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Abstract 

 

DNA methylation is one of the most studied epigenetic events. In normal cells, it 

assures the regulation of gene expression without changing the genetic code. However, 

alterations in DNA methylation are now widely recognized as a contributing factor in 

tumorigenesis.  

The bulk of research done in cancer epigenetics focuses on one of two events: promoter 

hypermethylation and global hypomethylation. Advances in the understanding of how DNA 

methylation shapes the chromatin’s organization and how the later affects gene expression have 

been made. Less is known about how DNA methylation affects genes not only locally but also 

at a distance. 

We hypothesized that during tumorigenesis specific genomic regions are more 

susceptible to DNA methylation (epi-hotspots) and other are resistance to DNA methylation 

changes (epi-blackholes). We also hypothesized that these regions might persist in tumor cells 

by exerting some selective pressure in the primary tumor clones.  

By performing a pan-cancer analysis comparing normal to stage-I primary stage-I 

primary tumor samples gathered from TCGA consortium, we observed that both epi-hotspots 

and epi-blackholes occurred in all of the analyzed cancer cohorts. Furthermore, generally, epi-

hotspots were able to predict gene expression alterations during tumorigenesis, and epi-

blackholes were predictors of maintenance of gene expression during tumor initiation, which 

was in accordance with our hypothesis. 

We also found that several epi-hotspots and epi-blackholes are predictors of survival in 

stage-III tumor patients, which may provide potential study targets for candidate prognostic 

biomarkers. 

In summary, this study provides new evidence that regional methylation patterns 

potentially might exert selective pressure in tumor initiation by influencing genome-wide gene 

expression, and that these traits might be used to develop novel diagnostic and prognostic 

candidate biomarkers. 

Keywords: DNA methylation, Cancer, Gene Expression, Prognostic Biomarkers, DNA 

regions  
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Resumo 

O cancro é um conjunto heterogéneo de várias doenças que são caracterizadas por uma 

taxa de crescimento e divisão celular anormais. Durante o processo tumorigénico, as células 

tumorais vão sucessivamente adquirindo alterações genéticas e epigenéticas, o que leva a uma 

continua seleção de subclones tumorais. Durante esta evolução tumoral, as células sofrem 

alterações a nível da metilação de DNA que, tal como as mutações, podem ser propagadas para 

as células-filha. Estes tipos de alterações contribuem não só para o início do processo 

tumorigénico, como também para o seu continuo desenvolvimento, sem alterarem a sequência 

de DNA. 

Alterações a nível da metilação de DNA participam no processo tumorigénico 

influenciando diretamente a expressão génica, e afetando a conformação da cromatina que, por 

sua vez, está relacionada com a toda a expressão génica na célula. Para serem ativamente 

expressos, os genes têm de estar acessíveis a fatores regulatórios. Por outro lado, genes que 

têm a sua expressão silenciada tendem a estar compactados na cromatina, de forma a estarem 

inacessíveis às proteínas responsáveis pela sua transcrição. Alterações a nível da conformação 

da cromatina podem promover a tumorigénese pelo facto de mudarem a acessibilidade de certas 

regiões de DNA, assim alterando o padrão global de expressão génica da célula.  

A maioria dos tumores apresenta um padrão de metilação de DNA global anormal. Uma 

vez que estes mesmos padrões têm um papel importante na modulação da acessibilidade da 

cromatina, que por sua vez tem impacto no fenótipo da célula, surgiu a pergunta biológica: “ 

durante o processo de iniciação tumoral, serão certas regiões genómicas mais suscetíveis a 

alterações a nível de metilação de DNA?”. E no caso da resposta a esta pergunta ser afirmativa, 

surge ainda a questão: “Será que estas regiões estão associadas à alteração de padrões de 

expressão génica nas células tumorais?”.   

No caso de existirem zonas genómicas de maior suscetibilidade a alterações de 

metilação de DNA, e estas estarem associadas a alterações a nível de expressão génica, surge 

ainda a hipótese que estas regiões poderão ter valor de prognóstico em pacientes com doença 

avançada.  

Numa tentativa de respondermos a estas questões, realizámos uma análise a doze tipos 

de cancro (adenocarcinoma do colon, adenocarcinoma do pâncreas, carcinoma da mama, 

colangiocarcinoma, carcinoma do esófago, cancro da cabeça e pescoço, carcinoma de células 
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renais de células claras, carcinoma de células renais papilar, carcinoma hepatocelular, 

adenocarcinoma do pulmão, carcinoma do pulmão de células escamosas, e carcinoma da 

tireoide), onde comparámos dados de metilação entre amostras de tecido normal com amostras 

de tecido tumoral em estádio I. Por forma a se encontrarem regiões de maior suscetibilidade a 

alterações de metilação de DNA, aplicámos dois algoritmos de identificação de regiões 

diferencialmente metiladas e intercetámos os resultados. As regiões genómicas identificadas 

por ambos os métodos foram designadas epi-hotspots. De modo a aferir se os epi-hotspots 

estavam associados a alterações de expressão génica no processo de iniciação tumoral, efetuou-

se ainda uma análise de regressão linear múltipla entre cada gene diferencialmente expresso 

em estádio I e cada epi-hotspot. Os genes diferencialmente expressos, cuja variação entre tecido 

normal e tumor estádio I podia ser explicada por epi-hotspots, foram sujeitos a um estudo de 

ontologia genética, por forma a se compreender se estes genes potencialmente 

epigeneticamente regulados enriqueciam algum processo celular.  

Este processo foi também repetido por forma a se identificarem regiões de baixa 

suscetibilidade a alterações de metilação de DNA, que designámos epi-blackholes. De modo a 

testar se estas regiões estavam associadas a genes não-diferencialmente expressos, realizou-se 

ainda uma análise de regressão linear múltipla entre cada gene não-diferencialmente expresso 

em estádio I e cada epi-blackhole.  

Estudou-se ainda o grau de semelhança entre os doze tipos de cancro aqui analisádos 

relativamente à presença de epi-hotspots e epi-blackholes por meio de uma análise de 

agrupamento hierárquico. 

Finalmente, examinou-se o potencial de prognóstico de cada epi-hotspot e cada epi-

blackhole em pacientes tumorais de estádio III, fazendo uso de uma análise baseada em 

regressão multivariada de Cox.  

Os nossos resultados indicam que, apesar de existirem pequenas semelhanças, o 

número e localização de epi-hospots e epi-blackholes é característico de cada tipo de cancro, o 

que sugere que tanto a alteração como a manutenção dos padrões de metilação nestas regiões 

dependem da célula de origem. 

Verificou-se ainda que os padrões de metilação em epi-hotspots estavam associados a 

padrões alterados de expressão génica, em amostras de tecido tumoral em estádio I. Este 

resultado suporta a hipótese de que alterações regionais de metilação de DNA podem conferir 

vantagem seletiva na evolução clonal do tumor por influenciarem a expressão génica. De uma 
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forma geral, os genes cuja variação em iniciação tumoral era explicada pela variação da 

metilação de epi-hotspots enriquecem processos celulares de forma distinta nos diferentes tipos 

de cancro analisados. 

Por outro lado, padrões de metilação em epi-blackholes estavam associados à 

manutenção dos padrões de expressão génica, em amostras de tecido tumoral em estádio I, o 

que sugere que a conservação de padrões de metilação em certas regiões do DNA pode também 

ser relevante para a tumorigénese. 

Observou-se também que em dois terços dos tipos de cancro analisados, a metilação 

das CpGs de pelo menos um epi-hotspot ou epi-blackhole foi capaz de dividir os pacientes 

oncológicos de estádio III em dois grupos com padrões de sobrevida distintos, 

independentemente da idade dos pacientes. Apesar de nem todas as regiões aqui identificadas 

terem demonstrado potencial de prognóstico, este estudo sugere que os padrões de metilação 

de DNA em epi-hotspots e epi-blackholes podem ser potênciais candidatos para biomarcadores 

de prognóstico em pacientes oncológicos de estádio III.  

Em suma, este trabalho demonstra que, durante o processo de iniciação tumoral, há uma 

alteração do padrão de metilação de DNA de certas regiões genómicas (epi-hotspots). Por outro 

lado, parece também haver uma conservação do padrão de metilação de DNA de outras regiões 

(epi-blackholes). Além disso, parece existir uma associação entre a variação da expressão 

génica na iniciação tumoral e a metilação dos epi-hotspots. A manutenção do padrão de 

metilação dos epi-blackholes identificados parece estar associada com a ausência de variação 

de expressão de determinados genes. Este estudo revela ainda que epi-hotspots e epi-blackholes 

podem ter também exercer uma pressão seletiva no tumor, já que para além de estarem 

associados à expressão génica são ainda capazes de prever o prognóstico de pacientes 

oncológicos em estádio III. 

 

 

Palavras-chave: Metilação de DNA, Cancro, Expressão Génica, Biomarcadores de 

Prognóstico, Regiões genómicas 
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Chapter 1 Introduction 

 

1.1 Cancer 

Cancer is a group of over 100 highly heterogeneous complex diseases that can 

commonly be characterized by abnormal cell growth and division, disregarding normal cellular 

restraints 1,2. This type of disease originates from abnormal cells that grow and proliferate 

indefinitely, giving rise to a neoplasm or tumor 1,2. Although the terms cancer and tumor are 

frequently used interchangeably, a neoplasm can only be considered cancer if its cells exhibit 

malignancy, i.e., have the ability to invade surrounding and distant tissues 3. Otherwise, the 

tumor is regarded as benign. In malignant neoplasms, the cancerous cells ultimately detach 

from the primary tumor and colonize other tissues in the body, forming secondary tumors 

known as metastases 3.  

Cancers can be generally classified based on the cell type from which the primary 

neoplasm originates. The most common class of cancers arise from epithelial cells and are 

named carcinomas 4,5. This set of cancers affect tissues that derive from all three embryonic 

germ layers, for example, epithelia from the lungs, liver, stomach, esophagus, gallbladder, and 

intestines, that derive from the endoderm (the most inner germ cell layer); ovaries that stem 

from the mesoderm (the middle germ cell layer); and skin that develops from the ectoderm (the 

outer germ cell layer) 5,6. Generally, carcinomas can be further subdivided into two 

classifications that denote the biological function of the respective epithelial tissue. Mainly, 

epithelia can have one of two functions:  1) a protective function, like skin which protects the 

underlying cells from external agents, or 2) a secreting function, like endocrine glands, that 

secrete hormones into the bloodstream, or exocrine glands, that release secretions onto an 

epithelial sheet, through a duct. Cancers that stem from epithelial cells with a protective 

function are named squamous cell carcinomas, whereas the ones that arise from epithelial cells 

with a secreting function are named adenocarcinomas 5,6. 

Cancers that do not originate from epithelial tissues are commonly referred to as 

nonepithelial cancers 7–12. This class comprises three major subgroups: sarcomas, 

hematopoietic cancers, and neuroectodermal cancers. 
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Sarcomas originate from mesenchymal cells, such as fibroblasts, adipocytes, 

osteoblasts, myocytes, and even endothelial cell precursors 7,8. Contrary to carcinomas, cells 

and tissues that give rise to sarcomas have a common origin in the embryonic mesoderm 7,8.  

The second category of nonepithelial cancers is the hematopoietic malignancies group, 

frequently referred to as liquid tumors 9,10. These types of malignancies are neoplastic tumors 

that affect various cell types from the blood and lymphatic systems, like lymphatic and 

leukocytic cells. Depending on which type of progenitors the affected cells derive from, the 

malignancy is classified as lymphoma, leukemia, or myeloma, being the first the most frequent 

hematological malignancy and the later the least frequent. Since hematopoiesis is a process 

involving many different cell types, these diseases can be further subclassified based on which 

type of cell is affected. For instance, leukemias can be clustered into acute lymphoblastic 

leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphoblastic leukemia (CLL) 

chronic myelogenous leukemia (CML), and others. A particularity of hematopoietic 

malignancies is the common presence of chromosomal translocations, which is not as frequent 

in solid tumors 9,10. 

The last nonepithelial cancer category is the neuroectodermal cancer subgroup 11,12. 

This type of cancer arises from cells that comprise the central and peripheral nervous systems. 

As the group’s designation suggests, the cells that originate these kinds of cancer stem from 

the embryonic ectoderm. Depending on the type of the nerve cell, different neuroectodermal 

cancers can arise, like glioblastomas, neuroblastomas, schwannomas, medulloblastomas, or 

gliomas11,12. Primary central nervous system (CNS) tumors are of particular importance since 

they remain among the most challenging cancers to treat, with a high mortality rate 4,11,12. 

 Although this classification system is able to roughly divide tumor types, there are 

some tumors that are hard to assign to a major classification. These include, for example, the 

small-cell lung carcinomas (SCLCs), melanomas, and teratomas 13–15. SCLCs are constituted 

by cells that pose neurosecretory characteristics, and it is not clear whether these tumors stem 

from neuroectodermal cells that moved into the developing lung, or if they stem from 

endodermal cell populations of the lung that transdifferentiated, losing some of their epithelial 

attributes and acquiring neuroectodermal ones 15. Melanomas are also a type of tumor 

challenging to fit into a major classification group 13. They arise from melanocytes, which stem 

from the embryonic neural crest, and during development migrate to the skin and eye, having 

an origin close to that of neuroectodermal cells 13. Another type of tumors hard to place into 
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one of the main classification clusters are the teratomas 14. Teratomas are one of the most 

common forms of germ cell tumors (GCTs), which include not only teratomas, but also 

seminomas, choriocarcinomas, yolk sac tumors, embryonal cell carcinomas, and mixed GCTs 

16. GCTs arise from primordial germ cells, which become incorporated into the fetal gonads, 

being able to occur in the gonadal tissues themselves or in the path of primordial germ cell 

migration16. Interestingly, teratomas are histologically defined has having tissues derived from 

all three germ cell layers: ectoderm, mesoderm, and endoderm 14.  

 

1.1.1 Cancer as a multistep microevolutionary process 

In 1976, a reference article, published by Peter Nowell, proposed cancer development 

to be a stepwise Darwinian evolutionary process, characterized by the occurrence of mutations 

in somatic cells, and posterior subclonal selection 17 (Fig 1.1). Although cancer is mainly 

composed of cells that are a part of a larger organism, this perspective views cancer clones as 

unicellular quasi-species that reproduce asexually 18,19. Cancer clones, and even normal cells, 

are a part of an ecosystem where its inner components collaborate in order to optimize the 

function of the whole organism. In contrast to typical ecosystems, in an organism, competition 

between individual cells is limited, being every somatic cell committed to eventually die, in 

favor of the organism’s, or its progeny’s survival. In fact, most multicellular organisms, 

especially long-lived animals like humans, have evolved to restrict clonal expansion of cells 

that contain certain renegade-traits such as continuous cellular self-renewal, extensive 

proliferation, and even unforeseen cell migration and invasion capabilities 18,19. It is this 

restriction that causes cancer development to be a long process, during which the cells from 
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which the cancer arises randomly and sequentially acquire different mutations, some providing 

phenotypic bypasses to the constraints imposed by the micro-environment 18,20. Some of the 

main micro-environmental restrictions include its structure, and limitation of resources, making 

tumoral natural selection a process based on cellular competition for space and resources. This 

tumoral clone microevolution is based on the acquisition of deoxyribonucleic acid (DNA) 

mutations and micro-environmental changes that alter the fitness impact of those DNA 

mutations.  

Mutations can have different effects on the evolution of the clone that possesses it. 

These can be considered driver mutations that provide a selective advantage over the remaining 

Figure 1.1 – Model for tumor clonal evolution. The entire population of tumor cells descends 

from a founder clone. The tumor cells acquire successive somatic mutations, which leads to a 

continuous selection of tumor subclones (here depicted in different colors). The primary tumor 

is not formed by a single clone, but rather several ones. Some of these clones can cease to exist, 

remain dormant, or expand. Additionally, metastases can stem from either minor primary 

tumor clones (metastasis 2) or major primary tumor clones (metastasis 1). Reprinted by 

permission from Springer Nature: Nature Biotechnology, Cancer sequencing unravels clonal 

evolution (19), Copyright (2012). 
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clones, passenger mutations which are selectively neutral, and deleterious mutations that are 

selectively negative. There is also a fourth type of mutation involved in the microevolutionary 

process of cancer, referred to as the mutator mutations. This type of lesion greatly increases 

the rate of other genetic alterations. Although not a mutation, another type of cellular alterations 

that influence tumor evolution are epigenetic changes, these alterations do not directly change 

the DNA sequence; however, impact gene expression. Interestingly, the rate of epigenetic 

alterations is several orders of magnitude higher than the ones of a genetic nature, possibly 

being a major determinant of clonal evolution 18,20. 

It may be intuitive to think that a very fit tumor clone would largely expand and 

dominate the neoplasm. However, large clonal expansions after cellular transformation are very 

rare 18,21,22. In fact, it seems that, originally, parallel clonal expansions occur, and only 

posteriorly subclones start to dominate in early cancer development 18,21,22.  

The clonal fitness provided by genetic and epigenetic alterations is strongly dependent 

on the complex and dynamic cellular microenvironment 2,18,20. 

 

1.1.2 Tumor microenvironment and its components 

Although frequently, the microenvironment, or niche, where the tumor cells reside is 

often referred to as a cellular microenvironment, it is not comprised solely by cells 20. The 

tumor microenvironment is constituted by cellular components, not all tumoral, such as 

fibroblasts, neuroendocrine cells, adipose cells, immune cells, myoepithelial cells, stromal 

cells, and endothelial cells, and non-cellular components like extracellular matrix (Fig. 1.2). 

Each microenvironmental component plays a different role in cancer development, and many 

of them acquire non-malignant phenotypic alterations associated with cancer 20.  
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1.1.2.1 Cancer-Associated Fibroblasts 

Fibroblasts are a main component of the tumor microenvironment, and in this specific 

context, assimilate a myofibroblastic phenotype, often being referred to as cancer-associated 

fibroblasts (CAFs) 20,23. The activation of fibroblasts to CAFs is parallel to the myofibroblastic 

activation during natural wound healing. The key distinction is that while myofibroblasts are 

transiently present in normal wound repair, CAFs remain permanently activated at the tumor 

site, much like in tissue fibrosis. There are several microenvironmental players that are able to 

induce fibroblastic activation. These include adhesion molecules contacting leukocytes, 

reactive oxygen species (ROS), micro Ribonucleic acid (miRNAs), cell-cell communication, 

and growth factors. After being fully activated, CAFs play a major role in cancer progression, 

mainly by contributing to inflammatory cell recruitment, stimulating angiogenesis, and 

remodeling the extracellular matrix (ECM). CAFs can also directly induce neoplastic cell 

Figure 1.2 – Tumor cell’s interaction with the microenvironment. The primary tumor does 

not solely comprise of tumor cells. It forms a communication network of different cell types 

that influence each other by emitting and receiving several mediators that impact the entire 

microenvironment. Reprinted under a Creative Commons Attribution-Noncommercial 4.0 

International Public License, from Ivyspring International Publisher: Journal of Cancer, Role 

of tumor microenvironment in tumorigenesis (2017) 20. 
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proliferation by secreting growth factors and immune-suppressive cytokines, and even with 

mesenchymal-epithelial cell interactions. Not only do CAFs contribute to tumor development, 

but they also support tumor invasion and metastasis. For example, proteins as chemokine (C-

X-C motif) ligand 12 (CXCL12) and interleukin-22 (IL-22) are strongly overexpressed in 

CAFs and are thought to induce epithelial-mesenchymal transition (EMT) of certain types of 

cancer types, like gastric and prostate cancers. Other proteins ubiquitously expressed by 

myofibroblasts and CAFs, which may be an important contributing factor to tumor progression, 

are hematopoietic growth factor (HGF), transforming growth factor-beta 1 (TGF-β1), platelet-

derived growth factor (PDGF), amongst others. CAFs also seem to have a role in tumor 

progression by promoting angiogenesis, through the secretion of pro-angiogenic factors like 

fibroblast growth factor 2 (FGF2), vascular endothelial growth factor (VEGF), and others 20,23.  

 

1.1.2.2 Immune System cells 

Another crucial cellular component of the tumor microenvironment are immune and 

inflammatory cells 20,24. It is hypothesized that cells in a mammalian organism are permanently 

examined by the immune system 25,26. This constant immune surveillance is able to recognize 

and eliminate most of the newly transformed tumor cells 25,26. It is, then, as proposed by 

Hanahan and Weinberg, a necessity that tumoral cells manage to avoid detection by the 

immune system and subsequent immunological killing 2.  

Although the normal function of the immune system would be to prevent tumor 

formation and control tumor outgrowth, it can also facilitate cellular transformation 26,27. 

Research has shown that the immune system can both prevent and promote cancer, in a process 

commonly referred as ‘Cancer Immunoediting’. This dynamic process is divided in three major 

phases: elimination, equilibrium, and escape. During elimination, the first immunoediting 

stage, is where immunosurveillance take place 26,27. The immune system actively eliminates 

nascent tumors 26–29. Initial tumor growth promotes inflammatory signals that induce the 

activation of the innate immune system, stimulating the recruitment of Natural killer T (NKT), 

Natural killer (NK), γδ T cells, macrophages and dendritic cells. Tumor infiltrating 

lymphocytes recognize structures on the transformed cells and produce Interferon (IFN)-γ, 

which activates antiproliferative and pro-apoptotic mechanisms. Even though the IFN-γ itself 

can induce some amount of tumor cell death, it also stimulates the release of the chemokines 

CXCL10, CXCL9, and CXCL11, by the tumor cells and normal cells present in the 
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microenvironment. These chemokines possess a strong anti-angiogenic effect, halting the 

formation of new intra-tumoral blood vessels, leading to even more tumor cell elimination. 

This inflammatory process is an escalating one, where the cytokines produced recruit more NK 

cells and macrophages to the tumor microenvironment. These two types of tumor-infiltrating 

immune cells produce IFN-γ and IL-12, transactivating each other, and thus contributing even 

more to tumoral elimination. The cellular debris produced by cellular elimination is ingested 

by local dendritic cells, that later migrate to draining lymph nodes and activate CD4+ TH1 

helper cells, which in turn promote the development of tumor specific CD8+ T cells. CD4+ 

and CD8+ T cells then return to the tumor site, killing the remaining immunogenic tumor cells. 

After all tumor cells with enough immunogenicity have been eliminated, the second stage of 

immunoediting begins: the equilibrium stage. In this phase, the immune system serves as a 

potent selective pressure to tumor cells, that although is not sufficient to eradicate the tumor, 

can restrain its development. This period, although long, is critical for tumor microevolution, 

where clones arise with new mutations that confer them resistance to the immune system. The 

final immunoediting stage is the escape process. The clones that survived the elimination 

process, and underwent the equilibrium process have a low immunogenicity, and thus are able 

to escape immunologic detection and elimination. In this way, the immune system serves as a 

selective pressure to tumor clonal evolution, and cancer development. In this context, tumor 

clones with survival advantage will eventually dominate the neoplasm 26–29.  

 

1.1.2.3 Cells from the circulatory and lymphatic systems 

The large network formed by the circulatory and lymphatic systems are of key 

importance to cells and tissues all around the organism, providing sustainable nutrition and 

oxygen to local cells and by removing carbon dioxide and other metabolic debris 20,30. This is 

no different in a tumor context, as the neoplastic cells have the same vascular need than normal 

cells. However, there are some differences that distinguish the vasculature of a normal tissue 

than that of a tumoral context. One of these differences is that the angiogenic process, in a 

tumorigenic process, is not only almost always activated, but also remains continuously 

activated during the whole process, making the tumor environment highly pro-angiogenic. 

Even though the tumor site is characterized by an unceasing formation of new blood vessels, 

these are, in contrast to a normal context, usually leaky and inefficient.  
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Cells that constitute the primary tumor, that gradually increases in mass, will eventually 

find themselves in a low oxygen environment. To overcome this issue, tumor cells will have to 

not only adapt to a hypoxic setting, but also to recruit additional blood vessels, that increase 

the oxygen supply 20,30. 

 

1.1.2.4 Adipocytes 

Although adipose tissue is not usually associated with tumoral microenvironment, there 

is now evidence that establishes a link between them 20,31. It has been shown, for example, that 

high quantities of adipocytes in a tissue, like in an obesity context, promotes tumor-site 

hypoxia, which leads to a tumor promoting proinflammatory state. Besides their hypoxia 

inducing abilities, adipocytes also secrete factors that may be involved in tumor initiation 

and/or progression. These include more than 50 cytokines, chemokines, and hormone-like 

factors. 

An interesting type of adipose cells associated with tumor development and progression 

is the adipose stem cells (ASC), that have the ability to differentiate into several cell lineages. 

ASCs are powerful tumor promoters in several ways, being able to modulate other components 

of the tumoral microenvironment, inducing tumor-promoting inflammation, and even stimulate 

angiogenesis. One of the most interesting tumor-promoting properties ASCs possess is the 

ability to differentiate into cancer-associated cells. It has, for instance, been shown that ASCs, 

in some cancer models, can differentiate into CAFs that promote tumor proliferation 20,31.  

 

1.1.2.5 Neuroendocrine cells 

In normal situations, neuroendocrine cells have several regulating roles in different 

tissues, examples include cholecystokinin secreting cells, secretin-secreting S cells, gastric 

inhibitory polypeptide-secreting cells, motilin-secreting M cells and neurotensin-secreting N 

cells, all a type of neuroendocrine cells found in the small intestine named enteroendocrine 

cells 20,32. Although neuroendocrine cells play an important role in the digestive track, these 

can also be found in glands or tissues like the hypothalamus, anterior pituitary gland, pineal 

gland, thyroid gland (calcitonin secreting cells), breast, thymus, and in the pancreas (islets of 

Langerhans) 20,32.  
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Neuroendocrine cells can also have a role in tumor formation and/or progression, 

mainly by having a substantial impact in the immune system 20. The mechanisms that link 

neuroendocrine cells, the immune system and tumor formation are plentiful. For instance, 

substance P, a neuropeptide that acts as a neurotransmitter and neuromodulator of nociceptive 

afferents, is known to increase migratory activity of T lymphocytes by blocking its β1-integrin 

mediated adhesion, as well as inducing production of leukocytic cytokines. The catecholamine 

norepinephrine, also a neurotransmitter, can function as a production suppressor of the 

antitumoral cytotoxic T-lymphocytes, by inhibiting the synthesis of Tumor Necrosis Factor 

alpha (TNF-α) 20. 

Interestingly, neuroendocrine cells are not only parallel players in tumor formation and 

growth but can also be the cells from which tumor originate 20,33. In fact, there is a whole class 

of rare malignancies that stem from the hormone-producing cells of the neuroendocrine system, 

named neuroendocrine carcinomas 20,33. For example, in 2004, R.J. Jin and colleagues, showed 

that androgen-dependent lymph node carcinomas of the prostate (LNCAP) were only able to 

develop in the presence of neuroendocrine tumors in castrating mice, thus attributing some 

specificity to these cells in tumor formation 33.  

 

1.1.2.6 Extracellular Matrix (ECM) 

As previously referred, the tumoral microenvironment is not comprised solely of 

cellular components 20. The main non-cellular component being the extracellular matrix. 

Depending on the tissue, ECM consists of several components like collagens, laminins, 

fibronectins, proteoglycans, and hyaluronans, molded in a tissue-specific manner. It is the ECM 

that truly forms the tumoral microenvironment, containing all the growth factors, cytokines, 

and hormones secreted by the local tumor and non-tumor cells 20.  

The ECM is present in any tissue and provides biochemical and structural support for 

the cells there located, and although it’s a non-cellular component, is a physiologically active  

part of the tissue, making fundamental processes like cell-cell communication, cell adhesion, 

and cell proliferation, possible 20,34,35. Being of such importance in these processes, and in 

maintaining the delicate tissue homeostasis, small changes in the ECM can have significant 

effects at the cellular level, being a key dynamic player not only in the regulation of healthy 

tissue homeostasis, but also in tumor progression. 
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During tumor growth, microenvironmental ECM continuously interacts with the tumor 

cells, and goes through active changes that are a crucial part of the tumor progression process. 

