure 2.3 shows the categories of validations and

restrictions that the search engine uses to find availability times.

Figure 2.3: Availability calculation categories.

• Activity availability refers to the validation of data related to activities, for exam-

ple, complex opening and closing time, activity season, and activity reservation

order.

• Staff availability consists in validation of the staff. One of the most important

18

2.4. SEARCH ENGINE

conditions related to staff, is the staff timetable, not only because an activity cannot

be booked to an absent staff, but also because it has impact on the performance

due to the fact it has to be verified constantly.

• Location availability accomplish the validations related to locations. For exam-

ple, the maximum location capacity, current location availability.

• Customer availability contains the customer validations. These validations in-

cludes, for example, multiple activities sequence order, simultaneous reservations.

2.4.2 Availability modes

The search for availability can be Passive Search or Active Search. The use of one or other

depends on the operation context. The Passive Search mode is suitable when the operator

wants a list of possible availability times combinations, while Active Search auto-locks

the activity with the first availability time found.

• Passive Search. The operation consists of searching for a specified number of

possible availability times for each activity. No blocking is done during the search,

therefore the same availability time can be suggested for more than one activity.

The operation is executed for all activities and is restarted when the operator

selects an availability time from the previous search operation. In the subsequent

searches, the previous availability times blocked are no longer presented in the

results. This mode is useful when the intention is to obtain all possible availability

times for all activities in one run. Figure 2.4a shows the algorithm used to calculate

the availability times. The search always starts from the initial conditions intro-

duced by the operator. Then, the algorithm tries to find available times adding

them to the list of results. After all the activities have been processed, the operator

selects one activity and chooses one availability time to block; then, the search

process starts again for all unlocked activities.

• Active Search. The operation consists of searching and blocking the first avail-

ability time found for each activity without operator intervention. The process is

19

2.4. SEARCH ENGINE

performed for all activities using the following algorithm shown in Figure 2.4b:

(1) select the first unlocked activity; (2) find the first availability time; (3) block the

activity with the availability time found; (4) repeat steps (1), (2) and (3) until there

are no more unlocked activities.

The search and lock process is interrupted when the algorithm is unable to find

any availability time. All activities are blocked in one run (in contrast to Passive

Search, in which the operator manually chooses the availability time to block). De-

spite this, the user can still change the availability time suggested, by instructing

the application to return a list of availability times.

Looking at the two algorithms from Figure 2.4, we can see that they are very similar.

In fact, the base algorithm is the same, but with the difference that the first one returns

the possible availability times for all activities (to be blocked manually by the operator),

while the second blocks all activities (in sequence) with the first availability time found

(for each one).

To summarize, the booking process using Passive Search mode is slower, allowing

the operator to choose the most suitable availability times for the customer, whiles the

booking process using Active Search is faster, allowing the system to choose the most

suitable availability times to optimize the schedule of staff members.

2.4.3 Availability calculation

The search engine searches for availability times, checking the conditions and restric-

tions which are grouped by activity, staff, location and customer. There are two methods

to assign customer to activities. On the first method, the customer is added at the

beginning of the booking process, when the operator is preparing the initial search

conditions, before availability calculation. On the second method, the customer is

added at the end of the search process, after availability calculation. The method chosen

affects how the availability calculation is performed. Thus, if the customer is added at

the beginning, the availability calculation will take into account the validations of the

customer’s group. If, on the other hand, the customer is assigned after the availability

20

2.4. SEARCH ENGINE

(a) Passive Search (b) Active Search

Figure 2.4: Availability search methods.

calculation, the customer’s validations may result in a conflict, thereby invalidating the

previously chosen availability time (e.g., a customer may already have another activity

21

2.4. SEARCH ENGINE

at the same time or have other activities whose defined rules do not allow its execution).

The sequence of the validations remains unchanged, whatever the method used to add

the customer to the activity, that is, activity→ staff→ location→ customer.

Figure 2.5 shows the algorithm used by the search engine to obtain availability times.

From the initial preferences, the search process starts by checking the conditions and

restrictions of the activity (see Figure 2.5a). If all validations were successful, the process

will move to the validation of the staff’s conditions and restrictions. The list of staff who

performs the activity is obtained and sorted according to the activity rules defined in

the system. Staff are checked one by one until the first one that meets the conditions

necessary to execute the activity (see Figure 2.5b). In case of success, the process moves

to the validations of the location. Like the staff, the locations assigned to the activity

are obtained and sorted according to the rules defined in the system. The locations

are checked one by one until one of them meets the conditions necessary to receive

the activity (see Figure 2.5c). The last step is to validate the customer’s conditions and

restrictions (see Figure 2.5d). If a customer has not yet been added to the activity, these

validations will be postponed, otherwise, they will affect the calculation of availability

time.

If all the previous validations were successful, the selected time, staff and location

correspond to the availability time to be added to the activity results. Now there are two

possible situations: (a) with Passive Search operation, before moving to the next activity,

the search process repeats until it reaches the desired number of results per activity; (b)

with Active Search operation, the activity is locked with the availability time found.

To contribute to a fair distribution of activities by staff members, the search process

attempts to equitably assign activities, taking into consideration their specific experience,

the number of activities they have and how many points they have gained on the day.

For each activity assigned, staff gains a number of points configured for the activity.

This sort method is known in the SPA application as “staff rotation”.

22

2.4. SEARCH ENGINE

(a)

(b)

(c)
(d)

Figure 2.5: Availability workflow.
23

2.5. ONLINE SEARCH ENGINE

2.5 Online Search Engine

The proliferation of the Internet and the revolution of technologies have introduced

a wide range of new marketing tools. The Internet allowed hotels to develop their

websites to facilitate online bookings. Hotel chains receive a significant percentage

of their reservations through their websites, free of commissions and other charges,

reducing their distribution costs significantly by expanding their e-commerce (Abraham

Pizam, 2005, p. 338).

The function of the Online Search Engine is to serve HTTP Web services requesting

availability times. Figure 2.6 shows the typical sequence for an online booking using

the SPA Service. As per the figure, we can see that there are four layers: Client Browser;

Web Applications Server; SPA Service and Database Server. Each layer only interacts with

the adjacent layer. The Booking Server plays the most important role in the booking

process containing the rules which control the reservation process. The Booking Server

corresponds to the SPA Service. Each client connection requires a Search Engine Session

structure in memory. This structure implements the functionalities shown in Section 2.4,

providing the necessary features for clients to search for available times and to book

activities. In the sequence diagram of Figure 2.6, the messages “[1] Search for avail-

ability times” and “[2] Lock activities” require the most intensive computations in the

whole booking process, in particular, affecting the Search Engine Session and Database

components.

24

2.5. ONLINE SEARCH ENGINE

25

2.5. ONLINE SEARCH ENGINE

Figure 2.6: Online booking process overview.

26

2.6. DAILY OPERATIONS

2.6 Daily operations

Daily operations in a business place consist mainly of operations related to activity

appointments (bookings). Typically there are two kinds of operations involved. The

first kind of operations is related to the creation and modification whilst the second kind

is related to check-in and check-out processes. Some sites have front desk operators

dedicated only to do these operations, while on other sites, the operations are executed

directly by the staff.

The creation and modification of booking appointments are generally executed in

advance, i.e., activities are scheduled hours or days before they take place. Usually, the

customer calls or arrives into the business place and asks for specific activities he intends

to book and specifies at least preferred date and time. Based on the customer preferences,

the operator offers a list of available options for the reservation. This process can be

manual or automated using the booking engine to assist in the reservation process. In

the first case, the operator manually selects all the appropriated options including date,

time staff, and location. In the second case, the booking engine will return the first

available time, staff, and location, based on the search criteria and restrictions that may

apply. It is also common for the customer or spa manager to request changes to the

existing reservation. For example, move the booking to other date or time, other staff or

a different location. Depending on the requested changes, the operator may choose to

execute the changes manually or use the booking engine to suggest alternative times if

necessary.

The check-in and check-out operations are associated with the actual booking day.

When the customer arrives, before the activity to take place, the operator marks the

booking as check-in, indicating the customer is on-site. After the activity has been

completed, the operator invokes the check-out process, so that the customer can make

the payment to end the booking life cycle.

27

2.7. PROBLEM DESCRIPTION

2.6.1 Manual booking process

From the application’s agenda, the operator selects a staff or location and launches the

manual reservation creation form. After that, the operator chooses the activity, staff,

location, and date and time. At this point, the chosen activity, staff, and location are

locked on the database at the requested date and time. As a result, the current selection

is not available for use in other workstations trying to book at the same date and time.

In the last step, the operator assigns the customer to the activity and completes the

creation of the booking.

2.6.2 Creation of multi-bookings using the booking engine

The advanced reservation form uses a wizard to simplify the reservation of multiple ac-

tivities step by step. From the application’s agenda, the operator launches the advanced

reservation form. From there, he adds one or more activities specifying the initial search

conditions like date, time, staff, and location. After the selections have been made,

the operator can choose to manually the lock of the activities (see Figure 2.4a) or let

the application handle the search and lock operations without operator interaction

(see Figure 2.4b).

2.7 Problem description

The problem can be described as follows: How can SPA & Leisure improve the per-

formance of the booking process in response to the continuous increase of data in the

database?

The booking process is composed of several restrictions that must be checked to

complete the booking. The creation of a single booking requires a few calls to the

database server to check restrictions and rules. However, the creation of a multi-booking

containing several activities can increase this number to thousands of calls. Waiting a

few seconds to complete availability checks is not an issue for one activity. On the other

hand, waiting a few seconds on each activity of a multi-booking composed of various

28

2.7. PROBLEM DESCRIPTION

activities will raise a major performance problem in the booking process.

(a) Client A (b) Client B

Figure 2.7: Top 10 day bookings.

Figure 2.7 shows a top 10-day booking reports taken from two distinct clients with

different business reservations volume. These two reports show the 10-days with more

bookings including staff, locations and the workstations used to perform the operations

related to the booking process. In the first report, from Client A (Figure 2.7a), the

most busiest day shows a total of 2271 bookings executed by 388 therapists using

329 treatment rooms across 138 workstations. In the second report, from Client B

(Figure 2.7b, the numbers are more modest, but even so, the busiest day has 371

bookings.

As we saw in Section 2.4, the Search Engine provides the available times by starting

from the initial start time (i.e., the requested start time) and then increment it until a

free time slot is found. If the first time slot space is near the requested time, the system

quickly finds it using a few cycles. On the contrary, if the first free time slot is far from

the requested time, the search must continue until finds it. The worst scenario is when

there are no free time slots at all. In this situation, the search continues until it reaches

the end search range. As a result, on a busy day, i.e., a day with few free time slots,

the number of steps necessary is by far greater than on an empty day. Consequently,

performance will decrease as the number of bookings increases.

Another point is the security of communications between client applications and the

database server. Because the data processed by the SPA application may contain sensi-

tive information subject to the General Data Protection Regulation (GDPR) (GDPR, 2020)

29

2.7. PROBLEM DESCRIPTION

and to the PCI Data Security Standard (PCI DSS) (Council, 2020), its transmission over

the network must be encrypted. The encryption layer requires additional processing on

the client and server to encrypt and decrypt data. As a consequence, communication

time increases. The Oracle tnsping command is a utility to determine whether or not

an Oracle service can be successfully reached (Burleson Consulting, 2019). Essentially

the tnsping command tests whether the Oracle Listener at the target IP is responding

- and the time it measures is that response. The Figure 2.8 shows the results of the

tnsping command using an encrypted TCP/IP channel and using an unencrypted

TCP/IP channel in a existing client production environment. The encrypted TCP/IP

channel returned 730 ms whereas the unencrypted TCP/IP channel returned 10 ms to

respond. In other words, the response time of the encryption transmission takes 7300 %

of the time to respond, compared to the response time of the unencrypted transmission.

The results obtained show that the data exchanged between client applications and

the database server using an encrypted transmission channel considerably deteriorates

the system’s responsiveness, which cannot be ignored.

Figure 2.8: Oracle TNS ping utility communication test results.

30

2.8. PROPOSED SOLUTION

2.8 Proposed solution

For the reasons appointed above, we propose to optimize the search engine process by

keeping as many data as possible on client-side. This technique is known as local cache

(Naderializadeh et al., 2017; Vakali, 1999).

A message broadcast framework will be created to maintain local data synchronized

with the database. The main idea is to have a parallel system to keep watching data

changes on the database and soon as data change, a message will be sent to processes

to inform that current data held is out-of-date and must be updated before use. The

proposed schema, see Figure 2.9, is based on Instant Messaging (IM) applications

(Wikipedia, 2019). Most of them use a server to register, control and serve the messages

communications between clients (Shipley & Bowker, 2014). Some applications also

use local cache to allow a peer-to-peer communication (González & Thiruvathukal,

2006). Using local cache in SPA application will: (a) reduce the traffic between client

applications and server database and (b) decrease computational times in the server

because the local cache will reduce the number of queries sent to the database server.

Figure 2.9: Network structure with the proposed Broadcast Message Server.

Figure 2.9 shows the database network and message notification network. In the

current implementation (solid red lines), the interaction between client and database

server are independent of each other. The database network comprises the information

system and the message notification the status of the local data.

31

2.8. PROPOSED SOLUTION

Figure 2.10: Cache implementation.

Figure 2.10 shows the cache implementation overview on the client side. When the

application starts, a dedicated thread to listen for incoming messages is started and

keeps waiting for messages until the application terminates. In the main thread, when

a function needs to access some data, it first checks if the out-of-date flag1 is set. If

the flag is set, the function retrieves a fresh copy of data from the database and resets

the out-of-date flag. If the flag is not set, it uses the data locally stored (if available,

otherwise it must retrieve it from database). On the other hand, when the listening

thread receives a message stating that some data in the database has changed, it sets the

out-of-date flag to indicate to other threads that the related data locally stored is not

up to date, hence requiring an update before use. This is the generic method used to

synchronize locally stored data with server counterpart data.

