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Abstract 

Acute myeloid leukemia (AML) is a hematological malignancy where the hematopoietic 

stem cells or progenitor cells accumulate epigenetic and genetic alterations, losing their 

differentiation ability and gain proliferative advantage. AML is classified based on the 

cytogenetic abnormalities detected in the patient’s leukemic cells. The World Health 

Organization (WHO) classification system is the most used and more current, distinguishing 

six subgroups. Moreover, the French-American-British (FAB) classification system also 

classifies AML, distinguishing seven subtypes (M0, M1, M2, M4, M5, M6, M7). The 

cytogenetic abnormalities and mutations in specific genes also allow the AML stratification 

into three prognostic risk groups: favorable, intermediate, and adverse. However, not all 

AML patients’ leukemic cells exhibit chromosomal arrangements or gene mutations with 

prognostic impact, being categorized in the intermediate prognostic risk group. These patients 

show high clinical heterogeneity, being the treatment decision a current problem. Our goal 

was to identify potential prognostic biomarkers of gene expression and DNA methylation that 

could predict survival in AML patients that were categorized in the intermediate prognostic 

risk group. Thus, we developed an R-based algorithm that evaluates the prognostic potential 

of each gene and CpG site, available on the TCGA LAML cohort, in AML patients classified 

as FAB M1, M2, M4, and M5 subtypes. The algorithm was also performed in a group of 

patients with AML classified as FAB M0, M1, M2, M4 and M5 together. Our results suggest 

that there are some genes whose expression and/or DNA methylation are able to subdivide 

the AML patients categorized in the intermediate prognostic risk group into two subgroups 

with distinct overall survival. In conclusion, although the patients categorized in the 

intermediate prognostic risk group show a heterogeneous prognosis, they can be segregated 

by some candidate prognostic biomarkers of gene expression and DNA methylation, which 

can help to decide the best therapy for them.  

 

 

 

 

Keywords: Acute myeloid leukemia, intermediate prognostic risk group, prognostic 

biomarkers, gene expression, DNA methylation 



viii 

  



ix 

Resumo 

A leucemia mielóide aguda (LMA) é um grupo de cancros hematológicos heterogéneos que 

resultam da transformação de células estaminais hematopoiéticas ou progenitoras através da 

acumulação de alterações epigenéticas e genéticas, que conferem uma maior capacidade 

proliferativa e bloqueiam a sua diferenciação em células sanguíneas mais especializadas e 

funcionais. Por sua vez, as células transformadas (células leucémicas) acumulam-se na 

medula óssea e sangue periférico conduzindo a falhas ao nível da medula óssea e da 

hematopoiese.  

Quanto à epidemiologia da doença, a LMA é o tipo de leucemia mais frequente em adultos e 

pode ser desenvolvida em indivíduos de todos os grupos etários. Contudo, a doença é mais 

frequente em indivíduos mais velhos com uma idade média de diagnóstico aos 68 anos, sendo 

a idade aumentada o principal factor de risco da doença.  

A LMA é diagnosticada pela presença de pelo menos 20% de blastos miéloides na medula 

óssea ou através da deteção de alterações citogenéticas ou moleculares que já foram 

associadas com o desenvolvimento da doença. Estas alterações incluem: a t(8;21) (RUNX1-

RUNX1T1), inv(16) ou t(16;16) (CBFB-MYH11) e a t(15;17) (PML-RARA), que caracteriza 

a leucemia promielócitica aguda. Além disso, as alterações citogenéticas e moleculares 

detetadas nas células leucémicas dos pacientes e usadas para diagnosticar a LMA permitem 

também a classificação da doença. O sistema de classificação proposto pela Organização 

Mundial da Saúde é atualmente usado para classificar a LMA, permitindo distinguir seis 

subtipos de leucemia: (1) LMA com alterações citogenéticas recurrentes, (2) LMA com 

alterações relacionadas com mielodisplasia, (3) LMA relacionada com terapia, (4) LMA não 

especificada, (5) sarcoma mieloide, e (6) proliferação mielóide de síndrome de Down. 

Relativamente aos casos de LMA do subtipo não especificado, a LMA é ainda classficada 

através do  French-American-British (FAB) classification system que distingue sete subtipos 

(M0, M1, M2, M4, M5, M6, e M7) de LMA, com base na morfologia e características 

citoquímicas das células leucémicas. 

Após a identificação do subtipo de LMA, os pacientes são ainda estratificados em três grupos 

de prognóstico: favorável, intermédio e adverso. Esta estratificação é feita com base nas 

alterações citogenéticas e mutações génicas detetadas nas células leucémicas dos pacientes e 

apresenta um papel importante na escolha do melhor tipo de tratamento para o paciente. Por 

exemplo, a t(8;21) [RUNX1/RUNX1T1] permite a estratificação da doença no grupo de risco 
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favorável. Por sua vez, a deteção de mutações no RUNX1 estratifica a doença no grupo de 

risco adverso. Contudo, a maioria dos casos de LMA são categorizados no grupo de risco 

intermédio, sendo este definido por LMA com cariótipo normal, t(9;11)(p22;q23) [MLLT3-

MLL9] ou pela presença de anormalidades citogenéticas que não são incluídas nos grupos de 

risco favorável ou adverso. LMA com cariótipo normal, ou seja, quando as células 

leucémicas não apresentam alterações citogenéticas ou mutações com valor de prognóstico 

conhecido, representam a maioria dos casos de LMA categorizada como risco intermédio. 

Estes pacientes são ainda caracterizados por uma grande heterogeneidade clínica, o que 

dificulta a escolha do melhor tipo de tratamento. 

Assim, o objetivo do nosso estudo é identificar potenciais biomarcadores de prognóstico de 

expressão genética e metilação de DNA que sejam capazes de prever sobrevida em pacientes 

com prognóstico intermédio e sem alterações citogenéticas ou mutações com valor de 

prognóstico conhecido. Para tal, desenvolvemos um algoritmo que compreende quatro fases: 

preparação dos dados para análise, identificação dos primeiros candidatos para 

biomarcadores de prognóstico, calibração da idade como fator de confusão, e seleção 

restritiva dos candidatos finais. A metodologia desenvolvida faz uso de técnicas de inferência 

estatística para avaliar o potencial de prognóstico dos níveis de expressão de cada gene e 

metilação de DNA de cada CpG, disponíveis no The Cancer Genome Atlas (TCGA) Acute 

Myeloid Leukemia (LAML) cohort, em pacientes cuja LMA foi classificada nos subtipos 

FAB M1, M2, M4, e M5 e categorizada no grupo de risco intermédio com cariótipo normal. 

O algoritmo foi também aplicado a um grupo de pacientes com os subtipos FAB M0, M1, 

M2, M4 e M5 agrupados.  

Os nossos resultados sugerem que a expressão e/ou metilação de certos genes podem 

subdividir os pacientes com subtipos de LMA categorizados no grupo de risco intermédio 

estudados em dois subgrupos com sobrevidas distintas. Por exemplo, de acordo com os 

nossos resultados, os níveis de expressão do gene MCM4 são capazes de diferenciar 

sobrevida em pacientes com o subtipo FAB M1 categorizado no grupo de risco intermédio, 

sendo que os pacientes do subgrupo com pior prognóstico exibem baixos níveis de expressão 

do potencial biomarcador. No mesmo grupo de pacientes, a metilação do promotor do gene 

SCIN é um exemplo de um potencial biomarcador de prognóstico de metilação de DNA, 

sendo a metilação do mesmo no  promotor relacionada com pior prognóstico nos grupo de 

pacientes estudados. 
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Comparando os biomarcadores identificados nos grupos de pacientes com FAB M1, M2, M4 

e M4 categorizados no grupo de risco intermédio, o algoritmo identificou maior número de 

biomarcadores candidatos de expressão genética e de metilação de DNA no grupo de 

pacientes com o subtipo FAB M2.  

Existem potenciais biomarcadores identificados cujo o seu valor de prognóstico já foi 

documentado em pacientes diagnosticados com AML, como por exemplo o gene ABCB1 

como biomarcador de prognóstico de expressão, e o gene DLX4 como biomarcador 

candidato de metlação de DNA em pacientes do subtipo FAB M2 estudados. 

Além disso, com base nas subdivisões geradas por cada potencial biomarcador de expressão 

genética identificado, averiguámos se os subgrupos de pacientes com pior prognóstico 

identificados compartilham alterações na regulação de conjuntos de genes relacionados com 

processos biológicos em comparação com os subgrupos de pacientes com melhor 

prognóstico. Verificámos que, apesar de a maioria dos potenciais biomarcadores de 

prognóstico identificados distribuírem os pacientes de forma distinta, a maioria dos 

subgrupos com pior prognóstico parecem compartilhar sobreregulações e subregulações de 

conjuntos de genes relacionados com processos biológicos distintos. Por exemplo, as células 

leucémicas da maioria dos pacientes dos subgrupos de pior prognóstico com o subtipo FAB 

M1 categorizado no grupo de risco intermédio, parecem subregular conjuntos de genes que 

estão relacionados com o processo de catabolismo do peróxido de hidrogénio quando 

comparados com os subgrupos de melhor prognóstico do mesmo subtipo de LMA. Estes 

processos biológicos poderão estar a influenciar o prognóstico dos pacientes com LMA. 

Em conclusão, apesar de pacientes com células leucémicas sem rearranjos cromossomais ou 

mutações génicas com valor de prognóstico conhecido serem categorizados no mesmo 

subgrupo de risco, estes pacientes podem apresentar diferentes prognósticos que podem ser 

previstos através de potenciais biomarcadores de expressão e/ou metilação de DNA. Esta 

subdivisão poderá ajudar na decisão de um melhor tipo de tratamento para pacientes nas 

condições estudadas. 

 

 

Palavras-chave: leucemia mielóide aguda, grupo de risco intermédio, biomarcadores de 

prognóstico, expressão génica, metilação de DNA.  
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CHAPTER 1   

INTRODUCTION 

 

1.1 Epigenetics and regulation of gene expression 

All somatic cells of an organism have the same genetic information stored in the 

deoxyribonucleic acid (DNA) and it is transmitted from one cell to its daughter cells during 

cellular division.1,2 There are some proteins called histones that allow the organization and 

compaction of the DNA in the nucleus, forming the chromatin.3 The basic units of chromatin 

are the nucleosomes composed by 147 bp of DNA and a histone octamer with two copies of 

each of the four histones H2A, H2B, H3, and H4.4 There is also a linker histone (H1 histone 

family) integrated where the DNA enters and exits the nucleosome. Subsequently, the 

chromatin fibers form the chromosome (Figure 1.1).3 Through epigenetic control mechanisms 

that establish, regulate and maintain specialized gene expression patterns, different types of 

cells with different phenotypes can originate from the translation of the same DNA 

sequence.4 

Epigenetics corresponds to alterations in gene expression without occurring any change in the 

underlying DNA sequence.1 The epigenetic pattern of a cell is stable and transmitted to the 

daughter cells during cell division, maintaining the cell-type specific phenotype.5 

Furthermore, as the epigenetic alterations are reversible, they constitute a potential 

therapeutic target for treatment of diseases associated with epigenetic defects.5 There are 

different mechanisms of epigenetic regulation that modulate the gene expression by 

mediating the access of the translational machinery (e.g., transcription factors and cofactors 

to specific genomic regions).3 Through epigenetic regulation, the chromatin can adopt 

different conformations, euchromatin or heterochromatin, that influence the gene expression.4 

In the euchromatin conformation, the DNA is more relaxed and the gene expression is 

active.4 In contrast, the heterochromatin state is associated with gene repression, since the 

DNA is supercoiled.4 The referred genomic regions include enhancers (to improve 
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transcription), promotors (to initiate transcription), gene body/ open reading frames (to be 

transcribed and translated into proteins), and silencers (to inactivate transcription).3 The 

epigenetic mechanisms include posttranslational modifications of histones, chromatin 

remodeling, noncoding RNAs, and DNA methylation (Figure 1.1). 3 

 

 

1.1.1 Posttranslational modifications of histones and chromatin remodeling 

The histones are highly conserved proteins constituted by a globular domain and a flexible 

unstructured amino terminal tail (the histone tail).6 These proteins can undergo 

posttranslational modifications (PTMs) in the amino acid residues mainly present in the 

histone tail and some present in the globular domain, in particular of the histones H3 e H4.6  

The PTMs include acetylation, phosphorylation, methylation, and ubiquitination and they 

modulate gene transcription by  controlling  DNA accessibility (Figure 1.2).3  

Figure 1.1 DNA compaction levels and epigenetic mechanisms that regulate gene 

expression. In the nucleus, the DNA is associated with an octamer with two copies of 

histones H2A, H2B, H3, and H4, forming the nucleosome. Together, various nucleosomes 

form the chromatin fiber and the chromosome. The epigenetic mechanisms of DNA 

methylation and posttranslational modifications of histones such as acetylation (ac), 

methylation (me), phosphorylation (P), and ubiquitination (ub), occur at the chromatin level. 

Long noncoding RNAs (lncRNAs) have been associated with regulation of gene expression, 

cell differentiation and chromatin remodeling. Illustration adapted from Chen et al., 2017. 
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The histone acetylation is mediated by  histone acetyl transferases (HATs) and occurs in 

specific lysine residues.3 This process is often associated with active chromatin regions that 

allow the transcriptional machinery to access the DNA and initiate transcription.  For 

example, the acetylation of histone H3 at lysine 27 (H3K27ac) is linked to active 

transcription regions.  The acetyl group can be removed by histone deacetylases (HDACs).3 

In contrast, the phosphorylation of histones in specific serine, threonine, or tyrosine residues 

by enzymes of the histone kinase family seems to be usually associated with transcriptional 

silencing, linked to condensed chromatin regions. 3 

 

The histone methylation occurs in the specific lysine and arginine residues by histone lysine 

methyltransferases and arginine methyltransferases (HMTs).7,8 The residues can be 

monomethylated (me1), dimethylated (me2), or trimethylated (me3). For instance, the di- or 

trimethylation of histone H3 at lysine 4 (H3K4me2 and H3K4me3, respectively) and 

monomethylation of H3K9 are associated with active gene expression. In contrast, di- and 

trimethylation of H3K9 and H3K27 are marks of inactive transcription.7,8  

 

Figure 1.2 Effect of histone posttranslational modifications in gene expression.  At the 

histone tail of H3 and H4, there are amino acids that can undergo posttranslational modifications, 

such as acetylation, methylation, phosphorylation, and ubiquitination, which influence the 

chromatin structure and subsequent gene expression. The acetylation of histone H3 at lysine 27 

mediated by HATs as well as the trimethylation of histone 3 at lysine 4 and the trimethylation at 

lysine 36 mediated by HMTs, are marks of active transcription. These events lead to the opening 

of chromatin, making the DNA accessible to the transcriptional machinery. Illustration adapted 

from Chen et al., 2017. 
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1.1.2 Noncoding RNAs 

Noncoding RNAs (ncRNAs) are RNAs transcribed from the mammalian genome that are not 

translated into proteins, being functional RNAs.3 Depending on their size, the ncRNAs are 

categorized into long ncRNAs (lncRNAs) if their sequences are longer than 200 nucleotides, 

and small ncRNAs, characterized by less than 200 nucleotides.9 The lncRNAs work as 

regulators of gene expression through the modulation of nuclear architecture and 

transcription in the nucleus, and through the modulation of mRNA stability, translation and 

post-translational modifications in the cytoplasm. Furthermore, they are also implicated in 

cell differentiation, invasion and metastasis in cancer, and chromatin remodeling.9  

The small ncRNAs also include short interfering RNA (siRNAs), microRNA (miRNA), and 

piwi-interacting RNAs (piRNAs) categorized depending on their length, biogenesis, and 

effector proteins.1 These RNAs can modulate gene expression in a sequence-specific manner, 

since they are guides to the recognition of target RNAs. The siRNA is a double-stranded 

RNA that can target a complementary mRNA for degradation, leading to gene silencing.1  

MicroRNAs are small, highly conserved, single-stranded non-coding RNA molecules that 

regulate gene expression by the RNA-induced silencing complex (RISC).1 After their 

biogenesis, the miRNAs form RISC that can bind to a mRNA specified by base-pairing with 

the miRNA. The mRNA targeted can undergo cleavage and later degradation, or its 

transduction can be inhibited.1 

Lastly, the piRNAs are formed by 21-35 nucleotides. This class of RNA molecules binds to 

PIWI proteins, guiding them to a target RNA to be cleaved.10 Moreover, the piRNAs can also 

participate in  heterochromatin assembly and DNA methylation .10 

 

1.1.2 DNA Methylation 

The DNA methylation is one of the most studied epigenetic mechanisms in the mammalian 

genome and it is mediated by the covalent addition of a methyl group to the carbon in the 5-

position of the pyrimidine ring of cytosine’s in the DNA.3,11  Usually, the cytosines to which 

a methyl group is added are adjacent to guanines by means a phosphate group, known as CpG 

dinucleotides.1 In the mammalian genomes, the majority of CpG dinucleotides (70%) are in 

the methylated state. The remaining CpG dinucleotides are localized in clusters, known as 
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CpG islands, and are in the unmethylated state. The CpG islands are located near gene 

transcription start sites as well as intragenically.1  

DNA Methyltransferases (DNMTs) are the class of enzymes responsible for the cytosine’s 

methylation and there are three isoforms playing different roles in the cell.3,11 DNMT1 is 

associated with the maintenance of DNA methylation.3 During cell division, DNMT1 

methylates the cytosines in the newly synthesized strand that are methylated in the 

complementary strand, ensuring that the daughter cells maintain the DNA methylation pattern 

of the original cell.1 Thus, methylation patterns are stable. On the other hand, DNMT3A and 

DNMT3B are responsible for de novo methylation, since they methylate cytosines that were 

not previously methylated on either DNA strand. Thus, a new pattern of methylation can be 

created.3,11 

The effect of DNA methylation on gene expression is dependent on the location of 

methylated CpG dinucleotides.3 In general, when DNA methylation occurs in promotor 

regions, the downstream genes are silenced, since the transcription factors cannot interact 

with the DNA and promote transcription. The CpG dinucleotides can also be located in the 

gene body, and this is usually associated with activation of  gene transcription.3 Nevertheless, 

this is not always the case.12 For example, it has been described that TERT promotor 

hypermethylation is associated with increased TERT expression in cancer.12 Each cell type 

has stable and unique DNA methylation patterns.11  

The same way that the methylation can be added de novo to cytosines and maintained, the 

methyl group can also be removed, making DNA methylation a reversible process.3 The ten-

eleven translocation (TET) family proteins are responsible for the removal of the methyl 

group and this process is known as DNA demethylation. In this process, the 5-methycytosine 

(5mc) is converted by successive oxidation steps into 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC).3 

Since the DNA methylation has a temporal (e.g., developmental or differentiation stages) and 

spatial (e.g., specific DNA region) precision, it plays a central role in cellular processes like 

hematopoiesis, where it is necessary to activate and stabilize gene expression patterns during 

cell fate decision that allow for the differentiation of cells.3  
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1.2 Adult Hematopoiesis 

The human body is composed by different organ systems that interact together in order to 

maintain the homeostasis throughout the life of the individual. The circulatory system is one 

of the organ systems and it is responsible for the transport of the blood for the whole body. 

Blood is a fluid formed by plasma and several different types of cells such as white blood 

cells, red blood cells and platelets, with different functionalities.13 White blood cells or 

leukocytes participate in the inflammatory reaction and immune response and include the 

granulocytes (neutrophils, basophils, eosinophils, and mast cells), lymphocytes (T cells, B 

cells, and natural killer cells), monocytes/macrophages, and dendritic cells.2 Red blood cells 

or erythrocytes are responsible for the transport of oxygen from the lungs to the tissues and 

carbon dioxide removal.2 Platelets have a crucial role in wound healing and blood clotting.13  

However, since the blood cells have a short half-life ranging from hours to days, it is 

necessary to form new blood cells daily to replace the dying ones.13 The process of new 

blood cells formation is called hematopoiesis.14 According to the classical model, 

hematopoiesis is a highly organized, dynamic, and regulated process that follows a hierarchy 

of cellular differentiation states from stem to progenitor to precursor to mature cells. The 

hematopoietic hierarchy has at the starting point a rare population of hematopoietic stem cells 

(HSCs) localized mostly in the bone marrow of axial bones. These cells have two relevant 

functional characteristics: multipotent differentiation and self-renewal.14 The multipotent 

differentiation refers to the capacity that HSCs have to generate all mature blood cells, 

including erythrocytes, platelets, lymphocytes, monocytes, and granulocytes.14 Transcription 

factors such as RUNT-related transcription factor 1 (RUNX1) and GATA3, expressed in 

HSCs, are responsible for maintaining the self-renewal and multipotency abilities.8  On the 

other hand, the self-renewal is the process by which each HSC generates at least one more 

HSC by cellular division, ensuring the presence of a rare HSCs pool throughout life.15 The 

self-renewal capacity is maintained by the Ikaros and E2A transcription factors.8 The HSCs 

are quiescent and upregulate drug-detoxifying enzymes as the ATP-binding cassette (ABC), 

making them resistant to most chemotherapy agents. Furthermore, they reside in a highly 

protective microenvironment able to inactivate cytotoxins due to high expression of 

cytochrome P450 enzymes.16 
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The HSCs can give rise to specialized mature blood cells through differentiation into a series 

of progenitor intermediates.17 Therefore, there is a balance between self-renewal and 

differentiation.17  

During differentiation, the HSCs loose self-renewal capacity and give rise to multipotent 

progenitor cells (MPPs) through changes in gene expression that are influenced by 

transcription factors and epigenetic modifications in gene regulatory regions. The MPPs 

continue to have a multipotent differentiation ability, but a restricted self-renewal capacity.2  

On the other hand, the MPPs give rise to two different committed progenitors downstream 

that will originate two different cell lineages: the Common Lymphoid Progenitors (CLPs) 

that originate the entire lymphoid lineage, and the Common Myeloid Progenitors (CMPs), 

responsible for the development of the myeloid lineage.2 Regarding the lymphoid lineage, the 

CLPs differentiate into B-cell precursors and the earliest thymic progenitors that will 

differentiate into T and Natural Killer (NK) cells that participate in adaptative and innate 

immune response.2 In the myeloid lineage, CMPs differentiate into the 

granulocyte/macrophage progenitors (GMPs) that  in turn give rise to granulocytes, 

monocytes and macrophages, and into the megakaryocyte/erythroid progenitors (MEPs), 

which can originate erythroid and megakaryocyte cells.2 The committed progenitors are 

oligopotent and have a limited self-renewal capacity.  