During this context, there is an increased secretion of fibronectin and collagen I, III, and IV. 

The augmented deposition of these matrix proteins interferes with biological processes like 

cell-cell adhesion, cell polarity, and growth factor signaling amplification. The exact role of 

collagen deposition in tumor progression is not yet completely understood 20,34,35. Levental, 

and Karangiannis, with respective colleagues, showed, in 2009 and 2012, respectively, that 

collagen deposition and cross linking promotes tumor progression by increasing integrin 

signaling 36,37. In contrast, it has also been shown by other groups, that depletion of fibrillar 

collagens I and III can also promote tumor progression, meaning that the effect of these matrix 

proteins in tumor development can be both beneficial and deleterious to the process 38,39.  

One of the main events in tumor progression and cancer is the cellular migration, 

moving through surrounding tissues and penetrating the adjacent basement membrane 20,34,35. 

The dense and highly cross-linked ECM in the microenvironment serves as a strong barrier to 

epithelial cell migration. One of the ways this physical barrier can be crossed is with the 

mechanical force generated by cellular proliferation. As cells proliferate continuously, the 

tumor increases in size and is increasingly spatially constrained by the basement membrane. 

This continual growth, despite the physical limits imposed by the environment’s architecture, 

produces an ever-increasing mechanical stress across the membrane, eventually causing its 

rupture and allowing cells to escape the current location. There is also another way in which 

the tumor can breach the collagenous barrier, often denoted as anchor cell invasion. In this 

method some tumor cells, named leading invasive anchor cells (LIACs), play a key role by 

leading the membrane’s traversing and opening way for the rest of the tumor cells to cross the 

basement membrane. Initially, LIACs extend an invadopodium – a protrusive, F-actin rich, 

subcellular “arm” – into the basement membrane, breaching the barrier. The membranal 

fissure, caused by the initial breaching, then widens, allowing the remaining tumor cells to 

cross the barrier.  

It was long thought that the sole contributing factor to tumor cell membrane traversing 

were Metalloproteinases (MMPs), mainly due to the fact that there is an increased 

accumulation of these enzymes along the basement membrane. On the contrary, it has been 

shown that laminin and collagen IV are not fully degraded, rather mechanically pushed aside 

by the invadopodia, indicating that MMPs are more likely to play a role in the initial membrane 

breaching or by softening the matrix while LIACs allow the invasion. Although MMPs are not 
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a single player in tumor cell invasion, they play a major role in tumor progression and invasion, 

by contributing to the degradation of surrounding ECM barriers, and even by resealing growth 

factors that promote neo-angiogenesis. The ECM itself is a powerful proliferation ignitor, by 

directly contacting with the integrin family of cell surface receptors. The problem is that many 

ECM binding sites, crucial for cell survival and proliferation signals, are usually partially 

hidden by the ECM itself, often being referred to as “cryptic binding sites”. It is the MMP’s 

enzymatic activity that allows for the degradation of the surrounding collagen, which uncovers 

the binding sites and subsequently permits that the integrins in the cell membrane interact 

directly with the matrix.  

The microenvironmental ECM also stores, embedded within collagen, various inactive 

tumor promoting growth factors that upon matrix degradation, mainly by MMPs, are released 

and activated. For example, during ECM degradation by MMPs, the active form of TGF-β is 

released to the tumor microenvironment, where it modulates several tumor-associated 

processes such as cell invasion, cell proliferation and immune response 20,34,35.  

 

1.1.3 Cancer stem-cells and their niche 

Many tissues in a grown human organism contain a specific population of adult stem-

cells dedicated to continued self-renewal of the tissue where they reside 40. In contrast to the 

other cells that form the tissues, adult stem-cells are long-lived and give rise to the short-lived, 

specialized cells that perform the tissue-specific functions 40.  

It is hypothesized that tumor progression is, like many normal tissues, also driven by a 

dedicated subpopulation of stem cells, named cancer stem-cells (CSCs) 41,42. This model is 

often known as the Cancer stem-cell theory, and it states that CSCs are the tumor cells with the 

main self-renewal proprieties, clonal tumor initiation capacity, and clonal long-term 

repopulation potential. The model also proposes that CSCs can transition between stem and 

non-stem cell states, in a reversible manner. Although these cells can evade cell death, and 

even metastasize, they can remain in a dormant state for long periods of time. The relevancy 

of the CSC theory is ever-increasing, since research has shown that CSCs are able to survive 

many current cancer therapeutics 41,42.  

Similar to normal adult stem-cells, it is believed that CSCs also reside in specialized 

microenvironment, named niche 43. Niches, in normal settings, are comprised of immune cells, 
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fibroblasts, endothelial cells, perivascular cells, and ECM 20. In a tumoral context, the CSC 

niche is itself part of the tumor microenvironment 20,43.  

 

1.1.3.1 Tumor development models and the role of CSC’s and their niche 

There are two main models that have been proposed to understand tumor progression 

and heterogeneity: the hierarchical and the stochastic models 42–45. 

The hierarchical model proposes that CSC are the true malignant tumor-propagating 

cells, and that these are a biologically distinct subpopulation of cells within the total tumor cell 

population 42–45. This model suggests that tumorigenesis only arises when a normal stem cell 

escapes regulation and becomes a stem-like-cell tumoral cell, a CSC. Since these cells have a 

very high self-renewal capacity, they are considered to be the unit of selection in a tumor. In 

contrast, all of the other tumoral non-CSCs lead to clonal exhaustion. The hierarchical model 

defends that the only possible way to eliminate clinical relapse, would be to completely 

eradicate CSC’s, since these are the fuel for tumor growth 42–45.  

It is important to recognize that CSCs, unlike normal stem cells, aren’t truly 

multipotent, don’t divide asymmetrically, and can only differentiate into one type of cell that 

can’t generate an entire array of cellular lineages 42–45. In fact, tumors, during their development 

and progression, tend to anatomically and functionally stray away from the original organ, 

possibly indicating that CSC’s have deregulated self-renewal, proliferation and differentiation 

capabilities. This gap that separates CSC’s from normal stem cells has led to the suggestion, 

from several proponents of the hierarchical model, that the term tumor-initiating cells (TICs) 

is more suited for the description of these tumorigenic cells. This recommendation has led to 

an indifferentiable use of both CSCs and TICs, often being implied that these are two terms to 

designate the same cell. However, the TIC refers to the cell-of-origin, the first abnormal 

tumoral cell that gives rise to the tumor, and not the subpopulation of cells within the tumor 

that sustain the tumoral growth and proliferation, i.e. the CSCs, which are not necessarily the 

cell-of-origin 42–45.  

Although the hierarchical model defends that some cells are the fuel for the whole 

tumor, it does not exclude tumoral clonal evolution, asserting that one or several CSCs can 

generate different tumor clones, and that each clone evolves hierarchical with their own CSCs 

42–45.   
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The second model that attempts to explain tumor progression and heterogeneity is 

named stochastic model 42–45. This model proposes that every cell that constitutes a tumor is of 

equal likelihood to be the cell-of-origin and initiate the tumorigenic process. Here it is thought 

that cancer, being a hyperproliferative disease, evolves through the acquisition of genetic 

mutations in a sequential manner, that promotes subsequent clonal expansion. Contrarily to the 

hierarchical model, the stochastic model reasons that cellular transformation into tumor cells 

is largely explained by stochastically varying intrinsic factors, and only partially explained by 

the surrounding environment in which the cells reside 42–45.  

There are tumor types that seem to fit this last model in an almost unflawed way, as is 

the case of some colorectal cancers, whose sequential progression was described by Vogelstein, 

in 1988 46. 

Although the hierarchical and stochastic models seem to be mutually exclusive and a 

theoretical dichotomy, the phenomenon of cellular phenotypic plasticity is able to merge both 

models into one 42–45. There is, within the tumor, a subpopulation of tumoral cells that have the 

capacity to transit between a differentiated state and a stem-like state, i.e. cells phenotypically 

plastic. Depending on their genotype or on the environmental signals received by these cells, 

they can dedifferentiate and reenter into the CSC pool to repopulate the tumor 42–45.  

This dedifferentiation ability can wither be inherited (hierarchical model) or acquired 

through random mutations (stochastic model) 42–45. It has, in fact, been shown that certain 

genotypic changes can contribute to the cellular acquisition of phenotypic plasticity by tumor 

cells. For example, upregulation of NODAL, NOTCH, and WNT proteins, activation of human 

Telomerase Reverse Transcriptase (hTERT), and p53 inhibition, promotes phenotypic 

plasticity 42–45. 

 

1.1.4 Cancer epidemiology 

At the time of 2018, chronic diseases, also referred as noncommunicable diseases 

(NCDs) constitute the main cause of death worldwide 4. Cancer is one of these diseases and is 

now considered the biggest hindrance to the increase in life expectancy in every country in the 

world 4.  

The most impactful NCD, globally, are cardiovascular diseases (CVDs) 47,48. In fact, on 

a yearly basis, more people die from CVDs than any other cause, representing the number one 
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cause of death worldwide 4,47,48. However, it is expected that cancer will outrank CVDs and 

become the leading cause of death 4. The reasons cancer is expected to surpass CVD’s mortality 

rates are several but can be summed into two key points: 1) cancer incidence and mortality is 

rapidly rising in every country, and 2) deaths due to stroke and coronary heart disease are 

declining in many countries 4.  

The steep rise in the number of cancer new cases and deaths across the globe reflect 

both aging and growth of the population, but also the prevalence of risk factors associated with 

socioeconomic development of populations 4. For example, it is repeatedly observed that in 

new growing economies there is a shift in the pattern of cancer types that affect these 

populations from infection and poverty related cancers, such as cervix, stomach, and liver, to 

cancer types that frequently have a higher incidence in more developed populations, like 

Europe or North America 4. 

 

1.1.4.1 Cancer incidence and mortality worldwide 

It is estimated, by the International Agency for Research on Cancer (IARC), that there 

were, in 2018, 18.1 million new cancer cases and 9.6 million cancer deaths 4. The most affected 

continent, regarding both incidence and mortality, is Asia, since, in 2018, half of all new cases 

(48.4%), and more than half (57.3%) of all deaths occurred in this continent. One of the main 

reasons that the cancer burden is higher in Asia is because this continent corresponds to 60% 

of the world population. The second continent most affected by cancer is Europe, in which 

23.4% of the total new cancer cases and 20.3% of deaths occur. It is arguable that Europe may 

be the most affected continent by this disease, since it only represents 9% of the world 

population. Ranking third is the American continent which accounts for 21% and 14.4% of 

incidence and mortality globally 4.  

Interestingly, the Asian and African continents, are the only ones in which the global 

shares of cancer mortality (57.3% for Asia, and 7.3% for Africa) are higher than the global 

shares of cancer incidence (48.4% for Asia, and 5.8% for Africa) 4.  

According to 2018 data, the most frequent cancer type worldwide, for males and 

females combined, is lung cancer, accounting for 11.6% of the total new cases (~2.09 million 

new cases) 4. Lung cancer is also the number one cause of cancer death, representing 18.4% of 

all cancer deaths (~1.76 million deaths). Closely following lung cancer is breast cancer, the 
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second most common cancer, which represents 11.6% (~2.09 million new cases) of all new 

cases and 6.6% of all cancer deaths (~ 0.63 million deaths). The third to tenth most common 

cancers are prostate (7.1% of all new cases and 3.8% of all deaths), colon (6.1% of all new 

cases and 5.8% of all deaths), nonmelanoma skin cancer (5.8% of all new cases and 0.7% of 

all deaths), stomach (5.7% of all new cases and 8.2% of all deaths), liver (4.7% of all new cases 

and 8.2% of all deaths), rectum (3.9% of all new cases and 3.2% of all deaths), esophagus 

(3.2% of all new cases and 5.3% of all deaths), and cervix uteri (3.2% of all new cases and 

3.3% of all deaths) 4. 

On the other side of the spectrum, the least frequent cancer types worldwide are vaginal 

(0.1% of all new cases and 0.1% of all deaths), mesothelioma (0.2% of all new cases and 0.3% 

of all deaths), penis (0.2% of all new cases and 0.2% of all deaths), Kaposi sarcoma (0.2% of 

all new cases and 0.2% of all deaths), vulva (0.2% of all new cases and 0.2% of all deaths), 

anus (0.3% of all new cases and 0.2% of all deaths), salivary glands (0.3% of all new cases and 

0.2% of all deaths), testis (0.4% of all new cases and 0.1% of all deaths), Hodgkin lymphoma 

(0.4% of all new cases and 0.3% of all deaths), and hypopharynx (0.4% of all new cases and 

0.4% of all deaths) 4. 

In males, lung cancer is the one with the highest incidence and mortality (14.5% of all 

new cases and 22% of all deaths) 4. In terms of incidence in males, lung cancer is followed by 

prostate, colorectal, and stomach cancers, which account for 13.5%, 10.9%, and 7.2% of all 

new male cancer cases, respectively. Regarding mortality in men, after lung cancer, the highest 

shares in cancer deaths are hold by liver, stomach, and colorectal cancers, which are responsible 

for 10.2%, 9.5%, and 9.0% of all male cancer deaths, respectively 4. 

In females, the most frequently diagnosed cancer is breast cancer, being also the one 

that contributes the most to female cancer deaths (24.2% of all new cases and 15.0% of all 

deaths) 4. The second to fourth most commonly diagnosed cancers in women are colorectal, 

lung, and cervix uteri cancers, which represent 9.5%, 8.4%, and 6.6% of all female new cancer 

cases. These three cancer types are also the ones that contribute mostly to women deaths by 

cancer, but in a different order, lung cancer ranking second (13.8% of all female deaths), and 

colorectal (9.5% of all female deaths) and cervix uteri cancers (7.5% of all female deaths) 

ranking third and fourth in women cancer mortality, respectively 4.  
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1.1.4.2 Cancer incidence and mortality in Europe 

The European continent has a total population of approximately 744 million people, 

which represents around 9% of the total world population 4. Even though Europe only 

represents less than a tenth of the global population, in 2018, 23.4% of all new cancer cases 

and 20.3% of all cancer deaths occurred in this continent. In fact, only in 2018, there were more 

than 4.2 million newly diagnosed cancer cases and more than 1.9 million cancer related deaths 

in Europe. In addition, the number of 5-year prevalent cases, in 2018, surpassed the 12.1 

million 4.  

In Europe, at the time of 2018, the five most frequently diagnosed cancer types were 

breast (12.4% of new cases), lung (11.1% of new cases), prostate (10.6% of new cases), colon 

(7.4% of new cases), and bladder (4.7% of new cases) cancers, while the least frequent were 

Kaposi sarcoma (0.06% of new cases), vagina (0.07% of new cases), nasopharynx (0.12% of 

new cases), penis (0.15% of new cases), and salivary glands (0.22% of new cases) cancers 4. 

In terms of number of deaths, the most impactful cancers were lung (20% of deaths), colon 

(8.1% of deaths), breast (7.1% of deaths), pancreas (6.6% of deaths), and prostate (5.5% of 

deaths) cancers, while the least impactful were Kaposi sarcoma (0.02% of deaths), vagina 

(0.07% of deaths), testis (0.08% of deaths), penis (0.09% of deaths), nasopharynx (0.13% of 

deaths), and anus (0.19% of deaths) cancers. By sex, prostate is the most commonly diagnosed 

cancer in men (20.0% of new cases), followed by lung (13.9% of new cases), colorectal (12.1% 

of new cases), bladder (6.8% of new cases), and kidney (3.8% of new cases) cancers. In 

females, the top-ranking cancer in incidence is breast cancer (26.4% of new cases), followed 

by colorectal (10.6% of new cases), lung (8% of new cases), corpus uteri (6.1% of new cases), 

and skin melanoma (3.7% of new cases) cancers 4. 

 

1.1.4.3 Cancer incidence and mortality in Portugal 

Portugal is a small European country with a total population of around 10.3 million 

people which represents 1.4% of the European population and approximately 0.1% of the world 

population 4. In this country, in the year of 2018, there were approximately 58.2 thousand new 

cancer cases and 29 thousand cancer related deaths. Furthermore, the number of 5-year 

prevalent cancer cases was 155.6 thousand 4.  
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In Portugal, at the time of 2018, the most commonly diagnosed cancers were breast 

(12.0% of new cases), prostate (11.4% of new cases), colon (9.7% of new cases), lung (9.1% 

of new cases), and rectum (7.6% of new cases) cancers, while the least commonly diagnosed 

were vagina (0.06% of new cases), mesothelioma (0.09% of new cases), Kaposi sarcoma 

(0.18% of new cases), salivary glands (0.18% of new cases), penis (0.19% of new cases), and 

nasopharynx (0.24% of new cases) cancers 4. Mortality wise, the cancers that hold the largest 

number of death shares are lung (16.1% of deaths), colon (10.5% of deaths), stomach (7.9% of 

deaths), prostate (6.5% of deaths), and breast (6.0% of deaths) cancers, while the cancers with 

the lowest death count were Kaposi sarcoma (0.05% of deaths), vagina (0.06% of deaths), testis 

(0.06% of deaths), penis (0.14% of deaths), anus (0.16% of deaths), and Hodgkin lymphoma 

(0.18% of deaths) cancers. In males, the cancers with the highest number of new cases, in 2018, 

were prostate (20.4% of new cases), colorectal (18.8% of new cases), lung (12.3% of new 

cases), bladder (5.4% of new cases), and stomach (5.3% of new cases) cancers, while in females 

were breast (27.1% of new cases), colorectal (16.2% of new cases), thyroid (5.4% of new 

cases), lung (5.0% of new cases), and stomach (4.5% of new cases) 4. 

Cancer is usually described as a genetic disease; however epigenetic abnormalities play 

profound roles in tumorigenesis 49. Transformed cells consistently exhibit alterations in DNA 

methylation in a genome-wide level, aberrant chromatin structures, and altered regulatory 

element activities 49. 

 

2.1 Epigenetics 

2.1.1 Gene Expression 

In humans, and other mammals, genetic information is embedded in DNA and is passed 

down to daughter cells somatically, and to the upcoming generation through the germline 50. 

The decoding of the genetic information is carried out in a process of gene expression, in which 

the information stored in DNA is used to build functional molecules. The basic unit of this 

process is the gene, a section of DNA sequence that is able to give arise to a functional RNA 

molecule, a transcript, which in turn may have different functions, such as being translated into 

a polypeptide 50.  

The first step in gene expression, where RNA is constructed from a DNA template, is 

named transcription and, in eukaryotes, is carried out by three key nuclear enzymes: 1) RNA 
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polymerase I (Pol I), that transcribes rRNA precursors, 2) RNA polymerase II (Pol II), that 

transcribes protein-coding genes to mRNAs, and  3) RNA polymerase III (Pol III), that 

transcribes small non-coding RNAs like tRNAs 51. 

In eukaryotes, regulation of Pol II is of uttermost importance, since it is the foundation 

for cellular differentiation and identity 50–52. Regulation of Poll II can happen in any of the three 

major stages of the transcription process: initiation, elongation, and termination. In the 

initiation phase, the Poll II assembles, at the DNA promoter region, with the transcription 

factors TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (known as the general transcription factors), 

forming the pre-initiation complex. The general transcription factors are highly important to 

the transcription initiation, contributing to the binding of Pol II to the promoter, to initiate RNA 

synthesis, and to drive the Pol II to move forward. The assembly of the pre-initiation complex 

begins with the binding of a Pol II – TFIIF complex to a pre-assembled multipart in the 

promoter, composed of TFIIB and TATA box-binding protein (TBP). These constituents, 

bound to DNA, in the promoter, form the core initiation complex, which is conserved in the 

Pol I and Pol III transcription systems. The full pre-initiation complex is then completely 

formed when TFIIE and TFIIH bind to the core initiation complex. After assembly, the pre-

initiation complex, in the presence of nucleoside triphosphates, promotes the opening of the 

double-stranded DNA in the promoter region, allowing for the DNA template strand to pass 

close to the Pol II active site, thus inducing the synthesis of the RNA chain, marking the 

beginning of the elongation phase. In some higher eukaryotes there is also an intermediate 

phase between initiation and elongation, where the polymerase lags in the proximal promoter 

region before the elongation starts. The RNA synthesis concludes in the termination phase, in 

which the transcript is released from the Poll II, that is also released from the DNA 50–52.  

It is the reiteration of these stages, in a cyclical fashion, over a gene that defines its 

expression levels, of which regulation is of great importance to cellular function 50–52. In fact, 

while all cells within an organism contain the same DNA sequence, it is the quantitative and 

qualitative regulation of gene expression that determines cell function and fate 50–52.  

 

2.1.2 Chromatin dynamics and DNA organization 

 Although the negatively charged DNA is, in humans, linear, it is substantially 

compacted and organized into 3 dimensional structures known as chromosomes 53,54. The 

double-chain DNA, in the cellular nucleus, is wound around proteins named histones, the main 
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proteinaceous component of chromosomes. The histone-DNA complex forms the basic 

structural chromosomal unit, the nucleosome, which consists of a histone octamer, with two of 

each histone monomers (H2A, H2B, H3, and H4), and 147 bp’s of DNA. Most genomic DNA 

(around 80%) is organized into nucleosomes, and the remaining is contained in regions that 

connect neighboring nucleosomes, known as linker regions. The nucleosomes are wrapped in 

larger genomic structures of chromatin fibers and chromosomes 53,54.  

This type of genomic compaction and organization permits selective accessibility of the 

transcription machinery, like transcription factors, to specific DNA regions, being compaction 

itself a key regulatory mechanism in gene expression 53,54. Increased accessibility to different 

genomic regions renders specific effects, for example, enhancers to facilitate transcription, 

promoters to initiate transcription, open reading frames that are transcribed and translated into 

proteins, silencers to suppress transcription, or insulators that block interactions between 

promoters and enhancers. It is, then, the chromatin’s organization dynamics, that allow cells 

with the same DNA sequence to have different functions and specializations 53,54.  

The sum of mechanisms that regulate the chemical and/or structural alteration of the 

chromatin, collectively establishing different gene expression patterns in the same genome is 

known as epigenetics 53,54. 

In higher eukaryotes, like humans, epigenetic modifications are several and include 

posttranslational modifications of histones, chromatin remodeling, DNA methylation, and 

noncoding RNA interactions 53,54. The main similarity between these different epigenetic 

mechanisms is that none alters the primary DNA 53,54.  

Epigenetic mechanisms of regulation are widely influenced by developmental and 

environmental stimuli, and although the DNA sequence per se is not altered, cells are able to 

transmit an “epigenetic memory” to daughter cells, passing their genetic information, but also 

their associated phenotype 53,54.  

 

2.1.3 Histone Modifications 

As previously discussed, gene expression is, in a large part, regulated by how the 

chromatin is organized in the cellular nucleus 55. In fact, nucleosomes, by bending and 

cluttering DNA, greatly reduce its accessibility do transcription factors. The protein part of the 

nucleosome, the histones, are also subject to post-translational modifications, that influence 



21 

 

how the chromatin is compacted and its accessibility to nuclear enzymes. There are several 

types of histone post-translational modifications, such as methylation, acetylation, 

phosphorylation, ubiquitinoylation, sumoylation, deamination, ADP ribosylation, 

propionylation, and butyrylation 55.  

Histones contain characteristic protrusions, that are projected away from the 

nucleosome, and thus more accessible, commonly known as histones N-terminal tails 55. The 

modes of action by which post-translational histone modification affect the chromatin’s 

structure and gene expression are various. These modifications can directly influence 

chromatin compaction, and thus transcription; for example, acetylation of lysine 16 of histone 

H4 (H4K16ac) is a type of modification that reduces chromatin compaction and increases 

transcription, while di- or tri- methylation of H4k20 promotes chromatin condensation. 

However, these types of epigenetic events do not only contribute to the direct chromatin 

remodeling, but can also have indirect modes of action, such as by recruiting effector proteins 

that activate signaling cascades, by causing obstruction to remodeling complexes, or by 

affecting the recruitment of transcription factors or chromatin remodelers 55.  

One of the most dynamic epigenetic modifications of histones is acetylation 55. This 

process is modulated by two families of enzymes, histone acetyltransferases (HATs), that 

promote the acetylation, and histone deacetylases (HDACs), that trigger the opposite effect. 

HATs catalyze the addition of an acetyl group, using Acetyl-Coenzyme A (CoA) as a cofactor, 

to the ε-amino group of a lysine side chain. Lysine amino acids residues, in the histone, have a 

positive charge, and by being acetylated, the charge is neutralized, potentially weakening 

histones’ interaction with DNA, which is negatively charged. The family of HATs comprises 

of two main classes of enzymes, type-A HATs and type-B HATs. The class B HATs are mainly 

cytoplasmatic proteins, whose main role is to acetylate free cytoplasmatic histones, rather than 

acetylating the ones deposited in the chromatin. One of the key functions of type-B HATs is to 

acetylate histone H4 at the K5 and K12 residues, immediately after it is synthesized. These two 

marks allow for the deposition of the histone in the chromatin, and after this event has occurred 

successfully, the residues are deacetylated 55.   

The type-A HAT class can be further subdivided into three type-A subgroups, namely 

1) the Gcn5-related N-acetyltransferases (GNAT), 2) the MYST family (named after the 

founding members: MOZ, Ybf2/ Sas3, Sas2 and Tip60), and 3) the cyclic 



22 

 

adenosine monophosphate (cAMP)-response element binding protein (CREB)-Binding Protein 

(CBP)/p300 family 55.  

On the opposing side of the spectrum of histone acetylation are the HDACs 55. These 

are unspecific enzymes regarding substrate selection, being a single HDAC able to deacetylate 

several sites within histones. Similarly to HATs, HDACs are also subdivided in categories: 

class I (HDAC1, HDAC2, HDAC3, and HDAC8), class II (HDAC4, HDAC5, HDAC6, 

HDAC7, HDAC9, and HDAC10), class III (SIRT1, SIRT2,SIRT3, SIRT4, SIRT5, SIRT6, and 

SIRT7), and class IV (HDAC11). Although HDACs are subdivided into classes, this 

categorization is many times erroneously noted as a taxonomic classification, but truthfully all 

HDACs fit in the α and β protein classes 55.  

Another type of histone post-translational modification is phosphorylation, and 

similarly to histone acetylation, this is a very dynamically regulated epigenetic process 55. 

Contrarily to acetylation, however, phosphorylation mainly affects the residues serine, 

threonine, and tyrosine, on the histone tails, but also in their globular portion. In histones, as 

well as in other proteins, phosphorylation is mainly modulated by two types of enzymes: 

kinases, that catalyze the addition of a phosphate group, and phosphatases that have the reverse 

function. Histone kinases act by transferring a phosphate group from Adenosine triphosphate 

(ATP) to a certain amino-acid’s side chain, thus creating a negative charge in that region of the 

histone, which in its turn influences the chromatin’s organization 55.  

The most studied histone post-translational modifications are the ones in these N-

terminal tails, nonetheless these are not the only regions that can be modified 55. 

 

2.1.4 Noncoding RNA 

Epigenetic regulation of cellular protein levels is also carried out by untranslated RNA 

molecules termed as noncoding RNAs (ncRNAs) 56. These RNA molecules aren’t translated 

into proteins and are classified based on length, function, and cellular localization. Five major 

ncRNA classifications, with an epigenetic role, exist: microRNAs (miRNAs), small interfering 

RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snRNAs), and long 

ncRNAs (lncRNAs) 56.  
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2.1.4.1 miRNA 

MiRNAs are ncRNA molecules of small size, with an averaging length of 22 

nucleotides 57. miRNAs mediate gene silencing by directing proteins from the Argonaute 

(AGO) family to the target sites of mRNA molecules, which are typically in the 3’ untranslated 

region (UTR)’s region. Nonetheless, miRNAs can also interact with other regions of the target 

mRNA, such as its coding sequence, 5’UTR region, or its promoter region 57.  

