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Abstract: Nepeta baytopii is a poorly studied, endemic Nepeta species (Lamiaceae) of Turkey. For the
first time, the biological activities (antioxidant, enzyme inhibition, and cytotoxicity properties) of the
hexane, ethyl acetate, methanol, water/methanol, and water extracts and essential oil prepared from
N. baytopii aerial parts were assessed. Hydro-methanol (41.25 mg gallic acid equivalent (GAE)/g)
and water extracts (50.30 mg GAE/g), respectively showed the highest radical scavenging (94.40
and 129.22 mg Trolox equivalent (TE)/g, for 2,2-diphenyl-1-picrylhydrazyl radical and 2,2-azino-
bis (3-ethylbenzothiazoline-6-sulfonic acid radical scavenging assays) and reducing (229.37 and
129.55 mg TE/g, for ferric-reducing antioxidant power and cupric-reducing antioxidant capacity
assays) capacities in vitro. An interestingly high inhibition was observed for ethyl acetate extract
against butyrylcholinesterase (10.85 mg galantamine equivalent/g). The methanol extract showed
high cytotoxicity (31.7%) against HepG2 cells. Caryophyllene oxide was identified in high concentra-
tions in the essential oil (39.3%). Luteolin and apigenin and their derivatives were identified from the
methanol and water extracts. The results obtained from this study highlighted that the abundance
of highly bioactive compounds from Nepeta baytopii ensures the multiple biological activities of the
tested extracts, and this suggests a potential use in the pharmaceutical and nutraceutical fields, and
therefore should be investigated further.

Keywords: Nepeta; polyphenols; antioxidant; enzyme inhibition; phytopharmaceutics

1. Introduction

Nowadays, humanity faces several problems, including both infectious and non-
infectious diseases. The prevalence of some non-infectious diseases, such as Alzheimer’s
disease, diabetes mellitus, or obesity, is globally increasing by the day, and urgent precau-
tions are needed to combat these diseases. Considering the increasing human population,
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synthetic precautions are still the most common for managing this fact. However, most
synthetics have exhibited unfavorable side effects on human health, and we have to change
them to safe, natural ones. In this sense, phytochemicals are considered in the natural
arsenal for humanity [1–3]. Phytochemicals, including phenols, phenolic acids, flavonoids,
tannins, and terpenoids, amongst others, are secondary metabolites possessing biological
activities [4–6]. For decades now, humankind has been studying the intricate composition
of plant extracts to harness their biological activities. Species of the Lamiaceae family possess
therapeutic activity regarding gastroenterology, dermatology, and gynecology, and the
herbs and leaves of Lamiaceae species have been used to treat respiratory complications [7].
The Lamiaceae family is a family of flowering plants, consisting of 236 genera composed
of 6900–7200 species, and Nepeta is one of the largest genera of this family [7]. With some
280 species, the Nepeta genus is distributed over central and southern Europe, and western,
central, and southern Asia, and North Africa [8].

The distinctive diversity and richness of regions of southwestern Asia, including
Turkey and Iran, makes it a hotspot of the Nepeta genus [9]. In Turkey, 33 Nepeta species
have been recorded, and 17 of them are endemic [9]. Nepeta species have been used in
traditional medicine for their antiseptic, antispasmodic, anti-asthmatic, febrifuge, anti-
tussive, and diuretic properties [8]. Additionally, in Turkey, the members of the Nepeta
genus have been widely used for colds, cancers, coughing, rheumatism, wound healing,
obesity, and stomachaches [10–13]. In addition, a recent comprehensive review pub-
lished by Shara and colleagues [14] presented the in vivo and in vitro studies reporting
the acetylcholinesterase inhibitory, anti-atherosclerotic, anticonvulsant and myorelaxant,
antidiabetic, anti-leishmanial, anti-malarial, anti-melanogenesis, antioxidant, anthelmintic,
hepatoprotective, cytotoxic, immunomodulatory, cardioprotective, anti-microbial species
of the Nepeta genus. Salehi et al. [15] reviewed the presence of significant compounds in
the Nepeta genus, including nepetalactone, β-caryophyllene, germacrene-D, 1,8-cineole,
and α-pinene.

The biological activities of some Nepeta species endemic to Turkey, namely, Nepeta
italica subsp. cadmea, N. nuda subsp. glandulifera, N. meyeri, N. conferta, and N. cadmea
have been previously investigated [8,9,16–19]. However, endemic Nepeta baytopii has
received little scientific attention. In an earlier study conducted by Dirmenci et al. [20], the
morphological description and threatened categories of four Nepeta species were reported.
In their study, N. baytopii were described as perennial with a height of 25–70 cm. The
plant has longer-spreading hairs and sessile glands. Leaves are ovate-triangular, and the
colour of the corolla is lilac. In the paper, the plant is described as an endangered species
based on IUCN categories. In another study performed by Kılıc et al. [21], three Nepeta
species were investigated for determining the essential oil composition, and one of the
species was N. baytopii. In light of the above-mentioned point, this study was designed
to provide additional data and novel insights on N. baytopii. In this sense, this work
focuses on the evaluation of the hexane, ethyl acetate, methanol, water/methanol, and
water extracts and essential oil prepared from N. baytopii aerial parts. Biological properties,
namely, antioxidant and enzyme-inhibitory properties of all extracts and essential oil, were
determined by using in vitro spectrophotometric methods. To determine the cytotoxic
effects of the methanol and water extracts, three cell lines (HepG2, B16A5 and S 17)
were used. Moreover, methanol and water extracts and essential oils were chemically
characterised by using chromatographic methods. It is anticipated that gathered data
herein will contribute towards establishing baseline data on this endemic species with
significant medicinal potential.