 

1.2.1 Regulation of myeloid differentiation 

Myeloid cells are not only of great importance to innate immunity but are also key players in 

the regulation of the adaptative immune response.8 The regulation of gene expression is the 

key point for the differentiation of progenitors and intermediate cells into mature myeloid 

cells.8, During the process, genes and their products that contribute to the undifferentiated 

state are downregulated, whereas the genes that allow the cellular differentiation are 

upregulated.8 The differentiation process of myeloid cells initiates in the bone marrow 

through cytokine signals released by stromal cells that activate progressively the 

transcriptional program that confers the myeloid identity.8 Afterwards, the process terminates 

in the blood or peripheral tissues, where the precursor cells are exposed to cytokines, antigens 

and other factors to form fully differentiated myeloid cells.8   

The timely regulation of gene expression required for myeloid differentiation is controlled by 

epigenetic mechanisms such as histone posttranslational modifications and DNA methylation 
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in collaboration with lineage-specific transcription factors, upstream pathways signaling, and 

external/microenvironmental factors.8 The DNA methylation regulates in part the self-

renewal capacity of HSCs and facilitates the commitment to a lymphoid and myeloid 

lineage.8 The methylation patterns of the myeloid lineage are different from the lymphoid 

lineage.8 Whereas overall DNA methylation levels increase with lymphoid differentiation, 

regarding the myeloid differentiation the levels of overall DNA methylation decrease 

throughout the process (Figure 1.3).8 DNMT1 prevents the premature activation of 

transcriptional programs associated with cellular differentiation in the HSCs.18 Also, 

DNMT3A and DNMT3B are associated with the repression of the transcription factors 

RUNX1 and GATA3.19 Without the expression of these transcription factors, the HSCs can 

differentiate into MPPs.19 In case of infection and inflammation, the macrophage colony-

stimulating factor (M-CSF, also known as CSF1) is released and activates the transcription 

factor PU.1 that in turn promotes the activation of genes that confer the myeloid phenotype.5 

During differentiation of MPPs into CMPs occurs the simultaneous expression of PU.1 and 

GATA-1, and a decrease of overall methylation levels.8 In the CMPs, both transcription 

factors display low expression levels, making these cells able to originate the GMP and MEP 

Figure 1.3 Dynamic DNA methylation during myeloid differentiation.  Whereas 

hypermethylation is characteristic of lymphoid differentiation, hypomethylation is present 

during myeloid differentiation. However, the levels of DNA methylation in myeloid cells are 

dynamic. An increase in DNA methylation in MPP, promotes these cells to differentiate into 

CMP. In the transition of CMP to GMP a decrease in DNA methylation occurs, followed by a 

decrease in DNA methylation to form the granulocytes. The overall increase of DNA 

methylation is represented by the blue triangles and the overall decrease in methylation is 

represented by the red triangles. Adapted from Wouters and Delwel, 2016. 
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lineages.20 When the CMPs express high levels of PU.1, they differentiate into GMPs.20 In 

addition to PU.1, the C/EBP transcription factors downregulate HDAC expression and the 

commitment of GMPs to originate granulocytes. Furthermore, the transition of CMP to GMP 

is accompanied by an overall gain in methylation levels (Figure 1.3).8  

In contrast, the upregulation of GATA-1 sustains HDAC expression and the CMPs are 

committed to give rise to the myeloid cells of the MEP lineage. Moreover, the differentiation 

of MEPs into erythrocytes is determined by the combination of GATA-1 expression and 

FOG-1. However, when the GATA-1 is associated to AML-1, the MEPs differentiate into 

megakaryocytes.  

For the maturation of myeloid progenitors into monocytes, macrophages and dendritic cells it 

is required the expression of the transcription factor PU.1 in a concentration-dependent 

manner. In HSCs, this transcription factor presents low levels of expression, while in CMPs it 

is highly expressed. Another important transcription factor for myeloid differentiation is 

CCAAT/enhancer-binding protein α (C/EBPα).  

The normal process of myeloid differentiation can be blocked, and the hematopoietic cells 

arrest in their immature forms, leading to the development of leukemia, a type of 

hematological cancer.17 

 

1.3 Cancer 

Cancer is a group of complex diseases that arise from the transformation of normal cells into 

malignant cells by the accumulation of genetic and epigenetic modifications.21 This 

transformation is a multistep process whereby the cells are getting biological characteristics 

that give a selective advantage over normal cells, such as, sustaining proliferative signaling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis, activating invasion and metastasis, reprogramming of energy metabolism and 

evading immune destruction.22 These biological capabilities are known as the hallmarks of 

cancer. Moreover, the oncogenic process is also characterized by genome instability 

responsible for genetic diversity, and inflammation.22  

The first hallmark of cancer is the sustaining proliferative signaling.22 Whereas the normal 

cells regulate the signals that promote cell growth in order to maintain a normal cell number 

and the normal tissue architecture, the cancer cells become independent of external signals to 
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proliferate. Evading growth suppressors is the second defined cancer hallmark, which means 

that the cancer cells tend to inactivate growth suppressor genes, responsible for the negative 

regulation of cell growth and proliferation. Moreover, resisting cell death is the third defined 

hallmark of cancer. For uncontrolled growth, the cancer cells develop mechanisms to evade 

apoptosis. Normal cells have a limited number of division cycles they can undergo (Hayflick 

limit), after which they enter a state of senescence. Cancer cells overcome this limit by 

enabling replicative immortality, the fourth hallmark of cancer, which allows the tumor cells 

to divide indefinitely. The fifth hallmark of cancer, inducing angiogenesis, refers to the fact 

that cancer cells can stimulate growth of new blood vessels that will allow the irrigation to 

the tumor and support tumor growth. The activating invasion and metastasis was defined as 

the sixth hallmark of cancer and describes that cancer cells can gain the ability to invade 

neighboring tissues and, further, can spread to other distant locals through blood and 

lymphatic vessels, forming metastases. The seventh cancer hallmark is reprogramming of 

energy metabolism, which consists in the ability of cancer cells to dysregulate the energy 

metabolism, restricting their metabolism to mainly glycolysis, where glucose is metabolized 

in order to produce energy in the form of ATP that is important to support cell growth and 

division. Cancer cells can metabolize much more glucose than the normal cells, and thus 

produce more energy.  Finally, evading immune destruction is the eighth hallmark of cancer 

and describes the fact that cancer cells develop mechanisms that allow them to escape from 

detection and destruction mediated by the immune system.22   

Nowadays, more than 277 different types of cancer are already identified.23 According to the 

tissue and cell type of origin, the cancers are classified in three major classes.24 Carcinomas 

originate from the epithelial cells and are the most common cancers, accounting for 80% of 

cases. Sarcomas derive from the connective tissue or muscle cells. Leukemias and 

lymphomas arise from blood cells and their precursors (hematopoietic cells).24  

In 2018, were estimated 17.0 million of new cancer cases and 9.5 million of death-related 

cancer in worldwide.25 The type of cancer that was most diagnosed and with more cancer 

deaths was the lung cancer. Female breast cancer, prostate cancer, and colorectal cancer were 

the following with more incidence, and the colorectal cancer, stomach cancer, and liver 

cancer with more mortality cases.25 
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1.3.1 Hematological cancers  

HSCs are defined by their self-renewal ability and multipotent differentiation capacity, 

certifying the residence of a population of HSCs in the bone marrow and, at same time, the 

generation of all mature blood cells functionally different through a cascade of 

differentiation.26 In normal conditions, there is a dynamic balance between the self-renewal 

and the multipotent differentiation of HSCs.26 However, this equilibrium can be disrupted and 

dysregulated, leading to the development of hematological disorders.26 Hematological 

malignancies or liquid cancers can arise from blood cells at any stage of differentiation with 

consequences in the production and the functionality of blood cells, leading to infections 

and/or uncontrolled bleeding.26 When the hematopoietic differentiation is disrupted, it can 

lead to the development of one of the three types of hematological malignancies, such as 

leukemia, lymphoma, and myeloma.26 Leukemia is characterized by an increased production 

of abnormal white blood cells in the bone marrow, leading to the circulation of leukemic cells 

in the blood.26 They are classified based on the origin of leukemic cells and the time of 

clinical course into chronic lymphoid leukemia (CLL), chronic myeloid leukemia (CML), 

acute lymphocytic leukemia (ALL), and acute myeloid leukemia (AML).26 In lymphomas, 

occur the transformation of  B or  T lymphocytes or natural killer (NK) cells that, posteriorly, 

infiltrate the secondary lymphoid organs, such as the lymph nodes or spleen.26 The myeloma 

results from the malignant transformation of plasma cells that accumulate primarily in the 

bone marrow.  

Myeloid malignancies include myeloproliferative neoplasms, myelodysplastic syndromes, 

and acute leukemia.27 Myeloproliferative neoplasms are characterized by an excessive 

production of one or more blood cell types in the bone marrow and circulating blood.28 

Myelodysplastic syndromes are characterized by defects in the process of maturation 

associated with an ineffective hematopoiesis. Both types of myeloid malignancies can evolve 

into AML.28 

 

1.4 Acute Myeloid Leukemia 

Acute Myeloid Leukemia (AML) is a group of complex, dynamic, and clonal hematological 

malignancies that arise from the transformation of hematopoietic stem cells or myeloid 

progenitors.29,30,31 These cells gain a proliferative advantage and lose their differentiation 

ability, resulting in clonal expansion of poorly differentiated myeloid progenitors (blasts) that 



12 

accumulate in the bone marrow and peripheral blood.32 Infections, anemia and hemorrhages 

are usually present in AML patients as the result of bone marrow failure and impairment of 

hematopoiesis.30 AML is also characterized by genetic and phenotypic heterogeneity, that is 

reflected in heterogeneous clinical outcomes.28   

 

1.4.1 Epidemiology 

Acute Myeloid Leukemia is the most common type of leukemia in adults, accounting for 15 

to 20% of acute leukemia cases in children and 80% in adults.28 In the United States, the 

AML incidence has exceeded the incidence of the other subtypes of leukemia (ALL, CML, 

and CLL) until 2017.33 It is estimated that approximately 19,940 adults will be diagnosed 

with AML in 2020. Most leukemic deaths (60%) are caused by AML in comparison with 

other leukemia subtypes.33 In adults, AML is related to the shortest survival (5-year survival 

of 24%).33 

AML can develop in individuals of any age group, but it is more frequent in older adults with 

a median age at diagnosis of 68 years.30 The principal risk factor is indeed the increasing age. 

In the majority of the cases, AML arises in individuals previously healthy as a de novo 

malignancy, but it can be a consequence of the exposure to cytotoxic chemotherapy with 

alkylating agents or topoisomerase inhibitors, or to ionizing radiation as therapy of another 

primary malignancy.32 In addition, this disease can also develop in patients with an 

underlying hematological disorder, such as myeloproliferative neoplasms and 

myelodysplastic syndromes, as a result of genomic instability and an additional gain of 

mutations.30,28 

 

1.4.2 AML Leukemogenesis 

In the last 15 years, the application of high-throughput sequencing techniques by genomic 

discovery studies has enabled significant advances in the understanding of mechanisms 

involved in the pathogenesis of AML.29 The leukemogenesis is not yet completely 

understood.30 However, it is known that in AML, the hematopoietic stem cells or myeloid 

progenitors undergo oncogenic transformation, acquiring chromosomal abnormalities and 

mutations in genes involved in proliferation, survival and cellular differentiation.30,28 As a 

result, these cells gain a proliferative and survival advantage over the normal cells and lose 
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their differentiation ability.  Thus, the leukemic cells undergo clonal expansion and a 

population of poorly differentiated blasts accumulates in the bone marrow and peripheral 

blood.30  

The chromosomal abnormalities and gene mutations that contribute to the malignant 

transformation in AML can be classified by the two hits model of leukemogenesis proposed 

by Gilliland.34 The model suggests that AML is the result of the cooperation between at least 

two classes of mutations. The class I mutations activate the proliferation and survival of 

leukemic cells. Examples of class I mutations are FMS-like tyrosine kinase 3 (FLT3), 

K/NRAS, TP53, and c-KIT. On the other hand, the class II mutations include NMP1 and 

CEBPA, which inactivate the normal hematopoietic differentiation and apoptosis. According 

to this model, it is necessary that the two classes of mutations occur in conjunction to develop 

AML. Recently, a third class of mutations has been considered and constitutes the mutations 

in genes that encode epigenetic modifiers.34 Mutations in genes associated with DNA 

methylation like DNMT3A, TET2, and IDH-1 and IDH-2 have been identified in more than 

40% of AML cases.32   

 

1.4.2.1 Chromosomal Abnormalities in AML Leukemogenesis 

Chromosomal abnormalities such as translocations, deletions, insertions, inversions, 

monosomies, trisomies, among others have been identified in 55% of patients diagnosed with 

AML.28 The translocations create gene fusions that generate abnormal and dysfunctional 

proteins.28 One of the most well-characterized chromosomal translocation in AML is the 

t(8;21) (q22;q22) in which the Run-related transcription factor 1 (RUNX1) is fused to 

RUNX1T1 gene, resulting in the RUNX1-RUNX1T1 chimeric transcript (Figure 1.4).35 The 

RUNX1 is a transcription factor that belongs to the family of core binding factor (CBF) 

involved in hematopoietic ontogeny. As a consequence of the t(8;21), the normal function of 

the CBF is disrupted, that in turn, disrupt the normal differentiation and maturation of the 

hematopoietic cells. These translocations recruit transcription repressors that block the 

expression of genes related to hematopoiesis and impair apoptosis. Nevertheless, this 

translocation alone does not cause AML. To this end, it must occur with cooperative 

mutations, such as those affecting KRAS, NRAS, ASXL1, and KIT. The previous translocation 

is present in approximately 5-10% of AML cases. Furthermore, the majority of AML cases 

with t(8;21) develop as de novo, and only 5% occur as a consequence of prior therapies.35 
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Another well-documented cytogenetic alteration in AML is the inv(16)(p13q22).36 In this 

case, fusion between the CBFB and MYH11 genes occurs, creating a chimeric protein 

product. The created fusion protein impairs the differentiation process of myeloid leukemic 

cells. However, this fusion is not sufficient for the development of AML. It is necessary that 

additional mutations occur to the disease development. Both t(8;21) and inv(16) affect the 

CBF complex.36  

Acute promyelocytic leukemia (APL), a subtype of AML, is associated with the t(15;17) 

(q24;q21), being present in approximately 98% of APL cases. In this translocation, a fusion 

between the promyelocytic leukemia (PML) and the retinoic acid receptor alpha (RARA) 

genes occurs, resulting in the expression of the chimeric protein PML-RARA.28  In normal 

conditions, the transcription factor and tumor suppressor PML participates in the regulation 

of cell cycle progression and can induce cell death. On the other hand, RARA forms a 

heterodimer with the retinoid X receptor and recruits the nuclear corepressor complex histone 

deacetylase, which in turn promotes the formation of nucleosomes, silencing several genes. 

The differentiation of promyelocytes entails the activation of several genes which happens 

through the binding of retinoic acid to RARA. The chimeric protein PML-RARA promotes 

the same effect as normal RARA when unbound to its ligand, however the previous needs a 

higher concentration of retinoic acid to silence gene expression. For this reason, the majority 

of APL patients respond to trans-retinoic acid treatment that leads to transcription and thus 

cell maturation.   

The t(9;11)(p22;q23) is another chromosomal abnormality associated with AML 

development with monocytic features, and comprises the fusion of MLL3 and MLL genes.28 

The MLL gene codifies a histone methyltransferase that regulates gene transcription. MLL is 

a positive regulator of the HOX genes ‘expression and transcription factors involved in the 

development of the hematopoietic system. When the t(9;11) occurs, the MLL domain 

responsible for H3K4 methylation is lost and, in association with other transcription factors, 

promotes the HOX genes transcription and then, cell proliferation and self-renewal capacity.  

The recurrent chromosomal translocation involving the fusion of the C-terminal region of 

Nucleoporin 214 (NUP214) and DEK was also identified as a driver event in 

leukemogenesis. The NUP214 is a part of the nuclear pore complex, responsible for protein 

and mRNA nuclear transport between the nucleus and the cytoplasm. As result of the 
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translocation, a DEK-NUP214 fusion protein leads to the dysregulation of the nuclear 

transport.  

The inv(3) (q21q26) is another cytogenetic alteration associated with AML, which affects the 

Ribophorin I (RPN1) and Ecotropic Viral Integration Site 1 (EVI1) genes. The EVI1 is a 

transcription factor expressed in HSCs, being essential for regulating cell self-renewal. EVI1 

can also interact with histone deacetylases and chromatin-modifying enzymes, leading to 

Figure 1.4 Illustration showing the chromosomal abnormalities and gene mutations 

that contribute to AML development.  Cytogenetic alterations such as t(8;21) (q22;q22) 

[RUNX1/RUNX1T1], inv(16) (p13q22) [CBFB/MYH11], t(15;17) (q24;q21) 

[PML/RARA], t(9;11) (p22;23) [MLLT3/MLL], t(6;9) (p23;q24) [DEK/NUP214], inv(3) 

(q21;q26) [RPN1/EVI1] and t(1;22) (p13;q13) [RBM15/MKL1] are associated with the 

development of AML. On the other hand, gene mutations in FLT3, NMP1 and CEBPA can 

also contribute to AML. The disease is also characterized by aberrant methylation patterns 

associated with mutations in epigenetic modifiers, including mutations in DNMT3a, TET2, 

IDH1 and IDH2. Yellow circles represent methyl groups and the red stars represent 

mutations. Adapted from Lagunas-Rangel et al., 2017. 
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epigenetic modifications that cause the silencing of certain genes. In this context, the 

expression of EVI1 is enhanced by RPN1, thus the fusion gene promotes cell proliferation 

and blocks cell differentiation, contributing to leukemogenesis.  

Lastly, the t(1;22) (p13;q13) creates the fusion gene RNA-binding motif protein-15 (RBM15)/ 

Megakaryoblastic Leukemia-1 (MKL1) (BM15/MKL1) which affects chromatin remodeling 

and promotes HOX overexpression, thus affecting differentiation.28  

 

1.4.2.2 Gene Mutations in AML leukemogenesis 

Besides chromosomal translocations, gene mutations can also contribute and have an impact 

on the AML biology and phenotype, response to therapy and risk of relapse, thus having an 

impact on prognosis.30 The molecular changes are present in more than 97% of AML cases.32 

In contrast with the other types of cancer, AML presents fewer number of mutations per 

cell.29 

The pattern of mutations associated with the development of AML seems to occur in a 

temporal order.29 The early phase of leukemogenesis is characterized by mutations in genes 

that encode epigenetic modifiers, such as DNMT3A, ASXL1, TET2, IDH1, and IDH2.29 This 

is supported by studies that show the presence of these mutations in preleukemic cells, 

decades before the development of AML.30 Mutations in the epigenetic modifiers mentioned 

provide a selective advantage for clonal expansion and subsequent progression to AML. The 

subsequent events in leukemogenesis are characterized by mutations involving 

nucleophosmin 1 (NPM1) or signaling molecules as FLT3 and RAS.29 

The most frequent mutation in AML is the NPM1 mutation, being present in 25-30% of AML 

cases, and more prevalent in females.37 In normal conditions, the NPM1 protein is mainly 

present in the nucleolus and is involved in ribosome biogenesis, genomic stability, DNA 

repair and molecular chaperoning. As a result of the mutations, the aberrant protein is more 

localized in the cytoplasm than the nucleus, promoting proliferation and leukemia 

development.37 

The HSCs and the progenitor cells express the transmembrane FLT3 receptor tyrosine kinase 

that when activated by the FLT3 extracellular ligand, promotes cell survival, proliferation, 

and differentiation, through the activation of a signaling cascade involving PI3K, RAS, and 

STAT5.38 Mutations in FLT3 receptor were identified in approximately 30% of AML cases.38 
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The mutations can occur in the juxtamembrane domain, the FLT3-ITD mutations (in 

approximately 25% of cases), or in the tyrosine kinase domain, the FLT3-TKD mutations (in 

7 to 10% of cases).38 Both lead to the constitutive activation of the FLT3 kinase, contributing 

to the proliferation and survival of leukemic cells.38  

IDH1 and IDH2 are enzymes that participate in the epigenetic regulation and Krebs’ cycle at 

the mitochondria level.39 Mutations in these genes are found in approximately 20% of adult 

AML cases.39 Genetic alterations lead to amino acid changes in conserved residues, resulting 

in neomorphic enzymatic function and production of an oncometabolite, 2-hydroxyglutarate 

that promotes DNA hypermethylation, aberrant gene expression, cell proliferation and 

blocked differentiation of hematopoietic progenitor cells.40  

Mutations in the gene encoding the transcription factor CEBPA have been also associated 

with AML. CEBPA has a crucial role in the early stages of myeloid differentiation.28 The 

CEBPA gene is expressed in myelomonocytic cells, being upregulated in granulocytic 

differentiation. As it presents two different AUG start sequences in the same reading frame, it 

can encode two proteins, an isoform of 42 KDa (p42) and another isoform of 30 KDa (p30). 

The ratio p42/p30 is regulated, so when the growth conditions are favorable, the transcription 

of p30 is promoted by the transcription factor elF2α and elF4E, leading to cell proliferation. 

In contrast, when the levels of elF2α and elF4E are low, p42 transcription occurs and also cell 

differentiation. The point mutations that can affect the CEBPA lead to alterations in the p42 

transcription and overexpression of p30 isoform.28 Mutations in CEBPA are found in 6-10% 

of AML cases.37  

Currently, the genetic alterations associated with AML in combination with the cytogenetic 

abnormalities are incorporated in disease classification, risk stratification, and clinical care of 

patients.  

 

1.4.2.3 Aberrant DNA methylation in AML 

Abnormalities in DNA methylation have been recognized as an important event in 

tumorigenesis of multiple cancer types. The epigenome of cancer is characterized by global 

hypomethylation that promotes genetic instability and the active transcription of oncogenes.21 

Hypermethylation is also found in cancer cells and occurs in promotors of specific genes, 

leading to their silencing.21 In cancer research, DNA methylation studies have been focused 

on the CpG island promotor methylation. 
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In AML, it is also observed an aberrant distribution of the cytosine methylation pattern with 

clinical and prognostic relevance.41 Furthermore, the epigenetic alterations emerge more 

frequently and recurrently than the genetic changes. The hypo- as well as the 

hypermethylation of CpG islands has also been reported in leukemogenesis.41 Recurrent 

mutations in DNMT3A are identified in 6% to 36% of AML patients and can be truncating or 

missense.5 Studies suggest that loss-of-function mutations in DNMT3A give a self-renewal 

advantage to HSCs. These are identified in older individuals before the clinical development 

of AML, suggesting that they are early events in leukemogenesis. The impact of DNMT3A 

mutations in leukemogenesis is not yet completely understood.28 However, it is known that 

around 60% of all DNMT3A mutations in AML patients occur at the enzyme’s 

methyltransferase catalytic domain.42 This mutation not only leads to a loss of the 

methyltransferase activity, but also acts as a dominant negative mutation that decreases the 

methyltransferase activity of the wild-type DNMT3A by over 80%. Moreover, this reduction 

in DNMT3A activity in AML patients seems to lead to DNA hypomethylation, which 

promotes de binding of histone modifiers at the enhancer elements, ultimately leading to 

activation of leukemic stemness genes, like Hoxa genes. In addition, DNMT3A mutations 

seem to be associated with FLT3-ITD and NMP1 mutations in AML.42 Clinically, this 

mutation has proved to be important in patient’s stratification, conferring a poor prognosis to 

AML patients, an increased risk of relapse, and a decreased overall survival.28 

Gain-of-function mutations in IDH1 and IDH2 genes are also found in AML, essentially at 

highly conserved arginine residues. As consequence, IDH1 and IDH2 gain the capability to 

transform the α-ketoglutarate to 2-hydroxyglutarate, leading to its accumulation.28 The 2-

hydroxyglutarate is a competitive inhibitor of TET2, which demethylates DNA. In addition, 

loss-of-function mutations in TET2 are found in 8% to 27% of AML patients and 18% to 

23% patients with normal cytogenetics, giving a worse prognosis.5 The reduction of TET2 

activity results in hypermethylated DNA regions located mainly in gene regulatory elements, 

which leads to a deregulation of genes related to self-renewal and differentiation, such as 

Gata1.42  Moreover, it is also known that the DNA hypermethylation caused by impaired 

TET2 activity affects approximately a quarter of all enhancer elements, most of which are 

associated with tumor suppressor genes.42 
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1.4.3 Diagnosis and Classification 

The diagnosis of AML is made based on the morphological assessment of peripheral blood or 

bone marrow with the presence of 20% or more myeloid blasts in the bone marrow.30 The 

myeloid origin of the malignant blast is also identified by immunophenotyping by means 

flow cytometry that will help to classify the AML subtype.30 Moreover, the disease can be 

diagnosed by the presence of recurrent karyotypic or molecular alterations that are associated 

with leukemogenesis.30 These alterations include the t(8;21) (RUNX1-RUNX1T1), inv(16) or 

t(16;16) (CBFB-MYH11) and the t(15;17) (PML-RARA), which characterizes the acute 

promyelocytic leukemia.30  

The morphological variability of leukemic cells and the degree of differentiation led to the 

establishment of classification systems that allow to identify different subtypes of AML. The 

French-American-British (FAB) classification system established in 1976 was the first 

system to classify different subtypes of AML (Table 1.1).43 The classification is made based 

on the morphological appearance and cytochemical characteristics of the leukemic cells 

(blasts) and defines eight AML subtypes (M0 to M7).43 

Table 1.1 The FAB AML classification system. 