 These molecules are usually transcribed from a DNA template into primary miRNAs 

(pri-miRNAs), which are processed into precursor miRNAs (pre-miRNAs), and later into 

mature miRNA molecules 57. These fully matured miRNAs are then able to regulate gene 

expression by interacting with target mRNA molecules. miRNA’s expression patterns are 

tissue-specific, and its deregulation is associated with several diseases, including cancer. In 

fact, although these molecules are not translated, miRNAs can be considered tumor suppressors 

or oncogenes, in the later case being called oncomirs 57.  

General classification of miRNAs is done by clustering these molecules into families, 

based on the similarity of their seed, which is a small 2-8 nucleotide sequence that is largely 

responsible for mRNA target recognition 57.  

miRNA molecules mediate gene silencing by forming a complex known as minimal 

miRNA-induced silencing complex (miRISC), which is composed by a guide strand and an 

AGO protein 57. The miRISC specifically interacts with its target mRNA by binding, through 

its seed sequence, to complementary sequences known as miRNA response elements (MREs). 

The miRNA - MRE complementary percentage dictates one of two possible fates for the target 

mRNA: 1) miRISC-mediated translational inhibition and decay, or 2) AGO2-dependent slicing 

of the target mRNA. A total miRNA – MRE base complementary promotes AGO2 

endonuclease activity and, thus, cleavage of the target mRNA. However, in animal cells the 

vast majority miRNA – MRE contain at least one mismatch, thus preventing AGO2 

endonuclease activation. In this case, AGO2 will act as a silencing mediator of RNA 

interference (RNAi), rather than actively cleaving mRNA, by recruiting the poly(A)-

deadenylases PAN2/ and Carbon Catabolite Repression—Negative On TATA-less (CCR4-

NOT), that will initiate and complete the poly(A)-deadenylation process, respectively. The 

target mRNA will then be decapped by the decapping protein 2 (DCP2) and degraded by 

exoribonuclease1 (XRN1) 57. 
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2.1.4.2 siRNA 

siRNAs are small double-stranded RNA molecules with lengths between 20 – 25 bp. 

These molecules constitute an epigenetic player in gene silencing, acting through the biological 

mechanism of RNAi 58. 

siRNAs are produced from longer dsRNA molecules, which are cleaved into shorter 

fragments, by the RNase III-like enzyme Dicer and, like miRNAs, form an effector complex 

with an Argonaut protein 58. Although exogenous and/or artificial siRNA molecules are 

powerful and well-studied tools in biomedical research and potential therapeutic weapons in 

genetic diseases, mechanistic understanding of endogenous siRNAs in mammals is scarcer. 

One of the reasons for the lack of total systematic comprehension of the biosynthesis and 

biological role of endogenous siRNAs in mammalian cells, is that its existence causes some 

theoretical conflict with the fact that the occurrence of dsRNA in these cells is a hallmark of 

viral infection and prompts a powerful immune response via protein kinase R/ interferon 58. 

Nonetheless, reports show that endo-siRNA expression in mouse oocytes, do not trigger an 

interferon response against dsRNA 58,59. Some research seems to link endogenous siRNAs with 

retrotransposons, such as the Long interspersed nuclear element 1 retrotransposon (LINE-1). 

For instance, in breast cancer cells, LINE-1 transcripts are frequently enriched, whereas LINE-

1 related endogenous siRNAs are usually depleted. Furthermore, overexpression of these 

siRNAs greatly silences LINE-1 expression by augmenting DNA methylation of its promoter 

58,59.  

 

2.1.4.3 PIWI-interacting RNAs 

piRNAs are yet another class of ncRNAs of small size 60. With lengths that range from 

21 to 35 nucleotides, these animal-specific molecules have various biological roles such as 

gene expression regulation, viral combat, and silencing of transposable elements 60.  

Unlike miRNAs and siRNAs, that stem from double-stranded RNA precursors, piRNAs 

originate, without the action of Dicer, from long ssRNA precursors, that are transcribed from 

genomic regions named piRNA clusters 60. One of the main functions of piRNAs is to protect 

the germline genome against transposon mobilization, however, it is not understood how 

piRNAs are able to differentiate self-transcripts from non-self-transcripts 60.  
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piRNAs, similarly to miRNAs and siRNAs, interact with a protein from the Argonaute 

family 60. However, this family of proteins can be divided into the AGO and PIWI clades, and 

whereas the siRNAs and miRNAs interact with an AGO effector protein, the piRNAs interact 

with a PIWI clade. One of the differences between these two groups of proteins, is that while 

AGO proteins are ubiquitously expressed, PIWI-clade proteins are usually restricted to gonadal 

cells, which explain some of the piRNA main functions 60.  

 

2.1.4.4 small nucleolar RNAs 

snRNAs are ncRNAs that mainly accumulate in nucleoli and their lengths can vary 

between 60 to 300 nucleotides 61. This class of RNA molecules is responsible for post-

transcriptional and maturation of other cellular RNA molecules, such as ribosomal RNAs. Most 

snRNAs are encoded in introns, and their genesis usually involves co-transcription with the 

gene where they reside, splicing, debranching of the intron lariat, and subsequent 

exonucleolytic digestion 61.  

The main function of snRNAs is in the maturation of rRNAs 61. For example, snRNA 

molecules promote modifications within conserved and functional regions of rRNAs, such as 

triggering the 2’-O-methylation of the fifth nucleotide by the methylase fibrillarin, prompting 

the conversion of uridines to pseudo-uridines by the dyskerin protein, and even by participating 

in pre-rRNA cleavage 61.  

 

2.1.4.5 long ncRNAs (lncRNAs). 

lncRNAs are, unlike the previously discussed ncRNAs, longer non-coding transcripts 

with lengths that range from 200 to 100.000 nucleotides 62. These molecules are similar to 

mRNA transcripts, but don’t have stable open reading frames, and their expression levels are 

not only tissue specific, but also appear to be generally lower than protein-coding transcripts 

62.  

LncRNAs are important cis and trans-acting modulators of protein-coding gene’s 

expression 62. These molecules can recruit chromatin-remodeling enzymes, like histone 

methylases, acetylases, and deacetylases, to specific chromatin loci, mediating the chromatin 

state and thus activating or repressing local genes. LncRNAs can also interact with other RNA-
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binding factors to form RNA-protein complexes, that can promote transcription by recruiting 

key proteins to gene promoters or repress transcription by binding to existing gene repressors. 

These molecules have also been shown to be intricated in the repression of apoptotic genes, 

like B-cell lymphoma 2 (BCL2) Interacting Killer (BIK) and Fas Cell Surface Death Receptor 

(FAS) 62. 

 

2.1.5 DNA methylation 

Cytosines, one of the four bases that can be found in DNA, not only are a part of the 

genetic code, but also contain epigenetic information through chemical modification of its 

pyrimidine ring, a process named DNA methylation 63–68. In this process, a methyl (CH3) group 

is enzymatically and covalently added to the fifth position of cytosines, giving rise to 5-

methylcytosines (5-mC). DNA methylation is one of the most studied epigenetic events in 

mammals, but is also considerably conserved amongst other animals, plants, and fungi 63–68.  

Although cytosine methylation is an event that is temporally and spatially regulated, is 

also a frequent one 63–68. In fact, in humans, methylation occurs in approximately 60 – 80% of 

the 28 million CpG dinucleotides present in the human genome. These CpG dinucleotides are 

not evenly distributed across the genome, but rather condensed in regions named CpG islands. 

These regions have, normally, at least 200bp and is comprised mostly of CpG dinucleotides 

(more than 50% of its nucleotides)  .Even though any cytosine in the genome can be 

methylated, this process is mostly constrained to palindromic CpG dinucleotides, being 

cytosine methylation in a non-CpG context (CpH, H = A, T, C) rare in most mammals. 

However, methylation is not biologically exclusive to CpG dinucleotides, indeed non-CpG 

methylation is a frequent event in plants, oocytes, pluripotent embryonic stem cells (ESCs), 

and mature neurons 63–68.  

DNA methylation is not a static process or pattern, but rather a dynamic one 63–68. A 

specific methylation pattern in a specific genomic region, or methylation mark, can be de novo 

synthesized, maintained or removed. The dynamics of DNA methylation is regulated by a 

meticulous balance between DNA methyltransferases (DNMTs), that methylate cytosines, and 

DNA demethylases, that remove the methyl group from 5mC 63–68.  

DNA methylation and demethylation are two very distinct processes, with distinct 

players 63–68. DNA methylation is catalyzed by three key enzymes, with methyltransferase 
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activity: DNMT1, DNMT3A, and DNMT3B. DNMT1 major role is in the maintenance of 

methylation patterns following, for example, DNA replication or genomic damage repair, being 

mostly active on DNA that has one of its two strands already methylated, also known as hemi-

methylated DNA. De novo methylation is mostly carried out by the other two methylation 

enzymes DNMT3A and DNMT3B, which are not able to discriminate methylated and hemi-

methylated DNA substrates 63–68.  

Global DNA methylation can only be maintained with the action of DNMT1; thus, this 

enzyme is constitutively active in human cells 63–68. The amine-terminus of the DNMT1 protein 

includes various regulatory domains, such as 1) the Replication Foci Targeting Sequence 

(RFTS), which is involved in DNMT1 dimerization and possibly implicated in hemi-

methylated DNA recognition, 2) the DNA methyltransferase associated protein 1 (DMAP1)-

binding domain, that interacts with Histone Deacetylase 2 (HDAC2), mediating transcription 

co-repression, 3) the Bromo homology domain, possibly important for protein-protein 

interactions, and 4) the cysteine rich CXXC domain, that enables the DNMT1’s interaction 

with the unmethylated DNA. On the other hand, while the critical regulatory domains are 

located in the protein’s N-terminus, it’s catalytic domain rests in the carboxy-terminus. In fact, 

it seems that it is the interaction between the protein’s regulatory domains, in the N-terminus, 

and the catalytic domain, in the C-terminus, that allows the allosteric activation of the DNA 

methyltransferase. DNMT1 also has an obligate partner, the ubiquitin-like plant homeodomain 

and RING finger domain 1 (UHRF1), a protein that preferentially recognizes hemi-methylated 

CpG sites 63–68. 

Unlike DNMT1, the de novo methyltransferases DNMT3A and DNMT3B are usually 

downregulated in adult somatic cells, nevertheless they are highly expressed in undifferentiated 

embryonic stem cells 63–68. To catalyze DNA methylation, DNMT3A and DNMT3B interact 

with a histone protein, usually with the unmodified lysine 4 residue of histone 3 (H3K4me0), 

through the Pro-Trp-Trp-Pro domain. Another important domain present in the de novo 

methyltransferases is the X-linked helicase II (ATRX)-DNMT3-DNMT3L (ADD) domain, a 

zinc finger binding domain that continuously inhibits the catalytic methyltransferase domain 

until the enzyme binds to the histone 63–68.  

De novo DNA methylation is modulated by a third member of the DNMT3 family, the 

DNMT3-like protein (DNMT3L) 63–68. This modulator for DNMT3A and DNMT3B activity 

is not catalytically active, in fact it does not have a functional catalytic domain and, unlike the 
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other DNMTs, doesn’t interact with S-adenosyl methionine (SAM), the methyl group donor 

for DNA methylation. DNMT3L is able to physically interact with the catalytic domains of 

DNMT3A and DNMT3B, promoting their affinity to SAM, and thus stimulating their DNA 

methyltransferase activity 63–68.  

Even though DNA methylation is a crucial cellular process, the loss of 5mC, or DNA 

demethylation, is of equal importance 63–68. Genome wide DNA demethylation is of great 

importance in particular settings, such as creating and maintaining a pluripotent state in early 

embryos, or for eliminating parental imprints in developing primordial germ cells 63–68. 

The process of DNA demethylation can happen in a passive manner or an active one 

63–68. In every cell cycle, after DNA replication, the action of DNMT1 leads to the maintenance 

of the methylation patterns, by the symmetrically methylation the nascent DNA strand. 

However, in the absence of functional maintenance machinery (DNMT1 and/or UHRF1), loss 

of 5mC occurs and, after successive cycles of DNA replication, there is a passive decrease in 

methylated cytosines, a phenomenon known as passive dilution of 5mC 63–68.  

Like DNA mutations, changes in DNA methylation can be propagated to daughter cells 

69. However, the latter is much more vulnerable to environmental stimuli than the former. In 

fact, it is the dynamic nature of the methylation and demethylation processes that allow for 

cells with identical genetic sequences to display different phenotypes. It has been increasingly 

shown that, during the tumor initiation, development, and metastasis processes, mutations are 

not the only factor for clonal evolution. Events of aberrant DNA methylation, sometimes 

referred as epi-drivers, might also provide selective advantage to a tumor clone, contributing 

to the tumorigenic process and metastatic cascade (Fig. 1.3) 69. 
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2.1.6 Relationship between DNA methylation and histone modifications 

DNA methylation and histone modification are closely linked 70. In fact, it seems that 

both processes seem to reciprocally influence each other, where histone modifications can 

direct DNA methylation patterns, and DNA methylation may provide a template to certain 

histone modification after DNA replication. In fact, several histone modifications have been 

suggested to be directly implicated in DNA methylation. For example, trimethylation of histone 

H3 lysine 9 (H3K9), histone H3 lysine 27 (H3K27), and histone H4 lysine 20 (H4K20) seem 

to be a prerequisite for local DNA methylation 70. Enhancer of zeste homolog 2 (EZH2), one 

of the main constituents of the polycomb repressive complex 2 (PRC2) and a histone 

methyltransferase, is known to directly interact with DNMTs 71. Knockdown of EZH2 not only 

reduces H3K7 methylation but also DNA methylation at specific EZH2 target genes. 

Furthermore, overexpression of EZH2 has been shown to increase DNA methylation at CpG 

sites 71. Another histone methylase, named G9A, responsible for the catalysis of mono- and di-

methylation of H3K9 and H3K27, is also involved in DNA methylation 72,73. In 2007, Ikegami 

K. and colleagues, demonstrated that G9A knockout in murine cells led to site specific 

reduction of DNA methylation 73. The G9A histone methylase can form an heteromeric 

complex with the euchromatic histone lysine methyltransferase 1 (EHMT1) and not only 

Figure 1.3 – Epigenetic alterations during tumor initiation, tumor development, and 

metastasis and clonal selection of epigenetic traits. Epi-drivers and driver mutations are key 

events that occur during tumor initiation. During tumor development several epigenetic 

changes can provide selective advantage to the tumor clone, being kept in the population and 

thus promoting tumor development. The same process might impact the metastatic cascade. 

Reprinted under a Creative Commons Attribution-Noncommercial 4.0 International Public 

License, from Elsevier: Seminars in Cancer Biology, Epigenetic drivers of tumorigenesis and 

cancer metastasis (2018) 69. 
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promote methylation of H3K9, but also DNA methylation in site 72,73. Together, these two 

epigenetic phenomena cause a local reduction in gene transcription. Although these two 

proteins are histone methylases, it has been shown that their knockout in Embryonic Stem Cells 

(ESCs) leads to DNA promoter hypomethylation of their target genes 72,73. 

Protein arginine N-methyltransferase 5 (PRMT5), another histone methylase, catalyzes 

the di-methylation of histone H4 arginine 3 (H4R3) 74. This epigenetic histone mark is a 

binding target for DNMT3A, which in turn methylate adjacent CpG dinucleotides 74.  

 

2.1.7 Disruption of chromatin homeostasis and tumorigenesis 

Chromatin’s conformation is of major importance to cellular functions, since it is what 

allows for proper global gene expression 75. Active genes and elements must be accessible to 

regulatory factors, whereas inactive genes are compacted inside inaccessible structures that 

prevent their transcription 75. The disruption of this epigenetic homeostasis by genetic, 

environmental, and metabolic stimuli can promote tumor initiation and/or accelerate tumor 

development, by making certain chromatin regions abnormally compacted and consequently 

restrictive, or aberrantly unfolded, and thus permissive 76,77.  

DNA methylation plays a profound role in the aberrant alteration of chromatin 

permissiveness during tumor initiation 77. In normal cells, cytosines in guanine-cytosine (CG) 

enriched genomic regions are usually unmethylated, and cytosines in regions with a low CpG 

count are frequently highly methylated. However, in several cancers this methylation model is 

not observed. This common aberrant epigenetic phenomenon is termed as CpG island 

methylator phenotype (CIMP), where CpG islands become hypermethylated and CpG-poor 

loci become hypomethylated. This occurs in a wide range of cancer types, and is considered to 

be a restrictive epigenetic event, since CpG-rich loci hypermethylation has been shown to 

silence tumor suppressor genes like p16, and DNA mismatch repair genes like the mutL 

homolog 1 (MLH1) and the MutS homolog 2 (MSH2) 77.  

DNA methylation can not only be intricated in epigenetic restriction events, but also 

induce a permissive chromatin state 77. This permissive status allows cells to switch 

transcriptional states, genetic pathways, or developmental programs, many of which can be 

pro-oncogenic. The propagation of a selectively advantageous plastic chromatin state that is 
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propagated to daughter cells through mitosis, will cause the establishment of a new tumoral 

clone with increased fitness, and thus a step forward in the tumor development process 77.  

Most cancer types follow an aberrant global methylation pattern, and since these 

patterns are a fundamental mechanism that modulates the chromatin’s permissiveness, which 

in turn triggers different cellular pathways, a central biological question remains to be 

answered: “Are there genomic regions that are more susceptible to alterations is DNA 

methylation during tumorigenesis?”. If this question yields an affirmative answer, then a 

secondary question arises: “Are these regions related to altered patterns of gene expression and 

consequently altered cellular patterns?”.  
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Chapter 2 Aims 

 

We hypothesize that upon tumor initiation certain genomic regions are differentially 

methylated and others are resistant to changes. We termed the first Epi-Hotspots and the later 

Epi-Blackholes. We also hypothesize that these genomic regions might be somehow related to 

alterations in gene expression during oncogenesis. Since gene expression and DNA 

methylation patterns are cell-type specific, we also expect that these genomic oncogenic events 

are also primarily tumor specific. 

In addition, we also theorize that if these events are not present uniformly in every 

patient of each cohort, there might be some that might act as potential prognostic biomarkers 

able to predict patient survival in a more advanced phase of the disease.  

To test our hypothesis, we aim to perform a pan-cancer analysis to: 

• Search for genomic regions that are more susceptible to alterations in DNA methylation 

(Epi-hotspots) during tumor initiation; 

• Search for genomic regions that are immutable regarding DNA methylation (Epi-

Blackholes) in the normal – tumoral transition; 

• Identify alterations in gene expression during tumor initiation and check which of them 

could be explained by either Epi-hotspots and/or blackholes.  

• Perform a pan-cancer cross-examination of the previous alterations to understand 

common and differentiating patterns between different tumor types. 

• Understand which biological processes are possibly being modulated by Epi-Hotspots 

or Epi-Blackholes. 

• Examine if the identified Epi-Blackholes and epi-hotspots can predict survival of stage-

III cancer patients.  
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Chapter 3 Methodology 

 

3.1 Analytic Tools 

All statistical analysis in this study was performed using R, which is a language and 

environment that can be used for statistical computing and graphics.  

The R language choice for this analysis was due to several criteria, such as 1) is an 

open-source language, 2) provides the ability to perform several statistical and graphical 

techniques, 3) its capabilities can be easily extended through packages, 4) is widely used in the 

scientific community, which allows for increased study replicability and easy employment of 

methods described in other studies.  

The R code developed herein was manipulated via a software named RStudio, which is 

an integrated development environment (IDE) specifically designed to operate R code. This 

open-source manipulation software was selected due to the several user-friendly features it 

possesses, such as a workspace browser, data viewer, ability of managing multiple working 

directories, having integrated R documentation, interactive debugger, among others.  

A large part of this analysis was completed using several R packages, that were 

developed and published by other users. These are collection of R functions and compiled code, 

that allow for an easier (and pre-optimized) implementation of statistical tests, mathematical 

operations, or other computational tasks. 

 

3.2 Data Source 

 In order to assess DNA methylation alterations in tumor initiation, we analyzed data 

from several cancer types originally generated by The Cancer Genome Atlas Consortium 

(TCGA). The TCGA was a program that started in 2006 by the National Human Genome 

Research Institute (NHGRI) and the National Cancer Institute (NCI) 78. During more than 12 

years, this cancer genomics program was able to examine 33 cancer types and characterize over 

20,000 cancer and matched normal samples, generating proteomic, genomic, transcriptomic, 

and epigenomic pan-cancer data that totals more than 2.5 petabytes of  publicly available 

information (equivalent to more  than 2,500,000,000 megabytes of data) 78. 
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Being our goal to analyze DNA methylation variation during tumor initiation, we 

selected all the cohorts in the TCGA program that had publicly available DNA methylation 

and gene expression data for both normal and stage-I tumoral samples. Our study started from 

level-3 DNA methylation data generated from Infinium HumanMethyation450 bead array, and 

level-3 gene expression data generated from Illumina RNA-sequencing (RNA-Seq). 

The selected datasets had already been through level-3 processing using the latest 

Human Genome Assembly hg38 and were downloaded from the National Institutes of Health’s 

(NIH) Genomic Data Commons (GDC) Data portal (https://portal.gdc.cancer.gov/). The 

TCGA data is archived in the database of Genotypes and Phenotypes (dpGaP) under the 

accession number phs000178. In our analysis we used the v0.p8 version of the dataset, publicly 

released on August 17, 2018. 

The TCGA cohorts used in the present study, respective identification code, disease, 

and primary site are listed below (Table 3.1). 

 

Table 3.1 - Summary description of the analyzed datasets. 

TCGA 

identification 

code 

Disease Primary site 

TCGA-COAD Colon Adenocarcinoma Colon 

TCGA-PAAD Pancreatic Adenocarcinoma Pancreas 

TCGA-BRCA Breast Invasive Carcinoma Breast 

TCGA-CHOL Cholangiocarcinoma Bile ducts (liver) 

TCGA-ESCA Esophageal Carcinoma Esophagus 

TCGA-HNSC 
Head and Neck Squamous Cell 

Carcinoma 
Oral cavities and pharynges 

TCGA-KIRC Renal Clear Cell Carcinoma Kidney 

TCGA-KIRP Renal Papillary Cell Carcinoma Kidney 

TCGA-LIHC Hepatocellular Carcinoma Liver 

TCGA-LUAD Lung Adenocarcinoma Bronchus and lung 

TCGA-LUSC Lung Squamous Cell Carcinoma Bronchus and lung 

TCGA-THCA Thyroid Carcinoma Thyroid gland 
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3.2.1 Infinium HumanMethyation450 bead array 

As previously described, we opted to analyze DNA methylation data spawned by 

Infinium HumanMethyation450 bead array 79. This type of assay has the ability to assess the 

methylation status of over 450 thousand CpGs sited across the genome, covering 96% of CpG 

islands in the human genome. This array utilizes two distinct probe types: 135501 Infinium-I 

probes and 350076 Infinium-II probes. An Infinium-I CpG target site’s methylation status is 

assessed by a 50bp probe that detects a “methylated” (M) intensity, and by another equal sized 

probe that detects an “unmethylated” (U) intensity. On the other hand, Infinium-II CpG sites 

are targeted by only one probe that distinguishes “M” and “U” intensities employing a green 

dye, and a red dye 79. The methylation level of a single CpG site is then represented by a β-

Value, which can be computed with the following formula 80: 

𝛽 =  
𝑀

𝑀 + 𝑈
  

 

3.2.2 Illumina RNA-sequencing (RNA-Seq) 

In RNA-Seq complementary DNAs (cDNAs) are directly sequenced using high-

throughput next generation sequencing (NGS) 81. After this step, the sequencing reads are 

mapped to the reference genome for gene expression analysis 81.  

In this process, a population of RNA is first converted into a library of cDNA fragments 

81. Each cDNA fragment has adaptors in one or in both extremities. Each of these fragments 

are then sequenced to produce short sequences reads, which are then aligned with the reference 

genome (or transcriptome), generating a base-resolution expression profile for each gene 81. 

 

3.2.3 Data levels 

Genomic data can be obtained with different degrees of treatment and depending on the 

type of treatment that was already applied to the data, this can be categorized in what are called 

Data Levels 82. 

Typically, there are 4 data levels:  

▪ Level 1 – This type of data is usually untreated and un-normalized. It is commonly 

referred as raw data. 
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▪ Level 2 – This represents data that was already normalized. It can be viewed as an 

intermediate degree of data processing.  

▪ Level 3 – Data with this level of treatment is generally normalized, aggregated, and, 

sometimes, segmented. 

▪ Level 4 – This is the combination of the previous treatments, but in an integrative multi-

cohort analysis, such as a pan-cancer analysis 82. 

The TCGA data that was obtained for the present study, had already level-3 treatment.  

The DNA methylation datasets were imported as a combined genomic matrix of β-

Values, in which the observations were the samples and the variables corresponded to the CpG 

sites. All β-Values that corresponded to the same sample, but from different aliquots where 

averaged. 

The gene expression data was also aggregated into a genomic matrix, in which 

observations corresponded to samples and variables corresponded to genes. Data that matched 

the same sample, but different aliquots was also averaged. The data was also normalized 

according to the following function: 

𝑦 =  log2(𝑥 + 1) 

 

3.3 Data preparation 

Before initiating our analysis, all datasets were subjected to a pre-analytic processing, 

which involved variable and observation selection, outlier removal, missing data treatment, 

and age and gender calibration. 

 

3.3.1 Variable and observation selection 

Since the main goal of our research lies in tumor initiation, only samples that 

corresponded to either normal tissue or primary stage-I tumor tissue were analyzed.  

RNA-Seq technology is able to generate reads for all kinds of transcripts, but in the 

current analysis our aim is to link methylation regions with genes. For this reason, all transcripts 

that did not correspond to a protein-coding gene were removed from the gene expression 

genomic matrixes.  



37 

 

3.3.2 Missing Data 

Missing values in a sample can compromise the reliability of the results and can also 

produce bias 83. Several procedures exist to deal with missing values, such as imputing missing 

values - which involves substituting the absent values by a numeric value derived from 

statistical analysis - or using only samples without missing values 83.  

In our study, we removed all variables and observations in which at least half the data 

was missing. 

 

3.3.3 Outlier removal 

Outliers are extreme values that fall outside the common pattern of distribution of 

values 83. These are data points that lie far away from the majority of the other data points and 

can originate from several factors including data entry errors, measurement errors, or abnormal 

values that are not common in a population. By creating bias, outliers can greatly affect 

statistical analysis, leading to over- or under- estimated statistical estimates. Various methods 

for identifying outliers exist, some of which use the distribution’s mean and standard deviation 

(SD) to select them. However, since the mean and SD themselves are outlier sensitive, we 

identified aberrantly extreme values using the box plot method. In this method, any data point 

that is located outside 1.5 times the interquartile range (IQR), which is the distance between 

the third and first quartiles, either above the 75th percentile or below the 25th percentile is 

deemed an outlier 83.  

Outlier detection and deletion was performed for every variable of every dataset. 

 

 3.3.4 Age and gender calibration 

Due to the small size of the available cohorts, comparisons between normal and stage-

I tumoral populations was not done via matched pairs. Gender and age differences between 

groups can lead to a biased analysis and since we did not find any good existing protocol to 

address this problem, we developed a method for inter-group homogenization of these variables 

described below (Fig. 3.1). To assess gender and age differences between groups, the 

nonparametric Wilcoxon rank-sum test, and the chi-squared test were used, respectively. Inter-

group homogenization was achieved by systematically identifying the observation (or 
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individual) that caused the most inter-group variability with respect to age and gender. A 

significance threshold (α) of 0.05 was chosen for both the Wilcoxon and chi-squared tests. The 

next stage of the pipeline was to identify the age at which there was the greatest difference in 

terms of frequency of individuals and subsequently, which group had the highest number of 

individuals of this age. Since we also wanted to decrease inter-group heterogeneity for gender, 

the decision to remove a male or a female was based on gender frequency. If, at any given 

cycle, more than one individual was fit for exclusion, the removal was done randomly. After 

exclusion of the selected observation, the Wilcoxon and chi-squared tests were repeated, and 

the whole process was repeated until statistical significance was above the chosen threshold. 