1Each set of data has it own flag

32

2.8. PROPOSED SOLUTION

We choose to use cache because:

• Application has been written for about twenty years having thousands of source

code lines in its codebase.

• Search engine uses classes and functions shared by other areas of application.

• Rules and restrictions are too complex to be rewritten.

• There is already data cached in some sections of search engine.

• Caching only requires changes to specific parts of the search engine without

touching in the core workflow.

• It is less prone to bugs in the current search algorithm.

• Other solutions would require more changes in source code and more time to

implement them.

The optimization using local cache will consist of the following:

• Load of data. Data is retrieved from the database and kept in memory using local

variables.

• Usage of data. When it is required, data is accessed directly from local memory.

After use, memory is not destroyed. As a result, it is available for use next time.

• Maintenance of data. The message broadcast system notifies connected applica-

tions to inform that the data they stored in local memory is no longer synchronized

with the database, hence needs to be refreshed before next use.

In conclusion, to address the performance problem we will use:

• Local cache of data.

• Messages broadcast framework to ensure local data is always synchronized with

data in the database.

33

The indispensable first step to

getting what you want is this:

Decide what you want.

Ben Stein

3
Implementation Model

This chapter details the proposed solution to solve the SPA application performance

problem. We introduce the Message Broadcast Framework, Message Server, and Event

Alert Client API components and flows are presented: we show the internal structures

of the server and client components. We describe the Event Alert Client API in detail

with a particular focus on listener components and how they handle the notification

(invalidation) messages. The last part, demonstrates the created messages structures

with some illustrative examples of their use.

3.1 Overview

The proposed Message Broadcast Framework (MBF) described here consists in trans-

mitting messages between applications in a LAN connected through a logical star

35

3.1. OVERVIEW

topology network. Client applications communicate with each other indirectly through

the message server application. Applications do not know nothing about other appli-

cations they communicate with. They simply connect to the Message Server. It is the

responsibility of this server to keep track of connected applications and manage the

communications between them.

In this model all remote clients connect to a single server process. The server process

receives requests, processes them and returns a response. To avoid blocking other clients

while processing a client request, the server process is multithreaded. It executes some

code on behalf of one client for a while, then it saves the internal context and switches

code to another client. The overhead of switching between threads is low, typically only

a few microseconds (Silberschatz et al., 2006, pp. 934-935).

To protect shared resources from multiple access from clients, critical sections are

used. The synchronization of critical sections in Windows environments are lightweight

(Stallings, 2018, pp. 322-329). They can only be used within one process, but have the

advantage they don’t need to switch to kernel mode (Microsoft, 2019d) (except when

used with a synchronization primitive like an event or semaphore). The server process

enters the critical section every time it needs to read or write to the shared resources.

When there is no more work to do with the shared resources, it leaves the critical section.

The current thread trying to acquire the lock will be blocked until the critical section is

released by its owning thread. As soon as the shared resources are no longer needed,

the critical section is released, to avoid blocking other threads for a long period of time.

The applications that form part of the MBF system include:

• Event Alerter Server application (EAS): This application plays a leading role in

the system. It manages the communications between client by maintaining a list of

applications and the messages they are interested in receiving. Incoming messages

are forwarded to all clients that have registered those messages.

• Logger application (LOG): This application logs the messages received from the

server process into a log database. It is mainly used for diagnostic and debugging

purposes. In production environment it is not required.

36

3.1. OVERVIEW

• Client applications: The applications that connect to the EAS to use its function-

alities to send and receive notification messages.

Figure 3.1: Message framework architecture.

Figure 3.1 shows the pipeline layout of the message system. The EAS communi-

cates with clients over TCP/IP and with the LOG application through inter-process

communication using a message queue.

Clients open a socket to the server and optionally register a set of messages to which

they shall be notified. Clients send messages without worrying about who will receive

them. The EAS then resends the message to each client that has registered the message.

When a client starts, it creates a dedicated thread to read data from the socket.

The communication between clients and the server is asynchronous, i.e., clients send

a message to the server and do not wait for the response about who had received it. The

purpose is to allow the server to notify the other clients connected as fast as possible,

in response to a message triggered by the business rules defined on the application.

Because of the asynchronous nature of the communication, clients do not wait for

acknowledgement of the messages sent. As a result, there is no difference in sending

messages with registered clients or without registered clients, because clients do not

block waiting for a response. If such a response is necessary, it must be addressed at the

business layer of the application.

37

3.2. COMMUNICATION FLOW

The MBF allows clients to send any message with any attached data, validating

only the syntax, that is, if messages contain valid characters and if they do not exceed

a defined maximum size. The semantics and meaning of each message is part of the

defined client operation business rules. When the EAS receives a message without any

clients interested on it, it simply discards that message.

3.2 Communication flow

Communication between client and server consists of three parts:

• Initialization: Client connects to the server and then registers which type of

messages it wants to receive. Some of these messages may be private or also

registered by other clients. The framework does not impose restrictions on what

type of messages can be registered by the clients.

• Work operations: Client sends messages to the server and receives messages from

other clients through the server. During normal working operations, it is also

possible to register or unregister messages.

• Finalization: Client disconnects from the server. During the disconnect process,

the server removes messages registered by the client.

Figure 3.2, represents the general communications flow. At the beginning, the client

opens a connection to the server and registers the messages it wants to receive. For

each new client connection, the server keeps track of its messages by adding them to

internal records. After the initialization task, both client and server are ready to send

and receive messages. The notification process starts when one client sends a message

to the server. As soon as the server receives one message, it performs a search in the

internal records to find which clients need to be notified. The message is then sent to

those clients. This process is repeated whenever a client sends a message to the server.

In the end, the client initiates the finalization step and disconnects from the server. After

38

3.2. COMMUNICATION FLOW

Figure 3.2: Communication between client and server.

the client has disconnected, the server releases resources that have been allocated for

the client connection.

Figure 3.3 illustrates how the server’s logger application integrates the communica-

tions flow between the client and the Message Server (MBS). The confirmation message

is sent by the client after receiving a broadcast message with a flag requesting acknowl-

edgement. The acknowledge message is requested by the server based on configuration,

mainly for debugging purposes. The notification and acknowledgement processes

independent and asynchronous, i.e., the server may continue sending messages to the

client without receiving acknowledge from previous messages.

39

3.3. SERVER APPLICATIONS

Figure 3.3: Communication between client, server and logger.

3.3 Server Applications

The framework server part is composed by the Event Alerter Server application (EAS),

Logger application (LOG) and Database server, as can be seen in Figure 3.4. Each of

them performs specific tasks: (a) EAS is the key application of the framework. This

application implements a TCP server to which clients connect and perform the requests;

(b) LOG is responsible to log the messages received and sent by the server. Messages

40

3.4. EVENTALERTER APPLICATION

are decomposed and saved in a database to easier to analyse; and (c) Database server is

responsible for storing the data received from the LOG, for later use in diagnostics or

performance problems of the MBF.

Figure 3.4: Server applications with internal components.

3.4 EventAlerter Application

The server application is a windows service program and aggregates the following

components:

• TCP Server, is the component responsible for the communications using the

TCP/IP protocol. The TCP server component used to perform this task is the

41

3.4. EVENTALERTER APPLICATION

TIdTCPServer component available in the Embarcadero RAD Studio develop-

ment tool (Embarcadero, 2019). The TIdTCPServer component encapsulates a

complete, multi-threaded TCP server (Hower, 2006, sec. TIdTCPServer Class).

The TIdTCPServer component allows multiple simultaneous client connections

allocating a separate unit of execution for each client connecting to the server.

Each client connection represents a task that is managed by the scheduler for the

TCP server component. Listener threads use the scheduler to create an executable

task for each client connection. Each client connected runs on a dedicated thread

on the server. On Windows, the number of threads is limited by the available

memory. By default, every thread gets one megabyte of stack space and implies a

limit of around 2000 threads on 32-bit processes (Microsoft, 2009). Reducing the

default stack size will allow more threads to be created, but will adversely impact

system performance. In addition, threads are pre-emptively scheduled by the

host operating system and allow no control over execution of the thread process

(Hower, 2006, sec. TIdTCPServer Class). In the Figure 3.4, the Input Queue reads

a single line from the input buffer, i.e., retrieves data from the input buffer until

the end-of-line sequence is located or the maximum line length is exceeded. The

Output Queue writes a single line to the output buffer. The TCP server then decides

when flush data on the network. Each client connection has dedicated instances

of Input Queue and Output Queue.

• Dispatcher Manager, decodes the received data from clients and calls the appro-

priated processes to perform the necessary tasks with the data.

• Client Manager, handles the task of maintaining a list of clients connected to the

TCP server. Whenever a new connection is made, a new record entry is added

to the Clients structure. On the contrary, when a client disconnects, the assigned

record is removed from the Clients structure.

• Message Manager, manipulates the messages registered by clients. For each

unique message registered, a new record entry is added to the Messages structure.

42

3.4. EVENTALERTER APPLICATION

Each message entry contains local instance of the Subscribers structure whose

purpose is to record all clients that have an interest in the message. When a client

unregisters a message, the corresponding record in the message’s Subscribers struc-

ture is removed. When a message has no more clients associated, it is removed

from the Messages structure. Consequently, if the server receives a message with

no clients waiting for it, it will simply discard it.

• Event Manager, forwards a received message to all clients who registered it. Once

a message is received, the Event Manager creates a record on the Events structure

to track the message state. Next, it locates the corresponding message record in

the Messages structure and it forwards the message for all clients contained in

its Subscribers1 structure. For each target client, a record is added to the Targets

structure allocated for the invalidation message. Both Events and Targets structures

are used by the Event Manager to keep a trace of the message sent to clients. As

soon as a client receives a message, it sends a confirmation to the server. The

Event Manager then locates the client record in the invalidation message’s Targets

structure and marks it has confirmed. The Event Manager is tied with Message

Manager but performs distinct operations. While the Message Manager maintains

the list of clients associated with each message, the Event Manager uses that list to

forward received messages to the proper clients. Clients have a maximum amount

of time configured to confirm a received message. Failure to confirm will result in

an error that will be handled by both the Error Manager and Log Manager.

• Error Manager, handles the errors triggered in the server process and on commu-

nications. The errors are divided into several error level categories. When an error

occurs, it is categorized according to its severity and then written to a log file. The

manager ensures exclusive write on the log file using a critical section.

• Log Manager, runs continuously on a dedicated thread monitoring the state of

1It is important to clarify that each message type record in Messages structure, contains a list of clients
(Subscribers) that shall be notified when a message of that type arrives. In other words, clients receive
only the message types they have previously registered.

43

3.4. EVENTALERTER APPLICATION

the invalidation messages forwarded to clients (Events and Targets structures). This

thread uses the WinAPI wait function WaitForSingleObject(), to allow block its own

execution (Microsoft, 2019c). The wait function does not return until the specified

criteria has been met. It this case, the criteria is when the time-out interval of

one minute elapses. When the WaitForSingleObject() function returns, it loops the

list of the messages sent to clients (Events structure) for confirmation. When the

Log Manager finds a message in the Events structure whose time to confirm has

elapsed, it performs the following operations:

1. Searches on the Targets structure assigned to the message, for clients that

did not confirm the reception of the message and calls the Error Manager to

handle the error.

2. If the LOG Service is running, then the message information is packed and

sent to it using the WinAPI SendMessage().

3. The invalidation message record is removed from the Events structure.

After processing all messages sent to clients, the Log Manager enters the wait state

again. This cycle repeats until the EAS closes.

3.4.1 Memory Data Structures

To keep information necessary to work, several data structures are used in memory.

Some of these structures are shared by different processes, requesting concurrent access.

Because of this, all processes must acquire exclusivity access to read or write on these

structures through the use of critical sections. All structures are implemented as linked

lists, each one containing a list of records. To be fast, they all use indexes to allow fast

access to individual records. Each record entry can be referred as a record or as an item.

There is no difference using one term or the other.

The Visual Component Library (VCL) framework from Embarcadero RAD Studio

(Embarcadero, 2019), contains several classes dedicated to work with lists. The following

classes are the most common used:

44

3.4. EVENTALERTER APPLICATION

• TList. TList is a class that implements a linked list. This class is the base class

of all the other classes provided by the VCL. It provides the basic properties and

methods necessary to work. The common features include insert, move, delete and

compare items. Each item of the list is a pointer to some data allocated somewhere.

The TList class does not deal with the details of the data contained in its items.

Because of this reason, to add an item to list, first the memory for the item must

be allocated and filled with data. Before delete an item from the list, the memory

block associated must be explicitly released. Fail to do this, will fall in a memory

leak.

• TStrings. TStrings class is derived from TList and is the base class of other classes

to deal with strings. This class provides properties and methods to work with

strings. This class takes care of memory management. In this case each item

contains text characters and a pointer to a memory block (inherited from TList). It

should be used in function as parameter declaration. It is not recommended to

instantiate an object directly of TStrings because it is incomplete, i.e., some of the

methods are abstract.

• TStringList. TStringList is the class specialized to work with strings. It derives

from TStrings and provides the implementation to manipulate a list of strings.

Add(), Insert(), Delete(), Clear(), IndexOf(), and GetCount(), are the most useful meth-

ods when adding and removing items from the list. TStringList has the capability

to maintain automatically the items ordered to improve access time to a specific

item. In addition there is a Sort() function that implements the quick sort algo-

rithm which allows the programmer to custom sort the list based on a comparison

callback function. A key feature is that each item of the list, can also point to an

external block of data next to the string. The memory of the external block of data

must be handled explicitly as in the TList class.