2. Results and Discussion

Folin–Ciocalteu and aluminium chloride assays are rapid, simple, and low-cost proce-
dures which provide an overview of the phenolic and flavonoid contents of plant extracts.
These widely used methods underpin detailed phytochemical profiling using cutting-edge
technologies. As shown in Table 1, the water extract (50.30 mg GAE/g) possessed the high-
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est concentration of phenolics, followed by the water/methanol extract (41.25 mg GAE/g).
The ethyl acetate extract rich in flavonoids contained the value of 27.02 mg RE/g. Hexane
extract possessed the lowest phenolic (13.23 mg GAE/g) and flavonoid (7.77 mg RE/g)
contents. Additionally, both total amounts of phenolics and flavonoids were significantly
affected by the extraction solvents used (p < 0.05). This observation was also confirmed by
several authors, who reported that the used solvents affected the level of phenolics and
flavonoids of Nepeta extracts [16,22]. Detailed profiles of N. baytopii aerial parts methanol
and water extracts were provided in Tables 2 and 3, respectively. UHPLC profiling con-
firmed the presence of 46 and 43 compounds from methanol and water extracts, respectively.
Chromatograms are depicted in Supplemental Material (Figures S1 and S2). Flavones, such
as luteolin and apigenin and their derivatives, were identified from both extracts. Fertaric
acid, a hydroxycinnamic acid and ester of ferulic acid and tartaric acid, was present in the
methanol and water extracts. In general, the detailed phytochemicals of the methanol and
water extracts of N. baytopii aerial parts were quite similar, which might be related to the
polar nature of the solvents. In addition, the concentration of the different components in
the methanol and water extracts might be different, and this was not specified in our data.
In accordance with our results, the presence of flavones and hydroxycinnamic acid in the
members of the Nepeta genus was reported in earlier studies [23–27].

GC-MS was used to determine the composition of N. baytopii aerial parts in the
essential oil, and the data were presented in Table 3. A total of 10 compounds have been
identified from the N. baytopii essential oil. Caryophyllene oxide, a sesquiterpenoid oxide
common to lemon balm and eucalyptus, was identified in high concentration in N. baytopii
essential oil (39.3%) [28]. Another sesquiterpene, spathulenol (15.6%), was identified in
appreciable amounts from N. baytopii essential oil. Kilic and colleagues also reported a lower
concentration of caryophyllene oxide in the essential oil of N. baytopii aerial part [21]. These
differences in the levels of essential oil components could be explained by geographical
and climatic differences. Additionally, different compounds (caryophyllene, limonene,
nepetalactone and 1,8-cineole, etc.) were identified as main components in the essential
oils of some Nepeta species [9,29–31].

Table 1. Total bioactive compounds and total antioxidant capacity (by phosphomolybdenum assay)
of the tested extracts.

Extracts TPC (mg GAE/g) TFC (mg RE/g)

n-Hexane 13.23 ± 0.21 * e 7.77 ± 0.07 e

Ethyl acetate 19.57 ± 0.24 d 27.02 ± 0.60 a

Methanol 33.81 ± 0.22 c 23.78 ± 0.87 b

Water/methanol 41.25 ± 0.18 b 10.61 ± 0.54 d

Water 50.30 ± 0.13 a 13.48 ± 0.18 c

Essential oil nt nt
* Values are reported as mean ± SD. TPC: total phenolic content; TFC: total flavonoid content; GAE: gallic acid
equivalent; RE: rutin equivalent; nt: not tested. Different letters indicate significant differences in the tested
extracts (p < 0.05).
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Table 2. Chemical composition of the methanol extract.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

1 Quinic acid C7H12O6 1.23 191.06 173.04 171.03 127.04 93.03 85.03
2 Pantothenic acid C9H17NO5 6.13 220.12 202.11 184.10 174.11 116.03 90.06
3 Caftaric acid (2-O-Caffeoyltartaric acid) C13H12O9 8.54 311.04 179.03 149.01 135.04 87.01
4 Neochlorogenic acid (5-O-Caffeoylquinic acid) C16H18O9 10.11 355.10 163.04 145.03 135.04 117.03 89.04
5 Unidentified iridoid C16H24O9 13.14 405.14 359.14 197.08 179.07 153.05 71.01
6 Salicylic acid-O-hexoside C13H16O8 13.50 299.08 137.02 113.02 93.03 85.03 71.01
7 Mussaenosidic acid or isomer C16H24O10 13.57 375.13 213.08 169.09 151.08 125.06 107.05
8 Kynurenic acid C10H7NO3 13.80 190.05 162.06 144.04 116.05 89.04