M0 Acute myeloid leukemia without differentiation 

M1 Acute myeloid leukemia with minimal differentiation 

M2 Acute myeloid leukemia with differentiation 

M3 Acute promyelocytic leukemia hipergranular or typical 

M3v Acute promyelocytic leukemia hipogranular 

M4 Acute myelomonocytic leukemia 

M4v Acute myelomonocytic leukemia with bone marrow eosinophilia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia (Erythroleukemia) 

M7 Acute Megacariocytic leukemia 

 

However, this classification is limited since it does not have in consideration the genetic and 

clinical diversity of the disease.28 Currently, AML is classified based on the World Health 

Organization (WHO) classification system.44 This system, was updated in 2016 and 

incorporates genetic information with morphology, immunophenotype and clinical 

presentation, defining mainly six subgroups of AML: (1) AML with recurrent genetic 
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abnormalities, (2) AML with myelodysplasia-related changes, (3) therapy related AML, (4) 

AML not otherwise specified (NOS), (5) myeloid sarcoma, and (6) myeloid proliferation of 

Down syndrome (Table 1.2). In the AML NOS group, the classification is generally based on 

the FAB classification.44 
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Table 1.2 AML subtypes and related neoplasms based on WHO classification. 

Subtype Genetic abnormalities 

AML with recurrent genetic 

abnormalities 

AML with t(8;21)(q22;q22.1); RUNX1 – RUNX1T1 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); 

CBFB-MYH11 

APL with PML-RARA 

AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A 

ML with t(6;9)(p23;q34.1); DEK-NUP214 

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); 

GATA2, MECOM 

AML (megakaryoblastic) with t(1;22) (p13.3; q13.3); 

RBM15-MKL1 

AML with BCR-ABL1 (provisional entity) 

AML with mutated NPM1 

AML with biallelic mutations of CEBPA 

AML with mutated RUNX1 (provisional entity) 

AML with myelodysplasia-

related changes 
 

Therapy-related myeloid 

neoplasms 
 

AML, NOS 

AML with minimal differentiation 

AML without maturation 

AML with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic/monocytic leukemia 

Pure erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma  

Myeloid proliferations 

related to Down syndrome 

Transient abnormal myelopoiesis (TAM) 

Myeloid leukemia associated with Down syndrome 
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1.4.5 Risk Stratification 

In addition to a highly genetic heterogeneity, patients with AML present very distinct clinical 

outcomes.30 Therefore, an accurate prognosis is crucial to the right management of AML 

patients. The patients are stratified based on the risk of treatment resistance or treatment-

related mortality that will guide the decision between standard or increased treatment 

intensity, consolidation chemotherapy or allogenic hematopoietic stem cell transplant, or 

even between established or investigational therapies.32 

The individual prognosis of AML patient is influenced by patient- and disease-related 

factors.30 The patient-related factors that include  age, coexisting clinical conditions, and poor 

performance status will predict treatment-related early death.30 Increased age and poor 

performance status are associated with lower rates of complete remission and decreased 

overall survival. In oncology, the performance status is one important factor to have into 

account in cancer care and is represented by a score that reflects the ability of the patient to 

perform daily activities without the help of others, such as dressing, eating, bathing, among 

others.45 On the other hand, the disease-related factors such as white cell counts, prior 

myelodysplastic syndrome or cytotoxic therapy for another malignancy, and leukemic cell 

genetic changes can predict resistance to current standard therapy.31 Therapy-related AML 

and AML associated with a prior hematologic disorder confers a worse prognosis. Advances 

in clinical care of patients have contributed to a decreased of risk of treatment-related death 

that is lower than the risk of resistance to the treatment.  

Furthermore, the cytogenetic profile of each case has an important role as a prognostic 

marker for complete remission and overall survival in AML.32 Cytogenetic analysis consists 

in the identification of abnormalities at the chromosomal level like translocations, deletions, 

insertions, inversions, among others, in samples of blood or bone marrow.28 Thus, based on 

the chromosomal abnormalities identified, the patients are stratified into three prognostic risk 

groups: favorable, intermediate, or adverse (Table 1.3).28,46 The presence of chromosomal 

rearrangements like t(8;21) [RUNX1/RUNX1T1], t(15;17) [PML/RARA] or inv(16) 

[CBFB/MYH11] confer a favorable prognostic risk characterized by a good response to 

treatment and complete remission.28 The adverse prognostic risk group is characterized by the 

presence of a complex karyotype (defined as the presence of three or more chromosomal 

abnormalities in the absence of any of the recurrent genetic abnormalities identified in the 

WHO 2008 classification), monosomy 5 or 7, t(6;9), or inv(3).32 In this prognostic group, the 

disease is more aggressive, and the patients have a poor response to the treatment.28 In some 
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cases, the patients have normal cytogenetics (CN-AML), that is, they do not have any 

chromosomal abnormality.47 The majority of these patients are categorized in the 

intermediate prognostic risk group.47 The intermediate prognostic group represents about 

45% of AML cases and is characterized by a highly clinical heterogeneity, making difficult 

their stratification and decision of the best treatment option.47 

Table 1.3 Risk stratification based on genetics. 

Prognostic-risk group Cytogenetic profile 

Favorable 

t(8;21) (q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); 

CBFB-MYH11 

t(15;17) (q22;q12) 

Intermediate 

CN-AML 

t(9;11)(p22;q23) 

Cytogenetic abnormalities not included in the 

favorable or adverse prognostic risk groups 

 

Adverse 

t(6;9)(p23;q34); DEK-NUP214 

t(v;11q23.3); KMT2A rearranged 

t(9;22)(q34.1;q11.2); BCR-ABL1 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); 

GATA2, MECOM(EVI1) 

25 or del(5q); –7; –17/abn(17p) 

Complex karyotype, monosomal karyotype 

Wild-type NPM1 and FLT3-ITD 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

 

1.4.6 Treatment 

In recent years, advances in the therapeutic approaches for AML patients have been made 

with approval of new therapeutic drugs.30 Even with these advances, the clinical outcomes of 

AML patients are still disappointing, with more than half of patients dying from this 
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disease.30 Since AML is a group of heterogeneous diseases, it is necessary to select different 

treatment options. Therefore, the patient is evaluated in order to determine what treatment 

option is the best for him. Patient-related factors such as age are relevant for the therapeutic 

decision. In general, the standard treatments for AML are induction chemotherapy and 

allogeneic stem cell transplant for eligible candidates. As most older patients are unable to 

receive these treatments, since they have a lower tolerance to an intensive chemotherapy, 

they have a worse prognosis comparing to younger patients.30 Moreover, their poor prognosis 

is also justified by the fact that AML in older patients is more often characterized by the 

presence of cytogenetic and molecular abnormalities characteristic of the adverse prognostic 

risk group.30  

The induction chemotherapy refers to the first line treatment that the patient receives, with 

the objective to achieve and maintain complete remission.32 If all signs of AML disappear in 

response to treatment, the patient has achieved complete remission. However, minimal 

residual disease often persists in complete remission, leading to relapse. For this reason, it is 

crucial that the patient receives post-remission therapy in order to eliminate any residual 

disease.32 In younger patients, induction chemotherapy consists mainly in cytarabine and 

anthracyclines.28 For intermediate prognosis patients, the treatment is more intensive with 

higher doses of cytarabine. The older patients are subject to comorbidities and have less 

tolerance to intensive chemotherapy, and thus they receive lower doses of the drugs. The 

patients categorized in the favorable prognostic risk group have relatively good outcomes 

with overall survival rates of approximately 60%. In contrast, the outcomes of patients with 

intermediate and adverse prognostic risk are still unsatisfactory.30  

The allogeneic stem cell transplant is used in AML patients after the induction chemotherapy 

as post-remission consolidation treatment.48 In patients with AML categorized in the 

favorable risk group, the transplant is not usually necessary in their first complete remission, 

since the risk of relapse is lower than the risk of transplant-related mortality.48 In these cases, 

the transplant can be indicated only in the second complete remission, following a relapse.48  

As the patients categorized in the adverse prognostic risk group have a high risk of relapse, 

the allogenic stem cell transplant should be performed in order to enhance their survival 

probability.48 It must be indicated in the first complete remission, since their clinical outcome 

after the transplant in second remission is poorer than in first remission.48  
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In last, for patients categorized in the intermediate prognostic risk group, the criteria to 

perform a transplant are less clear.48 However, nowadays the majority of these patients are 

evaluated for transplant in their first complete remission.48  

Despite the use of intensive chemotherapy as well as the stem cell transplantation in the 

treatment of AML, the disease is still fatal and it is necessary to develop therapies more 

specific and less toxic for the patient.37 In opposition to genetic alterations, the epigenetic 

changes are in the majority reversible, providing an opportunity for the development of 

targeted therapies with specific inhibitors.  

 

1.4.6.1 Epigenetic therapy in AML treatment 

The development of drugs for AML treatment that target epigenetic alterations have been 

studied in preclinical trials with some drugs already available to be used in the clinical 

practice.49 Hypomethylating agents (HMAs), such as azacytidine and decitabine, and 

isocitrate dehydrogenase inhibitors, including ivosidenib and enasidenib, are already 

approved and used in AML treatment.49  

Hypomethylating agents are DNA methyltransferase inhibitors that lead to a transient and 

variable DNA hypomethylation.50 They are used in the treatment of AML patients that cannot 

receive intensive induction chemotherapy and for patients diagnosed with myelodysplastic 

syndromes.49 The clinical responses to this type of treatment are still heterogeneous and 

rarely sustained.50 The decitabine is converted into 5-aza-dCTP, an active tri-phosphorylated 

metabolite, by successive phosphorylation’s through intracellular kinases.50 Then the 5-aza-

dCTP is incorporated into the DNA during the cell cycle, and binds to DNMT1, promoting its 

degradation.50 Therefore, a DNA hypomethylation is promoted after each cell cycle, and the 

expression of tumor suppressor genes associated with senescence and apoptosis is activated.50 

Moreover, the differentiation of leukemic cells is also promoted.50 In contrast the azacytidine 

is incorporated into the RNA, and the mRNA and protein metabolism are disrupted and the 

malignant proliferation is inhited.51  

On the other hand, the isocitrate dehydrogenase inhibitors have as purpose to enhance the 

acetylation of histones, promoting the transcription of several genes involved in cell 

differentiation, cell cycle regulation and apoptosis.49  
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As single agents, both hypomethylating agents as well as isocitrate dehydrogenase inhibitors 

demonstrate to have a limited efficacy in the treatment of AML. Their combination with 

other therapies is been studied in clinical trials. 49 
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CHAPTER 2  

OBJECTIVES 

 

Nowadays, cytogenetic analysis is still an important tool for prognostic assessment and 

therapeutic decision in patients with AML, allowing the patients stratification into three 

prognostic risk groups: favorable, intermediate and adverse risk group. However, most AML 

patients categorized in the intermediate prognostic group, have leukemic cells that do not 

exhibit any type of cytogenetic abnormality or gene mutations that allow their stratification 

into the favorable or adverse risk group, which causes difficulties in predicting these patient’s 

prognosis and in understanding the molecular mechanisms of this disease. These patients are 

characterized by having a high clinical heterogeneity, which is a problem when deciding the 

optimal treatment. Therefore, our main goal is to identify potential prognostic biomarkers 

based on gene expression and DNA methylation that could allow to predict survival of 

intermediate-risk AML patients.  

To achieve this aim, we will perform the following steps: 

1. The development of an algorithm that will iteratively assess the prognostic potential 

of every gene and CpG probe with available data in the TCGA-LAML, in 

intermediate-risk AML patients. Subsequently, we aim to identify candidate 

prognostic biomarkers that could predict survival in intermediate-risk AML patients 

of each FAB-subtypes. 

2. Secondly, we aim to get further insights about what kind of cellular mechanisms 

could be impacting prognosis in AML patients studied. Therefore, we will 

systematically perform gene expression comparisons between intermediate-risk AML 

patients with worse prognosis with the intermediate-risk AML patients with better 

prognosis. Through these comparisons we will then examine which biological 

processes could be altered between the subgroups. 
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CHAPTER 3  

METHODS 

 

3.1. The Cancer Genome Atlas (TCGA) 

The Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.gov/) is a project 

created by the National Cancer Institute and the National Human Genome Research Institute 

that provides publicly available clinical and molecular data about more than 10000 patients 

and over than 30 tumor types. The purpose was to catalogue and discover genomic, 

epigenomic, transcriptomic, and proteomic alterations that contribute to cancer development, 

which may improve the diagnosis, treatment and prevention of cancer. TCGA contains 

datasets regarding methylation, whole genome sequencing, whole exome sequencing, RNA 

expression, proteomics and clinical observations. 52 

 

3.2. Dataset collection 

Datasets regarding gene expression and whole-genome DNA methylation of AML patients 

(LAML cohort), publicly available at TCGA database (http://cancergenome.nih.gov/), were 

collected through the use of University of California, Santa Cruz cancer (UCSC) Xena Public 

Data Hubs (https://tcga.xenahubs.net) (Accessed 1/19/2019; 4:57 PM). Both datasets were 

imported to the R environment through the read function from readr package. 

 

3.2.1. Gene expression dataset 

The gene expression dataset has expression values of 20530 different genes determined 

experimentally using the Illumina HiSeq 2000 RNA sequencing platform from samples of 

peripheral blood of AML patients (n=173). Each patient is represented by only one sample. 

The data is level 3 and the values of gene-level transcription estimates are presented in 

log2(x+1) transformed RSEM normalized count. Illumina RNA sequencing is a next-

generation sequencing technology that enables to characterize and quantify the RNA 
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transcripts present in a sample.53 In general, the RNA transcripts are reverse transcribed into 

complementary DNAs (cDNAs). These are then randomly fragmented, and the end of each 

cDNA fragment is ligated to adapters. Then, the cDNA fragments are sequenced and aligned 

to a reference genome database.53  

 

3.2.2. DNA methylation dataset 

The DNA methylation dataset contains methylation values of 485577 CpGs, determined 

experimentally in peripheral blood samples of AML patients (n=194) using the Illumina 

Infinium HumanMethylation450 platform. This technology allows quantifying the 

methylation status of more than 450 000 CpG sites located in the genome, using two types of 

probes: the Infinium I probes and the Infinium II probes.54 Two Infinium probes target each 

CpG site, being one of them to detect the “methylated” (M) intensity and the other for 

“unmethylated” (U) intensity.55 The Infinium I probes consists of two probes: one for the 

methylated allele and the other for the unmethylated allele.54  In contrast, only one Infinium 

II probe is used to detect the “M” and “U” intensity by distinct dye colors (green and red).55 

Therefore, the methylation level is estimated and represented as a beta value (β).55 The β is a 

continuous variable whose values vary between 0 and 1. So, higher levels of methylation 

(hypermethylation) are represented by higher βs (closer to 1) and lower levels of methylation 

(hypomethylation) are characterized by lower β’s (closer to 0). 

 

3.2.3. Patient clinical data 

UCSC Xena Public Data Hubs data regarding clinical information (e.g., age at diagnosis, 

prognosis classification, overall survival time) from 200 AML patients were also collected. 

The samples are exclusively cancerous, since normal samples are not available. The clinical 

variables used in our analysis are described in Table 3.1. As we only considered patients with 

expression and methylation data, our sample was reduced to 171 AML patients. Patients 

classified with M6 (n=2) and M7 (n=3) FAB subtypes were also removed from our analysis 

due to insufficient number of patients. Furthermore, patients without information about any 

clinical variable of interest were also removed from our analysis and the sample was reduced 

to 148 AML patients. Afterwards, the patients were subdivided according the FAB AML 

subtype. To note that in our analysis, we only considered the AML patients whose disease 

was categorized in the intermediate risk group of prognoses, and for this reason the final 
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sample was reduced to 89 AML patients. Moreover, the patients whose AML was 

categorized as FAB M3 subtype categorized in the intermediate risk group were also 

removed from our analysis.  

 

Table 3.1 Clinical Characteristics of AML patients categorized in the intermediate risk 

prognosis group. 

Group 
M0 

(n=6) 

M1 

(n=24) 

M2 

(n=19) 

M4 

(n=24) 

M5 

(n=16) 

Age ± sd 55 ± 17 54 ± 17 56 ±18 58 ± 15 54 ± 16 

< 60 years 3 (50%) 14 (58%) 8 (42%) 12 (50%) 9 (56%) 

≥ 60 years 3 (50%) 10 (42%) 11 (58%) 12 (50%) 7 (44%) 

cytogenetics 
Normal 

karyotype 

Normal 

karyotype 

Normal 

karyotype 

Normal 

karyotype 

Normal 

karyotype 

Vital Status 

Alive 2 10 6 4 5 

Dead 4 14 13 20 11 

Survival 

Time1 ± sd 
745 ± 763 592 ± 576 684 ± 744 497 ± 342 475 ± 614 

sd, standard deviation; 1, Survival mean time in days 

 

3.3. Algorithm for the identification of potential prognosis biomarkers 

In order to achieve our main goal, we developed an algorithm that allows the identification of 

potential prognostic biomarkers. The algorithm consists in four phases. In the first phase, the 

dataset is prepared for the analysis. In the second phase, the first candidate biomarkers 

capable to predict survival in the population of study are identified. The third phase consists 

in the elimination of patient’s age as a confounding factor. Finally, in the fourth phase, the 

best potential biomarkers are non-randomly selected based on established criteria. The 

algorithm was applied using R language through the R software. Each phase of the algorithm, 

as well as the R packages used, are described below.  
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3.3.1. R language  

R is a type of programming language and environment that allows the application of a variety 

of statistical (e.g., classical statistical tests) and graphical methods and can be easily extended 

through the installation of packages. This computational language is a free and open source 

and is commonly used for statistical inference and data analysis in the research community. 

The R code was developed using the R Studio software, which is also open source.  

 

3.3.2. Phase 1 – Data preparation for analysis 

3.3.2.1. Outliers treatment 

Before initiating the analysis, it is recommended to detect and remove outliers present in the 

dataset, in order to avoid bias of the results. The outliers are defined as the observations that 

are much smaller or much larger than the majority of observations.56 These extreme values 

can significantly affect the statistical analysis, leading to overestimated or underestimated 

values.56 The outlier’s detection method incorporated in our algorithm is the boxplot method 

(Figure 3.1). A boxplot is a graphical representation of the distribution of the values, allowing 

the visualization of how the observations are spread.56 According to this method, the outliers 

are the data points that lie outside the upper or lower fence lines.56 In our dataset, the outliers 

were detected and removed from our analysis using the boxplot.stats function available in R 

studio. 
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3.3.2.2. Missing data treatment 

Missing data or missing values are a very common problem in real datasets and can be 

defined as a value that is not recorded for a variable in the observation of interest. Non-

treated missing data are associated with reduced statistical power and can lead to biased 

estimates and thus, to invalid conclusions. So, to avoid an incorrect inference analysis, we 

handled missing data by applying the most frequently used method known as listwise or case 

deletion. According to this method, those variables or cases with missing data should be 

removed from the analysis. However, only variables with more than half of missing values 

were excluded in order to avoid losing extensive information, leading also to a significant 

reduction of the sample. 

 

3.3.3. Phase 2 – Identification of first candidate prognostic biomarkers 

3.3.3.1. Determination of the optimal cutpoint 

Since we wanted to perform survival curves to evaluate the prognostic value of a continuous 

or ordinal variable of interest (e.g., gene, cg), it is necessary to determine a cut point (cut off) 

to classify the observations into two distinct groups and then, compare their overall survival.  

Figure 3.1 Boxplot Method for detection and elimination of outlier values.  The 

observations that are more and less than the 75th and 25th percentiles are represented 

between the upper and the lower fences. Any value (observation) represented above the 

upper fence or below the lower fence are considered outliers and must be removed from the 

analyzing dataset. Adapted from Kwak and Kim, 2017. 
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Our algorithm determines the optimal cut point for a variable by the maximally select rank 

statistics (maxstat) method. This method was already used in a variety of published studies 

and can be easily used in R by using the survminer package. The maxstat method determines 

the exact optimal cut point through several methods and approximations that maximize the 

separation of the observations.57 Furthermore, the discrimination power of the value is also 

estimated and evaluated by calculating a p- value.57 The optimal cut point serves to classify 

the overall survival observations in one group with the values lower than or equal to the cut 

point, and in another group with the values greater than the cut point.57  

 

3.3.3.2. Survival curves analysis 

The survival analysis is a time-to-event analysis that involves a set of statistical approaches 

used to evaluate the length of time until an event of interest occurs. The time variable 

represents the years, months, or days from the beginning of the follow-up of a subject until 

the event occurs. The event variable can mean death, relapse from remission, among others. 

The majority of survival data is processed using non-parametric methods. The Kaplan-Meier 

method is the most used non-parametric method in this type of analysis. The Kaplan-Meier 

survival curve is a visual representation of survival data that describes the probability of 

surviving in a given period of time while considering time in many small intervals. In the 

graph, the Y axis represents the cumulative survival probability and the X axis represents the 

follow-up time in units of time. 

 

3.3.3.3. Comparison of survival curves 

Once the Kaplan-Meier survival curves for each variable are performed, the survival of the 

individuals of the two or more groups can be compared by statistical tests. The most common 

statistical test used to compare the survival curves is the log-rank test. The log-rank test is 

performed to test the null hypothesis that the probability to occur an event (in this case, 

death) at any time point is not different between the groups. In our algorithm, we rejected the 

null hypothesis when the log-rank p-value is lower than 0.05, meaning that the groups of 

individuals had significant differences in overall survival. 

However, sometimes the Kaplan-Meier curves intersect each other and in these cases the log-

rank test is not recommended since the test may not detect the survival differences between 
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the groups.58 When intersection of survival curves occurred, we performed the two-stage 

method because this test demonstrates higher power and greater stability in comparison with 

other methods, independently if the survival curves intersect at an early, middle, or late 

time.58 The two-stage method was developed by Qiu and Sheng and involves two steps.59 In 

the first step, a conventional log-rank test is performed.58 If a difference in survival between 

groups is detected by the conventional log-rank test (p-value < 0.05), then the two-stage 

process stops, and we can assume that the overall survival is different between the groups. 

However, if the log-rank test p-value is higher than 0.05, then either there is not a survival 

difference in both groups, or the survival curves cross and the conventional log-rank test is 

not able to detect the differences. In this case, the second step is initiated, and a weighted log-

rank test is performed. The weights are chosen so that the signal changes before and after a 

potential crossing of hazards. Then, a new p-value is generated, which we considered to be 

statistically significant if it was lower than 0.05.58 The two-stage test was performed in R, 

using the twostage() function from the TSHRC package.  