The MBF uses text to represent data. Therefore, the TStringList class, from VCL

would be the natural choice. However, the data required for each record can not be

45

3.4. EVENTALERTER APPLICATION

represented by text only. Each record has a specific structure according to the data

involved.

To use the features offered by the TStringList class minimizing memory management,

a class that essentially implements the functionality of the TStringList class will be used,

but will automatically free the memory associated with each item. The same effect

could be achieved with the TList class, but at the cost having to require explicit memory

management and explicit conversions between data types. The new class to be created,

TListContainer, makes use of C ++ language templates to implement a generic class for

use to handle different data types. With this new class we achieved three important

features:

1. One class which implements a linked list for any type of variable, either a primitive

type (i.e., int, double, char*, ...), a Plain Old Data (POD) structure or a

complex structure with data and methods. A POD structure is represented only

by passive collections of field values (instance variables), without using object-

oriented features (Wikipedia, 2018).

2. No need for explicit casts of container objects because the list contains the specific

implementation for the object type used.

3. Memory garbage collector. The class frees memory from the internal list and the

external object linked to each item. As a result, it is not necessary to explicitly free

the memory of the linked object, because it will be released implicitly by deleting

the item from the internal list (Eckel, 2000, p. 46).

Figure 3.5 shows the structures with the relevant properties used to control the Mes-

sage Server workflow. These structures hold a list of records in memory providing fast

access to records. Clients, Messages, and Events structures have global scope. Subscribers

and Targets structures are local to each record of Messages and Events respectively.

Below we describe the contents of each structure using a text representation. We

denote the variable that uniquely identifies a record in the structure by underline it.

46

3.4. EVENTALERTER APPLICATION

Figure 3.5: Message Server control structures.
(See text for more details.)

• Clients. This structure holds the list of clients connected to the EAS. Each record

contains information about the connection that uniquely identifies the client

application.

Clients = (ConnectionID, RemoteIP, RemotePort)

– ConnectionID, is the identification of the client.
– RemoteIP, is the IP address of the client connection.
– RemotePort, is the Port number of the connection.

• Messages. This structure contains the list of all unique messages registered by

clients. A message is identified by a case sensitive string with a maximum of 64

characters length. The first character must be a letter or underscore. The characters

following may be underscores, letters, or digits.

Messages = (MessageID, Subscribers)

– MessageID, is the message code.
– Subscribers, is the structure containing the list of clients to forward the

message.

• Subscribers. This structure contains the list of clients interested in the message.

Each message record has a Listener structure assigned.

Subscribers = (ConnectionID)

– ConnectionID, is the identification of the client.

47

3.5. LOGGER APPLICATION

• Events. This structure holds a list of the messages that have been forwarded
to clients, allowing the server to know the state of forwarded messages. An
important property is a maximum time for the message target clients to confirm
they have received it.

Events = (EventID, MessageID, ConnectionID, PostTime, MsgData, Targets)

– EventID, is the unique identifier for the message.
– MessageID, is the message type of the message.
– ConnectionID, is the sender of the message.
– PostTime, is the time that server receives the message.
– MsgData, is the data associated the message.
– Targets, is the structure containing the list of clients to which the message

was forwarded.

• Targets. The structure contains the list of clients for whom the message was

forwarded. Clients must confirm they have received the message before the

maximum confirmation period time has been reached. This information is useful

for diagnosing connectivity problems or incorrect data cached by applications.

Targets = (ConnectionID, PostTime, AcknowledgeTime, Acknowledged)

– ConnectionID, is the identification of the client.
– PostTime, is the server time when the message was forwarded to client.
– AcknowledgeTime, is server time of the message confirmation by client.
– Acknowledged, is a flag indicating that client has confirmed the receive

of the message.

3.5 Logger Application

The Logger application (LOG) is a Windows service responsible for logging into the

database, the result of the communications between clients and the EAS. In the EAS, the

Log Manager sends a WM_COPYDATA message (Microsoft, 2019e) to the LOG input

queue window procedure. When the internal message WM_COPYDATA is received,

the LOG allocates memory to hold the received data, then it calls the PostMessage()

WinAPI to forward that message to the main windows procedure thread. The internal

message used to forward the message is an application-defined message created for

this purpose. This message is labelled as WM_EVENTALERT2 (Microsoft, 2020). When

2WM_EVENTALERT is defined as WM_EVENTALERT = WM_USER + 1.

48

3.5. LOGGER APPLICATION

Figure 3.6: Logger process workflow.

the message is received on the main thread, the content of the message is copied to

a local temporary buffer and the origin buffer data is released. Afterwards, the local

buffer content is decoded to extract the message and target clients information. After

the data extraction, the application prepares to save the information to the database.

The first step it does, is to check if there is already an existing connection to the database.

If no connection is found, the application attempts to connect to the database. After

establishing the connection, the message data is saved into the database; followed by

the identification of the target clients who received the message. Note that we allocate

memory in one thread and then release it in another thread. This is a tricky way to

allow the usage of the non-blocking PostMessage() function. The queue is implemented

as FIFO (Stallings, 2018, ch. 5).

49

3.6. CLIENT APPLICATION

3.6 Client Application

The SPA application (client application or simply client), is composed of several compo-

nents. One of those components is the Database Client API which provides the interface

to communicate with the database server. Another component is the Message Client

API, formally the Event Alert Client API (EACAPI), whose responsibility is to give

access to the Message Broadcast Network (MBN). We will discuss in more detail the

EACAPI in the following sections.

(a) Current System.
(b) New system with cache.

Figure 3.7: Client Application (SPA & Leisure), interaction of a workstation with
database server and Message Server.

Figure 3.7 presents a brief view of the components of the system. However, it

shows the fundamental logical networks. The connection with the database is handled

by the Database Client API. The Database Client API consists of a set of classes that

abstracts the database provider, allowing the application to connect to different

database engines. The database holds information about the client business, which

is mostly managing booking appointments, see Figure 3.7a. With the proposed

system, the EACAPI provides a meaning to improve the application interaction

with the database, Figure 3.7b. The EACAPI exposes the functions and classes to

communicate with the Message Server. The EAS application and database server can re-

50

3.6. CLIENT APPLICATION

side on the same remote computer, but usually, they are installed on dedicated machines.

The MBF on client-side is basically composed of three main components, as shown

in Figure 3.8. The main thread UI comprises the visible functionalities of the application.

All user interactions with the application are realized in the Main Thread. Most of

the business logic of the messages are executed here. The Ping Thread, ensures the

connection between client and the EAS is not closed due to inactivity on the network,

i.e., when there are no messages sent or received within a certain amount of time. The

Read Thread is a vital component on the Message Broadcast Framework client-side,

as it is the thread that listens for messages sent by the EAS. Messages are received

in a dedicated thread to ensure that all messages are processed quickly, even if the

application is blocked in another thread.

Figure 3.8: Overview of interaction of Event Alerter Server application (EAS) and Client
components.

When a message is received by the EACAPI, the application is notified through

a Callback function in the context of the listener thread. Exclusive access to shared

51

3.6. CLIENT APPLICATION

resources is guaranteed through the use of critical sections. A message can arrive while

the main thread is performing an intensive task or blocked waiting for an I/O operation.

Since the out-of-date flag is adjusted in the context of the listener thread, it implies that

any thread depending on the message would know that the message was received,

so it can do the necessary work to refresh data. The out-of-date flag can be updated

several times without being accessed by processes on the main thread or other threads.

The out-of-date flag will only be accessed by operations when the data depends on the

message or messages controlled by the out-of-date flag.

We are referring to the Main Thread as the final part that has the business logic to

manipulate the data received from the received messages. However, there are other

situations where data is processed in secondary threads. For example, the SPA online

search engine service performs all the operations in the context of the secondary threads.

The Main Thread is the first thread of the application and has the responsibility of

controlling the user interface.

The key actions related to the EACAPI are:

• Listening messages from EAS and take the necessary actions to set the out-of-date

flag(s) to inform the application about new data available on the database server.

• Post messages, based on application business logic, to the EAS to inform the other

connected applications that they have new data available on the database. The

application sends a message and returns control to the user immediately. The

sender does not require acknowledgement of the message by the other applications

who receives it. If such acknowledgement should be required, it is a functionality

to be added on the business logic layer of the application and not on the MBF.

• Send control messages to EAS to maintain the connection alive in situations

where no messages are neither received or sent. The inactivity time duration is

determined by the OS.

There are no special requirements for posting a message on the MBF. Clients fill

in the type of message to be sent with the appropriate data and call a function of the

52

3.6. CLIENT APPLICATION

EACAPI to post the message. On the other hand, to receive messages, clients, must

register the types of messages they wish to receive from the MBF.

Figure 3.9: Messages flow between client components and server.

Figure 3.9 shows an overview of the interaction between components of the client

and can be summarized as:

• Register Connection registers the application into the MBN. The operation in-

forms the EAS that the application wants to receive messages. Each connection is

identified by a unique id.

53

3.6. CLIENT APPLICATION

• Register Messages submits to the EAS, the specific messages that the application

wants to receive.

• Unregister Messages submits to the EAS, the specific messages that the applica-

tion no longer wants to receive.

• Post Message sends a message to the EAS to be forwarded to the applications that

registered the message. (Including the sender of the message if applicable.)

• Post Command implements a queue of control messages to be sent to the EAS, as

quickly as possible. The first control type message is the “keep alive” message

to keep the connection with the server active. The second control type message

is the acknowledge message sent back to the EAS, in a response to a request for

confirmation of the received message.

• Callback(s) refer to the application endpoints that handle every message received

from the EAS. Callbacks are associated with application logic connections (lis-

teners). As a result, distinct callback functions (in different components of the

application), can manipulate the same message received.

• Write Msg is responsible for sending data (securely) over the MBN to the EAS.

This component is thread-safe, which means that the application can invoke the

“Post Message” whenever required, without the need to explicit implement critical

sections to protect access to shared resources.

• Read Msg receives messages sent by the EAS in a response of “Post Message”

message from any application connected to the MBN. Soon as a message is re-

ceived, it is sent to all the registered listeners. Finally, an acknowledge control

message is queued, to be sent back to the server, if the received message requires

feedback.

54

3.6. CLIENT APPLICATION

Figure 3.10: Client classes overview.

3.6.1 Broadcast messages client support classes

Figure 3.10 shows the classes used to interact with the Message Broadcast Framework

on the client-side. These classes are:

• TIdEventAlert is the interface between client and the MBF. TIdEventAlert imple-

ments and exposes all the necessary properties and methods to connect to the

EAS, register messages, register listeners, post messages and receive messages.

The property ConnectionID uniquely identifies each client connected to the MBF.

The EAS uses the ConnectionID to forward the received messages to the proper

clients.

• TIdEventPing implements the logic to ensure the connection to the EAS is always

active. It mainly implements a timer to post a recurring “ping” message directed

only to the EAS.

• TIdEventThrd is responsible for receiving messages sent by the EAS, decoding

their content and notifying the target listeners. Internally uses the TIdTCPClient

55

3.6. CLIENT APPLICATION

component to handle the TCP/IP communications.

• TIdTCPClient is responsible for the TCP/IP communications. This component

and its ancestors implement the input/output abstraction mechanism used for con-

necting, disconnecting, sending, and receiving data through socket connections,

(Indy Pit Crew, 2020). It is available in the Embarcadero RAD Studio development

tool (Embarcadero, 2019) and is the counterpart of the TIdTCPServer component.

• TIdListenerItem represents the listener component. This class is the bridge be-

tween the application UI and the MBF. Each listener contains a set of registered

message types and a callback function. The callback function is invoked by the

TIdEventThrd class when a message is received from the MBF. The callback func-

tion implements the business logic operations associated with the message type

within the context of the listener instance, representing the message endpoint.

• TListContainer<TIdListenerItem> contains the list of all active listeners regis-

tered in the EACAPI. When a message is received from the EAS, the list is scanned

to find the listeners that should get the message.

• TIdMessageNameItem stores one message type definition (identified by a GUID)

and the number of instances of the listeners that registered it. When a lis-

tener registers a new message (not yet registered by any other listener), a new

TIdMessageNameItem record is created with the ListenerCount variable set to 1. On

the other hand, if the message has already been registered by other listeners, the

ListenerCount will be incremented by 1. In the same way, when a listener unreg-

isters a message, the ListenerCount is decremented by 1. When the ListenerCount

reaches a value of 0, it implies that no more listeners are referring to the message.

In this case, the message definition record is deleted.

• TListContainer<TIdMessageNameItem> contains the list of unique message

types registered by the local listeners. There is only one global list containing the

registered messages in the client. A message type in the list implies that at least

one listener has registered it.

56

3.6. CLIENT APPLICATION

• TIdListenerMessageItem holds one message type registered by one listener.

When a message is received from the EAS, the MsgData variable is populated

with the message data. This message data is then made available to the applica-

tion UI through the Callback function.

• TListContainer<TIdListenerMessageItem> contains the list of all message types

registered by a listener. Each listener maintains an individual list of its registered

message types. When a message is received from the EAS, the list is scanned to

find if the listener that owns the list should get the message.