Figure 3.1 - Decision tree for age and gender calibration between cohorts. The algorithm 

here developed to decrease inter-group heterogeneity for age and sex, between cases and 

controls, systematically identifies and removes the individual that causes the largest difference 

regarding sex and age. The algorithm continuously iterates until the difference is below a user-

defined threshold. 
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3.4 Epi-Hotspot Identification 

In order to identify genomic regions that are more susceptible to methylation, i.e. Epi-

Hotspots, we searched for Differentially Methylated Regions (DMRs) between normal and 

stage-I tumor samples using two different DMR-seeking algorithms, and by intersecting the 

results.  

In September 2018, Mallik and colleagues performed a comprehensive analysis of four 

popular DMR finding methods: Bumphunter, Comb-p, DMRcate, and ProbeLasso 84. The 

researchers generated forty simulated DNA methylation datasets and evaluated several 

performance indicators of the algorithms, such as sensitivity (predicted positives / actual 

positives), precision (actual positives / predicted  positives), area under precision-recall curve 

(AuPR) (a comparison of sensitivity and precision, representing the overall discriminatory 

ability of a method to assess whether a region is associated with disease), Matthews correlation 

coefficient (MCC) (the correlation between the observed and the predicted binary 

classification), F1 score (F1) (measures accuracy taking into account precision and sensitivity), 

and type I error rate 84. 

The Comb-p algorithm was quickly eliminated as an option because no computational 

tools existeded that allowed for its practical implementation in R. Of the remaining three 

algorithms, DMRcate had the best performance but Bumphunter was the one that identified the 

greatest number of DMRs, in a real dataset 84. For these reasons, we elected to use both the 

DMRcate and Bumphunter algorithms and then intersect the results. 

 

3.4.1 The Bumphunter Algorithm 

In the Bumphunter methodology, the DNA methylation genomic matrix is converted 

from β-Values to M-Values, that is 𝑀 =  log(
𝛽𝑉𝑎𝑙𝑢𝑒

1− 𝛽𝑉𝑎𝑙𝑢𝑒
) 85. A linear regression model is then 

applied by group in order to model differential methylation between cases (normal samples) 

and controls (stage-I primary tumor samples), at each CpG site. All consecutive CpG sites with 

a t-statistic that exceeds a certain threshold are clustered together into candidate DMRs, 

referred as “bumps”. Null distributions are generated for the candidate regions to estimate the 

statistical significance of the candidate DMRs separated by a minimum distance defined by the 

user (in this case 300 bp) 85.  
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To implement this algorithm in R we utilized the Bumphunter() function from the 

Bumphunter Bioconductor package. The parameter settings are described in Annex I. 

 

3.4.2 The DMRcate Algorithm 

The DMRcate method, like the Bumphunter method, starts with the logit transformation 

of β-Values to M-Values 86. The algorithm continues by fitting a linear model at every CpG 

site, where the M-Value is regarded as the outcome variable and the group status (normal vs. 

stage-I tumor) is considered as the independent variable. For every CpG site, the statistic Y = 

t2 is calculated, where the “t” corresponds to the t-statistics from the linear model. The method 

proceeds with the application of kernel smoothing, using a Gaussian smoother with bandwith 

λ (in this study, λ = 1000), scaled by a scaling factor C (in this study, C = 2). At each CpG site, 

the p-value is computed using the Sattarerhwaite method, and then corrected using the 

Benjamini and Hochberg method. Significant CpG sites that are within λ nucleotides from each 

other are collapsed into DMR regions. A p-value for each DMR is finally calculated using 

Stouffer’s method 86. Here, a DMR was considered to be statistically significant if the final p-

value was lower than a fixed α of 0.05. 

The DMRcate method was implemented in this study using the dmrcate() function from 

the Bioconductor package DMRcate. The specific function arguments and respective 

parameters are available in Annex I. 

 

3.4.3 Identification of Epi-Hotspots 

Having applied both DMRcate and Bumphunter algorithms to the datasets of interest 

we then proceeded to identify Epi-Hotspots, which we defined as differentially-methylated 

regions that were identified by both algorithms and in which the median point of one region 

overlapped with the other region. Only the segment identified by both methods was considered 

an Epi-Hotspot (Fig. 3.2). 

To understand which genomic regions were enriched by the identified epi-hotspots, we 

used the annotation data provided for the Illumina 450k array to analyze the genomic locations 

of the epi-hotspots79. 
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3.4.4 Hierarchical Clustering between cohorts 

Having identified and mapped the regions that were differentially methylated between 

normal and stage-I primary tumor samples (Epi-Hotspots) across multiple cancer types, we 

next aimed to understand which cancers were more similar and which ones were more 

divergent from each other, with respect to these regions.  

We, therefore, performed a hierarchical clustering analysis, using the Epi-Hotspot 

overlapping percentage as a similarity unit. Dissimilarity (Diss) was determined as Diss = 1 – 

Similarity.  

Hierarchical clustering is a type of clustering algorithm that partitions several objects 

into a tree of nodes, in which each node corresponds to a cluster 87. Each of these nodes can 

have zero or more child nodes placed below the parent node in the tree. Usually, hierarchical 

clustering trees are built and read in a vertical downward fashion. This type of clustering 

algorithm can be performed employing several methods. In this analysis, the complete linkage 

method was used, where the distance between two clusters represents their maximum distance. 

Figure 3.2 - Graphical illustration of the epi-hotspot identification method. Epi-hotspots 

were identified by intersecting the output of Bumphunter and DMRCate algorithms. If either 

the median point of the region detected by Bumphunter (M1) or the median point of the region 

detected by DMRCate (M2) was in the region detected by the other method, we considered that 

both algorithms identified the region. The intersection segment was considered an epi-hotspot.  
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This method represents a conservative clustering approach, which is why it was chosen in this 

study 87.  

 

3.5 Epi-Hotspot’s relation with gene expression alterations 

Having identified the Epi-Hotspots in the analyzed cancer types, our next goal was to 

understand if these regions are able to predict (or explain) gene expression alterations during 

the normal to stage-I tumoral transition. The first step was to identify which protein-coding 

genes had statistically significant differential expression in stage-I primary tumor samples 

relative to normal samples.  

 

3.5.1 Searching for differentially expressed genes 

To identify genes which were differentially expressed between normal and stage-I 

primary tumor samples, we employed several statistical inference techniques. Statistical 

inference is a strategy that makes use of data from a sample to describe the distribution of data 

in the population. In this analysis our null hypothesis (H0) was that the mean difference in gene 

expression between normal and stage-I primary tumor samples would be zero. Our alternative 

hypothesis (H1), was that the mean difference in gene expression between normal and stage-I 

primary tumor samples would be significantly different from zero. 

In hypothesis testing, a sample is used to determine which of the hypotheses is rejected, 

and which is accepted. In all of our statistical inferences, we rejected the null hypothesis at a 

5% alpha level.  

In this process several statistical tests were used: 

i. Shapiro-Wilks test – To assess if the given sample was drawn from a normal 

distribution 88.  

ii. Levene’s test – To test if two samples possess equal variances 89.  

iii. Two-sample t-test – A parametric test employed to understand if the mean expression 

value of normally distributed genes is statistically different between the normal sample 

group and the stage-I primary tumor sample group 90. 
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iv. Wilcoxon-Mann-Whitney test – A non-parametric test used to test if the median value 

of a gene, drawn from an unknown or not-normal distribution, is statistically different 

between the normal sample group and the stage-I primary tumor sample group 91. 

v. False discovery rate (FDR) multiple test correction – A method correcting the test-

generated p-values to diminish the probability of a type-I error 92. 

 

3.5.1.1 Shapiro-Wilks test: Assessing normality 

Many statistical techniques, including parametric tests, are based on the assumption 

that the given data is taken from a population that follows a normal distribution 88. Importantly, 

when this assumption is incorrect, it is impossible to draw accurate conclusions about the 

population 88. 

When dealing with large samples however, comprising more than thirty or forty 

individuals, assumption of normality is a lesser issue 88. In fact, with large enough sample sizes, 

it is possible to use parametric methods, even if the data is not normally distributed. 

Nonetheless, in our analysis we always tested for normality and our subsequent analysis 

proceeded in either a parametric or non-parametric manner, depending on the distribution of 

the data 88.  

There are several methods to test normality, however, the Shapiro-Wilk test provides 

better power than other options 88. Power is the most important measure of a test for normality, 

since it dictates the test’s ability to detect whether a sample comes from a non-normal 

distribution. Furthermore, Shapiro-Wilk test has been cited as the best choice for testing 

normality, and for this reason it was the one employed in this study 88. 

The Shapiro-Wilk test determines the correlation between the data and their 

corresponding normal scores 88. A significant test statistic (an alpha of 5% was used in this 

study) leads to rejection of the hypothesis that the data is normally distributed. 

To perform the Shapiro-Wilk test, the shapiro.test() R function from the “stats” package 

was used.  
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3.5.1.2 Levene’s test: Comparing sample variance 

Levene’s test was employed to understand if the variance of a given gene in the normal 

(non-tumor) group was equal to the variance of the same gene in the stage-I primary tumor 

group.  

This test was implemented in genes that were found to have a normal distribution, and 

its purpose was to examine if the genes with normal distribution were to be submitted to a two-

sample unpaired Student’s t-test (if the normal and tumoral groups have equal variances), or to 

two-sample t-test with the Welch approximation to the degrees of freedom (if the normal and 

tumoral samples had unequal variances) 89.  

In Levene’s test, H0 states that the variances between the two groups are equal, whereas 

H1 states the variances are not equal 89. In the present study, H0 was rejected if p-value was 

lower than a fixed alpha of 5%. 

To perform the Levene’s test, the leveneTest() R function from the “car” package was 

used.  

 

3.5.1.3 Two-sample t-test 

A t-test is a statistical test that compares the means between two groups 90. It belongs 

to a branch of statistical inference methods deemed as parametric. In parametric techniques, 

the probability distribution of probability variables is defined, and inferences about the 

distribution’s parameters are made 90.  

In general, two types of t-tests exist: 1) the independent t-test, used when the two groups 

are independent of each other, and 2) the paired t-test, used when the two groups are dependent. 

In our analysis, an independent t-test was applied 90.  

The calculation of the t statistic is based in the assumption that the samples are drawn 

from a population that displays a normal distribution and have an equal variance 90. In cases in 

which our variables displayed unequal variances between normal and stage-I primary tumor 

groups (determined by Levene’s test), the t-statistic was calculated differently, using the 

degrees of freedom calculated by the Welch Satterthwaite equation.  

To perform the Two-sample t-test test, the t.test() R function from the “stats” package 

was used.  
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3.5.1.4 Wilcoxon-Mann-Whitney test 

In the situations where the probability distribution cannot be defined, nonparametric 

methods are employed 91. Nonparametric methods are part of a second branch of statistical 

inference that require little to no assumptions about the data to be examined 91.  

The nonparametric alternative to the parametric unpaired t-test is the Wilcoxon rank 

sum test (also referred as the Mann-Whitney test) 91. Unlike its parametric homologue, this test 

does not assume a normal distribution, however it does assume that the groups to be compared 

are independent. The Wilcoxon-Mann-Whitney test is a technique to examine the difference 

between the medians of two independent populations 91. In the present study, the null 

hypothesis (H0) was that the median expression value of a given gene was the same in the 

normal sample group and the stage-I primary tumor group. We considered a given gene to be 

differentially expressed between normal and stage-I primary tumor samples when this 

hypothesis was rejected, with a fixed alpha value of 5%. 

To perform the Wilcoxon-Mann-Whitney test, the wilcox.test() R function from the 

“stats” package was used.  

 

3.5.1.5 FDR multiple test correction 

In the statistical inference process described above, all of the previous tests quantify the 

probability of a given result (for example, that a gene is differentially expressed in tumoral 

tissue relative to normal tissue) being significant as a result of mere random chance, given that 

the null hypothesis is true 92. In this study we consider that there is enough evidence to reject 

H0, when a p-value is lower the 0.05, which would signify a more extreme event, being H0 true. 

However, a multiplicity problem, common to many genomic studies, arises since, by pure 

chance, at 5% level of significance it is expected that one in every twenty genes will appear to 

be significant 92.  

Multiple hypothesis testing automatically inflates the probability of committing a type-

I error 92. At a 5% alpha level, the probability of committing a type-I error (αsingle-error), while 

testing a single gene, is αsingle-error = 0.05, on the other hand, the probability of not committing 

a type-I error is 1 – αsingle-error = 0.95 (Fig. 3.3) 92. However, in this part of our analysis we 

simultaneously tested approximately 20.000 genes. With this amount of multiplicity, the 
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probability of not committing a type-I error is (1- α)20.000 ≈ 2.97x10446, thus the probability of 

committing a type-I error in our analysis is αmultiple-error = 1-(1-α)20.000 ≈ 1.  

 

 

In order to avoid an exponential false positive rate inflation, we applied a False 

Discovery Rate (FDR) adjustment method (known as The Benjamini and Hochberg adjustment 

approach). FDR is the expected proportion of false positives among all positives where the null 

hypothesis was rejected 92.  

𝐹𝐷𝑅 =  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) 

In this methodology, all p-values are ranked in an ascending order, and multiplied by 

m/k, where m is the number of p-values to be adjusted and k corresponds to the position where 

that same p-value is located in the sorted vector 92.  

To perform the FDR p-value adjustment methodology, the p.adjust() R function from 

the “stats” package was used.   

Figure 3.3 – Type-I error probability in function of the number of independent tests, at a 

5% significance level. 
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3.5.2 Identifying genes to differentiate normal and stage-I tumor groups 

Having identified the differentially expressed genes, between normal tissue and stage-

I primary tumor tissue, in all cancer datasets, our next aim was to understand if the tumorigenic 

alterations in gene expression could be explained, or predicted, by the previously identified 

Epi-Hotspots. 

Our methodology involved applying a multiple regression technique to each 

differentially expressed gene and each Epi-Hotspot. The goal was to understand which of the 

Epi-Hotspot regions might explain gene expression alterations during tumor initiation.  

To minimize the number of false positives in this analysis we opted only to analyze 

genes whose expression variability was primarily associated with the normal to stage-I tumor 

transition. Many genes labeled as differentially expressed between normal and stage-I tumor 

tissue actually have high levels of expression variability in each of the groups. This could 

instigate serious type-I errors in our analysis, because even if an Epi-Hotspot could explain a 

gene’s variability, it would not be clear if this corresponded to the normal to stage-I tumor 

transition.  

We therefore divided the differentially-expressed genes into two groups: the first group 

of genes were those whose variability was primarily associated with the transition from normal 

to stage-I tumor, while the second group of genes were those whose expression values were 

not able to clearly differentiate stage-I tumor tissue from normal tissue. Only genes whose 

variability was located primarily in the tumorigenic transition were subjected to the Epi-

Hotspot – Gene Prediction analysis.  

To identify which of the differentially expressed genes were good differentiators of 

normal and stage-I tumor tissue, we performed Receiver operating characteristic (ROC) curve 

analysis for each gene. Those genes with an area under the ROC curve (AUC) greater than 0.8 

were used in the subsequent analysis.  

 

3.5.2.1 ROC curves and AUC 

The ROC curve is a plot in which the y-axis corresponds to the sensitivity of a given 

test, and the x-axis represents the false positive rate (or 1 – sensitivity) of the same test 93. ROC 

curve analysis is a common and effective method to evaluate the quality and performance of a 
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given differentiator test, such as a diagnostic test. In the present study, the ROC curve 

methodology was used to understand which differentially expressed genes were good 

differentiators of normal tissue and stage-I tumor tissue. The ROC curve functions on the 

concept of a “separator” scale, where the values for the “cases” and “controls” form a pair of 

overlapping distributions. If the two distributions are completely separated, then the test is 

perfectly discriminant. Conversely, overlapping distributions signify that the test is not able to 

discriminate cases from controls 93.  

Visually, increasingly discriminant tests are progressively closer to the upper left-hand 

corner of the “ROC space” 93. A non-discriminant test results in a diagonal ROC curve and 

implies a test with a performance equal to chance (a test that will randomly yield a positive or 

negative result, in a manner that is unrelated to underlying disease status) 93.  

 

The ROC curve can be summarized by the area under the curve (AUC), which denotes 

the entire area under the ROC curve 93. The AUC is commonly utilized as unidimensional 

measure of combined sensitivity and specificity of a given test. The AUC value can be 

understood as the probability that a randomly chosen case observation will be identified as a 

“positive” relative to a randomly chosen control. The AUC value can also be interpreted as the 

average sensitivity for all possible values of specificity. This index ranges from 0 to 1, where 

Figure 3.4 - Illustration of a roc curve for two mock tests and chance level. The variables 

specificity and 1-sensitivity are represented in the y and x axis, respectively. Test-A has a 

greater AUC than Test-B, and both are greater than chance level, where the AUC is 0.5. 
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the maximum (AUC = 1) indicates a test is able to perfectly discriminate two groups, and the 

minimum (AUC = 0) implies that the test will incorrectly classify all observations. An AUC of 

0 is extremely unlikely, since it would mean that a test would be incorrect at all times, which 

in a way also makes it correct at all times. The diagonal ROC curve, that indicates randomness 

sorting, corresponds to an AUC of 0.5 93.  

In the present study, only differentially expressed genes showing an AUC equal or 

greater than 0.8 for differentiating normal and stage-I tumor samples were subjected to further 

analysis. 

To calculate the AUC index, the roc() R function from the “pROC” package was used.  

 

3.5.3 Multiple Linear Regression Analysis 

After identifying which genes were good differentiators (AUC ≥ 0.8), of normal and 

stage-I tumor samples we sought to understand which alterations in gene expression could be 

explained by aberrantly methylated regions, i.e. Epi-Hotspots. 

To do this we performed a multiple linear regression analysis between each Epi-Hotspot 

and each differentially expressed gene.  

Simple linear regression is based on the concept that one predictor variable X is used 

to model a response variable Y 94–96. However, in our case, one Epi-Hotspot is a collection of 

multiple CpG sites, each bearing its own beta-value. Thus, one Epi-Hotspot consists of multiple 

factors on which a single response variable (the gene expression value) depends 94–96. Our 

analysis therefore modeled how the variability of one gene, in the normal to stage-I tumor 

transition, depended linearly on the methylation variability of the CpG sites located in each 

Epi-Hotspot. 

The multiple linear regression model, where gene expression is deemed as a response 

variable, and the beta-values of each CpG site within an Epi-Hotspot are predictor variables, is 

written as follows 94–96: 

𝑌 =  𝛽0 + 𝛽1𝑋1 +   𝛽2𝑋2 +   𝛽3𝑋3 + ⋯  𝛽𝑘𝑋𝑘 + 𝜀𝑘. 

Where Y represents the response variable, here the expression of a given gene, which 

depends on k predictor values X1, X2, X3, …, Xk, where k corresponds to the number of CpG 

sites in an Epi-Hotspot, and X is the corresponding beta-value of each CpG site. ε is the residual 
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term of the model. Note that in the equation above, β0, β1, β2, β3, …, βk, do not represent beta-

values, but rather the regression coefficients in the model 94–96.  

Fitting a multiple linear regression is, almost always, possible 94–96. However, it is of 

utmost importance to understand if the model is well fitted. It is also good practice to determine 

whether all the predictor variables in the model are necessary, since it is better to have a model 

with fewer predictors and the same explanatory power. In this analysis, however, we aimed to 

understand whether the entire Epi-Hotspot was a good predictor of gene expression behavior. 

For this reason we did not reduce the number of predictor variables. Furthermore, in this study, 

such reduction would almost always lead to models with single explanatory variables, which 

would hinder our goal of analyzing regions 94–96.  

For each multiple linear regression model, we also performed significance testing of 

the given regression, employing the F-test 94–96. This test determines whether any of the CpG 

predictor variables in the model have some relation with the response (in this case gene 

expression variation). The null hypothesis for the F-test states that all the predictor coefficients 

in the model are equal to zero, whereas the alternative hypothesis states that at least one 

coefficient is not zero. If the value of the F-test statistic is large enough, it can be concluded 

that the model is well-fitted, since at least one predictor in the model is relevant to the response 

94–96. In this study, we considered a model to be statistically significant if the F-test yielded a 

p-value lower than 0.05. 

Another way to understand whether a given Epi-Hotspot is a good predictor of gene 

expression variation is using R2. In simple linear regression, R2 represents the square of the 

correlation coefficient between the single predictor variable and the response variable 94–96. In 

multiple linear regression, R2 represents the proportion of variation in the response that can be 

explained through regression of all the predictors, i.e. how well can the variation in the 

expression of a given gene be explained through the variation of all of the CpG sites in a given 

Epi-Hotspot 94–96. Here, we considered that a gene’s expression variability was well explained 

by an Epi-hotspot if R2 (which varies between 0 and 1) was greater than 0.7.  

To perform the multiple linear regression and the respective F-test we applied the lm() 

and pf() R functions, both  available in the “stats” package. 
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3.6 Literature search 

After identifying which genes were 1) differentially expressed between normal and 

stage-I primary tumor tissue, 2) good discriminators of both sample types, and 3) related to 

Epi-Hotspot regions, we sought to review if and how many times these genes were cited in the 

literature, and whether they were cited in a cancer-related way.  

We used the OncoScore tool, which is available as an open-source tool and an R 

package 97. This tool is able to query a given gene in the biomedical PubMed literature, and 

count the number of times such gene was mentioned in the database 97. Additionally, we 

performed our own PubMed queries to determine the number of citations of each gene in the 

cancer literature and in the specific’s disease literature.  

 

3.7 Gene Ontology: Functional analysis 

Having identified individual genes whose expression during the normal to stage-I tumor 

transition correlated with changes in DNA methylation, we next sought to understand which 

gene functions might be involved. We therefore performed a Gene Ontology analysis using the 

previously identified Epi-Hotspot related genes. The goal was to gather further insights about 

which cellular mechanisms could be putatively altered by Epi-Hotspots.  

Although many strategies exist to perform functional genomic analysis, we chose to 

perform a gene ontology analysis, since it provides the most information regarding gene 

function 98. The gene ontology resource is more than 20 years old and is constantly evolving 

and gathering new scientific information as it is released 99. This methodology is based on a 

knowledge database (or “knowledgebase”) organized with formal ontology, where classes of 

gene functions are defined (here referred as terms) with specific relations to each other 98,99.  

In the gene ontology database, more than 45,000 terms, or classes of gene function, 

exist, all linked by approximately 134,000 relations 99. Ontology terms are generally classified 

in three major groups: 1) cellular components, related to where the product of a given gene is 

located and in which cellular structures it acts, 2) molecular function, describing what activity 

the gene product performs at the molecular level, and 3) biological process, representing the 

cellular program or process in which the gene product participates 99.  
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This analysis was performed using a type of Gene set analysis (GSA) named Generally 

Applicable Gene-set Enrichment (GAGE) 98. GAGE has been described in the literature as 

yielding more reliable results in comparison to other GSA methods 98.  

GSA is a very common way to analyze gene expression data using the knowledge of 

cellular pathways or gene sets 98. It is important to understand that, to its core, GSA utilizes 

full genomic information, and it is designed to detect pathway or gene set enrichment using all 

available genes 98. However, in our study, this tool was used with the intent of understanding 

which ontology terms were enriched by our differentially expressed and Epi-Hotspot related 

genes, which was why only these genes were used in the present analysis.  

The GAGE method employs a two-sample t-test to determine whether a given gene set 

(in this case defined by a gene ontology term) is significantly differentially expressed relative 

to the full background set of genes 98. In this study, the background consisted only of 

differentially expressed genes related to epi-hotspots. 

To perform this methodology, we employed the gage() R function, from the “gage”  

package, and considered a gene set (or term) as statistically significant if the resultant p-value 

was lower than 0.05. 

 

3.8 Epi-Blackholes 

In addition to understanding which genomic regions were consistently altered in the 

normal to stage-I tumor transition (Epi-Hotspots), we also aimed to identify regions that 

retained the same methylation statuses during this oncogenic transition.  

In this analysis, we employed the same strategy was we used in Epi-Hotspot 

identification, but in an inverted way. However, instead of applying both DMRcate and 

BumpHunter algorithms, and intersecting the results, we only utilized the DMRcate 

methodology. The first clustering step used in the BumpHunter algorithm made this algorithm 

unreliable in this inverted search strategy, as it, would always favor regions with only one CpG 

site. In order to identify these “Epi-Blackholes” we identified regions that were unlikely to be 

altered, using a reversed alpha value (1 – α) of 0.95%. If the resultant p-value was higher than 

0.95, we considered that there was enough evidence to sustain the algorithm’s null hypothesis, 

rather than the alternative hypothesis. In a sense, we overturned the statistical inference process 
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previously used, and tried to not accept the alternative hypothesis instead of rejecting the null 

hypothesis.  

 

3.9 Putative genetic mechanism of Epi-Blackholes 

In the same way that Epi-Hotspots may be related to differential gene expression, Epi-

Blackholes could be, putatively, related to genes that do not change expression during tumor 

initiation.  

To perform our analysis we hypothesized that if the basal variation of a Epi-Blackhole 

was a predictor of a related gene’s basal variation, then one of the variables might prevent 

change of the other variable or, alternatively, that both variables might be affected in the same 

way by a third party.  

To assess if the identified Epi-Blackholes might be determinants of gene expression, 

we performed a multiple linear regression analysis, using the same parameters described above. 

The difference here being that the predictor variables were the CpG sites located inside each 

Epi-Blackhole, and the response variable was the expression value of each non-differentially 

expressed gene. 

The resultant non-differentially expressed and Epi-Blackhole related genes were 

subsequently subjected to functional analysis and count of literature citations as described 

above. 

 

3.10 Epi-Hotspots and Blackholes as potential prognostic biomarkers in 

stage-III patients 

We hypothesized that the identified Epi-hotspots and blackholes, which are potentially 

relevant for tumor initiation, might also provide insight into patient survival in a more advanced 

phase of disease. We therefore proceeded to study the impact of each previously identified Epi-

Blackhole and epi-hotspot on survival of stage-III cancer patients.  

The stage-III patient cohorts were collected from the same previously mentioned TCGA 

consortium and prepared applying the same tools and techniques described above. For each 

Epi-Blackhole and each hotspot we applied a multivariate Cox proportional-hazards model 
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analysis, to assess if the group of CpG sites of each given region could, as a whole, be 

associated with survival of the stage-III patients.  

 

3.10.1 Multivariate Cox proportional-hazards model analysis 

The Cox model is the most widely used technique for analysis of survival time in 

medical and biomedical research, in a multivariate way 100,101. This approach is used to study 

the association between survival time and one (bivariate) or more (multivariate) predictor 

variables 100,101.  

The choice for this method, in the present study, was due to the need of investigating 

the impact of the methylation status of a group of CpG sites, as a group, in patient survival.  

The Cox model simply depicts the interaction between the event incidence (i.e. death), 

and a set of covariates (or predictor variables) 100,101. This model can be expressed by what is 

called as the hazard function, h(t), which is fundamentally the probability that a given 

individual experiences an event (death) in a certain time point (t). This can be mathematically 

described as follow 100,101: 

ℎ(𝑡) =  ℎ0(𝑡)  × exp {𝐵1𝑋1 +  𝐵2𝑋2 + ⋯ +  𝐵𝑝𝑋𝑝}  

where the hazard function h(t) is determined by a group of p predictor variables. The 

predictor variables do not contribute equally to the hazard function, instead each predictor 

variable has a specific impact size (or weight), and this is measured by each respective 

coefficient (B1, B2, …, Bp). The baseline hazard, h0, corresponds to the value of the hazard 

when all covariates are equal to zero 100,101. 