 

3.3.3. Phase 3 - Confounding factor treatment 

Our main goal is to identify potential biomarkers of prognosis to allow the subdivision of the 

AML patients with an intermediate prognostic risk. As the age of the AML patient is an 

independent risk factor, the median age of patients can constitute a confounding factor in our 

analysis. That is, if one group of patients is formed mostly by older patients and assuming 

that the older patients have an higher risk of not surviving than the younger patients, then this 

group will be classified with a worse prognosis in comparison with the other group. Thus, to 

ensure that the median age of patients is not a confounding factor in our analysis, the 

population analyzed was subdivided into two groups. The young group, which is formed by 

AML patients with less than 60 years old and the older group formed by AML patients with 

60 years or more (Figure 3.2).  
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 In both populations, young and older, the steps of phase 2 described above were performed 

independently. Thus, we obtained two pools of candidate biomarkers. One that was able to 

predict survival in the population of patients with less than 60 years, and another with 

predictive prognosis value in patients with 60 years or more. As we were interest in 

identifying the potential prognostic biomarkers that could predict survival independently of 

the age of the patient, we only considered the potential biomarkers resultant from the 

intersection of the two pools, referred as the second candidate biomarkers. In order to confirm 

that the median age of the two groups of patients was not significantly different, we 

performed a non-parametric Wilcoxon-Mann-Whitney test. We chose the Wilcoxon-Mann-

Whitney test, since it does not make the assumption that the data is normally distributed. The 

null hypothesis was rejected when the p-value was lower than 0.05. This test was termed as 

age-test, and was performed in R through the wilcox.test() function from the stats package.  

 

3.3.4. Phase 4 – Selection criteria 

All the previously identified second candidate biomarkers were able to discriminate the 

patients into two groups with distinct overall survival (log-rank or two-stage p-value < 0.05), 

and statistically non-significant differences regarding patients’ age (Mann-Whitney test p-

Figure 3.2 Cofounding factor treatment.  To certify that an advanced median age of 

patients is not responsible for the worse prognosis of one group, the patients were divided 

into young (< 60 years) and older groups (≥ 60 years). For both populations we performed 

the phase 2 of our algorithm, resulting two pools of candidate biomarkers. One pool resultant 

from the analysis in the young population, and another pool resultant from the older 

population analysis. We only considered the candidate biomarkers present in the intersection 

of the two biomarker pools. These were called the second candidate biomarkers. 
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value < 0.05). However, we noted that some of these candidate biomarkers subdivided the 

initial population into two subgroups with a substantial difference in the number of patients in 

each group (e.g., 2 patients in the first group vs 12 patients in the second group), leading to an 

unbalanced analysis. Therefore, to select the best potential biomarkers, we established a 

selection criterion that had in consideration the number of patients in both of the generated 

groups. So, we proceeded the analysis with only the candidate biomarkers that were able to 

divide the initial population into two subgroups with an established a cut-off based on the 

ratio of patients calculated in each survival curve. In an ideal case, the number of patients in 

the first group would be equal to the number of patients in the second group. So, the ideal 

ratio would be equal to 1. However, in our analysis this situation does not occur frequently, 

thus we considered a ratio between 0.60 and 1.67.  

In addition, we wanted to select the biomarkers that were differently expressed or methylated 

between the generated risk subgroups (intermediate-favorable vs intermediate-poor), since 

the biomarkers that meet this criterion are more reliable in predicting prognosis. For that, in 

the following part of the algorithm, a set of statistical tests were included.  

Firstly, a Shapiro-Wilk test is performed. This is a highly recommended test to evaluate the 

null hypothesis that a variable comes from a normal distributed population. For those 

variables that the Shapiro-Wilk p-value was lower than 0.05, we rejected the null hypothesis 

and the variable was categorized as having a non-normal distribution. Therefore, we obtained 

two groups of data: normally distributed data and non-normally distributed data. Distinct 

statistical tests were performed for each group.  

For normally distributed data, the difference of expression or methylation, between the 

generated patient subgroups, was tested by a parametric t-test. When the t-test p-value was 

lower than 0.05, we rejected the null hypothesis. The independent samples t-test assumes the 

analyzed groups have equal variances. When the samples present variances non-significantly 

different, the Welch-Satterthwaite method is performed. To know when to use this 

adjustment, we performed the levene test. The null hypothesis associated with this test is that 

the variances are equal in the analyzed groups. When the levene p-value was lower than 0.05, 

the null hypothesis was rejected, and the Welch-Satterthwaite adjustment was performed in 

the independent samples t-test.  

The independent samples t-test was performed in R by the t.test() function from the stats 

package, and the levene test was performed using leveneTest() function from the car package.  
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For non-normally distributed data, the difference of expression or methylation, between the 

generated patient subgroups, was tested by a non-parametric Wilcoxon-Mann-Whitney test, 

since it does not make the assumption that the data is normally distributed. The null 

hypothesis was rejected when the p-value was lower than 0.05.  

 

3.4. Gene Set Enrichment Analysis 

After identifying the potential biomarkers of gene expression that were able to distinguish the 

patients with AML intermediate-risk AML patients into two subgroups with distinct survival 

distributions, we aimed to understand which cellular processes were systematically different 

between the subgroups with worse prognosis (intermediate-poor) and the subgroups with 

better prognosis (intermediate-favorable). These identified candidate biomarkers divide the 

intermediate-risk AML patients in different ways, and for this reason the distribution of 

patients between the intermediate-poor and intermediate-favorable clusters varies depending 

on which candidate biomarker is used. Therefore, to understand which biological processes 

were constantly different between the two prognostic-clusters, we performed a gene set 

analysis (GSA) between the intermediate-poor and intermediate-favorable subgroups for 

every distribution of patients our candidate biomarkers generated. Subsequently, we were 

able to analyze which cellular processes were systematically enriched, regardless of which 

candidate biomarker was used.  

A GSA methodology examines the enrichment of gene ontology (GO) terms between two 

analyzed subgroups, which are sets of functionally related genes that describe biological 

functions, biological programs, and cellular locations where these take place. As such, three 

categories of GO terms exist: 1) biological processes, that describe the biological objective in 

which the group of genes participate (e.g., DNA repair); 2) molecular functions, that 

represent the activities that the genes products execute (e.g. kinase activity); and 3) cellular 

component, that describes the location in the cell where a given molecular activity or cellular 

process takes place.  In our study, our main interest was in biological processes, since the 

other two categories may lead to ambiguous and unclear conclusions. 

In comparison with individual gene analysis, GSA has several advantages such as an 

increased sensitivity, robustness and is more relevant from a biological point of view. In this 

study, we performed the Generally Applicable Gene-set Enrichment (GAGE), because it 

allows to study samples with different sizes. The GAGE methodology assesses whether 
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certain predefined gene sets (GO terms), which describe specific cellular mechanisms, are 

differentially expressed between two groups. This is achieved by calculating a log-based fold 

change for each available gene, and then applying a two-sample t-test between the mean fold 

change of a given gene set and the mean fold change of the entire background of genes 

(which in this study is all the genes for which we had available gene expression data). For 

every gene set, a p-value from the two-sample t-test in then generated, which used to reject 

the null-hypothesis that the gene set is not differentially expressed between the two analyzed 

groups.  

In this study, we iteratively performed the GAGE analysis for every patient-distribution, 

using all the GO terms that were available through the “gage” R package, which was the 

chosen tool to complete this analysis. Furthermore, each gene set was considered to be 

differentially expressed, in a statistically significant way, between the intermediate-poor and 

intermediate-favorable subgroups when the two-sample t-test p-value was lower than 0.05. 

Finally, we examined which of these GO terms were systematically enriched in all of the 

candidate biomarker-generated patient divisions.  

 

3.5. Bibliographic analysis  

Once determined the candidate genes that have a potential prognosis value in patients with 

AML categorized in the intermediate prognosis risk group, we performed a bibliographic 

analysis in order to know what genes had already described in the PubMed literature. For 

that, the OncoScore package was used to evaluate the genes had already described in 

literature and cancer-related articles. The OncoScore is an internet-based tool that measure 

the association of a term to cancer, depending on the citation frequency on PubMed articles.60  

Moreover, we also were interested to know if the genes had already documented particularly 

in leukemia and AML-related articles. To achieve this, we developed an R-based function 

that sequentially queried the PubMed database, using as search terms the identified gene and 

the disease. The function would then tally the number of search results and store the number. 

Furthermore, since usually there are several terms that refer to the same disease, this function 

was built to query the target database using a set of predefined terms, rather just one. 
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3.6. Expression data analysis 

Initially we imported the dataset with the expression values of 20530 genes and selected the 

148 patients of interest (as described in section 3.2.3). In addition, these patients were 

subdivided based on their FAB AML subtype into 6 subgroups: M0, M1, M2, M4, and M5. 

As our main goal was to identify potential prognostic biomarkers for the patients categorized 

with an intermediate prognostic risk, for each FAB subtype we only selected these patients. 

As the FAB subtypes M0 and M3 included only 6 and 1 patient, respectively, these were 

excluded from our analysis. For each subgroup of patients classified in the intermediate 

prognosis risk group (M1, M2, M4, and M5), we applied the previously described algorithm 

(section 3.3).  

 

3.7. Methylation data analysis 

Regarding the methylation analysis, we imported the methylation dataset and selected the 

same 148 patients. The patients were also subdivided by FAB subtype and posteriorly, only 

the patients classified in the intermediate prognosis risk group were selected, excluding the 

patients classified with M0 and M3 FAB subtypes. The developed algorithm was applied in 

each subgroup of FAB subtypes selected (M1, M2, M4, and M5), and with the M0, M1, M2, 

M4, and M5 FAB subtypes together. After the algorithm application, the delta beta (Δβ) 

value was also calculated for each CpG site identified as a potential prognostic biomarker, 

and we only selected the cg’s with a Δβ > 0.2. Finally, we identified, for each FAB subtype 

selected, the set of cg’s that can predict survival for patients categorized within the 

intermediate prognosis risk group, independently of their age. 
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CHAPTER 4   

RESULTS 

 

4.1 FAB M1 AML SUBTYPE 

From the TCGA database, we collected the datasets regarding gene expression, DNA 

methylation and clinical information from AML patients (TCGA LAML cohort). As we were 

interested in analyzing each AML FAB subtype independently, our first population of study 

was the patients with AML classified as the FAB M1 subtype (AML-M1) categorized within 

the intermediate prognostic risk group. The TCGA LAML cohort included 24 patients under 

these conditions. Next, we applied the developed algorithm independently to both gene 

expression and DNA methylation datasets. The gene expression results are described in the 

4.1.1 section, and the DNA methylation results are described in the 4.1.2 section.  

 

4.1.1 Gene expression as a potential prognostic biomarker in patients with AML-M1 

categorized in the intermediate prognostic risk group 

The expression values of 20530 genes were analyzed for patients with AML-M1 categorized 

in the intermediate prognostic risk group. After the first phase of the algorithm, known as 

data preparation for analysis, the 20530 genes were reduced to 17527 genes. These genes 

were posteriorly submitted to the second phase of the algorithm, consisting of the 

identification of the first potential prognostic biomarkers, remaining 1095 genes. From the 

third phase of the algorithm described as the confounding factor treatment, the 1095 genes 

were reduced to 90 genes. Lastly, after the fourth phase known as selection criteria, our 

algorithm identified 11 candidate genes whose expression appeared to be a potential 

biomarker to predict survival in patients with AML-M1 classified in the intermediate 

prognostic risk group (Table 4.1 and Annex I).  
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The optimal cutpoint described in the Table 4.1. is the cutpoint value mentioned throughout 

the results chapter explanation, and it is the value used to stablish the two subgroups (low vs 

high) in the Kaplan-Meier overall survival curves.  

  

Table 4.1 List of the 11 genes whose expression was able to predict survival in patients 

with AML-M1 categorized in the intermediate prognostic risk group. 

Gene p-value Optimal cutpoint 
Group1 

(n) 

Group2 

(n) 

Age test 

(p-value) 
HR 

TATDN3 0.00858 7.8936 13 9 0.08806 9.53508 

PBDC1 0.00305 8.0404 13 11 0.1727 7.15919 

CLIC1 0.00875 12.2505 13 10 0.43742 5.97406 

SNAP23 0.01412 10.4537 10 13 0.21405 4.07169 

NNMT 0.04064 2.6515 14 10 0.76936 0.33026 

CLEC4G 0.04198 2.2924 11 13 0.05932 0.30684 

ARHGAP23 0.02927 9.553 11 13 0.33836 0.26506 

ABCC9 0.02149 2.2692 11 13 0.05552 0.25617 

ZBED3 0.00765 7.0613 13 11 0.07677 0.22755 

MCM4 0.01577 11.7508 10 13 0.11315 0.16847 

SLC10A4 0.01217 2.2692 10 13 0.57608 0.16753 

HR, hazard ratio 

 

In Figure 4.1, we show representative top 4 Kaplan-Meier overall survival curves with the 

highest hazard ratio value, obtained using the expression cutpoints of TATDN3, PBDC1, 

CLIC1, and SNAP23 genes, respectively. Interestingly, low expression levels of the four 

genes was related to the subgroups with a better prognosis. Relatively to the 7 remaining 

identified genes, the better prognosis was related with high expression (Annex I).  



42 

 

Moreover, the survival curve obtained based on the expression cutpoint of TATDN3 gene has 

the highest hazard ration value of 9.54 (Figure 4.1.a). This result means that the patients 

categorized in the worse prognosis subgroup have 9.54 times more risk of dying than the 

subgroup with the better prognosis. The hazard ratio values of the survival curves obtained 

using the PBDC1, CLIC1, SNAP23 expression cutpoints were 7.16, 5.97, and 4.07, 

respectively (Figure 4.1. b, c, d). 

Figure 4.1 Kaplan-Meier overall survival curves for four out of the eleven potential 

prognostic biomarkers identified for patients with AML-M1 categorized in the 

intermediate prognostic risk group.  Kaplan-Meier curve obtained using the expression 

cutpoint of the (a) TATDN3 gene (p = 0.0086, log-rank test), (b) PBDC1 gene (p = 0.0031, 

log-rank test), (c) CLIC1 gene (p = 0.0087, log-rank test), (d) SNAP23 gene (p = 0.014, log-

rank test). The number at risk corresponds to the number of patients, at the indicated time 

point, that are still alive and whose follow-up continues. 
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We have also observed that the subdivision of patients with AML-M1 categorized in the 

intermediate prognostic risk group was specific for each gene expression cutpoint identified. 

For example, the expression cutpoint determined for the TATDN3 gene did not generated the 

same patient subgroups as the expression cutpoint determined for the PBDC1 gene.  

However, despite these different subdivisions according to the expression cutpoints, we were 

interested to know if there were common gene sets, related to biological processes, enriched 

in the identified subgroups with worse prognosis (intermediate-poor subgroups) in 

comparison with the identified subgroups with a better prognosis (intermediate-favorable 

subgroups). Our results suggest that, in the majority of the intermediate-poor subgroups 

generated by each expression cutpoint, there were some biological processes gene sets 

downregulated and upregulated when compared with the intermediate-favorable subgroups 

(Annex II). In Figure 4.2, are shown the top 5 biological processes gene sets down and 

upregulated in the majority of the intermediate-poor subgroups.  

Vascular endothelial growth factor signaling pathway, hydrogen peroxide catabolic process, 

cellular response to vascular endothelial growth factor stimulus, skeletal system development, 

and gas transport are examples of these downregulated gene sets in the majority of 

intermediate-poor versus intermediate-favorable subgroups. In contrast, regulation of natural 

killer cell mediated immunity, podosome assembly, positive regulation of response to biotic 

stimulus, regulation of innate immune response, positive regulation of innate immune 

response are some biological processes gene sets that seemed to be upregulated in the 

majority of intermediate-poor subgroups (Figure 4.2). 
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Having identified the candidate genes, we performed a bibliographical analysis to find out if 

the 11 genes were already described in the literature (Annex I). We found that one gene, 

TATDN3 was not previously referred in the PubMed literature. Five of the 11 identified genes 

(~ 46%) (ZBED3, CLEC4G, SLC10A4, PBDC1, and ABCC9) were already linked to other 

cancer types than leukemia. Three of the 11 genes (~ 27%) (ARHGAP23, CLIC1, and NNMT) 

were already associated to leukemia, but not in AML related publications. Finally, only 2 of 

the 11 genes (18.2%) (MCM4 and SNAP23) were previously described in AML-related 

articles.  

 

4.1.2 DNA methylation as a potential prognostic biomarker in patients with AML-M1 

categorized in the intermediate prognostic risk group. 

We were also interested into analyzing the potential of DNA methylation as a prognostic tool 

in patients with AML-M1 categorized in the intermediate prognostic risk group. For this, we 

selected the DNA methylation values of 485577 CpG sites, collected from the 24 AML 

Figure 4.2 Top 5 gene sets related to biological processes down and upregulated in most 

of the intermediate-poor in comparison with the intermediate-favorable subgroups with 

AML-M1.  The gene set analysis was performed in the biological processes category to 

identify the GO terms that were differently enriched between the subgroups analyzed. In blue 

are represented the GO terms that are downregulated and in red are represented the GO terms 

that were upregulated between the intermediate-poor and the intermediate-favorable 

subgroups. 
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patients (the same population used for the gene expression analysis). Our algorithm was 

applied to identify which CpG site methylation could predict survival. The 485577 CpG sites 

were reduced to 395845 CpG sites, after the application of the first phase of the algorithm 

(data preparation for analysis). Afterwards, the second phase of the algorithm (identification 

of the first potential prognostic biomarkers) reduced the 395845 CpG sites to 26606. Then, 

only 2051 CpG sites were selected by the third phase of the algorithm (confounding factor 

treatment). With the final phase completed (selection criteria), we finally identified 137 

candidate CpG sites, localized in 130 genes, whose DNA methylation appeared to predict 

survival of AML-M1 patients categorized in the intermediate prognostic risk group (Annex 

III and IV). In the Table 4.2 are represented the top 15 of the identified CpG sites with a 

higher hazard ratio value. 

Table 4.2 List of 15 out of the 137 CpG sites identified whose DNA methylation 

appeared to predict survival in patients with AML-M1 categorized in the intermediate 

prognostic risk group. 

CpG sites p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age test 

(p-value) 
Gene HR 

cg06577205 0.00061 0.4191 10 14 0.1593 FBXL7 9.35265 

cg12523924 0.00099 0.2775 11 13 0.83907 HTR1A 8.85568 

cg27344859 0.00146 0.078 14 10 0.06057 MIR124-3 8.05598 

cg21385821 0.00323 0.2155 13 11 0.09243 CA10 7.08546 

cg00662963 0.00621 0.9328 12 12 0.24749 PRR23B 6.37657 

cg00664792 0.00189 0.5001 13 11 0.16374 SMOC2 6.34213 

cg08692733 0.00398 0.3127 10 14 0.197 RBM20 6.12141 

cg20708909 0.01303 0.7944 14 10 0.05296 OPCML 6.08624 

cg23385847 0.00242 0.9131 12 12 0.41821 CAMK4 6.05951 

cg07674139 0.00459 0.659 10 14 0.21813 NRK 5.71912 

cg25406755 0.00436 0.2133 10 14 0.22929 TFIP11 5.33466 

cg23073879 0.01856 0.454 14 10 0.66006 GALNT17 5.21274 

cg25024717 0.00910 0.4746 13 11 0.79401 HOXC13 5.00575 

cg23876072 0.01083 0.7818 12 12 0.1483 ANO1 4.86751 

cg10965508 0.01866 0.3989 14 10 0.09466 TTBK1 4.80965 

HR, hazard ratio 
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As examples, Figure 4.3 shows the top 4 Kaplan-Meier overall survival curves with the 

highest hazard ratio value, obtained using the methylation cutpoints of 4 identified CpG sites 

localized in FBXL7, HTR1A, MIR124-3, and CA10 genes, respectively. The survival curves 

hazard ratio values of the remaining CpG sites demonstrated localized in the HTR1A, 

MIR124-3, and CA10 genes were 8.86, 8.06, and 7.09, respectively (Figure 4.3. b, c, d). 

Figure 4.3 Kaplan-Meier overall survival curves for four out of the 137 potential DNA 

methylation prognostic biomarkers identified for patients with AML-M1 categorized in 

the intermediate prognostic risk group. Kaplan-Meier curves obtained using the 

methylation cutpoint of the (a) cg06577205 localized in the FBXL7 gene (p = 0.00061, log-

rank test) , (b) cg12523924 localized in the HTR1A gene (p = 0.00099, log-rank test), (c) 

cg27344859 localized in the MIR124-3 gene (p = 0.0015, log-rank test), (d) cg21385821 

localized in the CA10 gene (p = 0.0032, log-rank test). The number at risk corresponds to the 

number of patients, at the indicated time point, that are still alive and whose follow-up 

continues.  
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Interestingly, the hypomethylation of each identified CpG site demonstrated in the Figure 4.3 

was related with the subgroup of patients with better prognosis. In the remaining identified 

CpG sites, hypomethylation was related to the subgroup with better prognosis in 26 CpG 

sites. On the other hand, in 106 of the analyzed CpG sites, hypermethylation was related to 

the subgroup with better prognosis (Annex IV).  

As the identified 137 CpG sites were localized in 130 genes, it means that there were genes 

with several CpG sites that were able to differentiate survival in the AML-M1 patients 

studied. In Table 4.3, are shown the 6 genes with more than one CpG site with prognostic 

value, the genomic location of the CpG as well as the methylation status of the CpG that was 

related to the subgroup with a better prognosis.  

Table 4.3 The 6 genes with more than one CpG site with prognostic value in AML-M1 

patients categorized in the intermediate prognostic risk group. 

Gene CpG site CpG location 
Methylation status related to 

better prognosis 

FOXK1 
cg15176413 Intron hypermethylation 

cg26800803 Intron hypermethylation 

HOXC13 
cg17410650 Distal Intergenic hypomethylation 

cg25024717 Distal Intergenic hypomethylation 

OPCML 
cg10966440 1st Intron hypermethylation 

cg20708909 Promoter (<=1kb) hypomethylation 

PALLD 
cg14069287 Intron hypermethylation 

cg05259872 Promoter (<=1kb) hypermethylation 

PRDM1 
cg04309234 Distal Intergenic hypermethylation 

cg03942932 Distal Intergenic hypermethylation 

SIX3 
cg11218954 Distal Intergenic hypermethylation 

cg10963518 Distal Intergenic hypermethylation 

 

Our results suggest that the FOXK1 gene has two CpG sites localized in intronic regions, and 

hypermethylation of each of these CpG sites was related with the subgroup with better 

prognosis. Moreover, the HOXC13 gene was another one with two CpG sites with a 

prognostic value in AML-M1 group of patients studied, both localized in the distal intergenic 
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region, and the hypomethylation of each CpG site was related with the intermediate-favorable 

subgroup. The OPCML gene also seemed to have two CpG sites with a prognostic value. The 

cg10966440 localized in the first intron, for which hypermethylation was related with the 

subgroup with a better prognosis, and the cg20708909 localized in the promotor, for which 

hypomethylation was related with the subgroup with a better prognosis. In addition, the 

PALLD gene had the cg14069287 in an intronic region, and the cg05259872 in the promotor. 

The hypermethylation of each of these CpG sites was related to the better prognosis 

subgroup. Moreover, the PRDM1 gene appeared to have two CpG sites localized in the distal 

intergenic region, for which hypermethylation was related with the subgroup with better 

prognosis in both cases. The same appeared to occur with the SIX3 gene.  

Analyzing the generated subgroups by each methylation cutpoint, we observed that most 

analyses generated a unique subdivision of AML patients. Nonetheless, the methylation 

cutpoint of two CpG sites (cg02436098 in the TNFAIP8L1 gene, and cg11218954 in the SIX3 

gene) generated the same AML patients’ subgroups. 

We were also interested in knowing the genomic localization of the 137 identified CpG sites. 

We observed that the CpG’s of interest were localized in promotors, 3’UTR, introns, exons, 

and in distal intergenic regions (Figure 4.4 and Annex IV). The promotor was the genomic 

localization where the majority of the identified CpG’s, 62%, appeared to be located. 