9 1 Chlorogenic acid (3-O-Caffeoylquinic acid) C16H18O9 14.84 355.10 163.04 145.03 135.04 117.03 89.04
10 Fertaric acid (2-O-Feruloyltartaric acid) C14H14O9 14.85 325.06 193.05 178.03 149.06 134.04 87.01
11 Caffeic acid C9H8O4 15.15 179.03 135.04 107.05
12 Benzofuranecarbaldehyde C9H6O2 15.53 147.04 119.05 91.05 65.04
13 Cryptochlorogenic acid (4-O-Caffeoylquinic acid) C16H18O9 16.08 355.10 163.04 145.03 135.04 117.03 89.04
14 5-O-(4-Coumaroyl)quinic acid C16H18O8 17.40 337.09 191.06 173.04 163.04 119.05 93.03
15 4-O-(4-Coumaroyl)quinic acid C16H18O8 18.03 337.09 191.06 173.04 163.04 119.05 93.03
16 Phaselic acid (2-O-Caffeoylmalic acid) C13H12O8 18.62 295.05 179.03 135.04 133.01 115.00 71.01
17 Loliolide C11H16O3 20.01 197.12 179.11 161.10 135.12 133.10 107.09
18 Eriodictyol-O-hexoside C21H22O11 20.76 449.11 287.06 151.00 135.04 107.01 83.01
19 7-Deoxyloganic acid isomer C16H24O9 20.95 359.13 197.08 153.09 135.08 109.06 89.02
20 Luteolin-O-hexosylglucuronide C27H28O17 21.44 623.12 285.04 217.05 199.04 175.04 133.03
21 Luteolin-7-O-glucuronide C21H18O12 22.75 461.07 285.04 217.05 199.04 175.04 133.03
22 Luteolin-7-O-glucoside (Cynaroside) C21H20O11 22.86 447.09 327.05 285.04 284.03 256.04 151.00
23 Apigenin-O-hexosylglucuronide C27H28O16 22.97 607.13 269.05 151.00 113.02

24 1 Apigenin-7-O-glucuronide C21H18O11 24.52 445.08 269.05 175.02 151.00 113.02
25 Rosmarinic acid (Labiatenic acid) C18H16O8 24.71 359.08 197.05 179.03 161.02 135.04 72.99

26 1 Eriodictyol (3′,4′,5,7-Tetrahydroxyflavanone) C15H12O6 25.40 287.06 151.00 135.04 125.02 107.01 83.01
27 3-O-Methylrosmarinic acid C19H18O8 26.58 373.09 197.05 179.03 175.04 160.02 135.04

28 1 Naringenin (4′,5,7-Trihydroxyflavanone) C15H12O5 27.72 271.06 227.07 177.02 151.00 119.05 107.01
29 1 Luteolin (3′,4′,5,7-Tetrahydroxyflavone) C15H10O6 28.37 285.04 217.05 199.04 175.04 151.00 133.03
30 1 Apigenin (4′,5,7-Trihydroxyflavone) C15H10O5 30.23 269.05 227.04 225.06 151.00 149.02 117.03
31 Dimethoxy-trihydroxy(iso)flavone C17H14O7 30.38 329.07 314.04 313.04 299.02 271.03
32 Dihydrololiolide C11H18O3 30.51 199.13 181.12 163.11 135.12 111.04 107.09
33 Undecanedioic acid C11H20O4 31.30 215.13 197.12 153.13 125.10 57.03
34 Malyngic acid or isomer C18H32O5 32.54 327.22 309.21 291.20 229.14 211.13 171.10
35 Nakhsmyrin or isomer C14H12O4 32.67 245.08 227.07 217.09 203.07 175.04
36 Nakhsmyrin or isomer C14H12O4 33.29 245.08 227.07 217.09 203.07 175.04
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Table 2. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

37 Dodecanedioic acid C12H22O4 33.74 229.14 211.13 185.15 167.14
38 Pinellic acid C18H34O5 33.83 329.23 311.22 293.21 229.14 211.13 99.08
39 Caffeic acid phenethyl ester C17H16O4 34.10 283.10 179.03 178.03 161.02 135.04 133.03
40 Salvigenin (5-Hydroxy-4′,6,7-trimethoxyflavone) C18H16O6 35.33 329.10 314.08 313.07 296.07 285.08 268.07
41 Octadecenedioic acid C18H32O4 37.99 311.22 293.21 235.17 223.17
42 Stearidonic acid C18H28O2 40.16 275.20 257.19 231.21 59.01
43 Hydroxyoctadecatrienoic acid C18H30O3 40.22 293.21 275.20 235.17 223.13 171.10 59.01
44 Stearidonic acid methyl ester C19H30O2 42.15 291.23 259.21 241.20 217.20 107.09 93.07
45 Linoleamide C18H33NO 44.44 280.26 263.24 245.23 109.10 95.09 81.07
46 Oleamide C18H35NO 45.68 282.28 265.25 247.24 97.10 83.09 69.07