It is important to note that although certain covariates can have a much greater impact 

on the hazard function than others, the model is not fitted to only the most impactful and/or 

univariately significant predictor variables 100,101. This is because a certain covariate can have 

a small overall prediction ability but can be an important contributor to the prediction power 

of a group of covariates 100,101.  

As previously described, each covariate has its own weight on survival prediction, 

which can be quantified by the covariate’s coefficient 100,101. Each of these coefficients can be 

exponentiated to obtain hazard ratios (HR), which are in turn used to assess the impact of each 
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covariate on survival 100,101. HR’s are indicators of a covariate’s impact on survival that can be 

intuitively interpreted, since there are only three distinct HR ranges 100,101: 

1. An HR greater that one (or a covariate’s coefficient greater than zero) reveals 

that as the value of its respective covariate increases, so does the event hazard, 

i.e. death. These predictor variables are positively associated with decreased 

survival times and are commonly referred as poor (or bad) prognostic factors.  

2. An HR lower than one (or a covariate’s coefficient lower than zero) indicates 

that its respective covariate is negatively associated with the event probability, 

and thus positively associated with survival length. These types of predictor 

variables are classified as good prognostic factors.  

3. Finally, an HR equal to one (or a covariate’s coefficient equal than zero) 

implies that the covariate is not associated with survival 100,101. 

To perform the multivariate Cox proportional-hazards model analysis we employed two 

publicly available R packages, the “survival” package for computation of the survival models, 

and the “survminer” package for subsequent graphical visualization.  

After fitting each Cox model to each set of CpG sites, we evaluated the statistical 

significance of each model. To do this, we performed three different statistical tests, 1) the 

Wald test, or Z-test, 2) the likelihood ratio test, and 3) the score test 100,101. These three tests all 

evaluate the null hypothesis that all of the analyzed covariate’s coefficients are equal to zero 

100,101. We rejected the null hypothesis when each respective p-value was lower than 0.05. The 

model for a set of CpG sites was considered a good fit and statistically significant if all of three 

null hypotheses were rejected.  

It is important to note that, as the name implies, the Cox proportional-hazards model 

makes the fundamental assumption that the hazards of the groups of individuals are 

proportional 100,101.  

Due to its own nature, the cox model only makes sense under the assumption that the 

hazards are proportional 100,101. In other words, the event hazard in a group must be, over time, 

a constant multiple of the event hazard of another group. If this assumption is ignored no real 

survival information can be drawn from the model 100,101.  

To test if each model violated this assumption, we performed the Schoenfeld residuals 

test. This method tests whether the model’s residuals are independent of time, i.e. if they 
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emerge randomly 102. The Schoenfeld residuals are simply the difference between the 

covariate’s value of a failed individual and the expected model value 102. To perform the 

Schoenfeld residuals test we employed the coxph() R function, from the “survival”  package, 

and considered that the proportional-hazards assumption was not violated when the Schoenfeld 

residuals test was neither globally statistically significant, with an alpha fixed at 5%, nor 

statistically significant for each individual covariate. 

 

3.10.2 Partitioning of patients based on risk 

 Having identified which epi-hotspots and epi-blackholes were able to predict survival 

at stage-III, we aimed to understand which of these regions could split stage-III patients into 

two distinct risk groups: high hazard vs low hazard. We considered that these regions would 

be even better predictors of survival and would provide a more practical indicator of patient 

risk.  

In each of the previously generated models the patients were divided into two groups: 

1) high hazard and 2) low hazard. This was done by calculating a hazard score for each patient 

as follows:  

ℎ𝑎𝑧𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 =  exp {𝐵1𝑋1 +  𝐵2𝑋2 + ⋯ +  𝐵𝑝𝑋𝑝} 

where B1, B2, …, Bp are the previously computed coefficients of each respective X 

CpG site. 

 

3.10.2.1 Maximally Selected Rank Statistics 

To identify the hazard score threshold for which the patients are divided, a Maximally 

Selected Rank Statistics (Maxstat) method was applied 103. This methodology computes a 

standardized two-sample linear rank statistic between the two groups of observations generated 

for every possible cutpoint. The maximum of the standardized statistics is considered to be the 

value that provides the best possible separation between both groups 103.  

This method was performed using the surv_cutpoint() R function, from the “survminer”  

package. 
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3.10.2.2 Survival analysis between risk groups 

After identifying the optimal hazard score cutpoint to segregate patients into different 

risk groups, we sought to confirm whether the high hazard group had a lower survival prognosis 

that the low hazard group. To do so, we generated Kaplan Meier estimators and compared the 

curves from both groups. To assess if the survival distributions from both groups were 

significantly different, we performed either a 1) Log rank test, if the survival curves were non-

crossing, or 2) a two-stage test, if the survival curves crossed at least one time. In both tests an 

alpha of 5% was used to reject the null hypothesis. 

 

3.10.2.2.1 Log-Rank test 

The log rank test is one of the most widely used methods to compare survival between 

groups by testing the null hypothesis that there is no between-group difference in the 

probability of death at any point in time 104,105.  

Essentially, this methodology compares the total number of observed deaths in both 

groups with the total number of expected deaths, were the null hypothesis to be true 104. The 

log-rank test was performed using the surv_pvalue() R function in the “survminer” package.  

It is important to note that the log-rank test functions optimally under the assumption 

of proportional hazard rates, and it has been demonstrated that this test loses power when the 

survival curves of the compared groups cross 104,105. For this reason, when comparing groups 

in which survival curves crossed, we utilized a two-stage test. This choice was based on a study 

published in 2015 by Li and colleagues that extensively evaluated several methodologies to 

compare survival in crossed survival curves 106. The two-stage test maintained a robust power 

and a low type-I error rate in various simulations 106. In both log-rank and two-stage tests a 

fixed alpha of 5% was used.  

 

3.10.2.2.2 Two-stage test 

As the name implies, the two-stage test consists of two distinct phases 107. In the first 

phase, a conventional log-rank test is performed, and if this test yields a statistically significant 

output it is possible to conclude that survival in the two groups is significantly different. If not, 

the second phase of the process is performed. In this phase, a certain weight is chosen for a 
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weighted log-rank test, which change signs before and after a potential crossing point. The 

weight is defined in such a way that the test statistics of the two stages are independent, 

allowing for a redefinition of the resultant p-value 107. The two-stage test was performed using 

the twostage() R function, available in the “TSHRC” package.  

To confirm that the differences in survival were not due to differences in patient age, 

we also performed a Wilcoxon-Mann-Whitney test to assess whether the median age between 

the high and low risk groups was statistically significantly different, at an alpha of 5%.  

Of all the regions that could successfully differentiate two stage-III patient risk groups, 

we only considered potential prognostic biomarker regions as the ones that generated clusters 

with a high-to-low hazard ratio between 0.6 and 1.67 (1/0.6).   
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Chapter 4 Results 

4.1 Data Preparation 

It is a well-known fact that tumoral cells display aberrant DNA methylation patterns in 

comparison to non-tumoral cells 77. The goal of the present study was to understand whether 

specific genomic regions have DNA methylation patterns that are consistently altered in certain 

tumors and whether these epigenetic modifications are related to altered patterns of gene 

expression.  

The first step in our analysis involved the cleaning of the datasets to prepare them for 

further analysis. This process was composed of three main steps: 1) detecting and removing 

outlier data-points, 2) handling missing data, and 3) calibrating age and gender.  

All of the steps mentioned above involved either variable or observation removal, as 

explained in the methodology section. For this reason, data cleaning, although making the data 

more suitable for analysis, also reduced the data available for analysis.  

The number of variables and observations available for analysis after data cleaning are 

displayed in table 4.1. 

 

Table 4.1 - Sample sizes and variables for individual cohorts. 

 Gene Expression datasets Methylation datasets 

Cohort 
Number 

of Genes 

Number of 

Normal 

patients 

Number of 

stage-I 

Tumor 

patients 

Number of 

CpG 

probes 

Number of 

Normal 

patients 

Number of tumor 

patients 

Stage-I Stage-III 

COAD 19657 41 78 396048 38 47 87 

PAAD 19657 4 21 396005 10 21 4 

BRCA 19657 113 182 394738 96 127 199 

CHOL 19657 9 19 394084 9 19 1 

ESCA 19657 11 16 396055 16 18 56 

HNSC 19657 44 25 396053 46 27 82 

KIRC 19657 72 268 396063 157 157 73 

KIRP 19657 32 172 396055 45 168 51 

LIHC 19657 50 171 396054 50 175 86 

LUAD 19657 59 284 395858 32 257 73 

LUSC 19657 49 244 396060 42 172 56 

THCA 19657 58 281 395795 49 171 113 
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4.2 Epi-hotspot identification 

After the data was prepared for analysis, we next searched within each of the twelve 

datasets for genomic regions that were differentially methylated between normal and stage-I 

tumoral samples. This analysis was achieved by intersecting the outputs of two DMR searching 

methods: the DMRCate and Bumphunter algorithms. The complete lists of epi-hotspots for 

each dataset are available in Annex II through Annex XIII.  

The number of epi-hotspots differed between cohorts, ranging from 2 epi-hotspots in 

esophageal cancer to 208 in liver cancer (Table 4.2). The size of the identified regions also 

varied greatly within each cohort. In fact, the standard deviation to the mean size of an epi-

hotspot is considerably large in every cohort. For example, in the colon adenocarcinoma cohort 

(COAD), the shortest epi-hotspot was 5 bp long, while the longest was almost 2.9 kb. The 

number of CpG sites in each region also varied greatly. The smallest number of analyzed CpG 

sites in a region was usually three since this was one of our epi-hotspot selection criteria 

(described in the methods section). As shown in Table 4.2, the epi-hotspot regions also 

comprised a very small portion of the entire methylome, from as little as 0.006% to 0.37%.  

Table 4.2 - Summary description of the identified Epi-hotspots. For each analyzed disease 

(first column), the number of identified hotspots, the average epi-hotspot size (Avg Size) and 

standard deviation, the sizes of the longest (Max Size) and shortest (Min Size) identified epi-

hotspots, the average number CpG sites present in an epi-hotspot with standard deviation (Avg 

CpG number), the minimum and maximum CpG counts in a region (Min Cgs, Max Cgs), and 

the percentage of visible methylome corresponding to epi-hotspots (Methylome %). 

Cohort 

Epi-

hotspot 

number 

Avg Size 

(bp) 

Max 

Size 

(bp) 

Min Size 

(bp) 

Avg cg 

number 

Min 

Cgs 

Max 

Cgs 

Methylome 

% 

COAD 75 744.4± 496.9 2898 5 11.6 ± 8.1 3 51 0.22 

PAAD 3 677± 609.9 1381 308 11.3 ± 4.7 6 15 0.009 

BRCA 76 380.7± 302 1193 6 6.8 ± 5.7 3 32 0.132 

CHOL 70 639.1± 364.6 1748 97 9.6 ± 3.9 5 26 0.171 

ESCA 2 752.5± 181.7 881 624 12 ± 2.8 10 14 0.006 

HNSC 203 409.4± 292 1573 15 6.9 ± 4.7 3 34 0.354 

KIRC 8 568.6± 268.4 1073 206 9.9 ± 3.9 6 18 0.02 

KIRP 29 392.7± 343.4 1624 37 6.7 ± 4 3 18 0.049 

LIHC 208 465.6± 449.3 3258 7 7.2 ± 6.1 3 54 0.377 

LUAD 117 526.3± 460.1 3090 22 8.8 ± 7.3 3 52 0.259 

LUSC 97 544.9± 452.1 3238 61 8.3 ± 6.8 3 53 0.203 

THCA 7 356± 391.2 1142 36 8.7 ± 9.1 3 29 0.015 
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The resultant data may suggest that the number of epi-hotspots is greater in cohorts 

with larger sample size. However, this premise was tested, and we concluded that the number 

of identified epi-hotspots is not correlated, in a statistically significant manner, with 1) the 

number of normal patients in the dataset (Pearson’s test r = -0.08, p-value = 0.8), 2) the number 

of tumoral patients in the dataset (Pearson’s test r = 0.14, p-value = 0.7), and 3) the number of 

total patients in the sample (Pearson’s test r = 0.08, p-value = 0.8). Not only do the p-values in 

the correlation tests show that these are undoubtedly not statistically significant, but the 

correlation’s coefficients are extremely close to zero, suggesting that the variables are not 

dependent on each other.  

Even though there is not a statistically significant correlation between sample size and 

the number of identified epi-hotspots, certain cohorts with very small sample size, such as 

PAAD and ESCA, may not provide enough statistical power to identify the true number of epi-

hotspot in such diseases. On the other hand, cohorts such as KIRC and THCA have sample 

sizes that provide enough statistical power, but a very low epi-hotspot count (eight and seven, 

respectively). This may suggest that these diseases (or cell types) may in fact have a lower 

number of clustered methylation alterations in the normal to stage-I tumoral transition.  

Next, we analyzed the genomic locations of the epi-hotspots using the annotation data 

provided for the Illumina 450k array 79. We observed that the vast majority of Epi-hotspots 

(>60% in all datasets) occurred within promoter regions (Fig. 4.1). 



62 

 

 

While the fact that epi-hotspots occur mainly in promoter regions may have biological 

significance for gene expression, it is important to note that CpG sites exist in higher numbers 

within promoters, which could explain the higher number of epi-hotspots in these regions.  

We also analyzed the distribution of Epi-hotspots relative to the genome. We noted that 

Epi-hotspot distribution varies across datasets. Nonetheless, certain patterns emerged, such as 

the presence of epi-hotspots on chromosome 6 in every cohort except ESCA (data shown in 

the sections 4.7.1 through 4.7.12).  

 

Figure 4.1 - Distribution of epi-hotspots across the genome. For each dataset (horizontal 

bars), the percentage of epi-hotspots that are located in each genomic region is represented in 

the x axis. In every cohort most of epi-hotspots are located in promoter regions. 
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4.3 Epi-hotspots and altered gene expression patterns 

One of our goals was to understand if Epi-hotspots could be, in some way, associated 

with altered patterns of gene expression during the normal to stage-I tumor transition. We first 

sought to find out which genes were differentially expressed between normal and stage-I tumor 

patients in the twelve examined diseases. Using gene expression data accompanying each 

dataset, we first determined which genes showed differential expression. This was achieved by 

performing the series of statistical hypothesis tests and methodologies described in the Methods 

section.  

Since our goal was to understand if Epi-Hotspots could predict gene expression changes 

during tumor initiation, we restricted our analysis to genes that presented an AUC higher than 

0.8 for distinguishing normal and stage-I tumor samples. This restriction does not signify that 

genes with a lower AUC could not be associated with epi-hotspots. However, their inclusion 

introduced significant noise in the output data. The differentially expressed genes were then 

subjected to multiple linear regression analysis to test whether the Epi-hotspots predicted gene 

expression alterations in tumor initiation. The number of differentially expressed genes that 

were associated with epi-hotspots varied across cohorts. In some datasets, like CHOL, COAD, 

and HNSC, most of the detected differentially expressed genes were associated with epi-

hotspot variation. In contrast, in the BRCA, ESCA, KIRP, LUSC, and THCA datasets, most of 

the differentially expressed genes were not associated with epi-hotspots. The number of 

differentially expressed genes that were associated with epi-hotspots relative to the number of 

differentially expressed genes that were not associated with epi-hotspots is represented in 

Figure 4.2. A PubMed query was also executed for each individual gene, in each cohort, to 

understand if it was already cited in the literature. The complete list of differentially expressed 

genes that were associated with epi-hotspot variation is available, for each cohort, in the 

Annexes XIV through XXII.  

 Epi-hotspots that showed correlation with gene expression changes were subsequently 

subjected to gene ontology analysis to identify groups of genes and pathways showing possible 

epigenetic regulation. The results from the gene ontology analysis and literature search are 

individually described for each dataset in the section 4.7.1 through 4.7.12. The complete list of 

enriched gene sets from this analysis are available in Annexes XXIII through XXX.  
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4.4 Epi-Blackhole identification 

After identification and analysis of Epi-hotspots in all twelve cohorts, we next searched 

for genomic regions that showed minimal DNA methylation change between normal and stage-

I tumors. To identify these regions, referred to here as Epi-Blackholes, we applied the same 

methodology used to identify Epi-hotspot regions. However, as described in the methods 

section, we only employed the DMRcate algorithm. We used an alpha greater than 95% as 

evidence to sustain the algorithm’s null hypothesis that the DNA methylation pattern was not 

significantly changed between normal tissue and stage-I tumors.  

Similar to the Epi-hotspot analysis, the number of identified Epi-Blackholes was 

different in each cohort, ranging from 3 Epi-Blackholes in the renal clear cell cancer (KIRC) 

dataset to 2455 epi-blackholes in cholangiocarcinoma (CHOL) (Table 4.3). The size of these 

Figure 4.2 - Number of differentially expressed genes between normal and stage-I tumor 

tissue, in each cohort. The number genes whose variation can be explained by epi-hotspots 

shown in red and the number of genes whose variability cannot be explained shown in blue. 
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regions also varied greatly between the analyzed cohorts. In general, however, they were far 

larger than the epi-hotspot regions (Table 4.3). The exception was the renal clear cell cancer 

cohort, in which the average size of an Epi-Blackhole was smaller than the epi-hotspots. The 

average number of CpGs per Epi-Blackhole varied between cohorts, although this variation 

was not large, ranging from 3.7 in the KIRC cohort to 10 in the ESCA cohort (Table 4.3). As 

shown in the Table 4.3, Epi-Blackhole regions also represented a very small portion of the 

visible methylome. Although this was true across all cohorts, the esophageal and bile duct 

cancers stood out, having 6.1% and 5% of their visible methylomes within Epi-Blackholes. A 

complete list of the epi-blackholes identified in each dataset is available in the Annexes XXXI 

through XLII.  

  

Table 4.3 - Summary description of the identified Epi-Blackholes. For each analyzed 

dataset (first column), the number of identified Epi-Blackholes, the average Epi-Blackhole size 

(+/- standard deviation), the sizes of the longest and shortest identified Epi-Blackholes, the 

average number of  CpG sites present in the Epi-Blackholes (+/- standard deviation), the 

minimum and maximum CpG counts in a blackhole, and the percentage of the visible 

methylome that corresponds to identified Epi-Blackholes in each dataset.  

 

 

Cohort 
Epi-blackhole 

Number 
Avg Size (bp) 

Max 

Size 

(bp) 

Min 

Size 

(bp) 

Avg cg 

number 

Min 

Cgs 

Max 

Cgs 

Methylome 

% 

COAD 274 1007.1 ± 699.8 5430 12 8.4 ± 4.3 3 27 0.58 

PAAD 898 991.1 ± 839.2 8017 19 6.7 ± 4.3 3 37 1.52 

LUAD 134 850.6 ± 627.2 3411 44 6.3 ± 3.4 3 18 0.21 

KIRC 3 173 ± 87.7 251 78 3.7 ± 1.2 3 5 0 

BRCA 9 471.8 ± 448 1363 60 4.2 ± 2.3 3 10 0.01 

CHOL 2455 1186.6± 1027.5 12915 18 8 ± 6.8 3 133 5 

ESCA 2420 1283.5 ± 928.2 12287 15 10 ± 6.1 3 133 6.1 

HNSC 55 636.7 ± 520.1 2983 34 4.8 ± 2.9 3 19 0.07 

KIRP 17 400.7 ± 298 1121 72 3.9 ± 1.6 3 9 0.02 

LIHC 11 547.5 ± 595.3 2061 82 4 ± 2.4 3 11 0.01 

LUSC 18 999.9 ± 953.4 4283 42 9.6 ± 4.6 3 19 0.04 

THCA 126 731.7 ± 665.7 4438 27 4.6 ± 2.2 3 16 0.15 
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To determine whether the number of Epi-Blackholes was dependent on sample size we 

performed the same statistical analysis described for Epi-hotpots (see methods section). 

Although the number of identified Epi-Blackholes was not correlated with the number of 

normal patients in each dataset (Pearson’s test r = -0.5, p-value = 0.08), it was significantly 

negatively correlated with 1) the number of tumor samples (Pearson’s test r = -0.6, p-value = 

0.02) and 2) the total number of samples (Pearson’s test r = -0.7, p-value = 0.009). This suggests 

that as the number of tumor samples decreases, the number of Epi-Blackholes increases. 

However, this correlation may be strongly influenced by some cohorts containing a reduced 

number of samples. Cohorts with low statistical power, such as the PAAD, ESCA, and CHOL 

datasets, may produce a higher number of false positive Epi-Blackholes, since the chance of 

accepting a given region as an epi-hotspot is lower. In fact, when we test whether the number 

of Epi-Blackholes is correlated with sample size in only the large cohorts we conclude that the 

number of identified regions is not correlated, in a statistically significant manner with 1) the 

number of normal patients in the dataset (Pearson’s test r = -0.45, p-value = 0.23), 2) the 

number of tumor samples in the dataset (Pearson’s test r = -0.27, p-value = 0.49), or 3) the 

number of total patients in the dataset (Pearson’s test r = -0.45, p-value = 0.22) in these larger 

samples. This suggests that cohorts above a certain size are less susceptible to this bias.  

We next analyzed the location of the Epi-Blackholes. We observed that, in most 

cohorts, the majority of these regions occurred within promoter regions (Fig. 4.3). However, 

in contrast to epi-hotspots, it was noticeable that Epi-Blackholes overlap at a higher frequency 

with other genomic regions such as exons and introns.   
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4.5 Epi-Blackholes and altered gene expression patterns 

Just as Epi-hotspots were hypothesized to have predictive capabilities regarding gene 

expression alterations in the normal to stage-I tumor transition, Epi-Blackholes might be 

correlated with genes that do not change expression during tumor initiation. We hypothesized 

that if Epi-Blackhole was a predictor of a non-differentially expressed gene’s variation, then 

either one of the variables preventing change in the other, or possibly both variables were being 

affected by a third unknown factor.  

To test whether Epi-Blackholes predict variation of non-differentially expressed genes 

between normal samples and stage-I tumors, we again utilized multiple linear regression to 

compare each Epi-Blackhole and each non-differentially expressed gene.  

 In most cancer cohorts we found that Epi-Blackholes were not strong predictors of 

variation in the expression of non-differentially expressed genes (Fig. 4.4). Nonetheless, in 

some cancer types, such as CHOL, ESCA, and PAAD, there was a substantially higher 

Figure 4.3 - Distribution of epi-blackholes across the genome. For each dataset (horizontal 

bars), the percentage of epi-hotspots that are located in each genomic region is represented in 

the x axis. In every cohort most of epi-hotspots are located in promoter regions.  
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proportion of genes whose variability could be explained by Epi-Blackholes. It is, however, 

important to remember that these cancer cohorts are the ones with the lowest sample sizes and 

the highest number of Epi-Blackholes, which may be a source of bias in this particular analysis.   

The lists of non-differentially expressed genes that were associated with epi-blackholes are 

available, for each dataset, in the Annexes XLIII through Annex L.  

  

 

4.6 Epi-Hotspots and Epi-Blackholes as prognostic biomarkers 

Having identified the genomic regions with altered DNA methylation patterns during 

tumor initiation (Epi-hotspots), as well as the regions that preserve their DNA methylation 

Figure 4.4 - Number of differentially expressed genes between normal and stage-I 

tumor tissue, in each cohort. With the number genes whose variation can be explained by 

epi-blackholes (in red) and the number of genes whose variability cannot be explained (in 

blue). 
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status (Epi-Blackholes), we next aimed to understand whether heterogeneity in these regions 

might correlate with patient survival in a more advanced stage of the disease.  

We therefore analyzed survival and DNA methylation data from stage-III patients in 

the same twelve TCGA cohorts.  

For each identified Epi-Hotspot and Epi-Blackhole we individually applied a 

multivariate Cox proportional-hazards model, using each region’s CpG values as predictor 

variables. All computed models were tested for proportional hazards using the Schoenfeld 

residuals test, and global significance was tested using the Wald test, the likelihood ratio test, 

and the score test 

For the models that met the previous criteria, a hazard score was calculated as described 

in the methods section.  

The hazard score was then used to discriminate patients into high vs low hazard groups, 

using the Maxstat method. These two groups were submitted to further survival analysis 

through the generation of Kaplan Meier estimators and assessment of differential survival by 

performing either log rank or Two-Stage tests, depending if the curves crossed 

In every survival comparison we tested, using a Wilcoxon-Mann-Whitney test, if age 

was significantly different in both groups, and only considered the genomic regions that were 

able to discriminate patients into two groups with distinct survival distributions with 

statistically non-significant age differences. Furthermore, all comparisons for which the 

proportion of patients in one group to the second group was greater than 60% were discarded. 

As shown in Table 4.4, in 8 of the 12 cohorts we found at least one region that was able 

to predict survival in stage-III patients. These regions included both Epi-hotspots (in 6 cohorts) 

and Epi-Blackholes (in 5 cohorts). The complete data regarding the epi-hotspots and epi-

blackholes that were able to predict prognosis in stage-III cancer patients is available, for each 

dataset, in the Annexes LI through LVIII.  
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Table 4.4 - Number of epi-hotspots and epi-blackholes with prognostic potential in stage-

III cancer patients. For each analyzed disease (first column), the number of identified epi-

hotspots and epi-blackholes that are able to successfully discriminate stage-III patients into two 

groups with distinct survival distributions are represented. 

Cohort Prognosis Epi-blackholes Prognosis Epi-Hotspots 

BRCA 0 1 

COAD 8 1 

ESCA 19 0 

HNSC 3 8 

KIRP 2 0 

LIHC 0 1 

LUAD 2 6 

LUSC 0 1 

PAAD 0 0 

KIRC 0 0 

CHOL 0 0 

THCA 0 0 

 

4.7. Summary of results for each studied dataset 

4.7.1 Summary of results from Colon Adenocarcinoma 

The COAD cohort represents patients with colon cancer. In the COAD cohort we 

identified 75 epi-hotspots and 274 Epi-Blackholes (Annexes II and XXXI). The location of the 

identified regions is graphically represented in the Figure 4.5.  

We also identified 5253 genes that were differentially expressed between the normal 

and stage-I tumor groups, of which 4873 (~93%) can be explained by epi-hotspot variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XIV). Of these differentially expressed, 

epi-hotspot correlated genes, 217 have never been cited in the literature, 297 have previously 

been cited in the non-cancer literature, and 1705 have been cited in the cancer literature, but 

never in colon adenocarcinoma. By submitting these differentially expressed, epi-hotspot 

associated genes to a GAGE analysis, we observed that 121 Gene Ontology (GO) terms were 

up-regulated in the stage-I tumoral group and 457 were down-regulated (Table 4.5, Annex 

XXIII). By analyzing the five most enriched Go terms for each ontology class, we observed an 
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upregulation of gene sets related to cell polarity and a downregulation of gene sets related to 

ion transport (Fig. 4.6).  

 

 

 

 

Table 4.5 – Number of enriched GO terms in stage-I COAD samples 

GO Class Upregulated in tumor tissue 
Downregulated in tumor 

tissue 

Biological Process 58 331 

Cellular Component 28 57 

Molecular Function 35 69 

 

The remaining 14404 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 16 (~0.11%) are correlated with Blackhole variability (multiple 

linear regression r-squared ≥ 0.7) (Annex XLIII). Of these non-differentially expressed, 

Figure 4.5 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in colon adenocarcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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blackhole-associated genes, 2 were never cited, 0 were cited in the non-cancer literature, and 

10 were cited in cancer, but never in colon adenocarcinoma. 

When testing for the ability of epigenetic hotspots and blackholes to predict survival in 

stage-III colon adenocarcinoma patients, we found that eight Epi-Blackholes and one epi-

hotspot were putative prognostic biomarkers (Annex LI). Figures 4.7 and 4.8 below represent 

one Epi-Blackhole and one epi-hotspot that can differentiate stage-III colon adenocarcinoma 

patients into two groups with distinct survival distributions. The survival curves for all other 

predictive regions are in Annex X. 