Figure 4.4 Location of the identified CpG sites within the genes, whose methylation 

appeared to be a potential biomarker in AML-M1 patients categorized in the 

intermediate prognostic risk group.  The majority of the 137 CpG sites identified by our 

algorithm were localized in the promotor region (~ 62%). The second genomic region with 

more identified CpG’s was the distal intergenic region. About 12% of the CpG’s were in 

other intronic regions. The 3’UTR, other exons and first intron were the genomic regions 

with less identified CpG’s (0.7%, 1.45%, and 5.8%, respectively). 
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To know if the 130 genes, where the 137 CpG sites identified were localized, were already 

described in the literature, a bibliographic analysis was performed (Annex IV). We found that 

6 genes of interest (MIR147A, REX1BD, FAM169B, PRR23B, EFCAB10, and C1orf53) were 

never described in the PubMed literature. Moreover, 51 of the 130 identified genes (~39%) 

had already been studied in other cancer types than leukemia. Twenty-two of the 130 genes 

(~17%) had already been described in leukemia, but not in AML related articles. Finally, 46 

of the 130 genes (~35%) had been described in AML related articles. The genes that we 

found to be cited in AML literature are: ALK, TCF3, SKI, BMF, SOCS3, MICA, EBF1, PGF, 

HLX, TBL1XR1, HOXA1, CD1C, NRK, NIN, EVL, G0S2, USP18, BLNK, PRDM1, CA10, 

IRX2, NFIA, GBX2, PDLIM4, PTCH1, SCIN, SOX18, ADAMTS9, SETD1B, UGP2, 

DSCAML1, ARF6, PCDH9, DOK7, NRG1, PALLD, SNUPN, FGF6, HOXC9, CAPG, 

PRUNE2, CHIT1, PTPRG, PRKG1, WDR43, and EN1 genes.  

Finally, we verified that the genes identified in the expression analysis (section 4.1.1) were 

different of the genes identified in the methylation analysis (section 4.1.2) 
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4.2. FAB M2 AML SUBTYPE 

Our second population of interest was the group of patients with AML classified as FAB M2 

subtype (AML-M2) categorized in the intermediate prognostic risk group. The TCGA LAML 

cohort contained gene expression, DNA methylation as well as clinical information data from 

19 patients with this condition. The gene expression results are described in 4.2.1 section, and 

the DNA methylation results are described in 4.2.2 section. 

 

4.2.1 Gene expression as a potential prognostic biomarker in patients with AML-M2 

categorized in the intermediate prognostic risk group 

The gene expression values for 20530 genes from the 19 patients with AML-M2 categorized 

in the intermediate prognostic risk group were analyzed by the developed algorithm in order 

to determine the genes whose expression could have a potential prognostic value in the 

population of study. Once the first algorithm phase (data preparation for analysis) was 

performed, the total number of genes was reduced from 20530 to 17280 genes. From these 

genes, just 1420 resulted after the application of the second algorithm phase (identification of 

the first potential prognostic biomarkers). Afterwards, the third phase (confounding factor 

treatment) led to the selection of 178 genes. In the final of the fourth phase, the algorithm 

identified 58 candidate genes whose expression appeared to predict survival in the population 

of patients with AML-M2 categorized in the intermediate prognostic risk group (Annex V 

and VI). The Table 4.4 shows the top 15 of the 58 identified genes with the highest hazard 

ratio value.  
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Table 4.4 List of 15 of the 58 genes whose expression was able to predict survival in 

patients with AML-M2 categorized in the intermediate prognostic risk group. 

Gene p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
HR 

OSM 0.00011 7.49130 9 10 0.08613 14.64881 

MAP1LC3B2 0.00224 7.59950 10 7 0.24099 13.10614 

RNPEP 0.00020 10.40060 8 11 0.74096 12.52281 

EIF1 0.00036 12.97910 10 8 0.50472 11.07338 

SPATA2L 0.00253 6.70250 10 7 0.18714 8.21557 

SF1 0.00080 12.81370 10 9 0.39085 7.44932 

DNAJC1 0.00140 9.26950 11 8 0.12628 7.10914 

FOSL1 0.00545 7.20840 11 8 0.23078 5.52843 

EXOSC6 0.00288 8.43780 10 9 0.08613 5.48530 

MAFF 0.00295 7.15470 9 10 0.25258 5.33656 

IL3RA 0.00748 8.36750 11 8 0.59114 5.26753 

HSD11B1L 0.00385 4.30000 10 9 0.13057 5.22570 

CYP27B1 0.00430 4.54000 9 10 0.71306 5.07248 

DDX27 0.00894 10.13880 10 9 0.53994 4.61328 

NDUFS4 0.01547 8.48790 11 8 0.21510 4.42246 

HR, hazard ratio 

 

The top 4 Kaplan-Meier overall survival curves with the highest hazard ratio values are 

depicted in the Figure 4.5. The Kaplan-Meier curve obtained using the expression cutpoint of 

the OSM gene had the highest hazard ration value of 14.65 (Figure 4.5.a). The hazard ratio 

values of the survival curves obtained using the expression cutpoint of the MAP1LC3B2, 

RNPEP, and EIF1 genes were 13.11, 12.52, and 11.07, respectively (Figure 4.5.b, c, d).  
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Relatively to the expression status, for each case, the low expression levels was related with 

the subgroup with better prognosis. For the remaining genes, the low expression levels were 

displayed by the better prognosis subgroup in 12 identified genes. In contrast, high 

expression levels were related with the better prognosis subgroup in 42 identified genes 

(Annex VI). 

Figure 4.5 Kaplan-Meier overall survival curves for four out of the 58 potential gene 

expression prognostic biomarkers identified for patients with AML-M2 categorized in 

the intermediate prognostic risk group.  Kaplan-Meier curve obtained using the expression 

cutpoint of the (a) the OSM gene (p = 0.00011, log-rank test) , (b) the MAP1LC3B2 gene (p = 

0.0022, log-rank test), (c) the RNPEP gene (p = 0.0002, log-rank test), (d) the EIF1 gene (p = 

0.00036, log-rank test). The number at risk corresponds to the number of patients, at the 

indicated time point, that are still alive and whose follow-up continues. 
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Most of the determined expression cutpoints subdivided the AML patients in a unique way. 

However, the expression cutpoints of two pairs of genes: KIAA1217 and EPB41L1 genes, and 

EYA1 and KLHL13 genes, generated the same subgroups of AML-M2 patients.  

As made in the FAB M1 subtype analysis, the subgroups generated by the determined 

expression cutpoints were compared by the gene set analysis. The goal was to identify 

biological processes that were differentially enriched in the majority of the subgroups with 

worse prognosis (intermediate -poor) in comparison with the subgroups with better prognosis 

(intermediate – favorable) (Annex VII). In the Figure 4.6 are shown the top 5 gene sets that 

appeared to be down and upregulated in the majority of the intermediate-poor subgroups 

versus the intermediate-favorable subgroups. 

Our results suggest that biological processes related to sprouting angiogenesis, locomotor 

behavior, negative regulation of supramolecular fiber organization, Rho protein signal 

transduction, and regulation of Rho protein signal transduction are some examples of gene 

sets that appeared to be downregulated in the intermediate-poor when comparing with the 

intermediate-favorable subgroups.  

Figure 4.6 Top 5 gene sets down and upregulated related to biological processes in 

most of the intermediate-poor in comparison with the intermediate-favorable 

subgroups with AML-M2.  Gene sets about biological processes were analyzed in order to 

identify which GO terms were differently enriched in the identified subgroup with worse 

prognosis in comparison with the identified subgroups with better prognosis. In blue are 

represented the GO terms that are downregulated and in red are represented the GO terms 

that are upregulated between the subgroups analyzed. 
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On the other hand, mitochondrion organization, ATP synthesis coupled proton transport, 

energy coupled proton transport down electrochemical gradient, respiratory electron transport 

chain and cellular respiration were biological processes gene sets that seemed to be 

upregulated in the intermediate-poor in comparison with the intermediate-favorable 

subgroups.  

Bibliographic analysis was performed to know if the 58 identified candidate genes were 

already described in the literature (Annex VI). We noticed that 4 identified genes (ZNF732, 

ANKRD20A4, ZNF684, and SPATA2L) were never described in the PubMed literature. 

Twenty-five of the 58 genes (~ 43%) already been described in other cancer types than 

leukemia. Seven of the 58 genes (~12%) had already described in leukemia, but not in AML 

related articles. Finally, 19 of the 58 genes (~33%) had been described in AML related 

articles. Sorting by the number of citations, the identified genes already described in the 

AML related articles are: ABCB1, IL3RA, FLT1, OSM, SAMD9L, SF1, EPB41L1, AS3MT, 

CYP27B1, DNAJC1, SLA, FOSL1, RGS5, DPYD, DDO, EYA1, MAFF, PARP9, and CYBRD1 

gene. 

 

4.2.2 DNA methylation as a potential prognostic biomarker in patients with AML-M2 

categorized in the intermediate prognostic risk group  

Our algorithm was also applied in the DNA methylation dataset with DNA methylation 

values of 485577 CpG sites from the 19 patients with AML-M2 categorized in the 

intermediate prognostic risk group (same patients used in the previous analysis). Our goal 

was to determine which CpG sites that DNA methylation can be a potential prognostic 

biomarker to predict survival in AML-M2 patients with intermediate prognostic risk group. 

The first phase of the algorithm (data preparation for analysis) reduced the initial number of 

CpG sites to 395830. In its turn, the second algorithm phase (identification of the first 

potential prognostic biomarkers) decreased the CpG site number to 27067. Moreover, the 

third algorithm phase (confounding factor treatment) selected only 2519 CpG sites. In last, 

after the fourth algorithm phase (selection criteria), we identified 691 CpG sites whose DNA 

methylation seemed to have a predictive survival value in patients with AML-M2 categorized 

in the intermediate prognostic risk group (Annex VIII and Annex IX). We also verified that 

these CpG sites were localized in 592 genes. In the Table 4.5 are represented the top 15 

identified CpG sites with the highest hazard ratio value. 
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Table 4.5 List of 15 out of the 691 CpG sites whose DNA methylation was able to predict 

survival in patients with AML-M2 categorized in the intermediate prognostic risk 

group. 

CpG sites p-value 
Optimal 

Cutpoint 

Group1 

(n) 

Group2 

(n) 

Age test 

(p-value) 
HR Gene 

cg00645383 0.00003 0.70540 10 9 0.59529 26.71490 SPACA7 

cg12899423 0.00006 0.55290 10 9 0.19103 26.67841 ALX4 

cg02939781 0.00009 0.66840 9 10 0.30701 23.69147 KLHL6 

cg23357198 0.00008 0.37990 11 8 0.77238 23.24957 PTPRT 

cg17264618 0.00008 0.55310 11 8 0.77238 23.24957 ENTPD3 

cg25824217 0.00011 0.56860 10 9 0.26992 22.94440 HLA-DPA1 

cg14178336 0.00011 0.36630 10 9 0.26992 22.94440 CALN1 

cg00622702 0.00011 0.54610 10 9 0.26992 22.94440 IFNAR1 

cg06321596 0.00011 0.27450 10 9 0.26992 22.94440 XYLT1 

cg08708961 0.00011 0.06960 10 9 0.26992 22.94440 PSEN2 

cg12224030 0.00011 0.13330 10 9 0.26992 22.94440 DLX4 

cg14396892 0.00009 0.26320 8 11 0.96704 22.58527 MIR4291 

cg08198176 0.00009 0.34150 9 10 0.90244 22.10625 ITGA9 

cg03572859 0.00009 0.31330 9 10 0.90244 22.10625 SORBS3 

cg17142470 0.00009 0.56250 9 10 0.90244 22.10625 SORBS3 

HR, hazard ratio 

 

In the Figure 4.7 are shown as examples, the top 4 Kaplan-Meier overall survival curves with 

the highest hazard ratio value, obtained using the methylation cutpoint of 4 identified CpG 

sites localized in the SPACA7, ALX4, KLHL6, and PTPRT genes, respectively. The survival 

curve obtained using the methylation cutpoint of the cg00645383 had the highest hazard ratio 

value of 26.71 (Figure 4.7.a). The hazard ratio values associated with the survival curves of 

the remaining demonstrated CpG sites localized in the ALX4, KLHL6, and PTPRT genes were 

26.68, 23.69, and 23.25, respectively (Figure 4.7. b, c, d). 
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In each demonstrated survival curve, the hypomethylation levels were related with the 

subgroup with a better prognosis (Figure 4.7). In the remaining cases, hypomethylation was 

displayed by the subgroup with a better prognosis, in 191 identified CpG sites. On the other 

Figure 4.7 Kaplan-Meier overall survival curves for four out of the 691 potential DNA 

methylation prognostic biomarkers identified for patients with AML-M2 categorized in 

the intermediate prognostic risk group. Kaplan-Meier curve obtained using the 

methylation cutpoint of the (a) cg00645383 localized in the SPACA7gene (p = 0.00003, log-

rank test), (b) cg12899423 localized in the ALX4 gene (p = 0.00006, log-rank test), (c) 

cg02939781 localized in the KLHL6 gene (p = 0.00009, log-rank test), (d) cg23357198 

localized in the PTPRT gene (p = 0.00008, log-rank test). The number at risk corresponds to 

the number of patients, at the indicated time point, that are still alive and whose follow-up 

continues. 
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hand, the hypermethylation was related to the subgroup with a better prognosis, in 496 

identified CpG sites (Annex IX).  

As mentioned, the 691 identified CpG sites with a prognostic value were localized in 592 

genes, which means that there are genes with more than one CpG site that were able to 

predict survival in the AML-M2 patients studied. We observed that there were 90 genes with 

more than one relevant CpG site (Annex X). In the majority of these cases the several CpG 

sites localized in the same gene, their methylation status that confer a better prognosis was 

the same. For example, the cg25880242 and cg21943117 were both localized in the distal 

intergenic region of ACTRT2 gene, and the hypermethylation of each CpG site was related 

with the better prognosis subgroup.  

 

Table 4.6 Examples of 5 genes with more than one CpG site with prognostic value in 

AML-M2 patients categorized in the intermediate prognostic risk group. 

Gene CpG site Location of the CpG site 
Methylation status related to 

better prognosis 

ACTRT2 
cg25880242 Distal Intergenic hypermethylation 

cg21943117 Distal Intergenic hypermethylation 

AHRR 
cg12806681 Intron hypermethylation 

cg03991871 Intron hypermethylation 

AXL 
cg03247049 Promoter (<=1kb) hypomethylation 

cg14892768 Promoter (<=1kb) hypomethylation 

AZU1 

cg14663914 Promoter (<=1kb) hypermethylation 

cg17823175 Promoter (<=1kb) hypermethylation 

cg16643542 Promoter (<=1kb) hypermethylation 

cg02147126 Promoter (<=1kb) hypermethylation 

cg15610437 Promoter (<=1kb) hypermethylation 

B3GALT4 
cg21618521 Promoter (<=1kb) hypomethylation 

cg17103217 Promoter (<=1kb) hypomethylation 

 

Moreover, we were also interested to know the genomic localization of the 691 identified 

CpG sites. We observed that the identified CpG sites were localized in genomic regions such 

as promotor, 5´UTR, 3’UTR, other exon, first intron, other intron, downstream, and distal 
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intergenic (Figure 4.8 and Annex IX). The promotor was the genomic region with more CpG 

sites (~ 47%), and the distal intergenic follows with more CpG sites (~ 22%).   

In addition, we performed a bibliographical analysis to evaluate if the identified 592 genes, 

where the identified CpGs sites were located, were already described in the literature (Annex 

IX). We found that 22 genes (MIR4710, LRRC14B, ZNF678, CPNE9, PNMA8B, SNORD115-

37, C17orf102, SNORA63, MTRNR2L7, OR11H12, SNORD115-40, LCE2A, FAM216B, 

MIR4278, TMEM211, C9orf62, MIR4291, SPEM2, MIR4472-1, C2orf27B, C11orf88, and 

CEP170B) were never described in the PubMed literature. Also, 235 of the 592 genes (~ 

40%) had already been described in other cancer types than leukemia. Moreover, 118 of the 

592 genes (~20%) had already described in leukemia, but not in AML related articles. 

Finally, 180 of the 592 genes (~30%) had been described in AML related articles. 

Comparing the expression and DNA methylation results, we observed that were two genes 

whose expression and DNA methylation were able to predict survival in the AML-M2 

patients. These genes were FAM234A and KIAA1217 genes. 

  

Figure 4.8 Location of the identified 691 CpG sites within the genes, whose methylation 

appeared to be a potential biomarker in AML-M2 patients categorized in the 

intermediate prognostic risk group. The majority of the 691 CpG sites identified by our 

algorithm were localized in the promotor region (~ 47%). The second genomic region with 

more identified CpG’s was the distal intergenic region. About 16% of the CpG’s were the 

other intron regions. The first intron, 3’UTR, other exon, downstream, and 5’UTR were the 

genomic regions with less identified CpG’s (7.38%, 3.04%, 2.75%, 1.45%, and 0.43%, 

respectively). 
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4.3 FAB M4 AML SUBTYPE 

Our third population of interest was the group of patients with AML classified as FAB M4 

subtype (AML-M4) categorized in the intermediate prognostic risk group. Thereby, we 

extracted the gene expression, DNA methylation and the clinical information datasets 

referring to the patients with the desired characteristics, representing our population of study 

with 24 patients. Both gene expression and DNA methylation datasets were analyzed by the 

developed method individually. The gene expression results are described in 4.3.1 section, 

and the DNA methylation results are described in 4.3.2 section. 

 

4.3.1 Gene expression as a potential prognostic biomarker in patients with AML-M4 

categorized in the intermediate prognostic risk group 

The 20530 initial genes were reduced to 17347 genes after performing the first algorithm 

phase (data preparation for analysis). After that, the second algorithm phase (identification of 

first potential prognostic biomarkers) was applied and 1173 genes were selected. 

Furthermore, the third algorithm phase (confounding factor treatment) reduced the 1173 

genes to 115. The fourth algorithm phase (selection criteria) allowed the identification of 4 

candidate genes whose expression appeared to predict survival in patients with AML-M4 

categorized in the intermediate prognostic risk group (Table 4.7 and Annex XI).  

 

Table 4.7 List of the 4 genes whose expression was able to predict survival in patients 

with AML-M4 categorized in the intermediate prognostic risk group. 

Gene p-value Optimal cutpoint 
Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
HR 

CCNK 0.00003 10.2570 12 10 0.2762 24.6115 

RPUSD4 0.02652 8.8173 9 14 0.1225 0.3192 

ATAD3C 0.01391 2.6992 13 11 0.9538 0.3091 

TRIM2 0.00100 5.2940 13 10 0.5554  

HR, hazard ratio 

 

The Figure 4.9 shows the top 4 Kaplan-Meier overall survival curves with the highest hazard 

ratio values, obtained using the determined expression cutpoints of CCNK, RPUSD4, 
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ATAD3C, and TRIM2 genes, respectively. The survival curve of CCNK gene had the highest 

hazard ratio value of 24.6. The hazard ratio values of the survival curves obtained using the 

expression cutpoint of the RPUSD4 and ATAD3C genes were 0.32 and 0.31, respectively 

(Figure 4.9.b, c). The patient subgroups generated based on the expression cutpoint of the 

TRIM2 gene did not have proportional hazards. For this reason, the hazard ratio was not 

calculated. 

Figure 4.9 Kaplan-Meier overall survival curves for the four potential prognostic 

biomarkers identified for patients with AML-M4 categorized in the intermediate 

prognostic risk group. Kaplan-Meier curve obtained using the expression cutpoint of the (a) 

CCNK gene (p = 0.00003, log-rank test), (b) RPUSD4 gene (p = 0.027, log-rank test), (c) 

ATAD3C gene (p = 0.014, log-rank test), (d) TRIM2 gene (p = 0.001, two-stage test). The 

number at risk corresponds to the number of patients, at the indicated time point, that are still 

alive and whose follow-up continues. 
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Then, the low expression of CCNK gene seemed to be related with a better prognosis (Figure 

4.9. a). The other identified genes, RPUSD4, ATAD3C, and TRIM2, showed high expression 

in the subgroup of AML patients with a better prognosis (Figure 4.9. b, c, d). 

In addition, we also evaluated how the patients were subdivided based on each determined 

expression cutpoint. We saw that the patients are categorized in the intermediate-favorable or 

intermediate-poor subgroups depending on the expression cutpoint used. That is, different 

cutpoints do not generate the same patient´s subgroups with significant differences in overall 

survival.  

As performed in the FAB M1 and FAB M2 AML subtypes analysis, we also evaluated if 

there were genes sets related to biological processes that were commonly enriched in the 

intermediate-poor subgroups in comparison with the intermediate-favorable subgroups, 

generated based on each determined expression cutpoint. We identified some biological 

processes that seemed to be down and upregulated in the intermediate-poor in comparison 

with the intermediate-favorable subgroups (Annex XII). In Figure 4.10 the top 5 down and 

upregulated gene sets are shown. 

Figure 4.10 Top 5 GO terms, in biological processes category, down and upregulated 

between the intermediate-poor and the intermediate-favorable groups with AML-M4.  

Biological processes category was studied based on the gene set analysis to identify the GO 

terms that were differently enriched between the subgroups analyzed. In blue are represented 

the GO terms that are downregulated and in red are represented the GO terms that are 

upregulated between the intermediate-poor and the intermediate-favorable identified 

subgroups. 
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Branching morphogenesis of an epithelial tube, detection of chemical stimulus, detection of 

stimulus involved in sensory perception, detection of chemical stimulus involved in sensory 

perception, and sensory perception of chemical stimulus are the top 5 biological processes 

that seemed to be downregulated in the intermediate-poor subgroups. In contrast, RNA 

catabolic process, proteasomal regulation of cell cycle process, negative regulation of cell 

cycle process, and RNA splicing seemed to be upregulated in the intermediate-poor 

subgroups versus the intermediate-favorable subgroups.  

Furthermore, we performed a bibliographical analysis to evaluate if the 4 identified candidate 

genes were already described in the literature (Annex XI). We found that all candidate genes 

had already been referred in the PubMed literature, specifically in cancer related articles but 

only 1 of the 4 genes (CCNK) had already been described in leukemia and AML related 

articles.  

 

4.3.2 DNA Methylation as a potential prognostic biomarker in patients with AML-M4 

categorized in the intermediate prognostic risk group 

The DNA methylation dataset with records of 485577 CpG sites from the 24 patients with 

AML-M4 categorized in the intermediate prognostic risk group was analyzed by the 

developed algorithm. In the first algorithm phase (data preparation for analysis), the 485577 

CpG sites were reduced to 395987. Next, by performing the second algorithm phase 

(identification of first potential prognostic biomarkers), 24998 CpG sites were selected. 

Moreover, the third algorithm phase (confounding factor treatment) reduced the CpG sites to 

1869. As the last step, the fourth algorithm phase (selection criteria) was performed and 375 

CpG sites were identified as potential prognostic biomarkers whose DNA methylation 

appeared to predict survival in patients with AML-M4 categorized in the intermediate 

prognostic risk group (Annex XIII and Annex XIV). The 375 identified CpG sites were 

localized in 330 genes. The top 15 identified CpG sites with highest hazard ratio value are 

shown in the Table 4.8.  
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Table 4.8 List of 15 out of the 375 CpG sites whose DNA methylation was able to predict 

survival in patients with AML-M4 categorized in the intermediate prognostic risk 

group. 