3.6.2 Application UI workflow

The client application integrates the Message Broadcast Framework as shown in Fig-

ure 3.11. The activity diagram shows the application workflow. At application startup,

the main thread Main Thread UI is created. The user interface thread is used to create vi-

sual controls, handle user input and respond to user events independently of threads ex-

ecuting other portions of the application, see (Microsoft, 2019b). The TIdEventAlert com-

ponent, from the EACAPI, is also initiated at startup time. At this point, only the main

thread exists. When the connection to the EAS is made through TIdTCPClient::Connect(),

two threads are created. The first thread, TIdEventThrd is responsible for listening

and forwarding received messages to the appropriated objects. The second thread,

TIdEventPing ensures that the TCP/IP connection to the EAS remains active.

The main thread not only handle the application visual controls and user operations

but also post messages (“Post Message”) to the EAS in response to the “User Actions”,

to notify other applications that they will need to update their local data. The other two

threads are managed by TIdEventAlert class and do not depend on user interaction to

work.

57

3.6. CLIENT APPLICATION

Figure 3.11: Client application messages workflow.

3.6.3 Client Identification

The client application opens a single TCP connection to the EAS. The connection is

uniquely identified by a ConnectionID string using a unique identifier (GUID). The EAS

uses the ConnectionID to track the messages registered by each client. In addition to

the public ConnectionID, the application manages a private collection of listeners also

identified using a GUID. All the messages registered by the local listeners are registered

on the server using the ConnectionID.

Figure 3.12 shows the link between client applications and the Event Alerter Server

application. The server identifies the connected applications using the ConnectionID,

58

3.6. CLIENT APPLICATION

that is, “Connection 1” and “Connection 2” instead of the listeners, “Listener 1”, . . . ,

“Listener 4”, which are internal to clients.

Figure 3.12: Application identification.

When a client sends a message to the MBS, the EAS searches in its inter-

nal Messages and Subscribers structures to find which clients to forward the re-

ceived message. Similarly, when clients receive the message, they search in their

TListContainer<TIdListenerItem> and TListContainer<TIdListenerMessageItem> internal

structures to identify the target listeners who should handle the message.

3.6.4 Client Listeners

A listener is an object of class TIdListenerItem and allows the client to send and receive

broadcast messages from the MBN. In Section 4.2 we materialize the concept of the

listeners in terms of the classes that will implement the local cache.

59

3.6. CLIENT APPLICATION

Each listener maintains an individual list of the registered messages, but they share

common messages. When a listener adds a message type to its list, it checks if that

message has already been registered by another listener. If no client has yet registered

the message, then the message is registered on the server. On the other hand, if the

message was already registered by another listener, no request is made to the server.

Hence no duplicated messages are registered using the same ConnectionID.

Figure 3.13 illustrates connections and listeners along with the registered messages.

The example shows 4 forms: Configuration, Booking Creation, Booking Confirm & Check-In

and Agenda. Each form is associated with a listener to allow send and receive messages,

according to the application business logic. “Send Messages” refers to messages that can

be sent by listeners. “Registered Messages” refers to messages registered by listeners.

As can be seen, some messages types are specific to individual listeners while others are

shared by several listeners. For example, the message “ComplexChanged” is registered

in the Booking Creation and Agenda forms, while the message “BookingCreated” is only

registered by the Agenda form.

Figure 3.13 also shows that the messages registered in a form are not necessarily

related to the messages sent. For example, the Booking Creation form sends the messages

“BookingCreated” and “BookingUpdated” but does not register them. The reason is

that the form does not rely on these messages to know when bookings are created or

updated, instead, it uses the data from the database directly. On the other hand, the

Agenda form does not send any message but registers the messages “BookingCreated”

and “BookingUpdated”.

3.6.5 Listeners in Action

We outline below, based on Figure 3.13, how the messages flow within SPA and POS

applications and MBN. We focus on the messages exchanged between applications and

the MBN and not on the data transferred between applications and the database server.

The use case describes (1) activity booking creation; (2) activity check-in; and (3) activity

check-out.

60

3.6. CLIENT APPLICATION

Figure 3.13: Client listeners within SPA and POS applications.

61

3.6. CLIENT APPLICATION

1. The operator starts the SPA and POS applications. Both applications initialize

their EACAPI instance, which connects to the MBN using “Connection 1” and

“Connection 2” respectively. Next, the operator opens the Agenda form. The Agenda

form creates the local “Listener 1” which registers the messages “BookingCreated”

. . . “ComplexChanged” into the EAS.

Then, the operator opens the Booking Creation form. The Booking Creation form

creates the local “Listener 2” and registers the messages “ComplexChanged”

. . . “EquipmentChanged”. The EAS receives the messages registration request and

adds the messages to the “Connection 1” messages list.

From there, the operator sets the customer’s preferences and creates the reser-

vation. At the end of the creation process, the application prepares the message

“BookingCreated” and sends it through the “Listener 2”, which calls the EACAPI

to send the message to the MBS using “Connection 1” as the message’s sender.

In the meantime, the EAS receives the message “BookingCreated” and locates

it in the Messages structure. Next, it searches in the Subscribers structure to find

which clients have registered the message. In this case, it finds that the message

“BookingCreated” was registered by the “Connection 1”. Therefore, the server

forwards the message to the client owning the “Connection 1”, i.e., the SPA

application.

The SPA EACAPI receives the forwarded message from the EAS. Next,

it walks on the list of listeners (see TListContainer<TIdListenerItem> above)

and for each listener record, it searches in its list of registered mes-

sages (see TListContainer<TIdListenerMessageItem> above) for the message type

“BookingCreated” and finds that the “Listener 1” has registered that message

type. Therefore, it forwards the message to the “Listener 1” by calling its callback

function.

The “Listener 1” callback function, extracts the message content and tries to locate

in the internal (cache) records, for a record matching the message content. In this

62

3.6. CLIENT APPLICATION

case, it does not found a record because the message refers to a new booking.

Consequently, it adds a new record, flagged as out-of-date, into the cached records

list. The out-of-date flag indicates that the next time this record is required, the

database must be contacted to obtain the most recent data matching the cached

record.

The Agenda form regains focus after the operator closed the Booking Creation form.

Now the agenda must update the list of bookings.

Before requesting data from the database, the internal list containing the cached

booking records is searched and it finds that for the current agenda visible filters,

there exists a cached record flagged as out-of-date. Therefore the application

submits a query to the database server to obtain the most recent record. After, it

clears the out-of-date flag from the local record. Finally, the newly created booking

is added to the visual grid control.

2. On the booking day, the operator opens the Booking Confirm & Check-In form. The

Booking Confirm & Check-In form creates the local “Listener 4” which does not

register any message. From there, the operator changes the booking status to

check-in. After the change, the “Listener 4” sends the message “BookingCheckin”

with the relevant booking information to the EAS. The EAS receives the message

and finds that the message shall be forward to the “Connection 1”.

The SPA EACAPI receives the forwarded message from the EAS. Next, it walks

on the list of listeners and finds that “Listener 1” has registered that message

type. Therefore, it forwards the message to the “Listener 1” by calling its callback

function.

The “Listener 1” callback function, extracts the message content and try to locate

in the internal records (cache), for a record matching the message content. In

this case, it founds a record. Consequently, it sets the record as out-of-date. (The

out-of-date flag indicates that the next time this record is required, the database

must be contacted to obtain the most recent data matching the cached record.)

63

3.6. CLIENT APPLICATION

The Agenda form regains focus after the operator closed the Booking Confirm &

Check-In form. Now the agenda must update the list of bookings.

Before requesting data from the database, the internal list containing the cached

booking records is searched and it finds that for the current agenda visible filters,

there exists a cached record flagged as out-of-date. Therefore the application

submits a query to the database server to obtain the most recent record. After it

clears the out-of-date flag from the local record. Finally, the checked-in booking is

updated on the visual grid control.

3. Once the activity completes, the operator initiates the check-out. The SPA appli-

cation invokes the POS by sending a message using the WinAPI SendMessage()

containing the necessary information to the POS complete check-out process.

When POS receives the message sent by SPA, it opens the Checkout form. The

Checkout form creates the local “Listener 1” which does not register any message.

From there, the operator completes the checkout operation. After the completion,

the “Listener 1” sends the message “BookingCheckout” with the relevant booking

information to the EAS. The EAS receives the message and finds that the message

shall be forward to the “Connection 1”.

The SPA EACAPI receives the forwarded message “BookingCheckout” from

the EAS. Next, it walks on the list of listeners and finds that “Listener 1” has

registered the message “BookingCheckout”. Therefore, it forwards the message to

the “Listener 1” by calling its callback function.

The “Listener 1” callback function, extracts the message content, locates the match-

ing internal record and sets it as out-of-date.

The Agenda form regains control after the operator closes the POS Checkout form.

Now the agenda must update the list of bookings.

Once again, before requesting data from the database, its searches in local memory

and finds the matching record flagged as out-of-date. Therefore, it submits a query

to the database server to obtain the most recent data and clears the out-of-date flag

64

3.7. MESSAGES

from the local record. Finally, the checked-out booking is updated on the visual

grid control.

The key point to retain from the above steps is that, because of the use of the MBF,

SPA requested only once the full list of records matching the Agenda form visible filters.

The following requests to the database server, requested only the record matching the

changed booking, resulting in a faster update of data in the Agenda form visual grid

control.

3.7 Messages

3.7.1 Messages Encoding

Messages are transmitted between client and server in System Data Format (SDF) using

the newline character ‘\n’ as message terminator. The SDF encoding is similar to

Comma Separated Values (CSV) text file format and is used extensively by the VCL

classes (for example, the TStringList class) to represent a list of strings as by a unique

string using commas to separate the individual strings. Any string in the list that

includes spaces, commas or quotes will be contained in double quotes, and any double

quotes in a string will be repeated. For example, if the list contains the following

strings3:

Stri,ng 1
Stri"ng 2
String 3
String4

The encoded raw string will be:

"Stri,ng 1","Stri""ng 2","String 3",String4

Spaces and commas that are not contained within double quote marks are delimiters.

Two commas next to each other will indicate an empty string, but spaces that appear

next to another delimiter are ignored (I. C. Embarcadero, 2009).

3One string per item in the linked list.

65

3.7. MESSAGES

Like a list of strings which be represented by a single comma separated string, any

serializable4 object, can also be represented in the same fashion. Consider another

example using strings with key=value:

Key1=Value1
Key2=Value 2
Key3=Value,3
Key4=Value"4

The result encoded raw string5:

Key1=Value1,"Key2=Value 2","Key3=Value,3","Key4=Value""4"

The last example introduces the foundations on how TListContainer<typename>

objects serialize their content. We could have chosen to use another format like XML

or JSON, but we believe that the SDF is more appropriated due to its simplicity and

because it is the serialization format used by the TStringList class.

Typographic conventions:

The symbols <>{|}[]←↩ are not part of the message. They are used to show how

the syntax is used to build the messages. Angle brackets <> indicates that the text inside

them is inserted at application execution time with the proper text; curly brackets {|}

can read as “take one value from set of values”, where each value of the set is separated

by the vertical bar |; square brackets [] denotes optional text to be included in the

message depending on its type; ←↩ indicates a long text split across multiple lines

because it does not fit in the page text width; and represents the space character.

3.7.2 Messages Format

The messages used in the MBF use the following syntax:

4Binary object expressed as a chain of characters.
5Note that the pair Key1=Value1 is not enclosed in double quotes because it does not contain spaces,

commas or double quotes characters.

66

3.7. MESSAGES

ID=<Id>,C={R|U|P}[,E=<MessageID1>[,<MessageID2>[,...,<MessageIDN>]]]←↩
[,D=<MsgData>]

where:

• ID specifies the client connection unique identifier, which is by default filled with

a Globally Unique Identifier (GUID) string.

• C refers to the message command. It can have one of the following values: R for

register messages; P for post messages; and U for unregister messages.

• E specifies the name of the message to be sent. Depending on the message com-

mand type, it can have multiple values separated by commas.

• D contains the optional message data to be included on the message. The

<MsgData> part is the information specific to each message type (<MessageID>)

and it is encoded in SDF format before insertion into the message frame.

3.7.3 RegisterMessages

The general message syntax to register messages is:

ID=<Id>,C=R,E=<MessageID1>[,<MessageID2>[,...,<MessageIDN>]]

For example, to register one single message, the following message is used:

ID={812DF399-A252-4293-8A12-4EDE2F58F660},C=R,E=StaffTimeCreated

To register multiple messages, the message changes to:

ID={812DF399-A252-4293-8A12-4EDE2F58F660},C=R,←↩
"E=StaffTimeCreated,StaffTimeUpdated,StaffTimeDeleted"

3.7.4 UnregisterMessages

The general message syntax to unregister messages is:

ID=<Id>,C=U[,E=<MessageID1>[,<MessageID2>[,...,<MessageIDN>]]]

For example, to unregister all messages, the following message is used:

ID={FABEF49D-C565-42E5-9984-6C0EAEDAAE52},C=U

To unregister one single message, the message changes to:

67

3.8. SECURITY

ID={FABEF49D-C565-42E5-9984-6C0EAEDAAE52},C=U,E=StaffTimeCreated

To unregister multiple messages, the message changes to:

ID={FABEF49D-C565-42E5-9984-6C0EAEDAAE52},C=U,←↩
"E=StaffTimeCreated,StaffTimeUpdated,StaffTimeDeleted"

3.7.5 PostMessage

The general message syntax to send notification (invalidation) messages is:

ID=<Id>,C=P,E=<MessageID1>[,<MessageID2>[,...,<MessageIDN>]]]←↩
[,D=<MsgData>]

For example to send a message with no data, the following message is used:

ID={426DF813-25AA-4270-A3EA-51844E3FE416},C=P,E=ClearCache

To send a message with data, the following message is used:

ID={EA86D788-95D1-49F7-939C-4CC8316E297C},C=P,E=FacilUpdate,←↩
"D=RecID=456,Code=AC30,""Name=Acupuncture 30 min"""

Another example:

ID={67B11443-6B20-41A7-8C41-17EDE5EF5B5E},C=P,E=StaffTimeCreated,←↩
"D=""RecID=27239,StaffID=21,PeriodNo=13707,StartDate=43539,←↩
EndDate=44196,ComplexID=3"""

3.8 Security

The encoded messages have security information to certify the source, destination, and

the integrity of the data. This information is never exposed because it is confidential.