 

Figure 4.6 – Top five most significantly enriched GO terms in stage-I COAD samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I COAD samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I COAD samples. 
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Figure 4.8 - Kaplan-Meier estimator of survival in stage-III COAD for two 

groups with different epi-hotspot methylation levels. Two groups of stage-III 

COAD patients with different hazard scores show significantly different survival (p 

< 0.0001). Statistical significance tested by Two-Stage. Time is represented in years. 

Figure 4.7 - Kaplan-Meier estimator of survival in stage-III COAD for two 

groups with different epi-blackhole methylation levels. Two groups of stage-III 

COAD patients with different hazard scores show significantly different survival (p 

= 0.000065). Statistical significance tested by Two-Stage. Time is represented in 

years. 



74 

 

4.7.2 Summary of results from Breast Invasive Carcinoma 

In the breast invasive carcinoma (BRCA) cohort we identified 76 epi-hotspots and 9 

Epi-Blackholes (Annexes III and XXXII). The location of the identified regions is graphically 

represented in Figure 4.9. 

In the BRCA cohort we found 3079 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which 125 (~4%) were correlated with (multiple linear 

regression r-squared ≥ 0.7) (Annex XV). Of these differentially expressed, epi-hotspot 

associated genes, 5 were never cited in the literature, 8 were cited in the non-cancer literature, 

and 25 were cited in cancer, but never in breast cancer. By submitting these differentially 

expressed genes and potentially epigenetically regulated genes to a GAGE analysis, we 

observed that 24 GO terms were up-regulated in the stage-I tumoral group and 6 were down-

regulated (Table 4.6, Annex XXIV). By analyzing the five most enriched Go terms for each 

ontology class, we observed an upregulation of gene sets related to non-membrane-bound 

cellular components and a downregulation of GO terms related to the cellular membrane (Fig. 

4.10).  

 

Figure 4.9 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in breast invasive carcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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Table 4.6 - Number of enriched GO terms in stage-I BRCA samples 

 

GO Class 
Upregulated in tumor 

tissue 

Downregulated in tumor 

tissue 

Biological Process 24 0 

Cellular Component 6 6 

Molecular Function 0 0 

Figure 4.10 - Top five most significantly enriched GO terms in stage-I BRCA samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, and cellular components. No molecular function was significantly 

enriched. The upper portion of the chart depicts GO terms that were upregulated in stage-I 

BRCA samples, whereas the bottom portion of the chart represent GO terms that were 

downregulated in stage-I BRCA samples. 
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The remaining 16578 genes were not differentially expressed between the normal and 

stage-I tumor groups, of these none could be explained by Blackhole variability. 

When testing for the ability of epigenetic hotspots and blackholes to predict survival in 

stage-III breast invasive carcinoma patients, we found that one epi-hotspot, was a putative good 

prognostic biomarker. The survival curve for this epi-hotspot is represented in Figure 4.11. 

Additional data regarding this region as a prognostic biomarker is available in Annex LII. 

 

  

Figure 4.11 - Kaplan-Meier estimator of survival in stage-III BRCA for two groups with 

different epi-hotspot methylation levels. Two groups of stage-III BRCA patients with 

different hazard scores show significantly different survival (p = 0.0012). Statistical 

significance tested by log-rank. Time is represented in years. 
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4.7.3 Summary of results from Cholangiocarcinoma 

In the cholangiocarcinoma (CHOL) cohort we identified 70 epi-hotspots and 2455 Epi-

Blackholes (Annexes IV and XXXIII). The location of the identified regions is graphically 

represented in Figure 4.12. 

In the CHOL cohort we found 10748 differentially expressed genes between the normal 

and stage-I tumor groups, of which 10591 (~99%) are correlated with epi-hotspot variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XVI). Of these differentially expressed, 

epi-hotspot associated genes, 539 were never cited, 751 were cited in the non-cancer literature, 

and 8079 were cited in cancer literature, but never in the bile duct cancer literature. When these 

differentially expressed and epi-hotspot-associated genes were subjected to GAGE analysis, 

we observed that 321 GO terms were up-regulated in the stage-I tumoral group and 572 were 

down-regulated (Table 4.7, Annex XXV). By analyzing the five most enriched GO terms for 

each ontology class, we observed an upregulation of gene sets related to cell division, and a 

downregulation of gene sets related to ion transport (Fig. 4.13).  

 

  

Figure 4.12 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in cholangiocarcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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Table 4.7 - Number of enriched GO terms in stage-I CHOL samples 

GO Class 
Upregulated in tumor tissue 

Downregulated in tumor 

tissue 

Biological Process 244 437 

Cellular Component 45 36 

Molecular Function 32 99 

 

The remaining 8909 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 4693 (~52.68%) can be explained by epi-blackhole variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XLIV). Of these non-differentially 

Figure 4.13 - Top five most significantly enriched GO terms in stage-I CHOL samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I CHOL samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I CHOL samples. 
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expressed, epi-blackhole-associated genes, 531 were never cited, 400 were cited in the non-

cancer literature, and 3309 were cited in the cancer literature, but never in the bile duct cancer 

literature. 

Due to the fact that only one stage-III patient had available methylation data in the 

TCGA dataset, testing whether the identified epi-hotspots and epi-blackholes were able to 

predict survival in stage-III cholangiocarcinoma patients was not possible. 

 

4.7.4 Summary of results from Esophageal Carcinoma 

In the esophageal carcinoma (ESCA) cohort we identified 2 epi-hotspots and 2420 Epi-

Blackholes (Annexes V and XXXIV). The location of the identified regions is graphically 

represented in Figure 4.14. 

In the ESCA cohort we found 4890 differentially expressed genes between the normal 

and stage-I tumor groups, of which 1792 (~37%) are associated with variability (multiple linear 

regression r-squared ≥ 0.7) (Annex XVII). Of these differentially expressed epi-hotspot-

associated genes, 67 were never cited, 106 were cited in the non-cancer literature, and 1215 

Figure 4.14 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in esophageal cancer. The chromosomes are represented 

in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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were cited in cancer-literature, but never in the esophageal cancer literature. When submitting 

these differentially expressed and epi-hotspot-associated genes to a GAGE analysis, we 

observed that 119 GO terms were up-regulated in the stage-I tumoral group and 2 were down-

regulated (Table 4.8, Annex XXVI). By analyzing the five most enriched Go terms for each 

ontology class, we observed an upregulation of gene sets related to cell division and a 

downregulation of only two gene sets related to ribosomes (Fig. 4.15).  

 

Table 4.8 - Number of enriched GO terms in stage-I ESCA samples 

GO Class Upregulated in tumor tissue Downregulated in tumor tissue 

Biological Process 88 0 

Cellular Component 24 2 

Molecular Function 7 0 

 

The remaining 14767 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 3183 (~21.55%) can be explained by epi-blackhole variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XLV). Of these non-differentially 

expressed, epi-blackhole-associated genes, 215 were never cited, 251 where cited in the non-

cancer literature, and 2030 were cited in the cancer literature, but never in the esophageal 

cancer literature. 

When testing whether the identified epi-hotspots and epi-blackholes were able to 

predict survival in stage-III esophageal cancer patients, we found that nineteen epi-blackholes, 

were putative prognostic biomarkers. Data regarding these prognosis-predicting regions is 

available in Annex LIII. 

Figure 4.16 represents one epi-blackhole that can differentiate stage-III esophageal 

carcinoma patients into two groups with distinct survival distributions.  
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Figure 4.15 - Top five most significantly enriched GO terms in stage-I ESCA samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I ESCA samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I ESCA samples. 
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4.7.5 Summary of results from Head and Neck Squamous Cell Carcinoma 

In the head and neck squamous cell carcinoma (HNSC) cohort we identified 203 epi-

hotspots and 55 Epi-Blackholes (Annexes VI and XXXV). The location of the identified 

regions is graphically represented in Figure 4.17. 

In the HNSC cohort we found 1528 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which 1431 (~94%) were associated with epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7) (Annex XVIII). Of these differentially 

expressed, epi-hotspot-associated genes, 56 were never cited, 81 were cited in the non-cancer 

literature, and 573 where cited in the cancer-literature, but never in the head and neck cancer 

literature. By submitting these differentially expressed and potentially epigenetically regulated 

genes to a GAGE analysis, we observed that 358 GO terms were up-regulated in the stage-I 

tumoral group and 115 were down-regulated (Table 4.9, Annex XXVII). By analyzing the five 

most enriched Go terms for each ontology class, we observed an upregulation of gene sets 

related to cell adhesion and extracellular organization and a downregulation of gene sets related 

to several metabolic processes (Fig. 4.18).  

Figure 4.16 - Kaplan-Meier estimator of survival in stage-III ESCA for two groups with 

different epi-blackhole methylation levels. Two groups of stage-III ESCA patients with 

different hazard scores show significantly different survival (p = 0.000001). Statistical 

significance tested by Two-Stage. Time is represented in years. 
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Table 4.9 - Number of enriched GO terms in stage-I HNSC samples 

GO Class Upregulated in tumor tissue Downregulated in tumor tissue 

Biological Process 254 84 

Cellular 

Component 
51 15 

Molecular 

Function 
53 16 

 

The remaining 18129 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 181 (~1%) could be explained by epi-blackhole variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XLVI). Of these non-differentially 

expressed, epi-blackhole-associated genes, 12 were never cited, 15 were cited in the non-cancer 

literature, and 102 where cited in the cancer literature, but never in the head and neck cancer 

literature. 

Figure 4.17 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in head and neck cancer. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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When testing whether the identified epi-hotspots and epi-blackholes were able to 

predict survival in stage-III head and neck squamous cell carcinoma patients, we found that 

three Epi-Blackholes and eight epi-hotspots were putative prognostic biomarkers.  

Figures 4.19 and 4.20 represent one epi-hotspot and one epi-blackhole that can 

differentiate stage-III head and neck squamous cell carcinoma patients into two groups with 

distinct survival distributions. Data for all other predictive regions is available in Annex LIV. 

  

Figure 4.18 - Top five most significantly enriched GO terms in stage-I HNSC samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I HNSC samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I HNSC samples. 



85 

 

 

Figure 4.19 - Kaplan-Meier estimator of survival in stage-III HNSC for two 

groups with different epi-hotspot methylation levels. Two groups of stage-III 

HNSC patients with different hazard scores show significantly different survival (p 

= 0.000016). Statistical significance tested by Two-Stage. Time is represented in 

years. 

Figure 4.20 - Kaplan-Meier estimator of survival in stage-III HNSC for two 

groups with different epi-blackhole methylation levels. Two groups of stage-III 

HNSC patients with different hazard scores show significantly different survival (p 

= 0.00029). Statistical significance tested by log-rank. Time is represented in years. 
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4.7.6 Summary of results from Hepatocellular Carcinoma 

In the Hepatocellular Carcinoma (LIHC) cohort we identified 208 epi-hotspots and 11 

Epi-Blackholes (Annexes VII and XXXVI). The location of the identified regions is 

graphically represented in Figure 4.21. 

 

In the LIHC cohort we found 2921 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which 1355 (~46%) were associated with epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7) (Annex XIX). Of these differentially 

expressed, epi-hotspot-associated genes, 49 were never cited, 59 were cited in the non-cancer 

literature, and 460 were cited in cancer literature, but never in the liver cancer literature. By 

submitting these differentially expressed and potentially epigenetically regulated genes to a 

GAGE analysis, we observed that 375 GO terms were up-regulated in the stage-I tumoral group 

and 397 were down-regulated (Table 4.10, Annex XXVIII). By analyzing the five most 

enriched Go terms for each ontology class, we observed an upregulation of gene sets related to 

cell division and a downregulation of gene sets related to cellular response to stimuli (Fig. 

4.22).  

 

Figure 4.21 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in hepatocellular carcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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Table 4.10 - Number of enriched GO terms in stage-I LIHC samples 

GO Class Upregulated in tumor tissue Downregulated in tumor tissue 

Biological Process 261 318 

Cellular Component 62 38 

Molecular Function 52 41 

 

Figure 4.22 - Top five most significantly enriched GO terms in stage-I LIHC samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I LIHC samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I LIHC samples. 
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The remaining 16736 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which none could be explained by epi-blackhole variability (multiple 

linear regression r-squared ≥ 0.7).  

When testing whether the identified epi-hotspots and epi-blackholes were able to 

predict survival in stage-III hepatocellular carcinoma patients, we found that one epi-hotspot 

was a putative prognostic biomarker. Figure 4.23 below represents one epi-hotspot that can 

differentiate stage-III hepatocellular carcinoma patients into two groups with distinct survival 

distributions. Additional data regarding this epi-hotspot as a prognosis predicting region is in 

Annex LV. 

 

 

 

 

Figure 4.23 - Kaplan-Meier estimator of survival in stage-III LIHC for two 

groups with different epi-hotspot methylation levels. Two groups of stage-III 

LIHC patients with different hazard scores show significantly different survival (p < 

0.0001). Statistical significance tested by Two-Stage. Time is represented in years. 
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4.7.7 Summary of results from Lung Squamous Cell Carcinoma 

In the Lung Squamous Cell Carcinoma (LUSC) cohort we identified 97 epi-hotspots 

and 18 epi-blackholes (Annexes VIII and XXXVII). The location of the identified regions is 

graphically represented in the Figure 4.24. 

In the LUSC cohort we found 5577 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which 706 (~13%) were associated with epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7) (Annex XX). Of these differentially 

expressed, epi-hotspot explained genes, 24 were never cited, 27 were cited in the non-cancer 

literature, and 448 were cited in the cancer literature, but never in the squamous cell lung cancer 

literature. By submitting these differentially expressed and potentially epigenetically regulated 

genes to a GAGE analysis, we observed that 91 GO terms were up-regulated in the stage-I 

tumoral group and 268 were down-regulated (Table 4.11, Annex XXIX). By analyzing the five 

most enriched Go terms for each ontology class, we observed an upregulation of gene sets 

related to chromosome and organelle organization and a downregulation of gene sets related to 

immune response (Fig. 4.25). The remaining 14080 genes that were not differentially expressed 

between the normal and stage-I tumor groups, 22 (~0.16%) could be explained by epi-

Figure 4.24 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in lung squamous cell carcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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blackhole variability (multiple linear regression r-squared ≥ 0.7) (Annex XLVII). Of these non-

differentially expressed, epi-blackhole-associated genes, 7 were never cited, 4 were cited in the 

non-cancer literature, and 11 were cited in cancer literature, but never in squamous cell lung 

cancer literature.  

Table 4.11 - Number of enriched GO terms in stage-I LUSC samples 

 

GO Class Upregulated in tumor tissue Downregulated in tumor tissue 

Biological Process 38 234 

Cellular Component 18 25 

Molecular Function 35 9 

Figure 4.25 - Top five most significantly enriched GO terms in stage-I LUSC samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, molecular functions, and cellular components. The upper portion of the 

chart depicts GO terms that were upregulated in stage-I LUSC samples, whereas the bottom 

portion of the chart represent GO terms that were downregulated in stage-I LUSC samples. 
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When testing for the ability of epi-hotspots and epi-blackholes to predict survival in 

stage-III Lung Squamous Cell Carcinoma patients, we found that one epi-hotspot was a 

putative prognostic biomarker. The survival curve for this region is represented below, in 

Figure 4.26. Additional data regarding this epi-hotspot as a prognosis predicting region is in 

Annex LVI. 

 

4.7.8 Summary of results from Thyroid Carcinoma 

In the thyroid carcinoma (THCA) cohort we identified 7 epi-hotspots and 127 Epi-

Blackholes (Annexes IX and XXXVIII). The location of the identified regions is graphically 

represented in Figure 4.27. 

In the THCA cohort we found 2476 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which 44 (~2%) were associated with epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7) (Annex XXI). Of these differentially 

Figure 4.26 - Kaplan-Meier estimator of survival in stage-III LUSC for two groups with 

different epi-hotspot methylation levels. Two groups of stage-III LUSC patients with 

different hazard scores show significantly different survival (p = 0.00015). Statistical 

significance tested by Two-Stage. Time is represented in years. 
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expressed, epi-hotspot-associated genes, 0 were never cited, 1 was cited in the non-cancer 

literature, and 17 where cited in the cancer literature, but never in the thyroid cancer literature. 

By submitting these differentially expressed and potentially epigenetically regulated genes to 

a GAGE analysis, we observed that 16 GO terms were down-regulated in the stage-I tumoral 

group (Table 4.12, Annex XXX). By analyzing the five most enriched Go terms for each 

ontology class, we observed a downregulation of gene sets related to cellular response to 

stimuli (Fig. 4.28).  

Table 4.12 - Number of enriched GO terms in stage-I THCA samples 

GO Class Upregulated in tumor tissue 
Downregulated in tumor 

tissue 

Biological Process 0 15 

Cellular Component 0 0 

Molecular Function 0 1 

 

The remaining 17181 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 39 (~0.23%) could be explained by epi-blackhole variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XLVIII). Of these non-differentially 

Figure 4.27 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in thyroid carcinoma. The chromosomes are represented 

in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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expressed, epi-blackhole explained genes, all were already cited in the cancer-literature, and 

31 were cited in the cancer literature, but never in the thyroid cancer literature.  

When testing for the ability of epi-hotspots and epi-blackholes to predict survival in 

stage-III thyroid carcinoma patients, we found no putative prognostic biomarkers. 

 

4.7.9 Summary of results from Kidney Renal Papillary Cell Carcinoma 

In the Kidney Renal Papillary Cell Carcinoma (KIRP) cohort we identified 29 epi-

hotspots and 17 epi-blackholes (Annexes X and XXXIX). The location of the identified regions 

is graphically represented in the figure (Fig. 4.29). 

Figure 4.28 - Top five most significantly enriched GO terms in stage-I THCA samples. 

These terms result from a GAGE analysis and represent the top five most significantly enriched 

biological processes, and molecular functions. No cellular components were significantly 

enriched. The chart depicts GO terms that were downregulated in stage-I THCA samples. No 

downregulated processes were detected.  
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In the KIRP cohort we found 4326 genes that were differentially expressed between the 

normal and stage-I tumor groups, of which 66 (~2%) were associated with epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7) (Annex XXII). Of these differentially 

expressed epi-hotspot-associated genes, 3 were never cited, 3 were cited in the non-cancer 

literature, and 35 where cited in the cancer literature, but never in the Kidney Renal Papillary 

Cell Carcinoma literature.  

The genes that were differentially expressed and whose variation during normal to 

stage-I tumor tissue could be explained by epi-hotspot variability were submitted to a GAGE 

analysis. However, no GO term was significantly enriched. 

The remaining 15331 genes were not differentially expressed between the normal and 

stage-I tumor groups, none of which was associated with epi-blackhole variability (multiple 

linear regression r-squared ≥ 0.7).  

When testing for the ability of epi-hotspots and epi-blackholes to predict survival in 

stage-III Kidney Renal Papillary Cell Carcinoma patients, we found that two epi-blackholes 

were putative prognostic biomarkers. Figures 4.30 and 4.31 below represent the two epi-

Figure 4.29 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in kidney renal papillary cell carcinoma. The 

chromosomes are represented in the Y-axis, and the genomic location (in bp) is represented in 

the X-axis. 
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blackholes that could differentiate stage-III kidney Renal Papillary Cell Carcinoma patients 

into two groups with distinct survival distributions. The complete data regarding epi-blackholes 

as predictive prognostic regions in KIRP is available in Annex LVII. 

 



96 

 

 

Figure 4.30 - Kaplan-Meier estimator of survival in stage-III KIRP for two 

groups with different epi-blackhole methylation levels. Two groups of stage-III 

KIRP patients with different hazard scores show significantly different survival (p = 

0.00096). Statistical significance tested by log-rank. Time is represented in years. 

Figure 4.31 -Kaplan-Meier estimator of survival in stage-III KIRP for two 

groups with different epi-hotspot methylation levels. Two groups of stage-III 

KIRP patients with different hazard scores show significantly different survival (p = 

0.0012). Statistical significance tested by log-rank. Time is represented in years. 
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4.7.10 Summary of results from Kidney Renal Clear Cell Carcinoma 

In the kidney renal clear cell carcinoma (KIRC) cohort we identified 8 epi-hotspots and 

3 epi-blackholes (Annexes XI and XL). The location of the identified regions is graphically 

represented in Figure 4.32.  

 

In the KIRC cohort we found 4588 genes that were differentially expressed between 

the normal and stage-I tumor groups, of which none could be explained by epi-hotspot 

variability (multiple linear regression r-squared ≥ 0.7). Of the remaining 15069 non-

differentially expressed genes, none was associated with epi-blackhole variability. In addition, 

no region was able to predict survival in stage-III kidney clear cell carcinoma. 

4.7.11 Summary of results from Pancreatic Adenocarcinoma 

In the pancreatic adenocarcinoma (PAAD) cohort we identified 3 epi-hotspots and 898 

epi-blackholes (Annexes XII and XLI). The location of the identified regions is graphically 

represented in Figure 4.33.  

Figure 4.32 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in Kidney Renal Clear Cell Carcinoma. The 

chromosomes are represented in the Y-axis, and the genomic location (in bp) is represented in 

the X-axis. 



98 

 

In the PAAD cohort we found no differentially expressed gene between the normal and 

stage-I tumor groups. It is important to note that such analytic outcome does not imply that 

there is no alteration in gene expression patterns during in this transition, but rather that such 

alterations were not detected by our analysis. In fact, it is possible that the very small number 

of normal samples (4 normal samples and 21 stage-I tumoral samples in the gene expression 

dataset) reduced the statistical power of our analysis in such a way that the detection of gene 

expression variations is highly unlikely.  

The remaining 19657 genes were not differentially expressed between the normal and 

stage-I tumor groups, of which 8268 (~42.06%) were associated with epi-blackhole variability 

(multiple linear regression r-squared ≥ 0.7) (Annex XLIX). Of these non-differentially 

expressed epi-blackhole-associated genes, 216 were never cited, 480 were cited in the non-

cancer literature, and 4472 where cited in the cancer literature, but never in the pancreatic 

cancer literature. 

Furthermore, none of the epi-hotspots or epi-blackholes identified in this cohort was 

able to discriminate survival in stage-III pancreatic adenocarcinoma patients. 

 

Figure 4.33 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in pancreatic adenocarcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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4.7.12 Summary of results from Lung Adenocarcinoma 

In the lung adenocarcinoma (LUAD) cohort we identified 117 epi-hotspots and 134 

epi-blackholes (Annexes XIII and XLII). The location of the identified regions is graphically 

represented in Figure 4.34. 

In the LUAD cohort we found 3656 genes that were differentially expressed between 

the normal and stage-I tumor groups. However, none of these genes was associated with epi-

hotspot variability. 

Of the remaining 16001 non-differentially expressed genes, only 10 were associated 

with epi-blackhole variability (Annex L). These 10 genes were already cited in the cancer-

literature, but never in the lung adenocarcinoma literature. 

When testing for the ability of epi-hotspots and epi-blackholes to predict survival in 

stage-III lung adenocarcinoma patients, we found that six epi-hotspots and two epi-blackholes 

were putative prognostic biomarkers. Figures 4.35 and 4.36 below represent one epi-hotspot 

and one epi-blackhole that can differentiate stage-III lung adenocarcinoma patients into two 

Figure 4.34 - Graphical representation of the location of the identified Epi-Hotspots (in 

blue) and Epi-Blackholes (in red) in lung adenocarcinoma. The chromosomes are 

represented in the Y-axis, and the genomic location (in bp) is represented in the X-axis. 
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groups with distinct survival distributions. The complete data for all other predictive regions is 

in Annex LVIII.  
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Figure 4.36 - Kaplan-Meier estimator of survival in stage-III LUAD for two 

groups with different epi-blackhole methylation levels. Two groups of stage-III 

LUAD patients with different hazard scores show significantly different survival (p 

= 0.0023). Statistical significance tested by log-rank. Time is represented in years. 

Figure 4.35 - Kaplan-Meier estimator of survival in stage-III KIRP for two 

groups with different epi-hotspot methylation levels. Two groups of stage-III 

KIRP patients with different hazard scores show significantly different survival (p < 

0.001). Statistical significance tested by log-rank. Time is represented in years. 
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4.8 Similarity between cancer types regarding Epi-hotspots 

 We were able to identify Epi-Hotspots in all of our cancer cohorts. We therefore 

wanted to determine the similarities between cancer types in terms of epi-hotspots. Using the 

Epi-Hotspot overlapping percentage as a similarity unit we performed hierarchical clustering 

analysis to determine the relative similarities between cancer types (Fig. 4.37). 

 

In the dendrogram shown in Figure 4.37, there are five major clusters: 1) THCA, 2) 

ESCA, 3) PAAD, 4) KIRC and KIRP, and 5) CHOL, COAD, LUAD, BRCA, HNSC, LIHC, 

LUSC. The first three cancer types (each a separate cluster) were expected to be independent 

from each other and the remaining cohorts, since in these cohorts a very small number of epi-

hotspots were found. Furthermore, the epi-hotspots found in these cohorts are different from 

all other cancer types It’s important to note that it is not possible to conclude that these three 

cancer types are different from all other types, since the only reason they are independently 

Figure 4.37 – Dendrogram representation obtained from hierarchical clustering based on 

epi-hotspots. Using the overlapping percentage of epi-hotspots between each pair of cohorts 

as similarity unit, a complete-method hierarchical clustering was performed. In the 

dendrogram, the height represents dissimilarity in a scale from 0 – 1. 



103 

 

clustered is the very low epi-hotspot count in each of them. The fourth cluster is composed by 

the two cancer types that originate from the kidney. Even though this cluster is significantly 

distant from the remaining, these two cancer types have a similarity under 4%. The fifth cluster 

can be subdivided into two child clusters, one composed of CHOL, COAD, and LUAD, and 

another composed of BRCA, HNSC, LIHC, and LUSC. The two most similar cancer types are 

LIHC and LUSC, which share approximately 14% overlapping epi-hotspot regions, followed 

by COAD and LUAD, which share around 12% overlapping epi-hotspot regions (Fig 4.37). A 

description of the number of common epi-blackholes in each cluster is presented in Table 4.13. 

The genomic location of the common epi-hotspots in each epi-hotspot cluster is available in 

Annex LIX. 
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Table 4.13 – Summary of each epi-hotspot cluster. The table shows for each epi-hotspot 

cluster  (first column), the cancers that are in the cluster (second column), the number of 

common epi-hotspots in the cluster (third column), and the genes that overlap with those epi-

hotspots (fourth column). 

Cluster Cancers NOE Genes that overlap 

H_1 KIRC, KIRP 2 SLC2A9, DRD5 

H_2 

CHOL, COAD, 

LUAD, BRCA, 

HNSC, LIHC, LUSC 

0 - 

H_2.1 
CHOL, 

COAD, LUAD 
6 

PAX3, CCDC140, LINC00682, MARCH11, EMX2OS, 

EMX2, GRIA4 

H_2.1.1 COAD, LUAD 19 

WRAP73, TBX15, SLC5A7, PAX3, CCDC140, LINC00682, 

COL25A1, MARCH11, HLA-G, HCG4P8, HOXA3, RP1-

170O19.22, HOXA-AS3, AC009264.1, CHRM2, GATA3-

AS1, RP11-379F12.4, RP11-379F12.3, GATA3, EMX2OS, 

EMX2, GRIA4, SALL1, BHLHB9 

H_2.2 
BRCA, HNSC, LIHC, 

LUSC 
2 WRAP73, COL11A2 

H_2.2.1 HNSC, LIHC, LUSC 9 
WRAP73, TNXB, COL11A2, EVX1-AS, CA3, GATA3, 

BHLHB9, BEX1 

H_2.2.1.1 LIHC, LUSC 31 

WRAP73, ELAVL4, ZIC1, MARCH11, CTD-2533K21.3, 

HLA-G, HCG4P8, TNXB, TNXB, COL11A2, NR2E1, 

EVX1-AS, GIMAP8, ASB10, RP1, CA3, GATA3-AS1, 

RP11-379F12.4, RP11-379F12.3, GATA3, CCNYL2, TLX1, 

CFAP46, BCAT1, RP11-662I13.3, MIR411, ZNF559-

ZNF177, ZNF177, ZNF814, CTD-2583A14.9, BHLHB9, 

BEX1 

NOE: Number of Epi-hotspots 
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4.9 Similarity between cancer types regarding epi-blackholes 

Epi-Blackholes were identified in all twelve cancer cohorts analyzed. We next sought 

to determine whether there were groups of cancer types with higher similarity between them, 

based on the locations of Epi-Blackholes. A hierarchical clustering analysis was performed, 

using the Epi-Blackhole overlapping percentage as the similarity unit (Fig. 4.38). 