CpG site p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
Gene HR 

cg25914522 0.00221 0.8594 10 7 0.49399 RBMY1F 13.90550 

cg04929022 0.00011 0.7961 11 12 0.30939 VGLL1 12.25562 

cg06294373 0.00013 0.5250 10 11 0.62173 UMOD 11.97244 

cg06394109 0.00028 0.4588 14 9 0.94972 C1QTNF8 11.52809 

cg14312439 0.00015 0.2317 14 9 0.23089 CCR3 11.48455 

cg17560693 0.00023 0.7736 11 11 0.39277 TBX22 11.21738 

cg16803185 0.00037 0.7361 13 10 0.35176 PLS3 10.66215 

cg15467834 0.00005 0.8216 13 10 0.82799 CRYAA 10.60031 

cg19720260 0.00006 0.2361 13 10 0.66389 NXPE2 10.11071 

cg21230162 0.00003 0.6727 9 14 0.05445 CRIPAK 9.98054 

cg21329507 0.00003 0.7483 9 14 0.15597 TMEM255A 9.68735 

cg25946304 0.00008 0.5053 10 13 0.05830 S1PR5 9.55146 

cg13185308 0.00008 0.5694 10 13 0.05830 ABCC8 9.55146 

cg13149245 0.00075 0.3050 14 9 1.00000 PIF1 9.36223 

cg22405653 0.00003 0.5706 9 14 0.52833 KRTAP21-1 9.21881 

HR, hazard ratio 

 

In Figure 4.12 are shown the top 4 Kaplan-Meier overall survival curves with the highest 

hazard ratio value, obtained using the methylation cutpoint of 4 identified CpG sites localized 

in the RBMY1F, VGLL1, UMOD, and C1QTNF8 genes, respectively. The survival curve 

obtained using the methylation cutpoint of the cg25914522 localized in the RBMY1F gene 

had the hazard ratio value of 13.91 (Figure 4.11. a). The hazard ratio values associated with 

the survival curves of the remaining demonstrated CpG sites localized in the VGLL1, UMOD, 

and C1QTNF8 genes were 12.26, 11.97, and 11.53, respectively (Figure 4.11. b, c, d). 
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The hypomethylation of each CpG site demonstrated in the Figure 4.11 was related with the 

better prognostic group. In the remaining identified CpG sites, hypomethylation was related 

with the better prognostic risk group in 191 CpG. Instead, the hypermethylation was related 

with the better prognostic group in 179 CpG sites (Annex XIV).  

Figure 4.11 Kaplan-Meier overall survival curves for four out of the 375 potential DNA 

methylation prognostic biomarkers identified for patients with AML-M4 categorized in 

the intermediate prognostic risk group.  Kaplan-Meier curve obtained using the 

methylation cutpoint of the (a) cg25914522 localized in the RBMY1F gene (p = 0.0022, log-

rank test), (b) cg04929022 localized in the VGLL1 gene (p = 0.00011, log-rank test), (c) 

cg06294373 localized in the UMOD gene (p = 0.00013, log-rank test) and (d) cg06394109 

localized in the C1QTNF8 gene (p = 0.00028, log-rank test). The number at risk corresponds 

to the number of patients, at the indicated time point, that are still alive and whose follow-up 

continues. 
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We also observed that there were some identified CpG sites that their methylation cutpoint 

generated the same subgroups of patients (Annex XIV). For example, the cg25946304 

localized in the S1PR5 gene and the cg13185308 localized in the ABCC8 gene, based on their 

methylation cupoints, the AML patients were subcategorized in the same two subgroups. 

Another example was the cg14988083 localized in the FGFR3 gene, and the cg02593884 

localized in the FLYWCH1 gene whose methylation cutpoint generated the same patients 

subgroups.  

As previously mentioned, the 375 identified CpG sites were localized in 330 genes. We 

observed that there were 45 genes with more than one CpG site with a prognostic value in 

AML-M4 patients (Annex XIV). In the majority of these genes, the methylation status of the 

various CpG localized in the same gene related to the subgroup with better prognosis was the 

same. In the Table 4.9 are shown 5 genes  as examples. For instance, the hypermethylation of 

the cg16639692 in the promotor region and the cg10994149 in the downstream region of the 

ANXA2R gene are both related with the better prognostic group. 

Table 4.9 Examples of 5 genes with more than one CpG site as a potential prognostic 

biomarker in AML-M4 patients. 

Gene CpG site CpG location 
Methylation status related to better 

prognostic 

ANXA2R 
cg16639692 Promoter (2-3kb) hypermethylation 

cg10994149 Downstream (<=300) hypermethylation 

AR 
cg05019001 Promoter (2-3kb) hypermethylation 

cg05786601 Promoter (<=1kb) hypermethylation 

ARHGAP6 
cg03536032 Promoter (<=1kb) hypermethylation 

cg27166673 Promoter (<=1kb) hypermethylation 

ARX 

cg06943593 Intron hypermethylation 

cg02938958 Exon hypermethylation 

cg16414561 Promoter (<=1kb) hypermethylation 

BCOR 

cg24508310 1st Intron hypomethylation 

cg07764473 Promoter (<=1kb) hypermethylation 

cg03161453 1st Intron hypomethylation 

cg23496314 Promoter (<=1kb) hypermethylation 
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The genomic region of the 375 identified CpG sites were also evaluated. We observed that 

the identified CpG sites were localized in promotor, 5´UTR, 3’UTR, first exon, other exon, 

first intron, other intron, downstream, and distal intergenic (Figure 4.12 and Annex XIV). 

The promotor was the first genomic region with more CpG sites located (~ 69%), and the 

distal intergenic the second genomic region with more CpG located (~ 14%).  

Furthermore, we also performed bibliographic analysis to evaluate if the 330 genes, where 

the identified CpG sites were located, were already described in the literature (Annex XIV). 

We found that 4 of 330 genes (~ 1%) (GLOD5, C10orf95, LONRF3, and TCEAL9) were not 

already referred in PubMed articles. In addition, 138 of the 330 genes (~ 42%) had already 

been described in other cancer types than leukemia. Moreover, 72 of the 330 genes (~22%) 

had already been described in leukemia, but not in AML related articles. At last, 99 of the 

330 genes (~30%) had already been referred in AML related articles. The top 10 identified 

genes most cited in AML-related articles were TNF, RUNX1T1, AR, F3, TRNA, AKT1, 

HPRT1, BCOR, HCK, and CCNA1 genes.  

Figure 4.12 Location of the identified CpG sites within the genes, whose methylation 

appeared to be potential biomarker in AML-M4 patients categorized in the 

intermediate prognostic risk group. The majority of the 375 CpG sites identified by our 

algorithm were localized in the promotor region (~ 69%). The second genomic region with 

more identified CpG’s was the distal intergenic region. About 8% of the CpG’s were other 

intronic regions. The first intron, other exons, 3’UTR, downstream, 5’UTR, first exon were 

the genomic regions with less identified CpG’s (3.7%, 2.4%, 1.6%, 1.33%, 0.27%, 0.27%, 

and respectively). The other intron means that the CpG’s were localized in other introns than 

the first intron. The other exon region refers exons than the first exon. 
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To conclude, we also compared the genes identified in the expression analysis described in 

4.3.1 section with the candidate genes identified in the methylation analysis. We found that 

the ATAD3C was present in both analyses. That is, the gene expression as well as the DNA 

methylation of the ATAD3C seemed to be potential prognostic biomarkers in patients with 

AML-M4 categorized in the intermediate prognostic risk group.  
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4.4 FAB M5 AML SUBTYPE 

As for our fourth population of study, we extracted the gene expression, DNA methylation as 

well as the clinical data information from the 16 patients with AML classified as M5 FAB 

AML subtype (AML-M5) categorized in the intermediate prognostic risk group. The 

developed algorithm was applied in gene expression and DNA methylation datasets 

independently. The gene expression results are described in the 4.5.1 section, and the DNA 

methylation results are described in the 4.5.2 section. 

 

4.4.1 Gene expression as a potential prognostic biomarker in patients with AML-M5 

categorized in the intermediate prognostic risk group 

The gene expression dataset with records of 20530 genes from the 16 patients with AML-M5 

categorized in the intermediate prognostic risk group was submitted to our algorithm. In the 

first algorithm phase (data preparation for analysis) 17390 genes were selected. Next, the 

second algorithm phase (identification of the first potential biomarkers) reduced the 17390 to 

953 genes. After the third algorithm phase (confounding factor treatment), the genes were 

reduced to 32. At last, the fourth algorithm phase (selection criteria) identified 32 genes 

whose gene expression appeared to be able to predict survival in patients with AML-M5 

categorized in the intermediate prognostic risk group (Annex XV). In Table 4.10 the top 15 

identified genes with higher the hazard ratio value are shown.  
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Table 4.10 List of 15 out of the 32 genes whose expression was able to predict survival in 

patients with AML-M5 categorized in the intermediate prognostic risk group. 

Gene p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
HR 

TTC30B 0.00043 6.4346 8 8 0.91617 18.19290 

FNTB 0.00043 9.1821 8 8 0.91617 18.19290 

CDKN2AIP 0.00047 8.8936 7 9 0.52444 11.16033 

VANGL1 0.00200 8.6638 7 8 0.60155 8.63472 

ATN1 0.00224 10.5690 9 7 1.00000 8.51887 

AMACR 0.00224 7.5548 9 7 1.00000 8.51887 

PLA2G4A 0.00281 9.4859 7 7 0.40520 8.43606 

TBX4 0.00145 0.0000 6 9 1.00000 7.67311 

ABRAXAS2 0.00254 9.0384 6 9 0.95289 6.90494 

C9orf3 0.00229 7.2003 8 8 1.00000 6.80033 

RTTN 0.00860 7.9537 9 7 0.79084 6.77667 

ZNF625 0.01115 3.9707 8 7 0.77174 6.28059 

FANK1 0.01227 4.3070 8 7 0.95373 6.06089 

CDH24 0.02950 5.1656 9 7 0.91551 4.08281 

ZSCAN20 0.02950 6.1707 9 7 1.00000 4.08281 

HR, hazard ratio 

 

In the Figure 4.13 are shows the top 4 Kaplan-Meier overall survival curves with the highest 

hazard ratio value, obtained using the determined expression cutpoints of the TTC30B, FNTB, 

CDKN2AIP, and VANGL1 genes, respectively. The Kaplan-Meier survival curve obtained 

using the expression cutpoint of the TTC30B gene had the highest hazard ratio value of 18.19 

(Figure 4.13. a). The hazard ratio values of the survival curves obtained using the expression 

cutpoint of FNTB, CDKN2AIP, and VANGL1 genes were 18.19, 11.16, and 8.63, respectively 

(Figure 4.13.b, c, d).  
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In the case of each gene represented in the Figure 4.13, low expression values were related 

with the subgroup with a better prognosis. For the remaining identified genes, low expression 

values were also related to the subgroup with a better prognosis in 15 identified genes. In 

contrast, high expression levels were related to the subgroup with a better prognosis in 13 

identified genes (Annex XVI).  

Figure 4.13 Kaplan-Meier overall survival curves for four out of the 32 potential 

prognostic biomarkers identified for patients with AML-M5 categorized in the 

intermediate prognostic risk group. Kaplan-Meier curve obtained using the expression 

cutpoint of the (a) TTC30B gene (p = 0.00043, log-rank test), (b) FNTB gene (p = 0.00043, 

log-rank test), (c) CDKN2AIP gene (p = 0.00047, log-rank test), (d) VANGL1 gene (p = 

0.002, log-rank test). The number at risk corresponds to the number of patients, at the 

indicated time point, that are still alive and whose follow-up continues. 
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Most of the determined expression cutpoints subcategorized the AML patients in a unique 

way. However, the expression cutpoints of two pairs of genes: 1) FNTB and TTC30B genes, 

2) AMACR and ATN1 genes, generated the same subgroups of patients. 

Posteriorly, the subgroups generated by the expression cutpoint of the 32 identified genes 

were compared by gene set enrichment analysis to evaluate if there were gene sets related to 

biological processes differentially enriched between the subgroups with worse and better 

prognosis. We identified that the distinct intermediate-poor generated subgroups had in 

common some downregulation and upregulation of gene sets related to biological processes 

when comparing with the intermediate-favorable subgroup (Annex XVII). In the Figure 4.14 

are shown the top 5 gene sets that we identified to be down and upregulated in the 

intermediate-poor subgroups in comparison with the intermediate-favorable are shown. 

Biological processes such as leaflet of membrane bilayer, antigen processing and presentation 

of exogenous peptide antigen, antigen processing and presentation of exogenous antigen, 

antigen processing and presentation of peptide antigen, antigen processing and presentation 

seemed to be downregulated in the majority of the intermediate-poor subgroups. 

Figure 4.14 Top 5 GO terms, in the biological processes category, down and 

upregulated between intermediate-poor and intermediate-favorable identified 

subgroups with AML-M5.  The gene set analysis was performed in biological processes 

category to identify the GO terms that were differently enriched between the subgroups 

analyzed. In blue are represented the GO terms that are downregulated and in red are 

represented the GO terms that are upregulated between the intermediate-poor and the 

intermediate-favorable identified subgroups. 
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In contrast, protein localization to cilium, microtubule-based protein transport, protein 

transport along microtubule, intraciliary transport, and cilium organization are some 

examples of biological gene sets that seemed to be upregulated in the intermediate-poor in 

comparison with the intermediate-favorable subgroups. 

Bibliographic analysis was performed to know if the 32 identified candidate genes were 

already described in the literature (Annex XVI). We noticed that 1 identified gene (CTAGE6) 

was never described in the PubMed literature. We also found that 17 of the 32 genes (~ 53%) 

had already been described in other cancer types than leukemia. Also, 7 of the 32 genes 

(~22%) had already been described in leukemia, but not in AML related articles. Finally, 5 of 

the 32 genes (~16%) (B2M, PLA2G4A, SARAF, ABAT, and CSMD1) had been described in 

AML related articles.   

 

4.4.2 DNA methylation as a potential prognostic biomarker in patients with AML-M5 

categorized in the intermediate prognostic risk group 

The DNA methylation dataset with data regarding 485577 CpG sites from the 16 patients 

with AML-M5 categorized in the intermediate prognostic risk group was also analyzed by 

our algorithm. In the first algorithm phase (data preparation for analysis), the 485577 CpG 

sites were reduced to 395801. In the second algorithm phase (identification of the first 

potential prognostic biomarkers), 129187 were selected for the next analysis step. From the 

third algorithm phase (confounding factor treatment) resulted 1821 CpG sites. At last, the 

fourth phase of the algorithm (selection criteria) identified the final 26 candidate CpG sites 

whose DNA methylation appeared to predict survival of AML-M5 patients categorized in the 

intermediate prognosis risk group (Annex XVIII and XIX). In Table 4.11 are shown the top 

15 identified CpG sites with highest hazard ratio value.  
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Table 4.11 List of 15 out of the 26 CpG sites identified whose DNA methylation 

appeared to predict survival in patients with AML-M5 categorized in the intermediate 

prognostic risk group. 

CpG sites p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
Gene HR 

cg22212237 0.00029 0.1786 7 9 0.52444 C1QL4 11.89617 

cg20183094 0.00047 0.2167 7 9 0.52444 FEZF1 11.16033 

cg08004278 0.00047 0.1872 7 9 0.52444 FEZF1 11.16033 

cg05422647 0.00117 0.1620 7 9 0.79084 GLRA1 10.03001 

cg17652792 0.00381 0.0850 9 7 0.91551 PCDHB16 7.92216 

cg27462975 0.00338 0.6960 6 8 0.84595 MIR573 6.70370 

cg16759787 0.01115 0.6922 8 7 0.77174 RN7SK 6.28059 

cg20362634 0.00357 0.7837 8 8 0.63576 GABRG3 6.15490 

cg03154226 0.01097 0.5625 9 7 0.67132 OR5D14 6.15171 

cg11155432 0.01603 0.8812 9 7 0.87357 CDH9 4.83441 

cg02171545 0.02461 0.4851 8 8 0.29255 SNRPN 3.93214 

cg12436427 0.02461 0.2290 8 8 0.37097 WASHC2A 3.93214 

cg18232125 0.02461 0.7407 8 8 0.22612 TENM2 3.93214 

cg16368763 0.02461 0.2669 8 8 0.49388 TRIM67 3.93214 

cg26577836 0.02911 0.5729 8 8 0.39977 TNXB 0.26247 

HR, hazard ratio 

In Figure 4.15, we show as examples the top 4 Kaplan-Meier overall survival curves with the 

highest hazard ratio value, obtained using the methylation cutpoint of 4 identified CpG sites 

localized in the C1QL4, FEZF1, and GLRA1 genes, respectively. The survival curve obtained 

using the methylation cutpoint of the cg22212237 located in the C1QL4 gene had the highest 

hazard ratio value of 11.90. Additionally, the hazard ratio values of the survival curves 

obtained using the methylation cutpoint of the cg20183094, cg08004278, and cg05422647 

localized in the FEZF1, and GLRA1 were 11.16, 11.16, and 10.03, respectively (Figure 4.15. 

b, c, d).  
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As we can observe, in each case presented in the Figure 4.15, the hypermethylation was 

related with the subgroup of AML-M5 patients with worse overall survival. In the remaining 

22 identified CpG sites, the hypomethylation characterized the subgroup with a better 

prognosis (IXIIX).  

Figure 4.15 Kaplan-Meier overall survival curves of four out of the 26 potential DNA 

methylation prognostic biomarkers identified for patients with AML-M5 categorized in 

the intermediate prognostic risk group. Kaplan-Meier curve obtained using the 

methylation cutpoint of the (a) cg22212237 localized in the C1QL4 gene (p = 0.025, log-rank 

test), (b) cg20183094 localized in the FEZF1 gene (p = 0.00047, log-rank test), (c) 

cg08004278 localized in the FEZF1 gene too (p = 0.00047, log-rank test), and (d) 

cg05422647 localized in the GLRA1 gene (p = 0.0012, log-rank test). The number at risk 

corresponds to the number of patients, at the indicated time point, that are still alive and 

whose follow-up continues. 
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The 26 identified CpG sites were localized in 25 genes. This result means that there were 2 

CpG sites localized in the same gene with predictive prognostic value in the patient’s sample 

studied. The cg20183094 and the cg08004278 were both localized in the distal intergenic 

region of the FEZF1 gene. Interestingly, both Kaplan-Meier survival curves obtained using 

the methylation cutpoint of each these CpG site, had the same HR value of 11.16 (Figure 4.15 

b and c).  

The genomic region where the 26 identified CpG sites were located were also evaluated. We 

observed that the identified CpG sites were localized in promotor, 3’UTR, first intron, other 

introns, exons, and distal intergenic (Figure 4.16 and Annex XIX). The promotor was the first 

genomic region with more identified CpG sites located (~ 46%), and the distal intergenic the 

second genomic region with more identified CpG located (~ 27%).  

Bibliographic analysis was performed to know if the 25 identified candidate genes were 

already described in the literature (Annex XIX). We noticed that 2 identified genes (OR5D14, 

and KIRREL3-AS3) were never described in the PubMed literature. Moreover, 14 of the 25 

genes (~ 56%) had already been described in other cancer types than leukemia. Four of the 25 

genes (~16%) had already described in leukemia, but not in AML related articles. Finally, 4 

Figure 4.16 Location of the identified CpG sites within the genes, whose methylation 

appeared to be potential biomarker in AML-M5 patients categorized in the 

intermediate prognostic risk group.  The majority of the 26 CpG sites identified by our 

algorithm were localized in the promotor region (~ 46%). The second genomic region with 

more identified CpG’s was the distal intergenic region. About 12% of the CpG’s were other 

intron regions. The 3’UTR, other exons, and first intron were the genomic regions with less 

identified CpG’s (7.69%, 3.85%, and 3.85%, respectively). The other intron means that the 

CpG’s were localized in other introns than the first intron. The other exon region refers exons 

than the first exon. 
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of the 25 genes (~16%) (SNRPN, FGFR2, SHH, GRB10) had been described in AML related 

articles. 

After all, we intersected the genes resultant of the expression (section 4.4.1) and the DNA 

methylation (section 4.4.2). We observed there were not genes present in both analyses.   
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4.5 M0, M1, M2, M4, AND M5 FAB AML SUBTYPES 

Once analyzed the patients within each FAB subtype (M1, M2, M4 and M5) studied 

individually, we were also interested in analyzing the patients with M0, M1, M2, M4 and M5 

FAB AML subtype together. Thus, our fifth population of studied was the patients with AML 

classified with M0, M1, M2, M4 and M5 FAB subtype (AML-M0-M1-M2-M4-M5) 

categorized in the intermediate prognostic risk group (n=89). We extracted the gene 

expression and DNA methylation values, as well as the clinical information data from the 

patients mentioned above. Next, we applied the developed methodology to both gene 

expression and DNA methylation datasets independently. The gene expression results are 

described in 4.5.1 section, and the DNA methylation results are described in 4.5.2 section.  

 

4.5.1 Gene expression as a potential prognostic biomarker in patients with AML-M0-

M1-M2-M4-M5 categorized in the intermediate prognostic risk group 

The gene expression dataset with expression values of 20530 genes from the 89 patients with 

AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic risk group was 

analyzed by the developed algorithm. In the first algorithm phase (data preparation for 

analysis), 17368 genes were selected. Furthermore, performing the second algorithm phase 

(identification of the first potential biomarkers), the 17368 genes were reduced to 1171. Next, 

the third algorithm phase (confounding factor treatment) allowed the selection of 280 genes. 

Performing the fourth algorithm phase (selection criteria), we identified 176 candidate genes 

whose expression appeared to be potential prognostic biomarker to predict survival in 

patients with AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic risk 

group (Annex XX and Annex XXI). The Table 4.12 shows the top 15 identified genes with 

the highest hazard ratio value.  
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Table 4.12 List of 15 out of the 176 genes whose expression was able to predict survival 

in patients with AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic 

risk group. 

Gene p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age-test 

(p-value) 
HR 

CCT6B 0.000004 5.2369 34 55 0.905847 3.211710 

ITGB1BP1 0.000024 9.2228 40 43 0.794962 3.069339 

PDE7B 0.000085 5.1779 54 35 0.432021 3.045263 

ITGA11 0.000028 2.2561 37 50 0.308758 2.998898 

PBDC1 0.000213 8.0404 54 33 0.551736 2.976073 

NQO1 0.000108 6.2389 49 40 0.098854 2.785669 

HSD17B7 0.000252 7.4822 33 53 0.587825 2.722778 

TOMM40L 0.000332 8.5908 51 34 0.332359 2.657828 

DRC7 0.000304 3.1340 48 41 0.178146 2.553137 

TBC1D29P 0.000279 3.0231 34 55 0.115111 2.546112 

ASCC1 0.000330 9.0165 43 46 0.983615 2.511365 

CCND3 0.000395 11.5099 48 41 0.184873 2.504012 

IQCG 0.000965 7.1977 53 34 0.982640 2.464832 

SH3TC2 0.000896 7.5208 44 43 0.310077 2.406249 

S100A1 0.000685 4.5428 43 45 0.757306 2.402793 

HR, hazard ratio 

 

As examples, in the Figure 4.17 are shown the top 4 Kaplan-Meier overall survival curves 

with the highest hazard ratio value, obtained using the expression cutpoints of CCT6B, 

ITGB1BP1, PDE7B, and ITGA11 genes, respectively. The survival curve obtained using the 

expression cutpoint of CCT6B genes had the highest hazard ratio value of 3.21 (Figure 4.17. 

a). The hazard ratio values of the remaining demonstrated survival curves obtained using the 

expression cutpoint of the ITGB1BP1, PDE7B, and ITGA11 genes were 3.07, 3.05, and 3, 

respectively.  
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For each of the four demonstrated cases, the low expression seemed to be related with the 

subgroup with a better prognosis. In addition, the low expression levels were also displayed 

by the subgroup with better prognosis in 40 identified genes. In contrast, for the remaining 

131 identified genes, high expression levels were related with the subgroup with better 

prognosis (Annex XXI). 