Besides, the focus of the current work is to show how to create and use a caching

platform to optimize one particular application.

68

Everything is vague to a de-

gree you do not realize till

you have tried to make it pre-

cise.

Bertrand Russell

4
Application Integration

In this chapter, we describe the integration of the Message Broadcast Framework with

the SPA application. We start by defining the architecture using the search engine as a

use case. We enumerate the class templates used to connect to the Event Alert Client

API, linking them to the listener components introduced in the Chapter 3. After that,

we move on to the implementation model, showing how cache classes communicate

with the Message Broadcast Framework. Finally, we present the integration of the class

templates using a concrete example of how the staff timetable information is cached

in the local memory and how it is accessed on both the old and the new system with

cache.

69

4.1. OVERVIEW

4.1 Overview

The Message Broadcast Framework integration was designed to not require significant

changes to the application codebase or directly interfere with existing functionality. In

fact, our proposed solution was built to run as a passive decoupled component to allow

easily tuning without changing the existing application’s behaviour.

The messaging system was integrated into the reservation creation process, specifi-

cally in the search engine component. We opted to start with the search engine operation,

shown in Section 2.4, because (a) the search operation involves a significant number of

queries submitted to the database in a short period, (b) with some of them returning

the same data in successive calls (data with low change frequency in database), and

(c) the storage of data in local memory from the distinct queries can share the storage

mechanism, reducing the initial integration development time.

With a considerable reduction of database queries at an early stage of integration,

we would have a better perspective of the proposed solution viability.

4.2 Architecture

The integration architecture model relies on the creation of generic and specific classes.

Generic classes provide the functionalities to communicate with the EACAPI whereas

the specific classes implement the details of the business logic to manage the cached

data in memory. The specific classes are self-governing and independent of each other,

and we refer to them as Cache Classes. Cache classes are the materialization of the concept

of listeners, introduced in Chapter 3, Section 3.6.

Figure 4.1 shows the classes created to integrate the MBF in the application’s search

engine. Each class holds a specific type of information to be cached in the local memory.

The EACAPI is responsible to maintain the cache object instances up to date by notifying

them when data becomes out-of-date.

The use of class templates simplifies codification of the necessary methods to

support the implementation of the final classes dedicated to each set of data to be

70

4.2. ARCHITECTURE

Figure 4.1: The cached data integration model used in the search engine, with cache
classes showing the type of information they keep in local memory.

cached. Figure 4.2 exhibits the skeleton classes TListContainer<typename>, TLockList-

Container<typename> and TEventLockListContainer<typename> used to create “cacheable”

classes.

• TListContainer<typename> provides functionalities to maintain a list of indexed

records with data in local memory. Each record is a dictionary entry, composed

by the pair <key;value>, where the <key> is a string that uniquely identifies the

record and the <value> represents a specialized structure to hold the information

for each cache object.

• TLockListContainer<typename> introduces support for critical sections through

the member functions LockList() and UnlockList(). All manipulation of data be-

tween LockList() and UnlockList() calls are thread safe. This is crucial not only

because there are multiple threads running in application UI, but also because

EACAPI is asynchronous. Messages are received and forwarded (via callbacks) to

the application UI for processing in a dedicated thread.

• TEventLockListContainer<typename> makes the bridge between the MBF and

the specialized classes responsible for manage data in memory. The variable

71

4.2. ARCHITECTURE

member ListenerID, identifies the virtual connection to the EAS as disposed in

Subsection 3.6.4. All descendant classes of TEventLockList fall in the category of

the specific classes, i.e., they are subject to the business rules established in the

application for the data they hold.

Figure 4.2: Integration class templates hierarchy.

The creation of a class with cache requires: discovering the minimum useful infor-

mation to be kept in memory; finding the right keys to identify each record; and last,

the definition of the messages to control the behaviour of the data (when data becomes

out-of-date).

Figure 4.3 demonstrates the layout used for the classes. The TMyList holds a list of

TMyItem records, whose content is stored in Variable1, . . . , VariableN. In other words,

TMyList defines the behaviour of TMyItem. The TMyItem is a structure which can be

used also by other functions or classes in the application. This separation is very

important because any existing data structure in the application can be used in the

messaging-based data management classes, by simply defining an offspring class of

TEventLockListContainer<typename> (where <typename> is the referred structure). The

ability to cache any existing structure of data, gives us the ability to progressively and

selectively cache data in local memory with minimal modifications in the application.

It is important to note that data structures to be cached can contain variables with

dynamically allocated memory. For this reason, the memory occupied by each record in

the cache classes may vary.

72

4.3. IMPLEMENTATION

Figure 4.3: Example of class for storing data in memory.
All classes built with cache support, follow this schema to take advantage of the

facilities provided by the EACAPI.

4.3 Implementation

Figure 4.4 shows how cache classes manage the data they hold in memory following

and extending the pattern presented in Figure 2.10, Chapter 2. At that time, the concepts

Set out-of-date, Reset out-of-date and Is out-of-date, were briefly introduced to give the idea

behind detection and usage of cached data. Here we will concretize these concepts for

use in cache classes:

Set out-of-date denotes that the data stored local in local memory is no more synchro-

nized with database, hence needs to be refreshed before next use. Concretely, the

term Set out-of-date is the removal of the record (associated with the message) from

the in-memory items[] list.

Reset out-of-date is a way to identify that the local data is synchronized with the

database. In short, the data is up to date if it exists in the in-memory items[] list,

upon the call of function SafeGet(). Therefore, the designation Reset out-of-date, is

the action of database data gathering and list insertion.

73

4.3. IMPLEMENTATION

Is out-of-date is the method to determinate if a specific record stored in items[] list is

up to date. Formally, it is the search in the items[] list for the record where key

matches the search value. In conclusion, if the required data exists in the items[]

list (out-of-date is false), it is ready to be used; otherwise (out-of-date is true), the

data must be obtained from database and inserted into the items[] list in order to

be ready for use.

Figure 4.4: Data management within a cache class.

In Figure 4.4, we can see that there are two independent flows. The left flow runs

in the thread context of the EACAPI in a listening state (passive) and the right flow

runs on the main thread UI (active). On the Listening thread, the data associated to the

received message is removed from the items[] list (corresponds to Set out-of-date); on

the Main thread the data is fetched from the database only if it is not in the in-memory

items[] list (corresponds to Is out-of-date and Reset out-of-date).

• OnEventalert() function callback is called by the EACAPI in a response to a

received message registered by the class. Here the message is used to search for

74

4.4. INTEGRATION

matching record in items[] list, using key as input parameter. The record found is

deleted from the list. No other resources are accessed from the callback function,

for example database and interfaces, because all callback functions connected to

the EACAPI, are executed on the same thread context. The actions performed in

this function corresponds to the Set out-of-date.

• SafeGet() is called by external functions in the context of the main thread UI,

in particular from the search engine, requiring access to the data stored in the

items[] list. As the name suggests, the function is thread safe. The LockList() and

UnlockList() locks and unlocks respectively, the access to the items[] list shared by

SafeGet() and OnEventAlert() functions. The reason is because these functions are

executed in distinct threads.

The first action performed inside the function, excluding the lock mechanism, is

to Look into the items[] list for a record that match the input parameters passed

to the function. If a record is found, it is returned to the caller function. On the

contrary, if no record found, then a query is submitted to the database inquiring

for a record matching the input parameters. In case of success, the data retrieved

from database is placed into the items[] list. In case of no data returned, i.e., no

matching record found on database, a record with default values (each class has its

own set of default values according the data structure they implement) is added

into the items[] list. The addition of a record into the items[] list corresponds to the

Reset out-of-date.

4.4 Integration

The integration stage consists in the utilization of the facilities provided by the MBF, to

maintain data stored locally through the cache classes built for the effect. From the list of

validations performed in the booking creation process, we chose a subset of validations

to integrate within the MBF:

• Related with activity we decide to cache information about complex blocks, complex

75

4.4. INTEGRATION

season and activity season. This information usually changes when setting up the

application and almost always outside of business hours.

• From staff, we chose staff timetable and staff blocks. At the present time, staff

timetable and staff blocks have a considerable impact on performance due to the

number of requests performed. As a rule, the staff schedule is done once per

month. Afterwards, it may be adjusted due to several factors, like staff illness,

staff operations and scheduled exchange between staff members. As a result,

a peak activity may occur at the end of each month during the preparation of

next month’s schedule. However, even though performance degradation may

occur (due to the number of messages circulating on the MBN in response to time

change messages), it will have a limited impact over the month.

• Finally, from location, our choice fell on the location blocks, because changes are

unlike to happen daily or even monthly.

The criteria for selecting these rules to apply the data cache were: the low rate of

data change in the database, and the number of queries that requested the same data.

The former refers to the frequency of insert, update, and delete operations in the database.

The latter refers to obtaining the same data in a short period given the same input

parameters. For example, the staff timetable is usually set once a month or once a week;

and locations are generally set up during the initial installation and are rarely changed.

In both examples, the number of modifications is low, while the number of queries is

high. Although the size of the data transmitted over the network is relatively small, it

is not necessary to consult the database every time the availability needs to be known.

(Not to mention that these queries return, in most cases, the same results.)

We will demonstrate the cache mechanism, by taking the staff timetable as an example,

and show how data is cached and accessed from the search engine in comparison with

the old system without cache.

76

4.4. INTEGRATION

4.4.1 Definition of cache class TStaffTimeList

As we state in Section 4.2, every cache implementation requires two classes. In this

case the TStaffTimeList implements the logic to manage the TStaffTimeItem data. The

class TStaffTimeItem was already in use by the search engine, while TStaffTimeList was

created to make use of the functionalities provided by the MBF.

Figure 4.5 illustrates the structure of the integration classes. The TStaffTimeItem

class contains variables to identify a record in the staff timetable. As can be

seen, the information is related to staff working time, identifying when staff in

on schedule. The TStaffTimeList aggregates the features provided by the class

templates TEventLockListContainer<typename>, TLockListContainer<typename>, and

TListContainer<typename>. The ListenerID variable provides the link to connect the

class TStaffTimeList object instance to the EACAPI, which uses its ConnectionID to

connect with the MBF. The messages “StaffTimeCreated”, “StaffTimeUpdated”,

“StaffTimeDeleted”, and “ClearCache” are registered using the ListenerID to identify the

callback function OnEventAlert() to be called when one of these messages is received by

the EACAPI.

The messages registered have the following business logic:

• StaffTimeCreated: Sent by the application after user has created a new staff

timetable definition in the database.

• StaffTimeUpdated: Sent by the application after user has modified an entry of

the staff timetable.

• StaffTimeDeleted: Sent by application after user has deleted a staff timetable

record from database.

• ClearCache: As opposite to the above messages, which had in mind a subset of

subscribers, this message was designed to be registered by all cache classes, to

purge data from memory.

77

4.4. INTEGRATION

Figure 4.5: Example of the staff timetable classes used on integration.
Each record of Items[] contains a TStaffTimeItem object identified by the search key

composed by StaffID;StartDate;EndDate;StartTime;EndTime.

4.4.2 Utilization of cache class TStaffTimeList

To create a reservation, the application must check predetermined rules to complete the

process. To make the rules work, the pertinent information must be used. In order to be

accurate it needs to be obtained from database. This is the current method used by the

application whenever requires data in an operation.

The validation of the staff schedule is done in two phases: 1st data collection, 2nd

data use. In the first, data is obtained by requesting it from the database. In the second

phase, the data obtained is processed to identify if the staff has a defined time for the

period in question. This process is repeated whenever staff time needs to be evaluated.

This scheme is shown in Figure 4.6a.

Looking at Figure 4.6b, we observe the new system with messages integrated. The

workflow has not changed, it continues with the two phases of obtaining and using

data. Moreover, in spite of not being observable in the picture, the availability remains

untouched. However, the fundamental change resides in the first phase. Data is now

requested from the cache class (which is responsible for its management) through call

to SafeGet() (Figure 4.4), instead of database. It is the responsibility of the cache class

78

4.4. INTEGRATION

to read from database only if the requested data is not stored on the local memory.

From the caller’s perspective, there is no difference in the source of the data, whether

taken from local memory or from the database, because it is encapsulated in a local data

structure which is then used on either the old system without cache or the new system

including cache.

(a) Old system.
(b) New system using local
cache.

Figure 4.6: Example of staff timetable availability algorithm.

79

It is a capital mistake to theo-

rize before one has data.

Sherlock Holmes,

Scandal In Bohemia

5
Performance tests and results analysis

This chapter presents the performance tests and their results, taken from the old sys-

tem and the new system with the cache. We start by showing the assumptions and

components used to perform the tests. Next, we describe the actions taken to execute

each test, explain their purpose and what data is analysed. After that, we show the test

results accompanied by several graphs. The chapter ends with an analysis of the results

obtained.

5.1 Overview

To test the impact of the Message Broadcast Framework integration within the SPA &

Leisure application (client), we design a batch of tests to inquire about the response of

the system under different system load conditions. These tests were prepared to take

81

5.2. ASSUMPTIONS

into consideration the immutability of the input conditions and system state at runtime,

to provide a reliable comparison between the old system and the new system with local

cache.