The resultant clustering of cancer types is significantly different from the one generated 

from epi-hotspot analysis. From the resulting clustering dendrogram, seven major clusters can 

be discerned: 1) THCA, 2) LUSC, 3) KIRC, 4) HNSC, 5) BRCA, 6) KIRP and LIHC, and 7) 

LUAD, COAD, PAAD, CHOL, and ESCA. The first five clusters consist of only one cancer 

type, having no similarity between them or with any other cancer type. It is important to note 

that cancer types with low Epi-Blackhole count will tend to be dissimilar from other cancer 

types, whereas cancer types with a higher number of Epi-Blackholes will tend to be clustered 

together, since it is more likely that overlapping regions exist. The sixth cluster consists of a 

Figure 4.38 - Dendrogram representation obtained from hierarchical clustering based on 

epi-blackholes. Using the overlapping percentage of epi-blackholes between each pair of 

cohorts as similarity unit, a complete-method hierarchical clustering was performed. In the 

dendrogram, the height represents dissimilarity in a scale from 0 – 1.  



106 

 

KIRP and a LIHC, with around 2% similarity between them. The seventh cluster comprises 

five cancer types and can be subdivided in two subgroups that share less than 1% similarity, 

one composed of LUAD, and another composed of COAD, PAAD, CHOL, and ESCA. The 

two most similar cancer types are COAD and PAAD, which share approximately 91% of 

overlapping Epi-Blackhole regions, followed by the sub-cluster composed of CHOL and 

ESCA, which share around 94% similarity (Fig. 4.38). A description of the number of common 

epi-blackholes in each cluster is presented in Table 4.14. Due to the high number of genes that 

overlap with epi-blackholes, such information is presented in Annex LX.  

 

Table 4.14 - Summary of each epi-hotspot cluster. The table shows for each epi-blackhole 

cluster (first column), the cancers that are in the cluster (second column), and the number of 

common epi-blackholes in the cluster (third column). 

Cluster Cancers Number of common epi-blackholes 

B_1 KIRP, LIHC 1 

B_2 
LUAD, COAD, PAAD, CHOL, 

ESCA 
3 

B_2.1 COAD, PAAD, CHOL, ESCA 20 

B_2.1.1 COAD, PAAD 89 

B_2.1.2 CHOL, ESCA 81 
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Chapter 5 Discussion 

 

The chromatin’s accessibility, in each region, is part of what allows cells to shift 

transcriptional states, activate and deactivate genetic pathways, and even commit to 

developmental programs. The permissiveness, or accessibility, state of the chromatin is, in part, 

controlled by DNA methylation, which displays aberrant patterns in several diseases such as 

cancer. In fact, it is well known that during tumor initiation, the tumoral cells follow abnormal 

methylation patterns, which can lead to alterations in the network of cellular pathways.  

In this study, we pondered if certain genomic regions were preferentially targeted for 

abnormal DNA methylation during the normal to tumor transition and if these regions could 

be somehow related to altered patterns of gene expression.  

In fact, we theorized that, during the normal to tumoral transition, certain genomic 

regions would be preferably targeted for alterations in DNA methylation, and others would 

remain unchanged. Our rationale was that certain modifications in the chromatin’s accessibility 

would provide a selective advantage to the clone, while other modifications would constitute a 

selective disadvantage. As such, we hypothesized that during tumor initiation, specific genomic 

regions are differentially methylated, and others are kept unchanged. We decided to designate 

the former as Epi-Hotspots and the latter as Epi-Blackholes.  

The first portion of this study was dedicated to testing this hypothesis. To do this, we 

made use of existing DNA methylation data from TCGA, and since cancer is a group of 

diseases, we analyzed all the twelve cohorts that had available data on DNA methylation and 

gene expression. The Epi-hotspots were identified by intersecting the outputs of two DMR 

searching methods named DMRCate and Bumphunter.  

5.1 Epi-hotspots 

We found that the number of epi-hotspots was different for every cohort. In fact, some 

cohorts revealed a low Epi-hotspot count, such as esophageal and pancreatic cancer cohorts, 

with 2 and 3 identified epi-hotspots, respectively, and other cohorts revealed a higher Epi-

Hotspot count, such as liver and head and neck cancer cohorts, with 208 and 203 epi-hotspots, 

respectively. The reason for this discrepancy is hard to explain since all cohorts have not only 

different total sample sizes but also a different number of normal and tumor samples. As 
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described in the previous section, our analysis showed that there was not any correlation 

between the number of identified epi-hotspots and the number of normal, tumor, and total 

samples in the cohort. This is something that would, in fact, be expected, if there were not any 

analytic errors since an increase in statistical power would render an increase in the detection 

of real epi-hotspots, rather than an increase in the total number of detections. Nonetheless, this 

absence of correlation is to be taken carefully, since cohorts with a very low sample size may 

lack the statistical power to identify all epi-hotspots. In our epi-hotspot identification 

methodology, we generally opted for an alpha level of 5% in the statistical tests, and although 

this is a commonly accepted threshold, it is important to understand that in low power settings 

(such as in small sample size), it may be insufficient to detect a relevant amount of epi-hotspots.  

Our data also demonstrated that the size of epi-hotspots greatly varied not only between 

cohorts but also within each analyzed cohort. In every cohort, we noted that the length of the 

epi-hotspots, as well as the number of CpG sites it contained, was variable. This was interesting 

to note since it demonstrated that these regions are not fixed in size, and can either be very 

short epi-hotspots (< 10 bp) with less than five CpG sites, or very long epi-hotspots (> 3 kbp) 

with dozens of CpG sites.  

We also observed that most of the detected epi-hotspots, in every analyzed cohort, were 

located in promoter regions. It is long established that anomalous DNA methylation in 

promoters is characteristic of cancer initiation and development 108,109. This epigenetic 

reprogramming was thought to follow a pattern of global hypomethylation, to activate 

oncogenes, and promoter hypomethylation specifically to repress tumor suppressor genes 109. 

However, it is now known that this epigenetic reprograming in promoters is not contributing 

to cancer development by directly repressing the respective genes 108.  Our finding might, of 

course, reflect this epigenetic reprogramming hallmark in cancer, but there are other possible 

reasons that epi-hotspots are mostly concentrated in promoter regions: 1) the detection of epi-

hotspots is, in a way, related to the presence of various CpG sites in a given region, so it is not 

surprising that high-density CpG regions, such as promoters, which are rich in CpG islands, 

are where most epi-hotspots are detected; 2) the visible methylome in all cancer cohorts here 

analyzed is also mostly concentrated in promoter regions, as such it is expected the most of the 

detected epi-hotspots would fall in promoter regions; 3) finally, it should not be excluded the 

possibility that this event is mechanistically important, and is part of a biological process that 

we do not yet understand. 
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It is also interesting to note that these regions that are consistently methylated in an 

aberrant manner in stage-I tumor samples represent a very small portion of the entire 

methylome. In fact, the cohort that revealed the largest total area of epi-hotspots was LIHC, 

where 0.377% of the whole methylome consisted of epi-hotspots. On the other hand, the cohort 

with the smallest total area of epi-hotspots was ESCA, with only 0.006% of the methylome 

consisting of epi-hotspots. This, of course, only represents a portion of the aberrantly 

methylated methylome. There might be several reasons for such small numbers, one of them 

being that a normal cell transitioning to a tumor cell must target specific regions of the DNA 

not only to increase proliferation but also to keep viability. It is also possible that these specific 

regions are amplified via clonal selection. In fact, one could theorize that if such regions are 

consistently altered in stage-I tumor cells, then it is possible that they exert some kind of 

advantageous selection pressure.  

5.2 Epi-hotspots are related to aberrant gene expression during tumor 

initiation 

We figured that one-way epi-hotspots could exert its selective pressure was by 

influencing gene expression, not only where they spawn but also in other parts of the genome.  

As previously explained, we first identified all genes that were differentially expressed between 

normal and stage-I tumor patients in all analyzed cohorts. After identifying these genes, we 

proceeded to filter out all of those that did not have a normal-tumor AUC lower than 0.8. It is 

important to discuss that the genes that were excluded in this step were not considered to be 

non-differentially expressed. However, we rationalized that these genes would have a high 

variability across samples, and, on the other hand, genes with high AUC values would have a 

higher gap in expression values between normal and tumor samples. This was an important 

step to assure that the predictive power of epi-hotspots was represented in the normal to tumor 

transition, rather than in intra-tumor variability. 

 In this study, we performed multiple linear regression models to understand if a given 

epi-hotspot, as a whole, was able to predict expression alteration of a given gene in tumor 

initiation. It is highly relevant to mention that this methodology was not developed to 

demonstrate a causal relationship between methylation of an epi-hotspot and expression levels 

of any gene, as we would not be able to determine causation with this type of analysis. Instead, 

we aimed to comprehend if there was any predictability in these variables.  
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It was interesting to observe that the number of differentially expressed genes between 

normal and stage-I tumor samples, with an AUC higher than 0.8, varied across all diseases. 

Nonetheless, in all cohorts in which differentially expressed genes were detected, there were 

always epi-hotspots that could predict the gene expression variation in tumor initiation. It is 

impossible, with the present study, to confirm the hypothesis that epi-hotspots are influencing 

gene expression in tumor initiation. However, our data suggest that there is some relationship 

between the former and the latter, which provides some evidence, although not causational, 

that DNA methylation in specific regions might impact gene expression during tumor initiation. 

This is particularly interesting due to the fact that our results are extremely narrowed, not only 

in the detection of the epi-hotspots but also in upholding genes to be considered differentially 

expressed. Furthermore, the epi-hotspot – gene relationships were also tested with a 

considerable degree of restriction by using high R2 values and testing for model significance. 

Considering that our datasets do not have relatively large sample sizes, and by using such 

degree of restriction in the detection of epi-hotspot – gene relationships, it is arguable that in 

reality, there are many more relationships, with different degrees of association. 

5.3 Epi-blackholes 

Having identified genomic regions that are consistently aberrantly methylated in stage-

I tumor samples, we also sought to understand if there were regions that were consistently 

unaltered regarding DNA methylation during tumor initiation. These regions, which were 

herein labeled as epi-blackholes, were identified by applying the same principles previously 

described to detect epi-hotspots but, instead, using an alpha level for the DMRcate algorithm 

only, higher than 95%. The goal of this methodology was to detect the regions that are most 

likely not to be altered during tumor initiation. It is important to explain that by using this 

method, we were trying to find enough evidence to sustain the algorithm’s null hypothesis, 

rather than rejecting it. As such, the detected regions should be regarded not as regions that do 

not change its methylation patterns, but as regions that are highly unlikely to be epi-hotspots. 

Our data suggested that, like epi-hotspots, epi-blackholes seem to vary in size and in 

number, across the analyzed diseases. These regions also portray a small portion of the visible 

methylome. However, it is interesting to observe that in the esophageal and bile duct cancers, 

epi-blackholes represent 6.1% and 5% of the visible methylome. In fact, there is a substantial 

difference in epi-hotspot area from epi-blackhole area in diseases such as bile duct and 

esophageal cancers. In a low statistical power cohort such as ESCA, such discrepancy might 
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be expected, as a low count of detectable epi-hotspots would cause us to detect a large number 

of regions that are highly unlikely to be epi-hotspots. This is also true in the CHOL cohort, 

although it is much more evident in the ESCA cohort.  

Generally, like epi-hotspots, epi-blackholes seem to be mostly located in promoter 

regions, but to a smaller degree. It is possible to observe that epi-blackholes also populate other 

regions of the genome, such as exons or introns. We would argue that this is expected in two 

ways: 1) most of the visible methylome and CpG-dense regions are found in promoters, as such 

it is more likely to find epi-blackholes in these areas; and 2) most epi-hotspots are already 

mainly occupying promoters, so it is likely to find epi-blackholes in areas where epi-hotspots 

do not frequently spawn. 

5.4 Epi-blackholes might be related to the maintenance of gene expression in 

tumor initiation 

We also sought to understand if epi-blackholes were able to explain the variation of 

non-differentially expressed genes in the normal to stage-I tumor transition. Again, we were 

not able to look for causation; rather, we aimed to find relationships between the variation of 

epi-blackholes and the variation of non-differentially expressed genes during tumor initiation. 

Fundamentally, our data showed that epi-blackholes were not strong predictors of non-

differentially expressed gene’s expression variation. This may be due to the strong restrictions 

for true-positive detection applied. Interestingly, in some of the analyzed diseases, such as 

CHOL, ESCA, and PAAD, we found a considerable amount of non-differentially expressed 

genes whose normal-tumor variability could be predicted by epi-blackholes. These are cohorts 

with low statistical power and, as such, a high number of detectable epi-blackholes might 

increase the probability of finding a relationship. Nevertheless, considering that we only 

selected statistically significant models with a high R2, we cannot exclude the possibility that 

these regions may play a role in tumor initiation or cell viability.  

5.5 Epi-hotspots and epi-blackholes predict survival of stage-III tumor 

patients 

We theorized that if both epi-hotspots and epi-blackholes have some role in exerting 

selective pressure in tumor initiation and/or development, different methylation patterns in 

these regions could differently impact the survival of patients. Therefore, we questioned if at 

least some of the identified regions could be predictors of prognosis, in a later phase of the 
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disease. To perform this analysis, we studied the identified epi-hotspots and epi-blackholes in 

stage-III patients of the same previously evaluated diseases. Initially, we aimed to study the 

impact of the regions in the survival of patients as the disease progressed, but this was not 

possible due to the lack of necessary data from several phases of the tumor. Nevertheless, we 

had sufficient data to analyze prognosis in stage-III patients, which is a tumor stage where 

patient survival is sufficiently diverse to be studied.  

As explained in the previous sections, we performed multivariate Cox proportional-

hazards models to assess if each of the identified epi-hotspots and epi-blackholes were able to 

predict survival of stage-III patients. Since this type of study deals with methylation patterns 

that can have small fluctuations, we sought to increase clinical relevance by creating a hazard 

score, which would divide patients into one of two groups: 1) a low-hazard, favorable prognosis 

group, or 2) a high-hazard, poor prognosis group. Although the latter step might reduce the 

resolution of the results, we reasoned that when dealing with β-values, that are not exact 

representations of true methylation status, in a set of low statistical power, this over-

simplification would increase clinical relevance, and result interpretation.  

  As we hypothesized, in two-thirds of our cohorts, we observed that at least one region 

was not only able to predict survival in stage-III patients, but also divide them into two groups 

with distinct prognosis. This was an interesting result because although a very small amount of 

regions were able to predict survival, it is likely that, in reality, the number of epi-hotspots 

and/or epi-blackholes that predict prognosis is much larger. To make sure that this phase of the 

study would not render weak or false conclusions, we sought to reduce type-I errors as much 

as possible. This was done at the cost of an increase of false negatives, but, in fact, our primary 

goal was not to find all regions that predict survival, but if these regions were, in some way, 

related to patient prognosis. The course to profoundly decrease type-I error in this stage was 

meticulous and included several steps, such as 1) only analyzing models that fulfilled the 

assumption of proportional hazards, 2) only considering a model to be a positive result if it was 

simultaneously significant for three different statistical tests, 3) maintaining only the regions 

that were able to distinguish patients into two groups with a statistically significant difference 

in survival, a statistically non-significant different in patient age, and with a proportion of 

patient number between groups not greater than 60%. With such a level of restriction, although 

we are not able to understand the full mechanistic picture, our data suggest that epi-hotspots 

and epi-blackholes can be predictors of survival in stage-III tumor patients. Yet, we are not 
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able to conclude causality, since the aggressiveness of the disease, and even differences in 

treatment might cause different patterns of methylation in these regions.  

5.6 Colon adenocarcinoma 

Colon and rectal cancers represent a considerable burden of death in the world, 

representing approximately 9% of all cancer-related deaths worldwide 4. As such, the search 

for clinically relevant diagnosis and prognosis biomarkers is of great importance.  

Diagnostic tools using DNA methylation biomarkers are already employed in clinical 

practice, and these include methylation of the SEPT9 gene (commercialized as Epi-proColon), 

and methylation of the VIM gene (commercialized as ColoSure test) 110. Although these two 

are the most studied, they present some caveats, such as the low sensitivity in identifying 

adenomas, in the former, and the lack of Food and Drug Administration (FDA) approval in the 

latter 110.  

There are several candidate biomarkers that are in study for colorectal diagnosis using 

both blood and stool-based samples, which reveals the ever increasing need to create such tools 

110. In this study we identified 75 regions that are aberrantly altered in the normal-tumor 

transition, and although detected in tumor samples, can potentially be candidate diagnostic 

biomarkers of colon adenocarcinoma 110.  

The case for prognostic biomarkers in colorectal cancer is quite different from 

diagnostic biomarkers, as there are not any that have entered clinical guidelines 110. 

Nonetheless, the need for such tools is ever increasing, and there are several ones in study as 

candidate prognostic biomarkers in colorectal cancer. Here we found a total of nine regions 

(eight epi-blackholes and one epi-hotspot) that were able to not only predict survival in stage-

III colon tumor patients, but also divide them into two groups with distinct survival 

distributions. These regions could potentially be candidate prognosis biomarkers for colon 

adenocarcinoma. Furthermore, none of the identified regions overlaps with genes already used 

as candidate prognostic or diagnostic biomarkers in colorectal cancer.  

It is important to note that the analysis herein performed uses data from colon 

adenocarcinoma samples alone, and the biomarkers are generally used to identify colorectal 

cancer. As such, it is not certain that the same results would be obtained if using samples from 

both colon and rectum tissues. This is especially relevant in the identification of DNA 

methylation biomarkers in this disease, since different parts of the digestive tube are differently 
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exposed to carcinogens that can cause epimutations. Hence, this type of analyses might be 

biased if the utilized data is not representative of the whole colorectum. 

It was interesting to find that of 5253 differentially expressed genes between normal 

and stage-I colon tumor samples, 93% were explained by epi-hotspot variability. This type of 

outcome might suggest that, in fact, the aberrant patterns of gene expression in stage-I colon 

adenocarcinoma are, somehow, connected to aberrant methylation in epi-hotspot regions. 

Furthermore, by performing a GAGE analysis to the differentially expressed genes that were 

related to epi-hotspot regions, we found that several GO terms were enriched comparing to the 

baseline of aberrantly expressed genes, 121 being up-regulated in stage-I tumor, and 457 down-

regulated. Finding such amount of enriched GO terms might also suggest that epi-hotspots are 

related to altered cellular processes in colon tumorigenesis, even though our data is insufficient 

to make such conclusion. Some of these enriched GO terms are expected in colon 

tumorigenesis. For example, we detected a strong up-regulation of Wnt signaling pathway. In 

colon adenocarcinoma, mutation of the tumor suppressor gene Adenomatous polyposis coli 

(APC) is usually an initiating event in the majority of both sporadic and familial colon and 

rectal cancers 111. APC inactivation tends to drive hyperactivation of the WNT signaling 

pathway, which is thought to be a major tumorigenic event in nearly all colorectal cancers. The 

WNT signaling pathways is involved in many cellular processes in both normal and 

tumorigenic settings, such as cell proliferation, cell migration, asymmetric cell division, 

amongst many others 111. It is interesting to observe that several of the top enriched upregulated 

GO terms are related do cell polarity, and several downregulated GO terms are related to ion 

transport, as the latter usually impacts the former 112. This is not surprising, since dysfunction 

of several ion channels are related to initiation and development of tumor of the gastrointestinal 

system 112. Since our study does not demonstrate causality, it would be relevant, in the future, 

to understand if aberrant methylation in epi-hotspot regions are associated to ion transporter 

dysfunction, and consequently altered cell polarity.  

5.7 Breast Invasive Carcinoma 

Breast cancer is the second most frequently diagnosed cancer for both sexes combined, 

and the most diagnosed in females, where it stands as the leading cause of cancer-related death 

4. In a disease with such burden, diagnostic and prognostic tools are critical. The most 

frequently used method for breast cancer screening worldwide is the mammography 113. This 

type of screening is shown to decrease breast cancer mortality, especially in women aged 



115 

 

between 50 and 69 years old. It is important to mention that the harms of overdiagnosis in 

breast cancer are still debated in the scientific community 113,114. Nonetheless, the benefits of 

early detection in breast cancer far surpass the possible harms, as prognosis in this diseases 

largely depends on early detection  113–115.  

In the present analysis we detected 76 regions that are abnormally methylated in stage-

I breast tumor samples, consisting of potential candidate diagnostic biomarkers for breast 

tumor.  

The primary challenge in breast cancer, immediately after diagnosis, is the assessment 

of patient prognosis and predicting treatment response 116. The former can be evaluated by 

clinicopathological factors, such as tumor staging, estrogen receptor (ER) status, progesterone 

receptor (PR) status, and Human epidermal growth factor receptor 2 (HER2)/neu status, but 

also by molecular biomarker tools such the Oncotype DX or MammaPrint. The later two are 

amongst the most extensively validated prognostic biomarkers in breast cancer and are 

increasingly being employed in clinical practice. The Oncotype DX is a multi-analytic tool that 

evaluates expression levels of 21 genes, of which 16 are cancer-linked and 5 are controls. The 

relative expression of the former compared to the controls allows for the calculation of a 

recurrence score, which is a continuous variable that segregates breast cancer patients into low, 

intermediate, or high-risk groups. The MammaPrint, on the other hand, is considered to be 

extremely useful not only in predicting disease recurrence, but also in aiding in the decision 

making of treatment choice. This tool makes measures, through microarray, the expression 

levels of 70 genes, which allows for the division of breast cancer patients into low-risk and 

high-risk groups 116.  

It is very interesting to observe that the most validated prognostic biomarker tools in 

breast cancer are multi-analytic, rather than single-variable centered. In this study we identified 

one epi-hotspot region, which consisted of three different CpG sites, that was able to divide 

patients into two groups with distinct prognosis.  

We also identified 3079 differentially expressed genes between normal and stage-I 

breast tumor samples, and only 4% of which could be explained by epi-hotspot variability. In 

contrast, none of the non-differentially expressed genes could be explained by epi-blackhole 

variability. The low number of genes that could be explained by epi-hotspot variability lead to 

a GAGE analysis with only 36 enriched GO terms, 30 of which where up-regulated. At first, 

these results might seem surprising since statistical power in this cohort is not a major issue. 
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However, in fact, it is relevant to state that “breast tumor” is a term that refers to many different 

diseases. For example, a luminal breast tumor’s pathological mechanism is entirely different 

from a triple negative’s one. In our analysis, we analyzed cohorts that had a mix of different 

breast cancer subtypes, which affects the true identification of aberrantly methylated regions, 

all type of correlations, and, most importantly, in the assessment of prognosis. Although further 

investigation needs to be made in the different breast tumor subtypes, it was interesting to find 

an epi-hotspot that could predict survival in stage-III breast tumor patients. Nonetheless, solid 

conclusions are not possible at the time since it is unknown if the region is really distinguishing 

survival of two clusters of patients with different diseases.  

5.8 Cholangiocarcinoma 

Bile duct cancer, also known as cholangiocarcinoma, is a low incidence tumor, 

representing approximately 3% of all tumor in the gastrointestinal system 117. However, the 

number of cholangiocarcinoma diagnosis are increasing, in the entire world 117,118.  

This malignancy presents several challenges, the first being that it is an asymptomatic 

disease during most of its course, which makes early detection extremely difficult 118,119. In 

fact, the median survival of cholangiocarcinoma patients is less than two years, and the five-

year survival rates are around 20%. Another challenge in this disease is the fact that the only 

potentially curative treatment is surgery, but only in early stages of this disease. The treatment 

in later-stages is limited to cisplatin and gemcitabine, which seem to have only mediocre 

effects. It is clear that the biggest problem in this illness is early detection, and therefore the 

identification of diagnostic biomarkers is increasingly more urgent 117,118.  

It is already been described that aberrant DNA methylation might constitute a possible 

way to detect early cholangiocarcinoma 118. In this study we found 70 aberrantly methylated 

regions in the normal to stage-I tumor transition, which can be potential candidate multi-

analytic biomarkers in this disease. Interestingly, we also found 10748 differentially expressed 

genes, of which virtually all (except only 1%) could be explained by epi-hotspot variability. 

This corroborates, in a way, with the existing literature, since it has been showed that aberrant 

DNA methylation, possibly caused by chronic inflammation, might be a key event that triggers 

an accelerated proliferation of biliary epithelial cells 118. Although intriguing, the results in this 

cohort need to be taken extremely cautiously, since statistical power is considerably low. This 

also applies to the high amount of detected epi-blackholes, since the low number of samples in 
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both normal and tumoral groups greatly increases the chance of finding a region that is likely 

not an epi-hotspot.  

 

5.9 Esophageal Carcinoma 

Esophageal cancer is the seventh most diagnosed cancer worldwide, with 572 thousand 

new cases every year 4. Although incidence of this malignancy is declining, esophageal cancer 

is still responsible for approximately 509 deaths a year. In fact, it is estimated that, in 2018, 1 

in every 20 cancer-related deaths were due to esophageal cancer 4. It is thought that a key 

contributing factor (although not the only one) from which esophageal cancer develops is 

gastroesophageal reflux disease and/or Barrett’s esophagus 120. Nonetheless, the mechanisms 

are not entirely clear, as only one in every 20 patients with Barrett’s esophagus develops 

esophageal cancer. Furthermore, is also known that individuals with chronic gastroesophageal 

reflux are at risk for developing Barrett’s esophagus 120. As such, screening methods that would 

complement endoscopic surveillance to identify early stage esophageal cancer would be 

valuable.  

In this analysis we identified 2 epi-hotspots and 2420 epi-blackholes. Statistical power 

in this cohort is extremely low, so it is important to interpret results cautiously. Nonetheless, it 

is curious to observe that the two identified epi-hotspots can explain the variation of 1792 

differentially expressed genes between normal and stage-I tumor samples.  

We also found that epi-blackholes could predict variation of 3183 non-differentially 

expressed genes, and some could also predict survival in stage-III esophageal cancer. However, 

due to low sample-size in this cohort, the number of detected epi-blackholes might be inflated 

which, by means of probability, could lead to positive results merely by chance. Therefore, if 

we take the results from this cohort as part of a greater compilation of results, there is some 

evidence that suggests that epi-hotspots and epi-blackholes might be regulators of  (or maybe 

regulated by) gene expression during tumor initiation. Moreover, although not conclusive, this 

portion of the study may provide some substantiation that methylation of certain genomic 

regions may be fair predictors of prognosis in later stages of disease.  

5.10 Head and neck squamous cell carcinoma 

Head and neck squamous cell carcinoma is a term used to designate a group of 

malignancies that originate from the oropharynx, hypopharynx, lip, nasopharynx, larynx, or 
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oral cavity 121. This group of diseases represents the sixth most common malignancy 

worldwide, as more than 500 thousand new cases are diagnosed each year. This disease is 

extremely heterogeneous and the main therapeutic options usually include surgery and/or 

radiotherapy 121,122. With this type of treatment there is great benefit to early detection, which 

why diagnostic biomarkers are also useful. Here we identified 203 aberrantly methylated 

regions in stage-I tumor, which could potentially be used as candidate diagnostic biomarkers. 