1 Confirmed by standards. Fragment: the fragments of compounds reflect a unique pattern in the mass spectrum.

Table 3. Chemical composition of the infusion.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

1 Quinic acid C7H12O6 1.22 191.06 173.04 171.03 127.04 93.03 85.03
2 Pantothenic acid C9H17NO5 6.16 220.12 202.11 184.10 174.11 116.03 90.06
3 Caftaric acid (2-O-Caffeoyltartaric acid) C13H12O9 8.42 311.04 179.03 149.01 135.04 87.01
4 Neochlorogenic acid (5-O-Caffeoylquinic acid) C16H18O9 10.12 355.10 163.04 145.03 135.04 117.03 89.04
5 Unidentified iridoid C16H24O9 13.10 405.14 359.14 197.08 179.07 153.05 71.01
6 Salicylic acid-O-hexoside C13H16O8 13.48 299.08 137.02 113.02 93.03 85.03 71.01
7 Mussaenosidic acid or isomer C16H24O10 13.54 375.13 213.08 169.09 151.08 125.06 107.05
8 Kynurenic acid C10H7NO3 13.76 190.05 162.06 144.04 116.05 89.04

9 1 Chlorogenic acid (3-O-Caffeoylquinic acid) C16H18O9 14.79 355.10 163.04 145.03 135.04 117.03 89.04
10 Fertaric acid (2-O-Feruloyltartaric acid) C14H14O9 14.81 325.06 193.05 178.03 149.06 134.04 87.01
11 Benzofuranecarbaldehyde C9H6O2 15.47 147.04 119.05 91.05 65.04
12 Cryptochlorogenic acid (4-O-Caffeoylquinic acid) C16H18O9 16.06 355.10 163.04 145.03 135.04 117.03 89.04
13 5-O-(4-Coumaroyl)quinic acid C16H18O8 17.37 337.09 191.06 173.04 163.04 119.05 93.03
14 4-O-(4-Coumaroyl)quinic acid C16H18O8 18.00 337.09 191.06 173.04 163.04 119.05 93.03
15 Loliolide C11H16O3 19.98 197.12 179.11 161.10 135.12 133.10 107.09
16 Eriodictyol-O-glucuronide C21H20O12 20.69 463.09 287.06 175.02 151.00 135.04 113.02
17 Eriodictyol-O-hexoside C21H22O11 20.75 449.11 287.06 151.00 135.04 107.01 83.01
18 7-Deoxyloganic acid isomer C16H24O9 20.94 359.13 197.08 153.09 135.08 109.06 89.02
19 Luteolin-O-hexosylglucuronide C27H28O17 21.43 623.12 285.04 217.05 199.04 175.04 133.03
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Table 3. Cont.

No. Name Formula Rt [M + H]+ [M − H]− Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

20 Luteolin-7-O-glucuronide C21H18O12 22.74 461.07 285.04 217.05 199.04 175.04 133.03
21 Luteolin-7-O-glucoside (Cynaroside) C21H20O11 22.85 447.09 327.05 285.04 284.03 256.04 151.00
22 Apigenin-O-hexosylglucuronide C27H28O16 22.96 607.13 269.05 151.00 113.02

23 1 Apigenin-7-O-glucuronide C21H18O11 24.51 445.08 269.05 175.02 151.00 113.02
24 Rosmarinic acid (Labiatenic acid) C18H16O8 24.71 359.08 197.05 179.03 161.02 135.04 72.99
25 N-trans-Feruloyltyramine C18H19NO4 25.12 314.14 194.08 177.05 149.06 145.03 121.07

26 1 Eriodictyol (3′,4′,5,7-Tetrahydroxyflavanone) C15H12O6 25.40 287.06 151.00 135.04 125.02 107.01 83.01
27 3-O-Methylrosmarinic acid C19H18O8 26.59 373.09 197.05 179.03 175.04 160.02 135.04

28 1 Luteolin (3′,4′,5,7-Tetrahydroxyflavone) C15H10O6 28.39 285.04 217.05 199.04 175.04 151.00 133.03
29 1 Apigenin (4′,5,7-Trihydroxyflavone) C15H10O5 30.23 269.05 227.04 225.06 151.00 149.02 117.03
30 Dihydrololiolide C11H18O3 30.52 199.13 181.12 163.11 135.12 111.04 107.09
31 Undecanedioic acid C11H20O4 31.32 215.13 197.12 153.13 125.10 57.03
32 Malyngic acid or isomer C18H32O5 32.55 327.22 309.21 291.20 229.14 211.13 171.10
33 Nakhsmyrin or isomer C14H12O4 32.69 245.08 227.07 217.09 203.07 175.04
34 Nakhsmyrin or isomer C14H12O4 33.30 245.08 227.07 217.09 203.07 175.04
35 Dodecanedioic acid C12H22O4 33.76 229.14 211.13 185.15 167.14
36 Pinellic acid C18H34O5 33.85 329.23 311.22 293.21 229.14 211.13 99.08
37 Salvigenin (5-Hydroxy-4′,6,7-trimethoxyflavone) C18H16O6 35.35 329.10 314.08 313.07 296.07 285.08 268.07
38 Octadecenedioic acid C18H32O4 38.00 311.22 293.21 235.17 223.17
39 Stearidonic acid C18H28O2 40.19 275.20 257.19 231.21 59.01
40 Hydroxyoctadecatrienoic acid C18H30O3 40.23 293.21 275.20 235.17 223.13 171.10 59.01
41 Stearidonic acid methyl ester C19H30O2 42.15 291.23 259.21 241.20 217.19 107.09 93.07
42 Linoleamide C18H33NO 44.45 280.26 263.24 245.23 109.10 95.09 81.07
43 Oleamide C18H35NO 45.71 282.28 265.25 247.24 97.10 83.09 69.07