Figure 4.17 Kaplan-Meier overall survival curves for four out of the 176 potential 

prognostic biomarkers identified for patients with AML-M0-M1-M2-M4-M5 

categorized in the intermediate prognosis risk group.  Kaplan-Meier curve obtained using 

the expression cutpoint of the (a) CCT6B gene (p = 0.000004, log-rank test), (b) ITGB1BP1 

gene (p = 0.000024, log-rank test), (c) PDE7B gene (p = 0.000085, log-rank test) and (d) 

ITGA11 gene (p = 0.000028, log-rank test). The number at risk corresponds to the number of 

patients, at the indicated time point, that are still alive and whose follow-up continues. 
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We also analyzed the subgroups of AML patients generated by each determined expression 

cutpoint, and we observed that the subcategorization of AML-M0-M1-M2-M4-M5 patients 

was dependent on the expression cutpoint applied. That is, different expression cutpoints 

subdivided the patients in a unique way. 

The gene set analysis about biological processes was also performed to know if there were 

genes sets commonly enriched in all intermediate-poor in comparison with all intermediate-

favorable identified subgroups. Our results suggest that the majority of the intermediate-poor 

subgroups shared some biological processes genes sets that appeared to be downregulated 

and upregulated in comparison with the intermediate-favorable subgroups (Annex XXII). In 

Figure 4.18 are shown the top 5 gene sets that we identified to be down and upregulated in 

the intermediate-poor subgroups in comparison with the intermediate-favorable are shown. 

Biological processes such as cardiac septum development, smooth muscle tissue 

development, eye morphogenesis, mesenchymal cell differentiation, and adult behavior 

seemed to be downregulated in the majority of the intermediate-poor subgroups. 

Figure 4.18 Top 5 GO terms, in the biological process category, down and upregulated 

between in the intermediate-poor and intermediate-favorable identified subgroups with 

AML-M0-M1-M2-M4-M5.  The gene set analysis was performed in biological processes 

category to identify the GO terms that were differently enriched between the subgroups 

analyzed. In blue are represented the GO terms that are downregulated and in red are 

represented the GO terms that are upregulated between the intermediate-poor and the 

intermediate-favorable identified subgroups. 
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In contrast, organophosphate catabolic process, snRNA processing, snRNA 3’-end 

processing, protein targeting, and ncRNA 3’-end processing are some examples of biological 

gene sets that seemed to be upregulated in the intermediate-poor in comparison with the 

intermediate-favorable subgroups.  

A bibliographic analysis was also performed to evaluate if the identified 176 genes were 

already referred in the literature (Annex XXI). We found that 4 identified genes (CALHM5, 

C16orf54, TBC1D29P, CCNJL) were never described in the PubMed literature. In addition, 

69 of the 176 genes (~ 39%) had already been described in other cancer types than leukemia. 

Furthermore, 41 of the 176 genes (~23%) had already been described in leukemia, but not in 

AML related articles. Finally, 56 of the 176 genes (~32%) had been described in AML 

related articles. 

 

4.5.2 DNA methylation as a potential prognostic biomarker in patients AML-M0-M1-

M2-M4-M5 categorized in the intermediate prognostic risk group 

The DNA methylation dataset with data about 485577 CpG sites from the 89 patients with 

AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic risk group was also 

analyzed by our algorithm. The first algorithm phase (data preparation for analysis) the 

485577 CpG sites were reduced to 395854. In the second algorithm phase (identification of 

the first potential prognostic biomarkers) were selected for the next analysis step. From the 

third algorithm phase (confounding factor treatment) resulted CpG sites. At last, the fourth 

phase of the algorithm (selection criteria) identified the final 273 candidate CpG sites whose 

DNA methylation appeared to predict survival of AML-M0-M1-M2-M4-M5 patients 

categorized in the intermediate prognosis risk group (Annex XXIII and Annex XXIV). In 

Table 4.13 are shown the top 15 identified CpG sites with highest hazard ratio value.  
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Table 4.13 List of 15 out of the 273 CpG sites identified whose DNA methylation 

appeared to predict survival in patients with AML-M0-M1-M2-M4-M5 categorized in 

the intermediate prognostic risk group. 

CpG sites p-value 
Optimal 

cutpoint 

Group1 

(n) 

Group2 

(n) 

Age test 

(p-value) 
HR gene 

cg14469693 0.00004 0.8509 43 39 0.78403 3.19192 PRDM6 

cg25068253 0.00010 0.8845 41 39 0.05593 3.05123 RASSF10 

cg17755518 0.00039 0.9022 42 34 0.45485 2.97498 SLC44A5 

cg17572155 0.00003 0.7782 45 44 0.13191 2.96066 ADARB2 

cg03841832 0.00022 0.7302 49 36 0.06482 2.88363 SLC2A9 

cg14495958 0.00082 0.8522 46 33 0.37876 2.80835 EXD3 

cg01918114 0.00039 0.8505 44 37 0.07146 2.79206 LMF1 

cg13184077 0.00019 0.8994 42 39 0.16448 2.77835 ZNF365 

cg26118637 0.00024 0.8787 39 44 0.06856 2.72663 CNPY1 

cg15596913 0.00008 0.8868 43 44 0.15359 2.72333 ENPP7 

cg15861089 0.00064 0.8077 49 36 0.07960 2.69924 KRT86 

cg26208930 0.00070 0.826 45 38 0.13247 2.65737 TP73 

cg10350957 0.00029 0.8802 37 46 0.18076 2.64871 FAT3 

cg22356541 0.00035 0.8877 43 39 0.39014 2.59198 FGF9 

cg03863069 0.00039 0.9086 34 51 0.30620 2.53408 SH3PXD2B 

HR, hazard ratio 

 

In the Figure 4.19 are shown the top 4 Kaplan-Meier survival curves with the highest hazard 

ratio value, obtained using the methylation cutpoint of 4 identified CpG sites localized in the 

PRDM6, RASSF10, SLC44A5, and ADARB2 genes, respectively. The survival curve obtained 

using the methylation cutpoint of the cg14469693 localized in the PRDM6 gene had the 

highest hazard ratio value of 3.19. The hazard ratio values of the survival curves of the 

remaining demonstrated CpG sites localized in the RASSF10, SLC44A5, and ADARB2 genes 

were 3.05, 2.97, and 2.96, respectively (Figure 4.19. b, c, d). 
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Moreover, our results suggest that for each demonstrated case in the Figure 4.19, 

hypomethylation seemed to be related with the subgroup with better prognosis. For the 

remaining identified CpG sites, hypomethylation was also related with the better prognostic 

subgroup in 208 cases. On the other hand, hypermethylation seemed to be related with the 

subgroup with better prognosis in 61 cases (Annex XXIV).  

Figure 4.19 Kaplan-Meier overall survival curves of four out of the 273 potential DNA 

methylation prognostic biomarkers identified for patients with AML-M0-M1-M2-M4-

M5 categorized in the intermediate prognostic risk group.  Kaplan-Meier curve obtained 

using the methylation cutpoint of the (a) cg14469693 localized in the PRDM6 gene (p = 

0.00019, log-rank test), (b) cg25063253 localized in the RASSF10 gene (p = 0.000097, log-

rank test), (c) cg17755518 localized in the SLC44A5 gene (p = 0.000388, log-rank test), and 

(d) cg17572155 localized in the ADARB2 gene (p = 0.00034, log-rank test). The number at 

risk corresponds to the number of patients, at the indicated time point, that are still alive and 

whose follow-up continues. 



84 

Moreover, we also observed that each identified methylation cutpoint generated distinct 

subgroups of patients, being the subcategorization of patients dependent on the cutpoint used.  

The 273 identified CpG sites with a prognostic value in the group of AML patients studied 

were localized in the 264 genes, which mean that were different CpG sites localized in the 

same gene with a predictive prognostic value. We observed that there were 9 genes with more 

than one identified CpG site with a potential prognostic value in the AML patients (Table 

4.14). 

Table 4.14 The 9 genes with more than one CpG site with prognostic value in AML-M0-

M1-M2-M4-M5 patients categorized in the intermediate prognostic risk group. 

Gene CpG sites CpG sites location 
Methylation status related to 

better prognosis 

ABLIM2 
cg16114831 Intron hypomethylation 

cg03033996 Promoter (2-3kb) hypomethylation 

ADARB2 

cg17572155 Promoter (2-3kb) hypomethylation 

cg08302300 Intron hypermethylation 

cg00615654 Intron hypomethylation 

CHN2 
cg03100044 Promoter (<=1kb) hypomethylation 

cg01617933 Intron hypermethylation 

EXD3 
cg13710542 Promoter (<=1kb) hypomethylation 

cg14495958 1st Intron hypomethylation 

GLI2 
cg25919979 Intron hypomethylation 

cg03465652 Intron hypomethylation 

KLHL29 
cg12459514 Intron hypomethylation 

cg15736743 Intron hypermethylation 

PRICKLE2 
cg01165355 Distal Intergenic hypomethylation 

cg20584157 Intron hypomethylation 

UBE2I 
cg05246900 Promoter (1-2kb) hypomethylation 

cg02920178 Promoter (<=1kb) hypomethylation 

 

 For example, the cg16114831 in an intronic region and the cg03033996 at promotor region 

are two distinct CpG sites that were localized in the same gene (ABLIM2) and that had a 

predictive prognostic value in the group of patients studied. The hypomethylation of both 

CpG sites was related with the better prognosis subgroup. Another example was the 

cg03100044 at promotor region and the cg01617933 at an intronic region that were localized 

in the CHN2 gene. However, in this case the methylation status of the two CpG sites that 
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were related with the subgroup with better prognosis were different. Whereas the 

hypomethylation of cg03100044 was related with the subgroup with better prognosis, in the 

of the cg01617933 is the hypermethylation. 

Further, we identified the genomic regions of the 273 identified CpG’s, being localized in 

regions such as promotor, 3’UTR, 5’UTR, exon, first intron, intron, downstream and distal 

intergenic (Figure 4.20 and Annex XXIV). The genomic region with more density of 

identified CpG sites was the promotor region, with about 48% of the identified CpG’s. 

Moreover, the distal intergenic region was the second region with more identified CpG’s, 

22%, respectively.  

Bibliographic analysis was performed to know if the 264 identified candidate genes were 

already described in the literature (Annex XXIV). We noticed that 13 identified genes 

(MIR769, ZNF846, KIAA2012, MIR4710, MIR4634, OR4K17, ZNF585B, MIR4679-2, 

LMNTD1, ZNF514, LSMEM1, MIR4655, and ITPRID1) were never described in the PubMed 

literature. Also, 106 of the 264 genes (~ 40%) had already been described in other cancer 

types than leukemia. Moreover, 55 of the 264 genes (~21%) had already described in 

leukemia, but not in AML related articles. Finally, 70 of the 264 genes (~27%) had been 

Figure 4.20 Location of the identified CpG sites within the genes, whose methylation 

appeared to be potential biomarker in AML-M0-M1-M2-M4-M5 patients categorized 

in the intermediate prognostic risk group.  The majority of the 273 CpG sites identified by 

our algorithm were localized in the promotor region (~ 48%). The second genomic region 

with more identified CpG’s was the distal intergenic region. About 17% of the CpG’s were in 

intronic regions. The first intron, other exons, 3’UTR, 5’UTR, and downstream were the 

genomic regions with less identified CpG’s (5.13%, 4.76%, 2.56%, 0.73%, and 0.73%, 

respectively). The other intron means that the CpG’s were localized in other introns than the 

first intron. The other exon region refers exons than the first exon. 
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described in AML related articles. As examples are BSG, EBF3, MAP1LC3C, SLC6A5, and 

PITX1 genes.  
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CHAPTER 5  

DISCUSSION 

 

5.1 Potential prognostic biomarkers for AML patients with AML-M1 categorized in the 

intermediate prognostic risk group 

The group of patients with AML-M1 categorized in the intermediate risk group was the first 

to be analyzed by our algorithm in order to identify potential prognostic biomarkers of both 

gene expression and DNA methylation that predict survival in these group of patients. 

By performing the gene expression analysis, we identified 11 genes whose expression levels 

can be used as potential prognostic biomarkers, two of which were already cited in the AML 

literature. One of these genes is the Minichromosome Maintenance Complex Component 4 

(MCM4), that codifies for one of the six subunits (MCM2 to MCM7) of the minichromosome 

maintenance (MCM) complex that works as a replicative helicase involved in the DNA 

replication process.61 In the G1 phase of the cell cycle, the MCM complex binds to the 

replication origins and dissociates after the initiation of DNA replication, in order to avoid a 

second replication from the same origin. Moreover, this complex is involved in the 

unwinding of the parental DNA strands.61 According to our results, when the patients with 

AML-M1 categorized in the intermediate prognostic risk group are subdivided based on the 

expression MCM4 cutpoint, the subgroup with worse prognosis is characterized by low 

expression levels of MCM4 gene. By searching the AML literature, we only found that the 

expression of MCM4 gene is altered in aneuploid acute myeloid leukemia.62. Our R-based 

AML-literature searching function is able to detect if the gene was cited in an AML-related 

article, but it cannot detect if the gene has a causal relation with AML. Nonetheless, our study 

seems to suggest that MCM4’s expression levels are altered between intermediate-poor and 

intermediate-favorable subgroups of AML patients. 

The other identified putative prognostic biomarker that was already cited in the AML 

literature is the Synaptosome Associated Protein 23 (SNAP23) gene. This gene codifies for 

SNAP23 protein which is part of a sub-family of SNARE proteins, known as SNAP25 
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protein sub-family.63 The SNARE-complexes are involved in the fusion of membrane 

vesicles with the target membrane. In particular, the SNAP23 participates in driving regulated 

exocytosis.63 A study reported that the SNAP23 gene was expressed in 20 of 31 analyzed 

AML cases, including 4 AML cases with normal cytogenetics.64  Our results demonstrate that 

high SNAP23 expression levels is related to a worse prognosis in the patients with AML-M1 

categorized in the intermediate prognostic risk group. It has been described that SNAP23 is 

implicated in a secretion of matrix metalloproteinases, extracellular matrix degradation and 

cell invasion.65 In addition, Sun et al. demonstrated that the silencing of SNAP23 in ovarian 

cancer cells leads to diminished proliferation, impairs cell migration and invasion capacities, 

and inhibits apoptosis in these cells. Furthermore, the group also showed that higher levels of 

SNAP23 expression were associated with poor prognosis in ovarian cancer patients.65 It is 

possible that the worse prognosis of the AML subgroup with high SNAP23 expression levels 

is also due to decreased apoptosis and higher proliferation capacities of the leukemic cells. 

The generated subgroups of AML-M1 patients by the previously identified potential 

prognostic biomarkers of gene expression were also compared by the gene set enrichment 

analysis. In this step, we compared the identified subgroups with worse prognosis 

(intermediate-poor) with the subgroups with better prognosis (intermediate-favorable) in 

order to know what gene sets describing biological processes were systematically 

differentially expressed between them.  

We observed that in most of the intermediate-poor subgroups there were some biological 

processes that appeared to be downregulated. Two examples are processes related to cellular 

response to vascular endothelial growth factor stimulus, and the vascular endothelial growth 

factor signaling pathway. The downregulation of these two GO terms seem to suggest that the 

leukemic cells of the intermediate-poor patients have a lower response to the vascular 

endothelial growth factor (VEGF).  

It is known that AML patients shown an aberrant VEGF signaling in the bone marrow that 

promotes AML blast cell proliferation and survival, chemotherapy resistance, and also 

increased angiogenesis.66. It was previously reported that high levels of VEGF are associated 

with poor therapeutic outcome of AML patients.66 Our results are contradictory to what is 

described in the literature. Therefore, we hypothesize that, although the VEGF cellular 

response, and consequently its signaling, seem to be downregulated in the majority of the 

intermediate-poor subgroups, these alterations might not have an impact in patient survival. It 



89 

is possible that in the two prognostic subgroups there are alterations in gene sets that confer a 

better prognosis and others that confer a worse prognosis, but in the intermediate-poor 

subgroups there are more dysregulated gene sets that confer a poor prognosis. Furthermore, 

this is only an example for one enriched gene set, which cannot be observed individually, 

since it is part of a larger gene expression network. 

In addition, we observed that the hydrogen peroxide catabolic process and the gas transport 

process are also downregulated in the majority of the intermediate-poor, in comparison with 

the intermediate-favorable subgroups. Hydrogen peroxide is a reactive oxygen species (ROS) 

produced through the cellular metabolism.67 According to previous studies, AML cells show 

higher levels of ROS in comparison with normal leukocytes, which is a trigger for 

leukemogenesis. In normal conditions, the HSCs are under low ROS levels that regulate their 

self-renewal and proliferation capacities. However, oxidative stress caused by high ROS 

levels promotes HSC proliferation.67 We theorize that in the majority of the intermediate-

poor subgroups, the leukemic cells have a higher proliferation capacity than the leukemic 

cells of the intermediate-favorable subgroups. Furthermore, there is an association between 

ROS and chemotherapy resistance, that could also contribute for the poor prognosis.67 

Gene sets related to skeletal system development also seem to be downregulated in the 

intermediate-poor subgroups. However, this is a large set that consists of 545 genes and is the 

parent term of a complex network of several child GO terms. As such, it is difficult to draw 

reasonable insights for why it is downregulated in the intermediate-poor subgroups. 

In contrast, our analysis also identified gene sets related to biological processes that appear to 

be upregulated in most of the identified subgroups with worse prognosis in comparison with 

the more favorable ones. Positive regulation of response to biotic stimulus, regulation of 

innate immune response, and positive regulation of innate immune response are examples of 

biological processes that appear to be upregulated in most intermediate-poor AML-M1 

patients. The enrichment of GO terms seem to suggest that there is more innate immune 

response in the intermediate-poor patients than in the intermediate-favorable patients. In 

addition, we also observed that regulation of natural killer cell mediated immunity also 

seemed to be upregulated in the intermediate-poor subgroup, which could be explained by the 

fact that there seems to be a general upregulation of gene sets associated with innate immune 

response. In contrast, however, it is possible that several gene sets related to the innate 

immune response were found to be upregulated merely as a consequence of the upregulation 
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of the term related to the regulation of natural killer cell mediated immunity. It has been 

described that NK cells play an important antitumor role in AML.68 Furthermore, it has been 

shown that NK cells are often defective in AML patients, which contributes to the 

immunological escape of this malignancy.69 Malfunctioning NK cells are a predictive factor 

for poor prognosis and early relapse and, on the other hand, NK cell activity is positively 

correlated with better prognosis.69 It is possible that the intermediate-favorable AML 

subgroup might have, as described in the literature, a higher NK cell activity. Therefore, 

downregulation of genes associated with the activation of the innate immune response could 

provide a selective advantage to the leukemic cells in the intermediate-favorable patients. On 

the other hand, the intermediate-poor subgroup could have either faulty or low-activity NK 

cells, so the selective advantage conferred by downregulating genes related to the activation 

of innate immune response would minor in the leukemic cells of these patients.  

By performing the methylation analysis, we identified 130 genes as potential prognostic 

biomarkers in patients with AML-M1 categorized in the intermediate prognostic risk group. 

Of these 130 genes, 46 were already described in the AML literature. An example is the 

Scinderin (SCIN) gene, which encodes for a protein member of the actin-binding protein 

family.70 Several actin-binding proteins are involved in the regulation of dynamics of actin 

filaments, and this is associated with cell migration, contributing to tumor cell invasion and 

metastasis.70 Our results suggest that when AML-M1 patients categorized in the intermediate 

prognostic risk group are subcategorized based on the determined methylation cutpoint of the 

SCIN gene, the subgroup with worse prognosis displays SCIN hypermethylation in the 

promotor region. Zhang et al. investigated the clinical relevance of SCIN expression and 

promotor methylation in AML patients.70 They demonstrated that AML patients had 

significantly lower levels of SCIN expression in comparison with healthy controls. The AML 

patients also had significantly higher levels of methylation at the SCIN promotor region, and 

this methylation was negatively correlated with SCIN expression. In addition, AML patients 

with low expression levels of SCIN showed lower rates of complete remission and shorter 

overall survival in comparison with patients with higher levels of SCIN expression. So, SCIN 

promotor methylation, which is associated with lower levels of SCIN expression, is a 

valuable biomarker to predict poor prognosis in AML patients.70 This study is in concordance 

with our results.  

Another putative prognostic biomarker identified in our methylation analysis that was already 

cited in the AML literature is the Major histocompatibility complex class I related - A 
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(MICA). According to our results, when the patients with AML-M1 categorized in the 

intermediate prognostic risk group are subcategorized based on the determined methylation 

cutpoint for the MICA gene, the subgroup with worse prognosis is related with MICA 

hypomethylation at promotor region. MICA is one of the ligands that activates the receptor 

natural killer group 2 member D (NKG2D) promoting the innate immune response in NK 

cells.71 However, cancer cells downregulate the expression of ligands, such as MICA, in 

order to avoid recognition by the immune system. Baragaño Raneros et al. observed that, in 

AML cells, there is a hypermethylation of MICA in comparison with cells from healthy 

donors. This hypermethylation was correlated with decreased expression levels of the ligand, 

suggesting that, in AML there is an epigenetic silencing of MICA expression through DNA 

methylation, as a result of the tumor’s development.71 Nonetheless, we found that the 

intermediate-poor AML patients had MICA hypomethylation, which could be linked to 

higher transcription levels of the gene. Although MICA is usually downregulated in cancer to 

avoid immune detection, it has also been described tumor cells can release soluble molecules 

of MICA in order to evade NKG2D-mediated immune responses.72 Release of soluble MICA 

by tumor cells leads to less MICA in the cell surface, which promotes a reduced susceptibility 

to NKG2D-mediated cytotoxicity.72 Since we only analyze expression levels, and not protein 

levels, we can only speculate that the hypomethylation of MICA in the intermediate-poor 

subgroup could be linked to higher levels of MICA, which could be shed from the cell surface 

and cause less immunogenicity, and thus a worse prognosis. 

 

5.2 Potential prognostic biomarkers for AML patients with AML-M2 categorized in the 

intermediate prognostic risk group 

The group of patients with AML-M2 categorized in the intermediate risk group was the 

second to be analyzed by our algorithm in order to identify potential prognostic biomarkers of 

both gene expression and DNA methylation that could predict survival in this subgroup of 

patients. 

By performing a gene expression analysis, we identified 58 candidate prognostic biomarker 

genes whose expression levels seem to be able to subdivide AML-M2 patients into two 

groups with distinct prognosis. Moreover, 19 of the 58 identified genes were already cited in 

AML literature.  
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The ABCB1 gene is an example of one of the identified genes that was already cited in an 

AML-related article. This gene codifies for a P-glycoprotein, a member of the ATP binding 

cassette (ABC) transporter superfamily.73 The ABC transporters are proteins localized in the 

cell membranes responsible for the translocation of solutes across the membrane, using 

energy generated from the ATP hydrolysis. In AML patients treated with intensive 

chemotherapy (combination of anthracycline and cytarabine), the high expression levels of 

ABCB1 was related with lower CR rates and higher relapse rates, being a poor prognostic 

factor that confers worse overall- and event-free survival. Moreover, the main cause of 

leukemia related death is drug resistance and it has been hypothesized that ABCB1 is related 

to drug resistance, since these transporters export the therapeutic drugs out of the target cell. 

However, this association is not completely clear yet.73 According to our results, based on the 

determined expression cutpoint of ABCB1 gene, the patients with AML-M2 categorized with 

intermediate prognostic risk group that represent the subgroup with worse prognosis display 

high expression levels of the ABCB1 gene. This result is in concordance with the findings 

described in the literature. It is possible that patients in the subgroup with worse prognosis, 

characterized by high expression levels of ABCB1, can develop resistance to the AML 

chemotherapy. As the treatment is less effective in AML patients with high expression of 

ABCB1, this subgroup of patients has lower survival rates. 