5.2 Assumptions

The following assumptions were endorsed for the execution of the tests:

• The client-server database system is dedicated to the applications that perform

the tests. Therefore, the results obtained depend only on the tests and not of other

external factors.

• The used database contains real data, i.e., it is not a purpose-built database with

dummy data for testing. For this reason, the results reflect a client-server produc-

tion environment very accurately.

• Clients are connected to the database server and the EAS through a LAN.

• To follow the conditions of a production environment, connections to the database

server use an encrypted channel over Transmission Control Protocol over Internet

Protocol (TCP/IP), consequently increasing the network latency. Latency can play

a big part in performance (Chapman, 2016, p. 12) and cannot be ignored in our

tests.

• The profiling system uses the client components and the facilities of the MBF to

capture profiling data and save it into persistent storage for latter analysis.

5.3 System Model

Figure 5.1 shows the architecture assembled to execute the tests and to save the results

into a file. There are four parts involved in the profiling system:

Profiling Workstation: is the workstation from which the tests are launched. A set

of applications were built to assist the user in the execution of the tests. The

82

5.3. SYSTEM MODEL

Script-parser application is a small Windows command line application created

with the purpose to parse a script file with test case commands and send them to

the client connected to the MBF. The Event Inspector application is another GUI

Windows application created to diagnose the MBF. We use its functionalities to

receive and save to a file, the profiling data captured by the client and forwarded

by the EAS.

User Workstation: contains one client application to execute the tests issued by the

user through the MBF. Tests requiring more than one application are executed in

distinct workstations. With this configuration, the results taken from each client,

are not influenced by the other applications also running the tests. Tests were

executed using one, two and four application instances running simultaneously.

Database Server: comprise the Relational Database Management System (RDBMS)

used by client to store the business information.

Message Server: includes MBF server application. The MBF provides the function-

alities necessary to implement the new system with cache by forwarding cache

invalidation messages. The MBF is also used to coordinate the simultaneous

execution of the tests by clients.

83

5.4. WORKLOAD MODEL

Figure 5.1: Tests architecture model.

5.4 Workload Model

Using the system model shown in Figure 5.1, the execution of the tests proceeds as

described below:

1. Choose the test to run and determine how many simultaneous applications are

necessary to execute the test.

2. Launch the number of applications required to run the test.

84

5.4. WORKLOAD MODEL

3. Launch Event Inspector application, connect it to the EAS and go to listen mode.

4. Start the Script-parser application and load the test script file to initiate the tests.

From here the Script-parser application takes full control of the process. Applica-

tions respond to commands sent by the Script-parser application (SP) without any

user interaction.

5. When test completes, applications send a profiling message to the Event Inspector

application through the EAS with the data captured. The data is then saved into a

CSV file for latter analysis.

The tests were directed to the reservation creation process (search engine) because

it was the component that received the caching facilities provided by the integration

of the MBF (see Chapter 4). The creation of multi reservations in the application let us

stress the search engine, as the number of the booking activities can be as high as tens

or hundreds per reservation process. The method consists in (a) start the search on the

first activity in the list and finding the first available time (according to the established

business rules); (b) block the time found to prevent other applications from using that

time; (c) select the next activity and restart the search and lock process until it reaches

the last activity; and (d) create records in the database, if applicable in the test.

We divided the tests into two categories: volatile (Batch 1) and persistent (Batch

2 and Batch 3). In the first category, the application only searches for availability times

and temporarily locks the first found time of each activity in the list (no bookings are

created in the database). In the second category, the application executes the same

procedures, but it creates bookings on database. Therefore the next reservation session

will be affected by the previous sessions (as it would be in a production environment).

The volatile tests allow us to see how close are the results when running the same

tests on different days, while the persistent tests show how the system responds in the

presence of busy days (increase of data).

85

5.5. PROFILING DATA

5.5 Profiling data

Table 5.1 describes the profiling data captured in the tests. The parameter SqlCount con-

tains the number of requests submitted to the database server using “select” statements;

SqlRecords contains the number of records returned the “select” operations; SqlTime

contains the time spent by applications since the submission of the “select” requests

to the database server until they receive the results; The TotalTime includes the SqlTime

plus the time spent by applications in the business processes. The last two, Cached and

MemSize refers to the number of records kept in the local memory and to the occupied

memory.

Table 5.1: Captured parameters

Name Description

SqlCount No. of “select” statements
SqlRecords No. of records retrieved with “select” statements

SqlTime Time spent on “select” statements
TotalTime Total time spent on operation (including SQL statements)

Cached No. of records cached in local memory
MemSize Memory occupied by cached records

Percentage Change (Gain)

To calculate the percentage change between values of new system and old system, we

used the following expression:

Percentage Difference1 =
NewValue−OldValue

OldValue
× 100 % (5.1)

where OldValue is the reference (initial) value and NewValue is the target (final) value to

compare. The result is the relative change of NewValue compared with OldValue.

1When the result is negative it is a percentage decrease. Because we are comparing the new system
with the old system, we expect negative results. To avoid presenting negative values, we reversed the
sign of the result to indicate that the new system is behaving better than the old system (‘increase of
performance’).

86

5.6. TEST RESULTS

5.6 Test Results

To measure the client-server database system payload on each test execution, we created

a table in the database with one column and one row. Each time a new test starts,

applications perform 100 iterations by reading the current column value the table,

perform some computations at client-side and update the column with the calculated

result. The tests produced a total of 455 records with profiling data gathered from the

applications involved in the tests. We obtained an average of 2.990 s with a standard

deviation of 0.904 s within the interval of values [1.534 s, 10.146 s] from the payload

algorithm.

Figure 5.2 presents the distribution of the time taken to execute the payload algo-

rithm. We can see that 4 values are completely out of the other values, so they can

be seen as outliers. All tests were performed under the same network infrastructure

conditions and the measurements were recorded using the same procedure. We do not

have a concrete explanation of the causes, but we may advance possible reasons for

the abnormal results like temporary high process activity in client or server computers,

network instability or database server scheduled tasks running at test start time.

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

3

160

9597
60

26
9 1 1 2 1

Duration [s]

R
es

ul
ts

Figure 5.2: Average of the payload algorithm.

We prepared three batches of tests to be executed by the old system (without cache)

and by the new system (with daily cache and with weekly cache) as follows:

Batch 1: applications only search for available times and temporarily lock the first time

found for each activity in the list. Each test is executed 5 times to obtain more

accurate results.

87

5.6. TEST RESULTS

Batch 2: applications search for available times and create bookings in the database

using the times locked. The tests of this batch are composed of 5 daily tests over 5

consecutive days. The daily tests are cumulative because each new test execution

takes into consideration the reservations created by the previous tests (daily cache).

At the start of a new day of tests, the applications are restarted to make the results

independent of the previous days.

Batch 3: the same as Batch 2, but with the following exceptions:

1. Applications continue in execution until all tests of the week have been

completed. In this way, the cached data is kept in local memory and is

available for the following days (weekly cache). Consequently, the daily

results are affected by the results of the previous days.

2. Tests executed only by the new system using weekly cache because the old

system does not take advantage of the use of the local cache.

We randomly selected a set of 4 activities with different session duration: Chiro-

practic 15 mins, Acupuncture 30 mins, Swedish Massage 60 mins, Pedicure Intensive

90 mins. The tests evolved a maximum of 20 staff and 11 locations. Each application

instance received a unique set of 20 activities using a random combination of these

4 activities. A total of 4 sets were created (one for each application instance) which

remained unchanged during the execution of all tests. Tests results are detailed in

Appendix A.

5.6.1 Comparison between new and old systems

The comparison between the new system versus the old system shows the impact of

storing data on local memory.

Figure 5.3 compares the variation of new and old systems of Batch 2 when the

number of applications change and uses data from Appendix A, tables A.3 and A.4.

From a general point of view, the number of applications had little effect on results

88

5.6. TEST RESULTS

and the analysed parameters did not follow the same pattern. The number of queries

submitted to the database (SqlCount), had a reduction of around 45 %, but the number

of records retrieved from the database (SqlRecords) did not follow the same reduction.

The reason is that some queries submitted to the database did not return records in

either the old system or the new system. The total time spent in operations (TotalTime)

had also a considerable cut around (45 %). This reduction is directly related to the less

time spent by applications in network and database operations (SQL open time). We

can conclude that the time reduction was a direct effect of records kept in local memory.

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

40

60

80

44
.19

33
.4
1 46

.3

47
.74

44
.74

32
.9
7 45

.9
3

43
.5
6

45
.9
2

30
.74

49
.2
7

46
.0
2

[%
]

1 appl 2 appl 4 appl

Figure 5.3: Average gain of new system with daily cache over the old system Batch 2.

Figure 5.4, based on data of Appendix A, tables A.1, A.2 and A.3, A.4, compares

batches 1 and 2 performance between new system with daily cache and old system.

All parameters indicate that the new system always outperforms the old system and

the gain obtained varies between 32.97 % (see Figure 5.4b, Batch 2, SqlRecords) and

53.77 % (see Figure 5.4a, Batch 1, SqlTime). The parameter which shows the total time

of operations (TotalTime) had 50.94 % improvement in activity search (Batch 1) and

47.74 % improvement in activity search with booking creation (Batch 2), regarding the

tests with one application (see Figure 5.4a). Tests with two applications showed the

same performance improvement trend across all parameters as with one application,

though slightly lower (see Figure 5.4b).

The interpretation we make is that the application significantly reduced the time

spent searching for availability times when using local cache as a result of the reduction

89

5.6. TEST RESULTS

of (a) the number of queries submitted to the database and (b) the reduction of records

fetched from the database.

Batch 1 Batch 2

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

40

60

80
51

.6
5

45
.3
6 53

.7
7

50
.9
4

44
.19

33
.4
1 46

.3

47
.74

[%
]

(a) 1 application

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

40

60

80

52
.6
5

43
.7
9 53

.18

52
.0
8

44
.74

32
.9
7 45

.9
3

43
.5
6

[%
]

(b) 2 applications

Figure 5.4: Average gain of the new system with daily cache over the old system.

5.6.2 Comparison between weekly cache and daily cache

The comparison of the new system using different cache configurations shows us what

might be the best solution, particularly whether weekly or daily caching.

Figure 5.5, based on Appendix A, tables A.25 and A.4, shows the average gain of

the application using weekly cache versus daily cache. The obtained results with one

application indicate a small improvement when keeping data on local memory during

the week. However, the results with two applications reveal that there was almost no

improvement by using weekly cache.

This divergence of results, requires a detailed view break down by day, which is

presented on Figure 5.6. Each sub-figure represents the results of a day, based on tables

of Appendix A identified in each sub-figure. On one hand, the data presented confirm

for one application with weekly cache, although with some variations during the week,

a gain between 4.06 % (see Figure 5.6a, SqlCount) and 22.68 % (see Figure 5.6b, SqlTime).

On the other hand, it shows that for two applications, there was a performance gain

on the first three days, but a loss on the last two days of the week, in particular on

90

5.6. TEST RESULTS

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

10

20

30

4.
19 7.
26

14
.2
2

14
.6
9

1.3
2

1.6 0.
43

0.
32

[%
]

1 appl 2 appl

Figure 5.5: Average gain of weekly cache over daily cache.

Thursday (see Figure 5.6d), which had a noticeable drop of performance. All parameters

are negative, which removes the possibility of network congestion or a busy database

server because, under these circumstances, only the time-dependent parameters, SqlTime

and TotalTime would be affected. We investigated possible causes and found nothing

weird on configuration, although we find some minor differences in the staff timetable,

but nothing that justifies the worst performance.

It is difficult to explain such results in this context. However, we can speculate

that the cause of the “less good” results could be due to the algorithm used by the

application to fairly distribute the activities by the available staff.

91

5.6. TEST RESULTS

1 appl 2 appl

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

20

40

4.
06 7.
26

17
.16

16
.6
3

0.
34 1.3
8

3.
44

2.
48

[%
]

(a) Monday (tables A.26, A.16)

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

20

40

4.
06 7.
26

22
.6
8

20
.3
9

2.
26

1.4
4

2.
11

1.6
9[%

]

(b) Tuesday (tables A.27, A.18)

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

20

40

4.
06 7.
26 9.
72 11
.6
3

6.
46

5.
97

4.
07

4.
57[%

]

(c) Wednesday (tables A.28, A.20)

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

20

40

4.
69 7.
26 9.
93 11
.8
5

−
4.
49

−
2.
28

−
5.
68

−
5.
87[%

]

(d) Thursday (tables A.29, A.22)

Sq
lC

ount

Sq
lR

ec
ord

s

Sq
lTim

e

To
tal

Tim
e

0

20

40

4.
06 7.
26 10

.0
9

12
.3
1

1.5
1

1.4
2

−
2.
26

−
1.7

7[%
]

(e) Friday (tables A.30, A.24)

Figure 5.6: Average gain of weekly cache over daily cache break down by day.

5.6.3 Weekly cache vs daily cache evolution over the week days

To better visualize the difference of performance when using no-cache, daily cache we

show in this section, the average results evolution of the individual parameters over the

week. These parameters are TotalTime, Cached and MemSize. All figures are based on

tables of Appendix A.

92

5.6. TEST RESULTS

Based on tables A.26 – A.30 (weekly cache); tables A.16, A.18, A.20, A.22, A.24 (daily

cache) and tables A.15, A.17, A.19, A.21, A.23 (no cache), Figure 5.7 shows the total time

taken by the application to complete the 5 daily tests. The old system took more time to

execute the tests compared to the new system. The new system with weekly cache and

daily cache took practically the same time.