1 Confirmed by standards. Fragment: the fragments of compounds reflect a unique pattern in the mass spectrum.
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The dearth of scientific information regarding the antioxidant capacities of N. baytopii
has fuelled the need for the comprehensive evaluation of the antioxidant properties of
the different extracts and the essential oil of this endemic species. In order to evaluate
the antioxidant properties of the extracts and essential oil of N. baytopii aerial part, six
bioassays were conducted. These assays included free-radical scavenging (DPPH and
ABTS), reducing power (FRAP and CUPRAC), metal chelating, and phosphomolybdenum.
These findings are presented in Table 4. Several studies have reported the relationship
between high phenolic/flavonoid content and antioxidant activity [32–34]. The total
antioxidant capacity of the extracts was assessed using the phosphomolybdenum method.
As shown in Table 4, the methanol (2.45 mmol TE/g) and ethyl acetate (2.36 mmol TE/g)
extracts were the most active. However, we did not observe any statistical difference among
the ethyl acetate and methanol extracts (p > 0.05). Moreover, essential oil N. baytopii aerial
parts also showed a better total antioxidant ability than those of water/methanol and n-
hexane extracts (p < 0.05). The total antioxidant ability could be attributed to the presence of
different compounds in the extracts or essential oils. In this sense, as can be seen in Figure 1,
we observed a weak correlation between total phenolics and phosphomolybdenum results,
but the correlation value was high for total flavonoids. Determining the ability of natural
compounds to quench free radicals provides an estimation of their possible scavenging
activity in other systems. As shown in Table 4, the water/methanol extract of N. baytopii
aerial part showed the highest scavenging activity against DPPH (94.40 mg TE/g) and ABTS
(129.22 mg TE/g). In the ABTS assay, n-hexane, ethyl acetate, and the essential oil exhibited
similar scavenging abilities (p > 0.05). In addition, these extracts and the essential oil did not
have any scavenging ability on the DPPH radical. The reducing capacity of the compounds
to donate an electron and thus act as reducing agents is commonly assessed using two
widely used methods, namely, FRAP (ferric ion) and CUPRAC (cupric ion) assays [35]. In
the present study, the water extract of N. baytopii exhibited the highest Fe3+ (129.55 mg
TE/g)- and Cu2+ (229.37 mg TE/g)-reducing potentials. In these reduced power assays,
all tested samples exhibited different abilities (p < 0.05). As can be seen in Tables 1 and 5,
generally, the free radical scavenging and reduced power results could be correlated with
their total phenolic contents (r > 0.8). Pearson’s correlation coefficient values are given
in Figure 1. Thus, it resulted that phenolic compounds are the main contributors to the
antioxidant properties of N. baytopii. Similarly, several researchers have reported a strong
correlation between antioxidant properties and the total amounts of phenolics [32,36,37].
Moreover, some authors have argued that the phenolic compounds in the members of the
Nepeta genus were main players in the antioxidant assays [30,38,39]. As another mechanism,
transition metals are known to participate in Fenton reactions, generating free radicals and
exacerbating the oxidative stress status. Therefore, the chelation capacity of N. baytopii
aerial parts extracts and essential oil were assessed. Results presented herein demonstrated
that the water extract and water/methanol extracts possessed a stronger chelating ability
as compared with other extracts and essential oils (p < 0.05). The metal-chelating abilities
of the tested extracts might be due to the presence of phenolics, and the correlation analysis
was confirmed by this fact (r = 0.77).
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Table 4. Chemical profile of the tested essential oil.

No Compounds RRI a (%)

1 Dihyroedulan I 1530 6.1
2 β-Bourbonene 1531 3.7
3 Linalool 1548 4.1
4 cis-p-mentha-2,8-dien-1-ol 1678 5.7
5 Verbonene 1732 2.1
6 (E)-β-Damascenone 1841 0.8
7 Caryophyllene oxide 2017 39.3
8 Hexahydrofarnesyl acetone 2134 2.7
9 Spathulenol 2147 15.6
10 n-Hexadecanoic acid 2912 11.0

Total identified (%) 91.1
a Relative retention indices are calculated against n-alkanes.

Table 5. Antioxidant properties of the tested extracts.