We also found 1528 differentially expressed genes, of which almost all (94%) could be 

explained by epi-hotspots. This clearly suggests that, during tumor initiation, altered 

methylation in certain regions is related to altered patterns of gene expression. 

When submitting the epi-hotspot explained differentially expressed genes to a gage 

analysis we observed an up-regulation of several GO terms associated with extracellular matrix 

remodeling. It is not surprising to see such up-regulation, as this is an event that has already 

been described as a key event in tumor initiation, not only in the head and neck carcinomas, 

but also in others tumor types 123. However, it is interesting to observe that this event is 

somehow possibly related to DNA methylation in epi-hotspots. Additionally, we also identified 

181 non-differentially expressed genes that could be explained by epi-blackhole variability. 

The data from this cohort also seems to suggest that epi-hotspot and epi-blackhole regions 

might be involved in alteration and maintenance of gene expression patterns during tumor 

initiation. 

In this analysis we also found that eight epi-hotspots and three epi-blackholes were 

good predictors of survival in stage-III patients. Although such results are highly relevant, it is 

important to remind that HNSC is a group of several tumors, and a candidate prognostic 

biomarker would be more trustworthy if it took into account the specific ailment, rather a the 

generic classification of the disease.  

5.11 Hepatocellular carcinoma 

Liver cancer is the sixth most frequently diagnosed cancer, with approximately 841 

thousand new cases and 782 thousand deaths in 2018, worldwide, the majority of which consist 

of hepatocellular carcinomas (accounting for 75% - 85% of all cases) 4. 

The high lethality of this disease creates an increasing demand for reliable diagnostic 

and prognostic biomarkers. Interestingly, hepatocytes constantly adapt to environmental 

conditions, which are ever changing in the liver 124. Several factors such as viruses, xenobiotics, 
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changes in metabolic processes, and others, have an effect in the hepatic methylome, which in 

turn could contribute to tumorigenesis 124.  

The high volatility in DNA methylation in hepatocytes is clearly an opportunity to 

identify regions that could differentiate hepatocellular carcinoma samples from normal liver 

samples. In fact, we identified 208 abnormally methylated genomic regions and only 11 epi-

blackholes. This difference in the number of detected epi-hotspots and epi-blackholes was 

expected, since hepatocytes have very fluctuating DNA methylation patterns 124.   

 We also found 2921 differentially expressed genes in stage-I LIHC tumor samples, of 

which about half (1355) could be explained by epi-hotspot variability. This also provides 

evidence that epi-hotspots might be influencing (or being influenced by) gene expression 

alterations in tumor initiation.  

No non-differentially expressed gene were found to be explained by epi-blackholes, 

which could be explained by the volatility in hepatocyte’s epigenome.  

Although no epi-blackhole was a good predictor of survival, we found one epi-hotspot 

that was able to differentiate stage-III LIHC patients into two groups with distinct survival 

distributions. Even though this is a region that could potentially be used as a candidate 

prognostic biomarker, it is important to stress that this analysis deals with a group of LIHC 

samples from different etiologies. It is well known that patient prognosis is different in different 

types of LIHC 125. So, in the development of a good prognostic biomarker, this would have to 

be accounted.  

5.12 Lung Squamous Cell Carcinoma 

Lung cancer leads the ranking in both cancer incidence and mortality, worldwide, 

representing 11.6% of all cancer diagnoses and 18.4% of all cancer-related deaths 4. LUSC 

used to be the most common type of lung cancer, but in the last few decades, with the decrease 

in smoking behaviors (which constitute the main risk factor for this type of cancer), incidence 

in this disease has been gradually falling 126.  

Even though LUSC diagnoses have been decreasing, it is still an incredibly deadly form 

of lung cancer, and diagnostic biomarkers able to screen for early-stage disease would be 

clinically advantageous.  
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In this study we found 97 epi-hotspots and 18 epi-blackholes. Furthermore, we 

identified 5577 differentially expressed, 706 of which could be explained by epi-hotspot 

variability, and 22 non-differentially expressed genes that could be explained by epi-blackhole 

variability. A higher number of epi-hotspots than epi-blackholes was expected in the LUSC 

cohort, since this is a disease highly associated with smoking, which it is known to cause a 

large mutational and epi-mutational load 126,127. This might also be the reason for detecting 328 

altered GO terms related to epi-hotspots. 

Additionally, we found that one epi-hotspot was a good predictor of prognosis in stage-

III LUSC patients, which, in such a deadly ailment, could potentially constitute a helpful 

candidate prognostic biomarker.  

5.13 Thyroid Carcinoma 

Thyroid cancer is the ninth most frequently diagnosed cancer, worldwide, with an 

incidence of 567 thousand cases per year 4. Although somewhat frequent, THCA’s mortality is 

much lower than the previously discussed diseases, being estimated that mortality rates in 

THCA are approximately 0.4 to 0.5 in both men and women 4.  

Although THCA is a disease with a fair prognosis for most patients, about 10% of all 

cases may develop into more undifferentiated tumors, and 2% may progress to anaplastic 

carcinoma 128. Although this progression does not happen in most THCA patients, mortality 

highly increases with the decrease of tumor differentiation 128. Additionally, the etiology in this 

disease is not completely understood, and the only clear and well documented risk factor is 

ionizing radiation 4,128. Therefore, the study of early events in DNA methylation might be of 

use not only for early-stage THCA detection, but also to gain further insights about the 

tumorigenic process of this disease.  

In this study we identified 7 epi-hotspot regions and 127 epi-blackholes. Furthermore, 

we detected 2476 differentially expressed genes, 44 of which could be explained by epi-hotspot 

variability. The higher number of epi-blackholes compared to epi-hotspots was expected, since 

this is a slow-developing tumor, that is not as highly exposed to epi-mutagens as other types of 

tumors.  

By submitting the previously identified 44 genes to a GAGE analysis, we only found 

16 enriched GO terms, all downregulated. This was not entirely surprising, due to the low 

number of genes in the analysis’s input. Additionally, we also detected 39 non-differentially 
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expressed genes that could be explained by epi-blackhole variability, which provides additional 

evidence that DNA methylation in these regions is linked to gene expression during tumor 

initiation. 

Unlike in several other cohorts, we did not find any region that was able to predict 

prognosis in stage-III THCA patients successfully. We believe that this is due to the fact that 

THCA is a slow-progressing tumor with a very good overall prognosis, the exception being the 

infrequent anaplastic carcinomas 4,128. This does not mean that THCA patients cannot be 

stratified into risk categories, but the nature of this disease renders most cohorts, by means of 

probabilities, highly homogeneous. Such cohorts provide the researcher great benefits when 

searching for relevant characteristics (like epi-hotspots) that can represent the target 

population, but also great difficulties when seeking to partition the population into clusters of 

individuals that are similar to each other, but distinct from other clusters.  

Histopathological analysis of THCA samples already provides a fair predictor of 

prognosis, yet, it would be useful to specifically analyze poor-prognosis tumors, such as 

undifferentiated and anaplastic thyroid tumors, and identify biomarkers that could subdivide 

these high-risk patients into different prognostic categories. 

5.14 Papillary renal cell carcinoma 

Kidney cancer represents the fourteenth most diagnosed cancer, worldwide, with an 

estimated incidence of 403 thousand cases per year 4. Regarding mortality, it occupies the 

sixteenth place in the ranking tables, causing approximately 175 thousand deaths per year 4.  

There are several types of malignancies that originate in the kidney, the most common 

type being the renal cell carcinomas, which represent at least 85% of cases 129,130. Most renal 

cell carcinomas can be subclassified into kidney renal clear cell carcinoma (KIRC), kidney 

renal papillary cell carcinoma (KIRP), and kidney chromophobe (KICH). There are also other 

renal cell subclassifications, but these are very rare, representing less than 1% of all renal cell 

cases 129,130. 

KIRP represents about 15% - 20% of all renal cell carcinomas, being the second most 

frequent histological subtype 131. In our analysis we found 29 epi-hotspots and 17 epi-

blackholes. However, only 66 of the 4326 (~2%) differentially expressed genes could be 

explained by epi-hotspots, and none of the remaining 15331 non-differentially expressed genes 

could be explained by epi-blackholes. Additionally, no enriched GO term was detected when 
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submitting the 66 genes to a GAGE analysis. This may be because two distinct types of KIRP 

exist: type I and type II. The two types of KIRP are not only histologically different, but also 

present distinct genetic patterns, with characteristic gene mutations and chromosomal 

abnormalities131. Furthermore, even the prognosis is unequal in both tumor types, being good 

in type I, and poor in type II. Our cohort consisted in a balanced mix of type I, type II, and 

unspecified tumor types, which could explain the fact that we did not find many relationships 

between gene expression and epi-hotspots and epi-blackholes.  

We also found two epi-blackholes that could predict survival in stage-III KIRP patients, 

but it is relevant to mention that we did not examined if these regions where accidentally 

segregating the patients based on tumor type. If that is the case, these two epi-blackholes might 

not be great prognostic biomarker, as both tumor types already have distinct prognostic 

patterns. 

5.15 Kidney Renal Clear Cell Carcinoma 

KIRC is the most frequent type of renal cell carcinoma, and accounts for 70-80% of all 

kidney originating neoplasms 129,132.  

In this disease we found only 8 epi-hotspots and 3 epi-blackholes, which could suggest 

that DNA methylation in this disease is highly heterogenous. We theorize that this 

heterogeneity is not random, and that there are several clusters of KIRC patients, with distinct 

methylation patterns. To identify the true epi-hotspots and epi-blackholes in this malignancy, 

one would have first to identify, if they exist, the true sub-groups of KIRC patients. 

Nonetheless, it would be clinically relevant if any of the identified regions could be used as a 

potential candidate diagnostic biomarker, since the 5-year survival rate of this disease is 

approximately 92% if detected early, but only 67% if the tumor has spread locally, and 12% if 

it has already metastasized 132.  

Interestingly, although we detected 4588 differentially expressed genes, none could be 

explained by epi-hotspot variability. Likewise, none of the remaining non-differentially 

expressed genes could be expressed by epi-blackholes. One explanation for such result might 

be that, unlike other tumor, KIRC is an extremely heterogenous disease, regarding not only 

gene mutations, but also chromosomal abnormalities 132. Therefore, although the sample size 

of this cohort was sufficient to study it as one uniform disease, it may not be enough to detect 

associations in a highly heterogenous malignancy.  
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Additionally, we did not find any region to be a good prognostic predictor, but this 

might be explained by the low number of identified epi-hotspots and epi-blackholes. With the 

rigorous filters and restrictions here applied, it would be unlikely to yield a positive result, with 

such a low number of input regions.  

5.16 Pancreatic Adenocarcinoma 

Pancreatic cancer is the twelfth most frequently diagnosed cancer, in the world, with 

around 459 thousand cases per year 4. This is an extremely deadly condition, with a number of 

fatalities that almost matches the incidence (432 thousand deaths in 2018) 4.  

The poor prognosis in this disease is largely caused by late diagnosis, as most patients 

with this malignancy stay asymptomatic throughout most of the course of the tumor 

development and progression 133.  Reliable early-detection screening tools would be useful, 

since incidence of pancreatic adenocarcinoma seems to be rising every year, especially in 

developed countries 4,133. 

In this study we identified 3 epi-hotspots and 898 epi-blackholes. Such results were 

most likely due to the low sample-size in this cohort, which reduced statistical power to such 

extent, that most regions were just extremely unlikely to be epi-hotspots, giving rise to a high 

number of epi-blackholes.  

This was the only cohort in which no differentially expressed genes were found. It 

would be, certainly, preposterous to conclude that genetic patterns are maintained during tumor 

initiation, and it is highly probable that such result is due to an inadequate alpha level in this 

low statistical power setting. 

We also observed that 8268 non-differentially expressed genes could be explained by 

epi-blackhole variability. However, this result is to be taken carefully, because since all genes 

were considered non-differentially expressed, and the number of epi-hotspots is very high, it is 

likely that, even with rigorous methodological restrictions, most of the detected links are simply 

due to chance. Nonetheless, true-positive relations surely exist but, with this analysis, we 

cannot detect which ones they are. 

Additionally, due to the very low number of stage-III PAAD patients, the survival 

analysis did not generate any output.  
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5.17 Lung adenocarcinoma 

As previously described, lung cancer is not only the most diagnosed cancer type, but 

also the deadliest, worldwide 4. With the decreased smoking behaviors, LUAD became the 

most prevalent form of non-small cell lung cancer, a position previously occupied by LUSC 

127,134,135.  

In this cohort we found 117 epi-hotspot regions and 3656 differentially expressed 

genes. However, no relation was found between the former and the later. This was someway 

surprising, since aberrant DNA methylation is a documented early-event hallmark in lung 

cancer 135. It is also been documented that these events trigger dysregulation of several 

oncogenes and tumor suppressor gene. For this reason, we were expecting to see at least some 

relation between epi-hotspots and differentially expressed genes. We did, however, found that 

10 non-differentially expressed genes could be explained by epi-blackholes, a result that is 

closer to what is already documented in the scientific literature 135.  

In this cohort, we also found six epi-hotspots and two epi-blackhole regions that were 

able to discriminate stage-III LUSC patients into two groups with distinct survival 

distributions, all of which could possibly be used as a potential candidate prognostic biomarker 

in this deadly disease.  

5.18 Similarity in Epi-hotspots 

One of the goals we ought to achieve was to understand if there were epi-hotspot 

regions that were common in more than one cohort, and if the analyzed malignancies could be 

assembled into clusters. This was achieved by performing a complete-type hierarchical 

clustering analysis using the epi-hotspot region’s overlapping percentage as a similarity unit.  

We identified five major clusters, three of which consist of a singular cohort. The three 

single-element clusters were THCA, ESCA, and PAAD, which were expected to be assembled 

in this way due to the very low number of identified regions. The results might seem to suggest 

that, regarding DNA methylation in epi-hotspots, these are diseases entirely different from each 

other and from all others. However, the detected difference is not a true difference, since the 

low number of input regions diminishes the probability of finding an overlap between them.  

Apart from the three clusters mentioned above, it is interesting to observe that the 

overlapping percentage of epi-hotspots is very small, even in the most similar cohorts. This is 

in accordance with previous unpublished work from our group that showed that changes in 
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DNA methylation patterns, during tumor initiation, seemed to be specific to the cell-of-origin, 

rather than common to all malignancies. 

Interestingly, the two renal cell carcinomas, KIRP and KIRC, were clustered together, 

sharing two epi-hotspot regions, one of which overlaps with two genes: SLC2A9, and DRD5. 

Curiously, both of these genes have been recently shown to be tumor growth suppressors 136,137. 

In 2017, Leng and colleagues, showed that activating DRD5 (dopamine receptor D5) in tumoral 

cells inhibited the mechanistic target of rapamycin (mTOR) pathway by inducing reactive 

oxygen species (ROS) production, thus stimulating autophagy and, consequently, autophagic 

cell death 136. Recently, in 2019, Han X. et all, showed that overexpression of the uric acid 

transporter SLC2A9, in LIHC cells, inhibited the expression of caspase 3, thus inducing 

apoptosis 137. Curiously, none of these two genes was differentially expressed in KIRC or KIRP 

cohorts. Furthermore, contrarily to the discovery, by Han X. et all, that SLC2A9 is 

downregulated in LIHC cells, we did not find any alteration regarding expression levels in the 

stage-I LIHC cohort.  

Although it is interesting that both renal cell carcinomas were clustered together, it is 

important to note that the similarity percentage regarding epi-hotspots is only 4%. Therefore, 

it is not entirely possible conclude that these two malignancies constitute a real epi-hotspot 

cluster.  

 The second multi-cohort cluster clearly consists of two major child clusters, the first 

being comprised of CHOL, COAD, and LUAD, with six common epi-hotspot regions. These 

epi-hotspots overlapped with five genes, none of which was found to be differentially 

expressed in all cohorts. The Empty Spiracles Homeobox 2 (EMX2) and GRIA4 genes were 

found to be differentially expressed, but only in colon adenocarcinoma.  

It was surprising to detect differential expression of EMX2 only in colon cancer, 

because it has been shown that this gene is usually downregulated in lung cancer 138. 

Nonetheless, it has also been shown that colorectal  tumor tissues have decreased expression 

levels of EMX2, which our results also support 139 . Furthermore, it has also been shown that 

EMX2 expression levels are associated with worse prognosis in colorectal cancer 139. Although 

we did not assess gene expression as a survival predictor, the epi-hotspots that overlapped with 

EMX2 were not good predictors of prognosis in stage-III colon adenocarcinoma. Additionally, 

the only epi-hotspot that was able to distinguish stage-III COAD patients into two groups with 

different prognosis was not associated with the downregulation of EMX2 in stage-I.  
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The second child cluster from the major multi-cohort cluster entails BRCA, HNSC, 

LIHC, and LUSC. We observed that two epi-hotspot regions, that overlapped with the genes 

WRAP73 and COL11A2, were common between the four cancers. The WRAP73 gene was 

overexpressed, in a highly statistically significant manner, in LUAD, LIHC, CHOL, and 

ESCA. This gene’s product is a constitutive part of the centrosome, and is essential to correct 

mitotic spindle assembly 140. In theory, it is not surprising that tumoral cells have higher 

expression levels of WRAP73, and it is possible that, in fact, all our analyzed cohorts exhibit 

this pattern, although not detectable in high statistical restrictions. 

The COL11A2 gene was only differentially expressed in CHOL, but due to the low 

statistical power and the very high number of detected differentially expressed genes in this 

cohort, it is hard to draw trustworthy conclusions. 

5.19 Similarity in Epi-blackholes 

We also aimed to understand how the analyzed diseases related to each other 

concerning epi-blackhole location. Therefore, we repeated the previous hierarchical clustering 

analysis, but this time using as a similarity unit the overlapping percentage of epi-blackholes. 

By doing so, we observed five single-cohort and two multi-cohort clusters. The THCA, 

LUSC, KIRC, HNSC, and BRCA cohorts were, in fact, expected to be clustered individually, 

as these were cohorts with a low number of detected epi-blackholes.  

The first multi-cohort cluster consisted of KIRP and LIHC, with only one common epi-

blackhole region that not overlapped with any protein-coding gene. Although these two 

diseases were clustered together, the very low similarity does not allow for the assumption that 

KIRP and LIHC are alike diseases concerning epi-blackholes. 

The second multi-cohort cluster comprises LUAD, COAD, PAAD, CHOL, and ESCA, 

which are the cohorts with the highest number of detected epi-blackholes. It is important to 

note that drawing conclusions from this multi-cohort cluster might be misleading. With such a 

high number of epi-blackhole regions in these cohorts, the amount of detected overlaps 

radically increases. In fact, it is much likely that these diseases were clustered together, not for 

a true biological reason, but simply because of the very high probability of overlap by chance.  
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5.20 Limitations 

It is relevant to mention that, like all studies, this analysis has several limitations and 

caveats that, if not taken seriously, can lead to incorrect assumptions of the tumorigenic 

process. In this subsection, we try to summarize some of the most critical limitations of our 

research: 

▪ In this analysis we use both normal and tumoral samples in an independent 

manner, a limitation imposed by the absence of data from normal-matched 

samples. Although it is possible to understand, by the means of statistical 

inference, the changes that happen during tumorigenesis, we cannot delineate 

the true alterations that happen in a normal cell that is acquiring tumorigenic 

traits.  

▪ It is difficult, if not impossible, to truly assess if normal samples here utilized 

are indeed normal. Usually, these samples are obtained during surgical removal 

of a tumor, being possible that these cells already have acquired some pre-

tumoral characteristics. This is especially relevant in epigenetic analyses since 

changes in the cell’s epigenome can happen before tumorigenesis.  

▪ It is well known that individual characteristics like gender, age, or weight, as 

well has environmental factors and individual behaviors such as diet, smoking 

habits, exercise, sleeping patterns, and even chronic stress, affect the 

epigenome. This adds a layer of complexity when analyzing DNA methylation 

patterns of tumor-patients as a group, particularly in independent-group 

comparisons, like the one herein performed, because it is not possible to truly 

understand if a specific difference is due to the variable of interest (normal 

versus tumoral) or due to an individual characteristic that is randomly different 

in one of the groups. 

▪ One of the most evident limitation in this study is the small size of the cohorts 

here analyzed. Low sample-size inherently causes a low power during 

hypothesis testing. It is critical that statistical power is increased, so that the 

probability of making a type-II error is minimal. It is clear that, in this analysis, 

many true epi-hotspots and epi-blackholes were not detected, primarily due to 

low-power settings, but also due to our attempt to contain type-I errors. 

▪ Type-I error minimization and alpha-level setting is another caveat in our 

analysis. In fact, in the twelve studied cohorts, alpha-level was generally set to 
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5%, in an attempt to reduce type-I errors. However, it is relevant to note that 

alpha-level reduction naturally increases the probability of type-II errors. In a 

low-power setting, a low alpha level additionally increases the probability of 

type-II errors. For example, in the ESCA cohort, it is clear that a very high 

number of epi-hotspot regions are undetected, which is even more evident in 

the artificially high number of epi-blackholes in this cohort. In fact, alpha-level 

should have been set dynamically, depending on statistical power. This would 

be even more critical in this study, since we considered that type-II errors were 

the most serious.  

▪ It is well known that cancer is not a single disease, but a set of many different 

diseases. In this study we analyzed cohorts of samples from tumor-patients that 

were, fundamentally, grouped by the organ from which the primary tumor arose. 

Although this is the only a practical way of researching using publicly available 

data, this simplification is highly fallacious. It is well known that each of the 

diseases herein analyzed are, in fact, a very heterogeneous mix of tumor 

subtypes that are completely different from each other, regarding the molecular 

mechanisms, pathophysiology, therapeutics, and even prognosis. Indeed, we are 

detecting general results that would, in theory, be common to at least most of 

the tumor subtypes. However, there is a strong possibility that one or more 

cohorts are enriched with certain tumor subtypes, thus generating biased results. 

▪ Epi-blackhole regions were here detected by the probability of not being epi-

hotspots. This give us a rough view of the regions that are most likely to be kept 

unchanged during tumorigenesis, regarding DNA methylation. Yet just because 

a region is unlikely to be an epi-hotspot, it is not possible to know for sure that 

it is an epi-blackhole. 

▪ The epi-hotspot and epi-blackhole regions that were identified in this study are 

really candidate regions. The lack of normal matched samples does not allow 

for the detection of individual changes of the methylome, which is why it was 

not possible to calculate methylation thresholds that could be applied 

individually. 

▪ When identifying altered patterns of DNA methylation and gene expression, we 

considered that these were changes that occurred in most patients, but in reality, 

it is likely that patients can be clustered into groups with different genetic and 

epigenetic patterns.  
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▪ When studying how DNA methylation is linked to gene expression, during 

tumorigenesis, we greatly under-detect these relationships, mainly because, in 

most cases, we do not have enough evidence to support it. This leads to an 

erroneous count in the number of genomic regions that could be potentially 

linked to gene expression.  

▪ One of our goals was to understand which cellular pathways could be influenced 

by DNA methylation of epi-hotspots during tumor initiation, which was 

investigated trough a GAGE analysis. This was performed by detecting an 

enrichment of the group of genes that were related with epi-hotspots, thus 

although we gained insights of what GO-terms were the most enriched, 

relatively to the background of genes, we do not know if DNA methylation in 

epi-hotspots is really influencing these processes. Furthermore, even regarding 

the unknown true positives, it is not possible to understand if it is a true 

biological association or just a coincidence caused by the tumorigenic process 

itself.  

▪ When analyzing the relations between DNA methylation in certain genomic 

regions and patterns of gene expression, during tumorigenesis, there is an 

intrinsic bias caused by the number of tested regions. It is, by means of 

probabilities, much more likely to find relations in a cohort that has more 

variables to be tested. For example, in cohorts like ESCA, where more than two 

thousand epi-blackholes were found, there is an increased chance of detecting a 

relation between epi-blackholes and gene expression. 

▪ Since genomic data is constantly updated, gene names and symbols change over 

time. Although we strove to avoid mistakes, there is always some risk that an 

error was made when refereeing to or describing a gene.  

▪ In some survival analyses, we detected a low number of potential prognosis 

biomarkers. This is not because such biomarkers do not exist, but because the 

characteristics of the sample make them undetectable. For example, in diseases 

with an extremely poor or fair prognosis, it is rather difficult to generate groups 

of patients with distinct survival distributions.  

▪ Although this work stems from the theorization that, during tumorigenesis, 

DNA methylation in specific genomic regions would impact gene expression, 

the generated results do not imply causality between the studied events. So, even 

though this analysis presents evidence that there is, in fact, a relation between 
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the variable, it is not possible to conclude that one is influencing the other, or if 

both are being impacted by other factors. 

▪ Reliable prognostic biomarkers are in increasing demand in cancer since these 

allow for better clinical decisions. While we have identified several potential 

candidates for further study, we did not search for predictors of therapeutic 

response. This type of biomarkers is even more relevant than prognosis 

biomarkers since they allow for a sustained decision of therapeutics. By using 

both prognostic biomarkers and predictor of therapeutic response, the 

risk/reward ratio of applying given therapy is dramatically decreased. 

▪ Probably one of the biggest caveats of this work is the limited in-depth detailed 

analysis of the generated results. This limitation was mainly caused by the vast 

amount of generated data. A thorough examination of each individual region 

here identified, as well as their particular relation with each gene, remains to be 

done. 

▪ In this work, several diagnostic and prognostic potential candidate biomarkers 

were identified. A good screening and diagnostic tool is one that can be utilized 

non-invasively, such as by using blood, serum, feces, or urine. The biomarkers 

here identified were detected using normal and tumor samples that were 

obtained directly from the affected tissue. While such biomarkers are still 

possible candidates, we do not know if these are detectable in a non-invasive 

way. 

▪ Lastly, to draw more solid conclusions, this study needs validation of both the 

methodology and the results. 
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Chapter 6 Conclusion 

 

It is well known that DNA methylation is a key epigenetic mechanism for the 

modulation of cellular processes that determine cell function and fate. Since tumor cells 

consistently have aberrant DNA methylation patterns, we hypothesized that certain genomic 

regions would be susceptible to alterations in DNA methylation while others would be resistant 

to it. Our data provides evidence to support this hypothesis, suggesting that such regions are 

systematically detectable in various tumor types. 

We also hypothesized that one of the ways that such regions could exert selective 

pressure in the tumor was by influencing gene expression. Even though it was not possible to 

determine causality, our work clearly shows that, during tumor initiation, DNA methylation 

patterns in both epi-hotspots and epi-blackholes are related to gene expression, which is in 

accordance with our hypothesis.  

One of our consequent biological questions was if epi-hotspots and epi-blackholes 

occurred in similar regions in every tumor type, for which we demonstrated that although some 

similarity exists between tumor types, the genomic location of such regions is mainly specific 

to the tissue-of-origin.  

The fact that epi-hotspot and epi-blackhole regions are detectable, related to 

tumorigenic gene expression patterns, and are specific for each tumor type, lead us to 

hypothesize that, if these regions do exert selective pressure in the tumor clones, then different 

methylation patterns would lead to tumors with different degrees of aggressiveness, which 

would be translated into different patient prognoses. Again, our results support this hypothesis, 

demonstrating that DNA methylation in several of these regions could clearly distinguish 

patients with poor prognosis from patients with favorable prognosis.  

In summary, our work provides evidence that, during tumorigenesis, there is a tissue-

specific regional susceptibility to altered patterns of DNA methylation and, in parallel, regional 

conservation of normal patterns. Moreover, such regions seem to be associated with the 

alteration and maintenance of tumorigenic gene expression patterns and can be used to predict 

stage-III patient prognosis. 
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