Weekly cache Daily cache No cache

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

10
20
30
40
50
60
70

[s
]

(a) 1 application

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

10
20
30
40
50
60
70

[s
]

(b) 2 applications

Figure 5.7: Evolution of TotalTime parameter over the week.

Figure 5.8 shows the average of the number of cache records of the five daily tests

based on tables A.26 – A.30 (weekly cache) and tables A.16, A.18, A.20, A.22, A.24 (daily

cache). In both figures, Figure 5.8a and Figure 5.8b, the number of records cached in

the local memory remains practically constant throughout the week for the new system

with daily cache and increases linearly for the new system with weekly cache.

A very important parameter, MemSize, which indicates the impact in the memory

required to store the cached records on local memory, based on tables A.26 – A.30

(weekly cache) and tables A.16, A.18, A.20, A.22, A.24 (daily cache), is introduced in

the Figure 5.9. The behaviour observed, is identical to the parameter Cached, i.e., they

both keep constant with daily cache and increase with weekly cache. This relation is

expected because the records cached have the “same” individual size2

It is important to highlight the fact that in the worst case, in total, there were

2This statement is not 100 % correct because each record may have a different size depending on the
data, but in general, they do not differ much. For example, the activity name “Acupuncture 30 mins”,
requires less space in memory than “Pedicure Intensive 90 mins”.

93

5.6. TEST RESULTS

Weekly cache Daily cache

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

0
5,000
10,000
15,000
20,000
25,000
30,000

(a) 1 application

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

0
5,000
10,000
15,000
20,000
25,000
30,000

(b) 2 applications

Figure 5.8: Evolution of Cached parameter over the week.

nearly 30 000 records cached occupying around 8 MB in local memory. These values

demonstrate the low impact in memory, according to the memory capacity of current

equipment. According to these results, we can infer that it would still be possible to

cache records of a month before applying a record retention policy.

Weekly cache Daily cache

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

[K
B
]

(a) 1 application

M
onday

Tu
es

day

W
ed

nes
day

Thursd
ay

Frid
ay

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

[K
B
]

(b) 2 applications

Figure 5.9: Evolution of MemSize results over a week.

5.6.4 Results Analysis

From the previous results, we see that the new system with daily cache performed

quite significantly better compared to the old system without cache. The total operation

94

5.6. TEST RESULTS

time had an improvement of about 40 %. However, when comparing the new system

including weekly cache with the new system including daily cache, there were much

smaller improvements, mainly in the 2 applications case, despite the higher number of

records stored on local memory.

Both tests of Batch 2 (daily cache) and Batch 3 (weekly cache), were designed to

create daily reservations using the availability search and booking process in one-pass.

In total, 5 daily tests were performed for 5 days, starting the availability search always

from 08:00, which mean that on each new daily test, the application had to search for

the times already taken from the previous tests before finding available times to book.

Each test stored the relevant data on the local memory. Therefore, it was possible to

use part of the records stored in the memory obtained in the previous tests. So far, this

method was common to both cache models.

The difference was when moving to the next day, the system with daily cache purged

all cached records from memory, and the system with weekly cache maintained the

records. The system with weekly storage should have been much more efficient, but it

was not, because the records stored in memory mainly concerned the current day and

previous days. Therefore, when starting a new day, regardless of the cache type, most of

the needed records were not in memory; consequently, they needed to be retrieved from

the database to be available for subsequent queries. This was the reason why the weekly

cached results did not perform better, even while keeping more records in memory.

However in a production environment, the search and booking creation process does

not happen always in a sequential fashion. For example, clients may ask for availability

on Monday, then on Friday and again on Monday. Therefore the application may search

for the same availability multiple times before creating a booking.

In the system with daily cache whenever the search day changes, records are re-

moved from memory. Therefore any records required for the availability check must be

retrieved from the database and cached again. On the other hand, in the system with

weekly cache, records are removed from memory only when the search week changes.

The change to a day in the same week is supposed to happen more often than a change

95

5.6. TEST RESULTS

to another week. Therefore the records in the weekly cached system are supposed to be

reused longer, reducing the number of requests submitted to the database.

For the reasons appointed above, we consider that the new system with the weekly

cache has significant advantages in a production utilization context.

96

6
Conclusions

The SPA & Leisure application is being developed for about twenty years, containing

hundreds of thousands of source code lines. The search engine component used to find

available times to book contains some classes and functions shared by other areas of the

application, with complex business logic. The rules and restrictions are very challenging

and arduous to rewrite.

To overcome the decrease in performance due to the booking process in response

to the continuous increase of data in the database, we proposed and implemented a

broadcast message framework to allow store data on local memory. This framework

acts as a parallel system keeping watching data changes on the database and as soon as

data change, a message is sent to the applications to inform them that current data held

is out-of-date and must be refreshed before the next use.

97

The proposed framework was based on the following premises:

• Load of data, data is retrieved from the database and kept in memory using local

variables.

• Usage of data, when it is required, data is accessed directly from local memory.

After use, memory is not destroyed, it is available for use next time.

• Maintenance of data, the message broadcast system notifies connected applications

to refresh or flag local data as out-of-date to ensure it is up to date when it is

needed.

The Message Broadcast Framework integration was designed to not require signifi-

cant changes to the application code base or directly interfere with existing functionality

and to be easily integrated and tuned in the application. For example, in the presence of

a large number of updates on the database, it may be necessary to turn off or adjust the

local cache of data affected.

The results of the tests realized, clearly show that the new system using local data

outperforms the old system. The most important achievement was the reduction of the

total time of the booking process in around 50 %. It is important to clarify that these

results were achieved only by storing the data in local memory for later use, keeping

the availability search algorithm unchanged1.

Another point is the amount of local memory required to hold the cached data. Our

results showed that for two applications, the total memory used was below 8 MB when

using weekly cache and bellow 5 MB when using the daily cache.

In summary, based on the test results obtained, we conclude that using the new

system with cache yields a relevant performance gain over the old non-cached system

(around 50 %) and that the memory needed to store data is negligible for today’s storage

capacity. Lastly, the use of weekly cache is justified for normal daily operations, because

usually, the same availability times are sought more than once before booking creation.

1While this is true, there were modifications in the application to support the integration of the MBF,
but they were not related to the application’s business rules.

98

6.1. PUBLICATIONS

6.1 Publications

One publication resulted from the present work entitled “Message broadcast framework

for local storage in distributed applications” (A. Miguel2,4 R. Lam3[000-0003-4297-2441]

G. Schütz3,4[0000-0001-5081-3913]), available at https://doi.org/10.1007/978-3-030-30938-1_

25, and was presented with oral communication in the INCREaSE 2019, Proceedings of

the 2nd International Congress on Engineering and Sustainability in the XXI Century, at

Instituto Superior de Engenharia from Universidade do Algarve, Faro, Portugal.

6.2 Future Work

We intend to extend the current work into three areas. The first area is the integration

of the framework into other parts of the application. Figure 3.13 (Chapter 3) showed

few areas that would have a significant benefit using the facilities offered by the MBF,

in particular, the Agenda Form. Operators spend a substantial part of the day using the

main agenda, whether to view, create, check-in or check-out reservations. Whenever

the operator changes the calendar view or makes changes in reservations, the agenda is

always filled with information retrieved from the database. Much of this information

has a low change rate, such as staff time, so keeping this data in local memory will

reduce the number of times the database returns the same information significantly.

The second area is to make better use of the local memory by refactoring some

parts of the application related to the management of the cached records. Instead of

submitting SQL statements with specific searches to the database server, the application

submits less restrictive queries, therefore transferring part of the logic contained in the

SQL statement into the client application. The specific filtering is to be carried by the

SafeGet() method (of each cache class) when the application requests a record from the

local cache. With this new approach, the number of searches in the database, as well as

the number of downloaded records, should decrease substantially.

2Institute of Engineering of the University of Algarve (MEEE), Portugal
3Institute of Engineering of the University of the Algarve, Portugal
4Center for Electronic, Optoelectronic and Telecommunications (CEOT)

99

https://doi.org/10.1007/978-3-030-30938-1_25
https://doi.org/10.1007/978-3-030-30938-1_25

6.2. FUTURE WORK

The last area of interest is to investigate how to send notification messages directly

from the database server, in the context of a transaction, as referred in Chapter 1,

Subsection 1.3.3, but using the EACAPI. The objective is to transfer part of the client

application business logic into the database. In current notification implementation, it is

the responsibility of the client to send invalidation messages after performing changes

on the database. With this new design, the notification process will be initiated by the

database server after it commits the transaction. We expect client applications to be

notified faster with the most recent snapshot of the changed data.

100

Bibliography

Abraham Pizam (Ed.). (2005). International encyclopedia of hospitality management. Taylor

& Francis.

Babuškov, M. (2005). The Power of Firebird Events. Retrieved September 19, 2019, from

https://firebirdsql.org/file/documentation/papers_presentations/Power_

Firebird_events.pdf

Bardi, J. A. (2002). Hotel front office management. Wiley.

Beasley, J. S., & Nilkaew, P. (2015). Networking essentials: A comptia network+ n10-006

textbook (4th edition). Pearson IT Certification.

Bukhari, F. (2012). Maintaining Consistency in Client-Server Database Systems with Client-

Side Caching (Doctoral dissertation). Newcastle University.

Burleson Consulting. (2019). Oracle TNS Ping tips. Retrieved November 23, 2019, from

http://www.dba-oracle.com/tips_oracle_tnsping_command_example.htm

Chapman, C. (2016, May 1). Network performance & security. Elsevier.

Conceptek. (2019). Concept Spa & Leisure. Retrieved January 15, 2019, from https://

concept.shijigroup.com/en/products/concept-spa-leisure-software/concept-

spa-leisure/

Council, P. S. S. (2020). Securing the future of payments together. Retrieved February 1,

2020, from https://www.pcisecuritystandards.org/

Eckel, B. (2000). Thinking in C++ (2nd ed). Prentice Hall.

101

https://firebirdsql.org/file/documentation/papers_presentations/Power_Firebird_events.pdf
https://firebirdsql.org/file/documentation/papers_presentations/Power_Firebird_events.pdf
http://www.dba-oracle.com/tips_oracle_tnsping_command_example.htm
https://concept.shijigroup.com/en/products/concept-spa-leisure-software/concept-spa-leisure/
https://concept.shijigroup.com/en/products/concept-spa-leisure-software/concept-spa-leisure/
https://concept.shijigroup.com/en/products/concept-spa-leisure-software/concept-spa-leisure/
https://www.pcisecuritystandards.org/

BIBLIOGRAPHY

Embarcadero. (2019). RAD Studio. Retrieved December 11, 2019, from https://www.

embarcadero.com/products/rad-studio

Embarcadero, I. C., An Idera. (2009). System.Classes.TStrings.CommaText. Retrieved

September 10, 2019, from http://docwiki.embarcadero.com/Libraries/Rio/en/

System.Classes.TStrings.CommaText

FirebirdSQL. (2019). The true universal open source database. Retrieved September 19,

2019, from https://firebirdsql.org/

GDPR. (2020). Rules for business and organisations. Retrieved February 1, 2020, from

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-

business-and-organisations_en

Glass, G. (1993). UNIX for programmers and users: A complete guide. Prentice Hall.

González, B., & Thiruvathukal, G. (2006). A Distributed StorageFramework. Retrieved

April 14, 2019, from http : / / www. linuxclustersinstitute . org / conferences /

archive/2006/PDF/08-Gonzales_B_final.pdf

Hower, C. Z. (2006). Internet Direct (Indy). Retrieved January 8, 2019, from http://ww2.

indyproject.org/docsite/html/frames.html?frmname=topic&frmfile=index.

html

Indy Pit Crew, H., Chad Z. (2020). Indy 10 documentation. Retrieved May 6, 2020, from

https://www.indyproject.org/documentation/

Lucid Software Inc. (2019). Data Flow Diagram. Retrieved January 27, 2019, from https:

//www.lucidchart.com/pages/data-flow-diagram

Microsoft. (2009). Pushing the limits of windows: Processes and threads. Retrieved

April 28, 2020, from https : / / docs . microsoft . com / pt - pt / archive / blogs /

markrussinovich/pushing-the-limits-of-windows-processes-and-threads

Microsoft. (2019a). Introduction to Windows Service Applications. Retrieved March 24,

2019, from https://docs.microsoft.com/en-us/dotnet/framework/windows-

services/introduction-to-windows-service-applications

102

https://www.embarcadero.com/products/rad-studio
https://www.embarcadero.com/products/rad-studio
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStrings.CommaText
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStrings.CommaText
https://firebirdsql.org/
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations_en
http://www.linuxclustersinstitute.org/conferences/archive/2006/PDF/08-Gonzales_B_final.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2006/PDF/08-Gonzales_B_final.pdf
http://ww2.indyproject.org/docsite/html/frames.html?frmname=topic&frmfile=index.html
http://ww2.indyproject.org/docsite/html/frames.html?frmname=topic&frmfile=index.html
http://ww2.indyproject.org/docsite/html/frames.html?frmname=topic&frmfile=index.html
https://www.indyproject.org/documentation/
https://www.lucidchart.com/pages/data-flow-diagram
https://www.lucidchart.com/pages/data-flow-diagram
https://docs.microsoft.com/pt-pt/archive/blogs/markrussinovich/pushing-the-limits-of-windows-processes-and-threads
https://docs.microsoft.com/pt-pt/archive/blogs/markrussinovich/pushing-the-limits-of-windows-processes-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications

BIBLIOGRAPHY

Microsoft. (2019b). Multihreading. Retrieved July 4, 2019, from https://docs.microsoft.

com/en-us/cpp/parallel/multithreading-creating-user- interface- threads?

view=vs-2019

Microsoft. (2019c). Synchronization Functions. Retrieved January 15, 2019, from https:

//docs .microsoft . com/pt- pt/windows/desktop/Sync/synchronization-

functions

Microsoft. (2019d). User mode and kernel mode. Retrieved June 20, 2019, from https://

docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-

mode-and-kernel-mode

Microsoft. (2019e). WM_copydata message. Retrieved March 27, 2019, from https :

//docs.microsoft.com/en-us/windows/desktop/dataxchg/wm-copydata

Microsoft. (2020). WM_user message range numbers. Retrieved June 14, 2020, from

https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-user

Naderializadeh, N., Maddah-Ali, M. A., & Avestimehr, A. S. (2017). On the optimality

of separation between caching and delivery in general cache networks. 2017

IEEE International Symposium on Information Theory (ISIT), 1232–1236. Retrieved

August 21, 2019, from http://ieeexplore.ieee.org/document/8006725/

Pressman, R. (2009). Software Engineering: A Practitioner’s Approach (7th edition). McGraw-

Hill Education.