Extracts PBD
(mmol TE/g)

DPPH
(mg TE/g)

ABTS
(mg TE/g)

CUPRAC
(mg TE/g)

FRAP
(mg TE/g)

MCA
(mg EDTAE/g)

n-Hexane 1.28 ± 0.15 c na 12.04 ± 0.84 d 44.08 ± 0.35 e 22.38 ± 0.66 e 0.34 ± 0.02 e

Ethyl acetate 2.36 ± 0.20 a na 13.33 ± 0.58 d 75.55 ± 0.60 d 29.24 ± 0.27 d 22.15 ± 2.16 b

Methanol 2.45 ± 0.15 a 90.88 ± 0.37 c 92.43 ± 1.30 b 165.54 ± 1.87 c 88.78 ± 1.36 c 15.61 ± 0.54 c

Water/methanol 1.87 ± 0.06 b 94.40 ± 0.09 a 129.22 ± 0.78 a 221.71 ± 2.59 b 124.78 ± 1.40 b 26.88 ± 2.10 a

Water 2.09 ± 0.07 a,b 93.16 ± 0.20 b 86.56 ± 2.54 c 229.37 ± 1.38 a 129.55 ± 1.23 a 27.14 ± 0.58 a

Essential oil 2.22 ± 0.15 a,b na 12.10 ± 0.53 d 21.42 ± 0.11 f 10.95 ± 0.13 f 6.52 ± 0.07 d

EDTAE: EDTA equivalents; PBD: phosphomolybdenum; TE: trolox equivalent; na: non active. Different letters indicate significant
differences in the tested extracts (p < 0.05).

The inhibitory ability of N. baytopii aerial parts extracts and essential oil were tested
against enzymes linked to a critical role in the development of diabetes mellitus type II,
Alzheimer’s disease, and skin hyperpigmentation problems. Diabetes mellitus type II
and Alzheimer’s disease have escalated to epidemic proportions, and the need for com-
plementary therapeutic agents to effectively manage these debilitating conditions are of
paramount importance. From Table 5, the ethyl acetate extract of N. baytopii aerial parts
exhibited the highest activity against AChE (4.57 mg GALAE/g) and BChE (10.85 mg
GALAE/g). In AChE inhibition, n-hexane and methanol extracts displayed similar actions
(p > 0.05). The high galantamine equivalent value recorded on BChE supported appreciably
high inhibitory action in comparison to other Lamiaceae species [40–42]. The inhibition of
BChE has been advocated in the later stage of Alzheimer’s disease. During the progression
of the disease, the BChE level increases, exacerbating the conditions of the patient [43].
Herein, the ability of N. baytopii aerial parts extracts and essential oil to inhibit α-amylase
and α-glucosidase was also evaluated. These enzymes play critical roles in hyperglycaemia,
the hallmark of diabetes mellitus. In diabetes mellitus type II management, the inhibition
of enzymes responsible for the hydrolysis of polysaccharides to glucose monosaccharide,
which can be absorbed in the intestinal system. Herein, methanol extract showed the
highest (8.15 mmol ACAE/g) activity against α-glucosidase. Interestingly, the hexane and
ethyl acetate extract were also good inhibitors of α-glucosidase. α-Glucosidase situated at
the brush border of the small intestine catalyses the hydrolysis of disaccharides into glucose.
Therefore, the inhibition of α-glucosidase reduces glucose formation, glycaemic peaks, and
hyperglycaemia. Apart from these debilitating maladies, the ability of N. baytopii aerial
parts extracts and essential oil to inhibit tyrosinase was also evaluated. Tyrosinase is the
key enzyme targeted in skin hyperpigmentation treatment. In fact, the inhibition of tyrosi-
nase reduces the production of the brown pigment melanin. Herein, the methanol and
water/methanol extracts possessed the highest tyrosinase inhibition values (p > 0.05). The
search for natural compounds possessing tyrosinase inhibitory characteristics is of particu-
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lar interest in the dermato-cosmetic industry, and this has been fuelled by the interest of the
general public for naturally derived products. Observed enzyme inhibitory properties of N.
baytopii extracts might be explained by their chemical components. Some components such
as apigenin, naringenin, luteolin, and chlorogenic acid have been reported as significant
enzymes inhibitors [44–54], and thus, N. baytopii could be considered as a promising source
of natural enzyme inhibitors. Interestingly, several researchers reported on the enzyme
inhibition abilities of some Nepeta species. For example, Sarikurkcu et al. [55] reported
the inhibitory properties of N. nuda subsp. glandulifera and N. cadmea on cholinesterases,
amylase, glucosidase, and tyrosinase. When compared with our results, the Nepeta species
exhibited lower enzyme inhibition properties than N. baytopii. Furthermore, different
research groups reported the enzyme-inhibitory effects of several Nepeta essential oils. For
example, N. nuda and N. cadmea essential oils exhibited moderate inhibitory effects on some
enzymes, and the main compounds were geijerene and nepetalactone in these essential oils,
respectively [9]. As a structure-ability approach, essential oils have a complex nature, and
thus, observed enzyme inhibitory abilities could be caused by different factors, including
the main compounds and interactions of these components.