The alpha-chain of the interleukin-3 receptor (IL-3RA), also known as CD123, is a subunit of 

the IL-3 receptor. Together with the β-subunit of the receptor, it promotes high-affinity 

binding to IL-3, which is primarily produced by T-lymphocytes.74 The binding of IL-3 to its 

receptor stimulates hematopoietic cell’s cycle progression and differentiation, and inhibits 

apoptosis.74 Studies showed that the high expression of IL-3RA is present in hematological 

malignancies, such AML, and that it can confer a proliferative advantage to leukemic cells.75 

Furthermore, high expression levels of IL-3RA were also associated with reduced patient 

survival, being a poor prognostic factor.73 Our results suggest that, when the patients with 

AML-M2 categorized in the intermediate prognostic risk group are subdivided based on the 

expression cutpoint of the IL-3RA gene, the subgroup with worse prognosis is related with 

high expression levels of this gene, which is in concordance with the literature. However, 

these results refer specifically to FAB-M2 AML patients, and the literature about IL-3RA 

gene expression in AML does not discriminate any subtypes of AML.  

After identifying the candidate prognostic biomarkers of gene expression for intermediate-

risk AML-M2 patients, we compared the subgroups of patients generated by the determined 
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expression cutpoints. By performing a gene set enrichment analysis, we evaluated what gene 

sets in biological processes were systematically enriched between the subgroups with worse 

prognosis (intermediate-poor) and the subgroups with better prognosis (intermediate-

favorable).  

We identified that sprouting angiogenesis, locomotor behavior, negative regulation of 

supramolecular fiber organization, Rho protein signal transduction, and regulation of Rho 

protein signal transduction were some of the identified gene sets that appeared to be 

downregulated in most of the AML-M2 intermediate-poor in comparison with the 

intermediate-favorable subgroups.  

Rho proteins are GTPases that cycle through an active GTP-bound form and an inactive 

GDP-bound form.76 This family of enzymes interacts with downstream effectors that are 

involved in several cellular processes, such as cytoskeleton dynamics.76 In fact, we also 

identified a downregulation of the biological process "negative regulation of supramolecular 

fiber organization", which might be related to the Rho signal transduction. However, it is 

important to observe that we do not know if the downregulation of the biological processes 

related to the Rho protein signal transduction are negative or positive regulation processes. 

Similarly, it is not clear if the "negative regulation of supramolecular fiber organization" 

refers to a polymerization or depolymerization process.  

Nonetheless, Rho GTPases have been implicated in both malignant transformation and tumor 

development, contributing to processes like development of an inflammatory environment 

and induction of tumoral angiogenesis. Curiously, another downregulated biological process 

in the intermediate-poor subgroup is the "sprouting angiogenesis", which could also be 

related to the Rho protein signal transduction downregulation.  

Increased angiogenesis is usually associated with an unfavorable prognosis in AML77, but it 

is not possible for us to conclude that our results are in agreement with this association, since 

we do not know which type of angiogenic process is being downregulated.  

It is also not completely clear how these downregulated biological processes are related to an 

unfavorable prognosis since they refer to complex networks of child biological processes 

with both negative and positive regulatory roles. 

We identified several gene sets related to cellular respiration and ATP synthesis that were 

upregulated in the intermediate-poor subgroup, comparatively to the intermediate-favorable 
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subgroup. These biological processes include mitochondrion organization, ATP synthesis 

coupled proton transport, energy coupled proton transport down electrochemical gradient, 

respiratory electron transport chain, and cellular respiration. 

High proliferating cells have an increased energy demand, and high levels of ATP synthesis, 

especially through an aerobic pathway, consequently, cause a rise in cellular ROS.78 It is 

known that ROS are key mediators in normal hematopoiesis. In fact, ROS is one of the 

triggers for HSC to undergo differentiation and proliferation. Although, ROS levels are 

maintained at relatively low levels in normal HSC, they are aberrantly increased in leukemic 

cells and are a known stimulator of myeloid leukemogenesis.78 

Focusing on the DNA methylation analysis, our algorithm identified 591 genes whose DNA 

methylation appears to have a predictive value of survival in patients with AML-M2 

categorized in the intermediate prognostic risk group. 180 of the 592 identified genes were 

already described in AML-related articles. Of the genes already cited in the AML literature, 

our algorithm identified the distal-less homeobox 4 (DLX4) gene as a potential prognostic 

biomarker of DNA methylation in patients with AML-M2 categorized in the intermediate 

prognostic risk group. We identified 2 CpG sites (cg10592171 and cg12224030) with a 

potential prognostic value localized in the promotor region of the DLX4 gene. In both CpG 

sites, hypermethylation is related with the subgroup with worse prognosis. The clinical 

relevance of DLX4 methylation in de novo AML patients was investigated by Zhou et al.79 

This study showed that AML patients had a significant DLX4 methylation in comparison with 

controls. Moreover, in comparison with the patients with unmethylated DLX4, they observed 

that all AML and non-M3 patients had a significant lower rate of complete remission. 

Furthermore, all AML, non-M3 AML, and cytogenetically normal AML cases with DLX4 

methylation had a significantly shorter overall survival. As such, DLX4 methylation was 

considered an independent risk factor in all-AML and non-M3 AML patients, predicting a 

poor clinical outcome in de novo AML.79 These findings are in accordance to our results, 

which also identified DLX4 hypermethylation as a negative prognostic factor, but only in 

AML-M2 patients. Zhou et al. argued that it is possible that a mutation in the U2AF1 gene, 

which encodes for a small subunit of the U2 Auxiliary Factor complex (one of the 

components of the spliceosome), could potentially trigger DLX4 methylation through the 

DNMT pathway during leukemogenesis, but this mechanism is not clear and further studies 

are needed.  
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5.3 Potential prognostic biomarkers for AML patients with AML-M4 categorized in the 

intermediate prognostic risk group 

By performing the gene expression analysis, our algorithm identified 4 genes whose 

expression levels appear to be able to predict prognosis in the studied AML-M4 patients. The 

CCDK gene is the only identified gene that was already cited in AML-related articles. This 

gene a protein member of the cyclin family known as cyclin K.80 The function of cyclin K is 

not yet completely understood. However, previous studies showed that the detection of this 

protein in non-proliferative human tissues is hard, but it is highly expressed in stem cells with 

rapid proliferation. In fact, there is a positive correlation between the expression of cyclin K 

and cellular proliferation.80 Our results suggest that when the patients with AML-M4 

categorized in the intermediate prognostic risk group are subclassified based on the 

determined expression cutpoint of CCNK gene, the subgroup with worse prognosis is 

characterized by high expression levels of CCNK. Comparing with the previous studies, 

maybe in AML-M4 patients with high levels of CCNK expression, the leukemic cells exhibit 

more proliferation than the leukemic cells with low expression of CCNK, leading to a faster 

progression of the disease and less survival time for the patients, which potentially explains 

why it seems to be a poor prognostic factor in these patients.  

Our analysis identified some biological processes that seemed to be downregulated in the 

AML-M4 intermediate-poor patients in comparison with the intermediate-favorable 

subgroups, such as branching morphogenesis of an epithelial tube, detection of stimulus 

involved in sensory perception and detection of chemical stimulus involved in sensory 

perception. The first mentioned GO term is related to a decreased generation and organization 

of epithelial tubes, such as blood vessels. The remaining GO terms are linked to a decrease in 

sensory perception like pain, smell, taste. According to the literature, it has been described 

that sensory losses are one of the symptoms of leptomeningeal AML.81 Leptomeningeal 

AML is usually diagnosed through several neurological symptoms, such as impaired vision, 

hearing deficits, sensory losses, or vertigo.81 Although leptomeningeal involvement in AML 

is rare, it has a higher prevalence in patients with FAB-M4 and FAB-M5 subtypes, which 

might explain why we found such enrichment in the FAB-M4 cohort. The reach of AML to 

the central nervous system is strong indicator of poor overall survival, decreased disease-free 

survival, and a diminished rate of complete response.81,82 Therefore, it is possible that our 

results indicate that the group of patients with low-prognosis have a down-regulation of 

sensory perception due to an involvement of the malignancy in the central nervous system.  
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In contrast, some biological processes were found to be upregulated in the AML-M4 

intermediate-poor patients in comparison with the intermediate-favorable patients. Negative 

regulation of cell cycle process, RNA catabolic process, proteasomal protein catabolic 

process, mRNA processing, and RNA splicing are some examples of biological processes 

that appeared to be upregulated in the intermediate-poor subgroups. The first mentioned GO 

term refers to a decrease in a cellular process that is involved with cell cycle progression, 

which can be a process that either promotes or inhibits the cell cycle. The other GO terms 

seem to indicate an increase in protein turnover in the intermediate-poor patients, involving 

more mRNA processing, which could suggest more protein formation, and protein catabolic 

processes mediated by proteasome, which could suggest more protein degradation.83 Cancer 

cells have an increased need for protein production and degradation. In fact, inhibition of 

proteasome activity in tumor cells leads to a block in cellular proliferation and an activation 

of apoptosis. In AML, the inhibition of proteasome activity has been explored as potential 

treatment and seems to show promising results.83 Therefore, we theorized that in AML-M4 

intermediate-poor subgroups there is an negative regulation of processes that inhibit the cell 

cycle progression, and also an increased protein turnover. These two combined, could 

promote the proliferation of leukemic cells, generating a more aggressive malignancy, which 

could explain why the subgroups where these biological processes are upregulated have 

worse prognosis in comparison to the other subgroups.  

By performing the DNA methylation analysis, we identified 330 genes whose methylation 

levels were able to differentiate survival in patients with AML-M4 categorized in the 

intermediate prognostic risk group. One of these genes already described in AML-related 

articles was the Adenomatous polyposis col 2 (APC2), a tumor suppressor gene that encodes 

for a protein that negatively regulates beta-catenin. Our data shows that APC2 

hypomethylation in the 5'UTR region is a predictor for poor-prognosis in AML-M4 patients 

categorized with intermediate prognostic risk group. This gene has already been cited in the 

AML-literature by Xia Y. and colleagues, who described that APC2 promoter methylation 

levels did not seem to be affected by various chemotherapy regimens.84 It is also possible that 

prognostic-predicting capabilities of the methylation of APC2 5'UTR region is not because 

the gene itself, but a consequence of another unknown cellular event.  

Another identified gene that was already described in AML-related articles and whose DNA 

methylation appears to have a predictive value of survival in the AML-M4 intermediate-risk 

patients is the SNRPN gene. Based on the patient division by the identified methylation 
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SNRPN cutpoint, the subgroup with worse prognosis is related with SNRPN hypermethylation 

at the promotor region. Benetatos et al. studied the SNRPN methylation at the promotor 

region in 42 patients diagnosed with AML, and observed that 21 displayed hypermethylation 

of SNRPN.85 Even though Benetatos’s results seemed to suggest that abnormal methylation of 

SNRPN could be a characteristic event in AML, they did not find any association between 

SNRPN hypermethylation and the survival of AML patients.85 Our finding contrast with 

Benetatos et al. results, possibly because we found an association of SNRPN 

hypermethylation with survival specifically in intermediate-risk AML-M4 patients, while 

Benetatos studied AML patients from different subclassifications and risk categories. 

 

5.4 Potential prognostic biomarkers for AML patients with AML-M5 categorized in the 

intermediate prognostic risk group 

By performing the gene expression analysis, we identified 32 genes whose expression 

appears to be able to predict survival in the studied intermediate-risk AML-M5 patients. Of 

these 32 identified genes, 5 were already described in the AML literature. An example of 

these five genes is the phospholipase A2 Group IVA (PLA2G4A), a gene that encodes an 

enzyme that catalyzes the hydrolysis of membrane phospholipids to release arachidonic acid 

and lysophospholipids.86 This gene’s survival-predicting capabilities in AML patients has 

already been reported by Bai and colleagues, who evaluated the prognostic value of 

PLA2G4A expression levels in non-M3/ NPM1 wildtype AML patients. They observed that 

the PLA2G4A gene is highly expressed in non-M3 AML samples in comparison to normal 

peripheral blood samples. Moreover, this elevated PLA2G4A expression was associated with 

a significantly shorter overall survival of AML patients. Furthermore, the group also 

described that PLA2G4A expression can possibly be an independent prognostic biomarker of 

OS in non-M3/NPM1 wildtype-AML patients.86  

Our data suggests that, based on the determined expression cutpoint, PLA2G4A expression 

levels are able to subdivide the AML-M5 with intermediate-risk patients into two subgroups 

with significant different overall survival. In this subdivision, high expression levels of 

PLA2G4A is related to worse prognosis, which is in accordance with the results described by 

Bai et al.  By promoting the release arachidonic acid and lysophospholipids, PLA2G4A may 

act in many signaling pathways, such as in the activation of the PI3K/Akt pathway.
86 

Although PLA2G4A is likely to be implicated in several cellular processes that influence 
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AML development, one way to explain the inverse association with this gene’s expression 

and M5-AML survival is that arachidonic acid can be metabolized by cyclooxygenase to 

synthetize prostaglandins, which have been described as key players in cell cycle progression. 

It has also been shown that leukotrienes, which also stem from arachidonic acid, can induce 

cell proliferation in several cell types and that its deregulation directly causes uncontrolled 

cell proliferation.86 

Another example of gene already cited in AML is the Beta-2-Microglobulin (B2M) gene. Our 

results suggest that when the patients with AML-M5 categorized in the intermediate 

prognostic risk group are subdivided based on the expression B2M cutoff, the low expression 

of B2M is related with the subgroup of patients with a worse prognosis. Tsimberidou et al., 

observed that in older patients (with ages of 60 or more years) with newly diagnosed AML, 

high serum levels of β2M were associated with poor survival.87 Since our analysis aimed to 

identify potential prognostic biomarkers that could predict survival regardless of the age of 

the patients, this could explain why our results are not in accordance with the findings 

described by Tsimberidou et al. Furthermore, our study was specifically focused in 

intermediate-risk AML-M5 patients, which could also, in part, explain the difference in the 

results. 

The subgroups of intermediate-risk AML-M5 patients, generated based on the expression 

cutpoint of the identified candidate gene expression biomarkers were also compared using the 

GSA methodology to know what gene sets and biological processes were differentially 

expressed between the two prognostic clusters.   

Some examples of biological process-related gene sets that seemed to be downregulated in 

the majority of the intermediate-poor subgroups included leaflet of membrane bilayer and 

antigen processing and presentation of exogenous peptide antigen. The downregulation of 

these biological processes seems to suggest that in the intermediate-poor subgroups there is a 

lower presentation of exogenous antigens. Lower levels of leukemic antigens result in lower 

immunogenicity, in fact it has been described that cytotoxic T cells preferentially kill 

leukemia cells with higher expression levels of leukemic antigens like Neutrophil elastase 

(NE) and proteinase 3 (P3), which could explain why the subgroup with downregulation of 

biological processes related to exogenous antigen presentation have the worse prognosis.88 

Furthermore, it has also been shown that the levels of the antigens NE and P3 are positively 

correlated with remission status in AML patients.88  
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On the other hand, some biological process-related gene sets were also found to be 

upregulated in most of the intermediate-poor subgroups in comparison with the intermediate-

favorable subgroups. Some examples include protein localization to cilium, microtubule-

based protein transport, protein transport along microtubule, intraciliary transport, and cilium 

organization. In 2017, Singh and colleagues identified primary cilia in leukemia cells.89 

Primary cilia are microtubule-based organelles that are important for the function of signaling 

pathways such as the Wnt and Hedgehog pathways. Singh described that, in leukemic cells, 

the primary cilia often displayed aberrant morphologies, which could result in aberrant 

activation of the hedgehog pathway. Although the link between the former two is not clearly 

established in leukemic cells, it is possible that the upregulation of these biological processes 

in intermediate-poor patients could be related to primary cilia and/or aberrant activation of 

pathways like Wnt and Hedgehog.89  

 

5.5. Potential prognostic biomarkers for patients with AML-M0-M1-M2-M4-M5 

categorized in the intermediate prognostic risk group 

Finally, we aimed to search for candidate prognostic biomarkers of both gene expression and 

DNA methylation that could predict survival of intermediate-risk AML patients, 

independently of its FAB classification. To achieve this, we performed our biomarker 

identification analysis using all intermediate-risk AML patients for which we had gene 

expression and DNA methylation data, which included patients classified as FAB-M0, FAB-

M1, FAB-M2, FAB-M4, and FAB-M5. 

The stromal cell-derived factor 1 (SDF-1) was one of the genes that was identified by our 

algorithm and one of the cited in the AML literature. The SDF-1 gene, CXCL12  encodes a 

chemokine that is expressed and produced by the bone marrow stromal cells and promotes 

migration and homing of HSCs and progenitor cells when it binds to their receptor 

(CXCR4).90 In AML, it was already demonstrated that the binding of CXCL12 to CXCR4 

promotes the development and progression of the disease. A high expression of CXCR4 was 

identified in AML patients with a significantly reduced survival rate and a high probability of 

relapse. Moreover, it was also found that the AML cells constitutively express and secrete 

CXCL12, which plays a role in migration and proliferation of leukemic cells. In addition, 

high levels of CXCR4-expressing vesicles and CXCL12 were identified in serum samples of 

AML patients in comparison with normal individuals.91 Another study suggested that the 
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CXCL12 expression by AML cells confers survival advantage and participates in the 

autonomous growth to these cells.92 Our results suggest that the subgroup of AML patients 

with worse prognosis are represented by lower expression levels of the CXCL12 gene, in 

comparison to the intermediate-favorable AML subgroups. Our results are contradictory with 

the findings above described.  

The PDE7B gene is other example of an identified candidate prognostic biomarker that was 

already described in the AML literature. According to our results, the intermediate-poor 

patients display high expression levels of PDE7B gene. Han and colleagues studied the effect 

of the expression levels of PDE7B in the prognostic of patients with CN-AML.93 They 

observed that the patients with high expression levels of PDE7B gene showed a significant 

reduction in event-free survival and overall survival. Moreover, the PDE7B gene showed to 

be an independent risk predictor of poor prognosis in patients with CN-AML.93 These 

findings seem to be in concordance with our results. 

Through the gene set analysis, we identified some biological processes gene sets that appear 

to be differently enriched in the majority of the intermediate-poor in comparison with the 

intermediate-favorable subgroups. For example, we observed that the organophosphate 

catabolic process gene set was upregulated in the intermediate-poor subgroups. One of the 

main drugs used in AML therapeutics is Cytarabine.94 This compound is converted 

intracellularly into the active form cytosine arabinoside triphosphate.94 The upregulation of 

the organophosphate catabolic process in the intermediate-poor subgroups may indicate an 

increase in cytosine arabinoside triphosphate metabolism. Moreover, we also found an 

upregulation of the snRNA processing, snRNA 3’-end processing, and ncRNA 3’-end 

processing gene sets. Small nuclear RNA (snRNA) complex with proteins to form the small 

nuclear ribonucleoproteins (snRNPs), which are part of the spliceosome.95 These snRNPs are 

necessary for the pre-mRNA splicing process. In AML, alternative RNA splicing can 

contribute to drug resistance. For example, it has been shown that alternative splicing can 

produce an enzymatically inactive deoxycytidine kinase (dCK), thus contributing to drug 

resistance.95 We reasoned that the leukemic cells of the intermediate-poor patients might be 

drug resistant, which could explain the poor survival of these patients. 

Through the application of our prognostic biomarker searching algorithm, we also identified 

264 genes whose DNA methylation appears to be potentially able to predict prognosis in 

patients with AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic risk 
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group. We also verified that 70 of the 264 identified genes were already cited in the AML 

literature.  

An example of an identified candidate prognostic biomarker gene that was already cited in 

AML is the DEAD box polypeptide 43 (DDX43) gene. Our results indicate that when the 

patients with AML-M0-M1-M2-M4-M5 categorized in the intermediate prognostic risk 

group are subdivided based on the DNA methylation cutpoint of cg17188169 in the DDX43 

gene, the subgroup with worse prognosis displays DDX43 hypermethylation in the promotor 

region. Lin et al. investigated the methylation status at the promotor region of the DDX43 

gene and its clinical relevance in patients with primary AML.96 The authors observed that the 

hypomethylation of the DDX43 gene, at the promotor region, was present in primary AML, 

including in patients whose AML was categorized in the intermediate prognostic risk group, 

and that this hypomethylation was correlated with the expression levels of the gene. 

Moreover, they also observed that the AML patients with hypomethylation of the DDX43 

gene in comparison with patients with methylation of the DDX43 gene had a better overall 

survival. Ultimately, they concluded that hypomethylation at promotor activates the DDX43 

gene, and that such activation can be a favorable prognostic factor in AML patients.96 These 

findings seem to be in concordance with our results. We hypothesize that in the intermediate-

poor subgroup, the hypermethylation at the DDX43 promotor may inhibit the expression of 

the DDX43 gene, leading to an increase in proliferation of the leukemic cells. 

The Carnitine palmitoyl transferase 1A (CPT1A) gene was also identified by our algorithm as 

a candidate prognostic biomarker of DNA methylation and it was also already cited in the 

AML literature. According to our results, hypermethylation in the promotor of the CPT1A 

gene is related with subgroup with worse prognosis. Shi et al. studied the expression levels of 

the CPT1A gene in samples of AML patients and its relevance to the prognosis of the AML 

patients.97 Their study showed that the higher levels of CPT1A expression were significantly 

associated with poor outcomes in cytogenetically normal AML patients. This gene encodes 

for a protein that is a rate-limiting enzyme of fatty acid β-oxidation, a metabolic pathway 

where it seems to be some evidence of cancer-associated aberrant gene expression.97 

We do not know how the promoter methylation of the CPT1A gene is related to its 

transcription in our cohort, but it could be possible that the adverse prognosis conferred by 

promoter hypermethylation could be linked to a deregulation of the fatty acid β-oxidation 

pathway. 
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5.6. Study limitations 

Although our study was able to identify several candidate prognostic biomarkers the analyzed 

cohort, it presents several limitations such as: 

▪ Lack of normal samples, which excludes the possibility of understanding which 

alterations between prognostic groups are similar to normal patterns. 

▪  Small sample size, which reduces statistical power in our hypothesis tests. 

▪ The analyzed datasets can be enriched in certain features (like gender, age, or clinical 

characteristics) which could lead to false conclusions about the intermediate-risk 

AML population. 

▪ Even though we developed a searching prognostic biomarker algorithm that can be 

used in other datasets from different diseases, it has not undergone methodological 

validation. 
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CHAPTER 6   

CONCLUSION 

 

Our developed algorithm was able to identify potential prognostic biomarkers of gene 

expression and DNA methylation that were able to distinguish survival in patients with FAB 

M1, M2, M4, and M5 subtypes categorized in the intermediate prognostic risk group. 

Moreover, some potential biomarkers were also found for the FAB M0, M1, M2, M4, and 

M5 AML patients, without the subtype distinction. 

For some identified candidate genes, their role in the development of AML as well as their 

prognostic value were described in previous studies, and for other candidate genes, their 

prognostic potential is still being researched. However, biomarker as well as algorithm 

validation are necessary to confirm the prognostic value of the identified candidate genes. 

Moreover, we also identified that, although the majority of the identified potential biomarkers 

generate different subgroup of intermediate AML patients, most of the intermediate-poor 

subgroups share some gene sets that appeared to be upregulated and downregulated in 

comparison with the intermediate-favorable subgroups.  

In summary, our data suggests that both DNA methylation and gene expression are valuable 

tools that can be used to stratify intermediate-risk AML patients of various FAB subtypes 

into subgroups with distinct overall survival. This can be useful for a better understanding 

and management of AML. 
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