Shiji Group. (2020). Concept golf & spa. Retrieved June 7, 2020, from https://www.

shijigroup.com/brands/concept-spa

Shipley, T. G., & Bowker, A. (2014). Internet Criminals. Investigating Internet Crimes

(pp. 21–39). Elsevier. Retrieved August 21, 2019, from https : / / linkinghub .

elsevier.com/retrieve/pii/B9780124078178000023

Silberschatz, A., Korth, H. F., & Sudarsham, S. (2006). Database System Concepts (Interna-

tional Edition 2006). Mc Graw Hill.

Spa Business Handbook. (2015). Spa Business Handbook. Spa Business Handbook. www.

spahandbook.com

103

https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-user-interface-threads?view=vs-2019
https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-user-interface-threads?view=vs-2019
https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-user-interface-threads?view=vs-2019
https://docs.microsoft.com/pt-pt/windows/desktop/Sync/synchronization-functions
https://docs.microsoft.com/pt-pt/windows/desktop/Sync/synchronization-functions
https://docs.microsoft.com/pt-pt/windows/desktop/Sync/synchronization-functions
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/wm-copydata
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/wm-copydata
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-user
http://ieeexplore.ieee.org/document/8006725/
https://www.shijigroup.com/brands/concept-spa
https://www.shijigroup.com/brands/concept-spa
https://linkinghub.elsevier.com/retrieve/pii/B9780124078178000023
https://linkinghub.elsevier.com/retrieve/pii/B9780124078178000023
www.spahandbook.com
www.spahandbook.com

BIBLIOGRAPHY

Stallings, W. (2018). Operating systems: Internals and design principles (9th edition, global

edition). Pearson.

Vakali, A. (1999). A Web-based evolutionary model for Internet data caching. Proceedings.

Tenth International Workshop on Database and Expert Systems Applications. DEXA 99,

650–654. Retrieved August 21, 2019, from http://ieeexplore.ieee.org/document/

795261/

Walsh, I. (2020). Business rules vs. business requirements. Retrieved June 21, 2020, from

https://www.brcommunity.com/articles.php?id=b631

Wikipedia. (2018). Passive Data Structure. Retrieved March 27, 2019, from https://en.

wikipedia.org/wiki/Passive_data_structure

Wikipedia. (2019). Instant Messaging. Retrieved November 24, 2019, from https://en.

wikipedia.org/wiki/Instant_messaging

104

http://ieeexplore.ieee.org/document/795261/
http://ieeexplore.ieee.org/document/795261/
https://www.brcommunity.com/articles.php?id=b631
https://en.wikipedia.org/wiki/Passive_data_structure
https://en.wikipedia.org/wiki/Passive_data_structure
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Instant_messaging

A
Results

Results presented in this section are the average of the values captured when executing

performance tests with the application.

A.1 Batch 1

Average results from 5 tests performed using the same initial conditions and with no

bookings creation.

A.1.1 Daily results

105

A.2. BATCH 2

Table A.1: Daily average results (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 3,854.0 2,867.0 9.206 15.557
2 5,011.3 3,681.5 11.705 18.994

Table A.2: Daily average results (new system with daily cache)

Appl SqlCount SqlRecords SQL Time (s) Total Time (s) Cached MemSize (KB)

1 1,863.4 1,566.4 4.256 7.632 549.0 141.947
2 2,373.1 2,069.3 5.481 9.102 744.6 192.168

A.2 Batch 2

Average results from 5 daily tests in the period of 5 days with bookings creation. Data

stored on local memory was discard on each new day.

A.2.1 Weekly results

Table A.3: Weekly average results (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,486.6 6,891.8 23.890 39.480
2 17,159.0 13,469.4 39.560 60.108
4 31,611.0 28,550.1 83.051 124.528

Table A.4: Weekly average results (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,294.2 4,589.2 12.828 20.633 1,972.0 512.582
2 9,482.1 9,028.5 21.389 33.923 3,309.6 867.917
4 17,096.3 19,772.9 42.128 67.220 5,902.8 1,553.251

A.2.2 Weekly results partition by test of the day

106

A.2. BATCH 2

Table A.5: Weekly average results of test No. 1 of the day (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 2,918.0 2,037.0 8.809 16.897
2 3,960.7 2,827.5 9.519 15.525
4 6,953.1 4,677.5 18.425 29.041

Table A.6: Weekly average results of test No. 1 of the day (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 1,581.0 1,162.0 4.417 7.565 402.0 102.456
2 2,529.7 1,883.0 6.136 10.024 622.7 160.400
4 4,208.7 3,017.6 10.872 17.110 998.3 259.817

Table A.7: Weekly average results of test No. 2 of the day (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 5,913.0 4,294.0 15.303 26.614
2 10,056.6 6,928.8 23.464 35.918
4 19,637.9 14,594.4 51.009 76.373

Table A.8: Weekly average results of test No. 2 of the day (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 3,373.0 2,489.0 8.601 13.882 1,009.0 260.784
2 5,763.3 4,403.1 13.144 20.820 1,585.8 413.560
4 10,980.3 9,353.3 28.155 43.741 2,844.2 746.691

Table A.9: Weekly average results of test No. 3 of the day (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,369.0 6,530.0 23.387 38.701
2 16,854.8 12,450.7 38.855 58.875
4 33,297.3 28,070.8 86.958 129.667

107

A.2. BATCH 2

Table A.10: Weekly average results of test No. 3 of the day (new system with daily
cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,201.0 4,175.0 12.700 20.380 1,726.0 447.995
2 9,363.1 8,236.8 20.922 32.994 2,916.9 764.081
4 18,107.2 18,694.1 44.511 69.389 5,391.7 1,419.050

Table A.11: Weekly average results of test No. 4 of the day (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 13,023.0 9,369.0 32.290 51.876
2 24,133.8 19,241.3 55.390 83.660
4 46,461.3 43,220.9 120.804 181.450

Table A.12: Weekly average results of test No. 4 of the day (new system with daily
cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 7,304.2 6,353.4 17.336 27.614 2,758.6 717.998
2 13,135.2 12,890.6 29.217 46.122 4,691.3 1,231.827
4 25,040.3 29,896.1 61.848 99.059 8,615.2 2,269.280

Table A.13: Weekly average results of test No. 5 of the day (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 16,210.0 12,229.0 39.662 63.313
2 30,788.9 25,898.6 70.573 106.563
4 51,705.6 52,186.8 138.058 206.109

Table A.14: Weekly average results of test No. 5 of the day (new system with daily
cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 9,012.0 8,766.6 21.087 33.726 3,964.2 1,033.677
2 16,619.1 17,729.0 37.528 59.652 6,731.5 1,769.717
4 27,145.0 37,903.6 65.252 106.804 11,664.4 3,071.421

108

A.2. BATCH 2

A.2.3 Daily results

Table A.15: Average results of Monday (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,485.2 6,891.4 24.842 40.071
2 16,566.1 13,130.4 37.842 57.678
4 30,777.4 27,663.6 77.325 117.298

Table A.16: Average results of Monday (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,286.0 4,588.6 13.155 20.945 1,974.2 513.170
2 9,621.7 9,015.5 22.086 34.907 3,377.8 885.915
4 16,904.1 18,991.4 40.527 65.350 5,888.4 1,549.424

Table A.17: Average results of Tuesday (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,485.2 6,891.4 24.587 37.857
2 16,844.9 13,418.1 38.162 58.037
4 31,761.6 28,952.7 85.346 126.322

Table A.18: Average results of Tuesday (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,286.0 4,588.6 14.171 22.036 1,974.2 513.170
2 9,328.2 9,063.5 21.094 33.437 3,267.6 856.942
4 16,851.0 19,586.9 38.262 62.380 5,823.9 1,532.322

Table A.19: Average results of Wednesday (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,485.2 6,891.4 23.324 39.993
2 17,606.9 13,698.2 40.804 61.985
4 30,827.8 28,445.7 78.533 119.606

109

A.2. BATCH 2

Table A.20: Average results of Wednesday (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,286.0 4,588.6 12.228 19.942 1,974.2 513.170
2 9,950.2 9,052.2 22.164 35.207 3,481.5 913.292
4 17,122.3 19,912.3 44.197 69.461 5,902.8 1,553.136

Table A.21: Average results of Thursday (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,492.2 6,893.4 23.494 39.921
2 16,610.6 12,996.3 39.628 59.948
4 33,061.1 29,345.0 89.269 132.852

Table A.22: Average results of Thursday (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,327.2 4,591.6 12.248 20.018 1,963.0 510.230
2 9,041.0 8,924.2 20.569 32.549 3,109.2 814.900
4 17,591.1 20,381.2 44.496 70.298 6,018.5 1,584.280

Table A.23: Average results of Friday (old system)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s)

1 9,485.2 6,891.4 23.204 39.559
2 18,166.3 14,103.9 41.365 62.893
4 31,627.2 28,343.3 84.779 126.562

Table A.24: Average results of Friday (new system with daily cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,286.0 4,588.6 12.340 20.225 1,974.2 513.170
2 9,469.3 9,087.1 21.034 33.513 3,312.1 868.535
4 17,013.0 19,992.9 43.156 68.613 5,880.3 1,547.095

110

A.3. BATCH 3

A.3 Batch 3

Average results from 5 daily tests in 5 days with the creation of reservations. As the data

stored on the local memory was not discarded during the execution of the tests, Cached

and MemSize will increase in all the days because they accumulate the results from the

previous days, as opposite to SqlCount, SqlRecords, SqlTime and TotalTime which store

the results of each current day individually.

A.3.1 Weekly Results

Table A.25: Weekly average results (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,072.6 4,256.1 11.004 17.602 9,192.3 2,403.376
2 9,357.3 8,884.4 21.297 33.816 16,550.9 4,348.962

A.3.2 Daily results

Table A.26: Average results of Monday (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,071.4 4,255.6 10.898 17.463 1,867.8 486.682
2 9,588.9 8,891.4 21.327 34.041 3,342.5 876.755

Table A.27: Average results of Tuesday (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,071.4 4,255.6 10.956 17.542 5,529.8 1,444.964
2 9,117.4 8,932.8 20.648 32.874 9,972.7 2,619.778

Table A.28: Average results of Wednesday (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,071.4 4,255.6 11.039 17.623 9,191.8 2,403.247
2 9,307.8 8,511.9 21.262 33.599 16,492.1 4,333.583

111

A.3. BATCH 3

Table A.29: Average results of Thursday (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,077.6 4,258.2 11.032 17.645 12,854.2 3,361.636
2 9,446.6 9,128.0 21.738 34.459 23,142.7 6,081.742

Table A.30: Average results of Friday (new system using weekly cache)

Appl SqlCount SqlRecords SqlTime (s) TotalTime (s) Cached MemSize (KB)

1 5,071.4 4,255.6 11.095 17.736 16,517.8 4,320.346
2 9,325.9 8,957.7 21.509 34.106 29,804.5 7,832.953

112

	List of Tables
	List of Figures
	Glossary
	Acronyms
	Chapter 1 Introduction
	Motivation and scope
	Objectives
	State-of-the-art
	Data caching
	Broadcasting
	FirebirdSQL database notification approach
	Conclusion
	Report structure

	Chapter 2 Current system and proposed solution
	Overview
	Application structure
	Booking
	Active booking status
	Cancelled booking status
	On-Hold status
	Booking status transitions

	Search Engine
	Availability times
	Availability modes
	Availability calculation

	Online Search Engine
	Daily operations
	Manual booking process
	Creation of multi-bookings using the booking engine

	Problem description
	Proposed solution

	Chapter 3 Implementation Model
	Overview
	Communication flow
	Server Applications
	EventAlerter Application
	Memory Data Structures

	Logger Application
	Client Application
	Broadcast messages client support classes
	Application UI workflow
	Client Identification
	Client Listeners
	Listeners in Action

	Messages
	Messages Encoding
	Messages Format
	RegisterMessages
	UnregisterMessages
	PostMessage

	Security

	Chapter 4 Application Integration
	Overview
	Architecture
	Implementation
	Integration
	Definition of cache class TStaffTimeList
	Utilization of cache class TStaffTimeList

	Chapter 5 Performance tests and results analysis
	Overview
	Assumptions
	System Model
	Workload Model
	Profiling data
	Test Results
	Comparison between new and old systems
	Comparison between weekly cache and daily cache
	Weekly cache vs daily cache evolution over the week days
	Results Analysis

	Chapter 6 Conclusions
	Publications
	Future Work

	Bibliography
	Appendix A Results
	Batch 1
	Daily results

	Batch 2
	Weekly results
	Weekly results partition by test of the day
	Daily results

	Batch 3
	Weekly Results
	Daily results