Several species of the Lamiaceae family have been studied for the development of
novel chemotherapeutic agents [56–58]. Herein, the methanol and water extracts were
tested with HepG2, human hepatocarcinoma cells (Table 6). Hepatocellular carcinoma, the
most common liver malignancy, is a leading cause of cancer-related death worldwide [58].
In this work, the methanol extract of N. baytopii aerial parts showed high cytotoxicity
(31.7%) against HepG2 while water was non-cytotoxic. Melanoma is a type of skin cancer
occurring in melanocytes, which are dendritic-like cells producing melanin pigment [59].
We observed that the water extract (70.2%) showed higher cytotoxicity against mouse
melanoma cell (B16 4A5). We also determined the cytotoxic effect of N. baytopii aerial
parts against non-tumoral murine bone marrow stromal, and the results are presented in
Table 7. The methanol extract (34.8%) was more cytotoxic than the water extract (61.5%).
In the literature, in accordance with the presented results, several Nepeta species, such as N.
curvidens [60], N. curviflora [61], and N. nuda [22] exhibited remarkable cytotoxic effects on
several cell lines.

Table 6. Cellular viability (%) of Nepeta baytopii extracts on HepG2, B16 4A5 and S17 cell lines applied
at the concentration of 100 µg/mL.

Sample/Cell line HepG2 B16 4A5 S17

DMSO 0.5% 101 ± 7 88.2 ± 2.1 79.3 ± 4.9
Methanol 31.7 ± 0.5 76.7 ± 2.3 34.8 ± 0.9

Water 108.6 ± 12.6 70.2 ± 3.1 61.5 ± 5.6

Table 7. Enzyme inhibitory effects of the tested extracts.

Extracts AChE
(mg GALAE/g))

BChE
(mg GALAE/g)

α-Amylase
(mmol ACAE/g)

α-Glucosidase
(mmol ACAE/g)

Tyrosinase
(mg KAE/g)

n-Hexane 3.97 ± 0.32 b 6.93 ± 1.14 b 0.66 ± 0.01 b 7.87 ± 0.02 b 77.84 ± 1.83 b

Ethyl acetate 4.57 ± 0.06 a 10.85 ± 0.73 a 0.84 ± 0.02 a 7.76 ± 0.01 b 78.60 ± 1.58 b

Methanol 3.65 ± 0.11 b 2.98 ± 0.46 c 0.67 ± 0.02 b 8.15 ± 0.08 a 96.06 ± 0.70 a

Water/methanol 2.68 ± 0.07 c na 0.50 ± 0.01 c 0.61 ± 0.04 e 95.31 ± 1.77 a

Water na na 0.10 ± 0.01 e 1.06 ± 0.09 d 6.15 ± 1.02 d

Essential oil na na 0.24 ± 0.01 d 1.64 ± 0.01 c 21.41 ± 3.57 c

GALAE: galantamine equivalent; KAE: kojic acid equivalent; ACAE: acarbose equivalent; na: non-active. Different letters indicate
significant differences in the tested extracts (p < 0.05).
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3. Materials and Methods
3.1. Plant Material

The aerial parts of Nepeta baytopii were collected in July 2019 (Genç village, Bingöl,
Turkey, 38◦43′00′ ′ N, 40◦34′09′ ′ E, 1055 m). The plant material was authenticated by one of
the authors (R.P). Voucher specimens (GP-1082) were deposited in the Bingöl University,
Faculty of Agriculture, Bingöl, Turkey. Twenty-five plants were randomly collected in the
same population, and they were dried in a dark condition for 10 days.

3.2. Extraction

The aerial parts of the plant materials were grounded, and then 10 g were separately
extracted with hexane, ethyl acetate, methanol, and methanol/water (80%) in maceration
technique (for 24 h, room temperature). The extracts were evaporated to dryness and stored
at 4 ◦C until analysis. Regarding water extracts, we used traditional infusion techniques,
and 5 g plant materials were kept with 100 mL of boiled water for 15 min. Then, the water
extracts were lyophilised. The extracts procedure were performed in triplicate and the
obtained extracts were stored at 4 ◦C until analysis.

3.3. UHPLC-MS Analysis

Chromatographic separation was accomplished with a Dionex Ultimate 3000RS UH-
PLC instrument, equipped with a Thermo Accucore C18 (100 mm × 2.1 mm i. d., 2.6 µm)
analytical column for the separation of compounds. Water (A) and methanol (B) containing
0.1% formic acid were employed as mobile phases, respectively. The total run time was
70 min for the elution profile. Mass spectrum analysis was carried out using a Thermo
Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA) equipped
with an electrospray ionisation probe interface in positive and negative-ion mode. All
detailed analytical conditions have been published [62].

3.4. Essential Oil Components’ Analyses

The dried plant materials (100 g) were subjected to hydro-distillation using a Clevenger-
type apparatus for 6 h. EO distillates, once yielded, were dried over anhydrous magnesium
sulphate, filtered and then stored in dark bottles at −4 ◦C until further analysis. The yield
was calculated as 0.52% (v/w).

The essential oil was analysed by gas chromatography-flame ionisation detector
(GC-FID) and gas chromatography-mass spectrophotometry (GC-MS) techniques [63,64].
GC-MS analysis was conducted by an Agilent 5975 GC-MSD system coupled to an Agilent
7890A GC (Agilent Technologies Inc., Santa Clara, CA, USA). An HP-Innowax FSC column
(60 m× 0.25 mm, 0.25 µm film thickness) was used with helium (purity 99.99%) as a carrier
gas (1.2 mL/min). Other analytical details were reported in our previous papers [63,64].
The identification of components was based on a retention index (RI) determined by co-
injection with reference to a homologous series of n-alkanes (C8–C30), under the same
experimental conditions. Further identifications were achieved by comparing their mass
spectra with those from NIST 05 and Wiley Eighth version, as well as by comparison of
their RIs with literature values.

3.5. Total Phenolic and Flavonoid Content

Spectrophotometric methods were used to determine total phenolic and flavonoid
content, as conducted previously. Standard equivalents (gallic acid equivalent (GAE) for
phenolic and rutin equivalent (RE) for flavonoid) were used to assess the bioactive contents
in the plant extracts [65,66].

3.6. Determination of Antioxidant and Enzyme-Inhibitory Effects

Antioxidant protocols included reducing power (cupric-reducing antioxidant capac-
ity (CUPRAC) and ferric-reducing power (FRAP)), metal chelating, phosphomolybde-
num (PBD), and free-radical scavenging (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-
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ethylbenzothiazoline-6-sulphonic acid (ABTS)) activities. Experimental details were as
described previously by [67]. Inhibitory effects of the extracts were tested against different
enzymes (tyrosinase, α-amylase, α-glucosidase, and cholinesterases). Trolox and ethylene-
diaminetetraacetic acid (EDTA) for antioxidant, galantamine for cholinesterases, kojic
acid for tyrosinase, and acarbose for α-amylase and α-glucosidase were used to express
antioxidant and enzyme-inhibitory results.

3.7. Cell Culture

The human hepatocarcinoma HepG2 cells and murine bone marrow stromal S17 cells
were kindly provided by the Centre for Molecular and Structural Biomedicine of Biomedical
and Molecular BME, University of Algarve, Portugal), while mouse melanoma B16 4A5 cells
were purchased from Sigma-Aldrich (Taufkirchen, Germany). All cell lines were cultured
in Dulbecco’s Modified Eagle medium (DMEM), supplemented with foetal bovine serum
(10%), L-glutamine (2 mM, 1%), and penicillin (50 U/mL)/streptomycin (50 µg/mL) (1%),
and kept under a humidified atmosphere at 37 ◦C and 5% CO2.

3.8. Determination of Cellular Viability and Selectivity

Cells were plated in 96 well plates at 5 × 103 cells/well (HepG2 and S17) and
2× 103 cells/well (B16 4A5). After a 24 h incubation period, cells were treated with the sam-
ples at the concentration of 100 µg/mL for 72 h. Cells incubated with DMSO at 0.5% (the
highest DMSO concentration used in the test wells) were used as the control. The cellular
viability was determined by the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) test, as described formerly [68]. The percentage of viable cells was calculated
relative to the control (DMSO, 0.5%).

3.9. Statistical Analysis

All quantitative analyses were performed in triplicate (n = 3), and data were expressed
as means ± S.D. Significant differences in the tested samples were determined by an
ANOVA (Tukey test), with a probability value of 5%. Pearson’s correlation was estimated
to identify the relationship between the total amounts of phenolics and flavonoids, and the
biological activities (antioxidant and enzyme-inhibitory effects). R software (Version 3.6.2)
was used for the statistical analysis.

4. Conclusions

For the first time, the biological activities and phytochemical profiles of the aerial parts
of N. baytopii, endemic from Turkey, were evaluated. Extraction of the aerial parts was
performed using solvents of different polarity. Furthermore, the essential oil of the plant
was prepared by hydro-distillation. The water/methanol and water extracts possessed
appreciable amounts of phenolic compounds and showed the highest antioxidant capaci-
ties in vitro. Phytochemical profiling revealed the presence of flavones, such as luteolin
and apigenin and their derivatives in both the water and methanol extracts. The ethyl
acetate extract showed pronounced inhibitory properties against butyrylcholinesterase,
highlighting the possibility for a new, efficient Alzheimer’s disease therapeutic agent. The
high cytotoxicity of N. baytopii aerial parts methanol extract against HepG2 suggests further
future investigations in this area. The data presented here showed that the endemic N.
baytopii possessed many interesting biological activities and is certainly encouraging for a
future application in the pharmaceutical and nutraceutical fields, although further tests
are necessary.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10061176/s1, Figure S1. Total ion chromatograms of methanol extract in positive ion
mode (a) and negative ion mode (b). Figure S2. Total ion chromatograms of water extract in positive
ion mode (a) and negative ion mode (b).

https://www.mdpi.com/article/10.3390/plants10061176/s1
https://www.mdpi.com/article/10.3390/plants10061176/s1
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species from Iran cultivated under experimental field conditions: The possibility of the exploitation of Nepeta germplasm. Ind.
Crop. Prod. 2017, 95, 475–484. [CrossRef]
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