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Abstract: This work evaluates the integral effect of thermal comfort (TC), indoor air quality (IAQ)
and Draught Risk (DR) for desks with four personalized ventilation (PV) systems. The numerical
study, for winter and summer thermal conditions, considers a virtual chamber, a desk, four different
PV systems, four seats and four virtual manikins. Two different PV configurations, two upper and
two lower air terminal devices (ATD) with different distance between them are considered. In this
study a coupling of numerical methodology, using one differential and two integral models, is used.
The heating, ventilating and air conditioning (HVAC) system performance in this work is evaluated
using DR and room air removal effectiveness (εDR) that is incorporated in an Air Distribution Index
(ADI). This new index, named the Air Distribution Turbulence Index (ADTI), is used to consider
simultaneously the TC, the IAQ, the DR and the effectiveness for heat removal (εTC), contaminant
removal (εAQ) and room air removal (εDR). The results show that the ADI and ADTI, are generally
higher for Case II than for Case I, increase when the inlet air velocity increases, are higher when
the exit air is located at a height 1.2 m than when is located at 1.8 m, and are higher for summer
conditions than for winter conditions. However, the values are higher for the ADI than ADTI.

Keywords: numerical simulation; personalized ventilation; thermal comfort; air quality; Draught
Risk; Air Distribution Index; Air Distribution Turbulence Index

1. Introduction

In order to evaluate the heating, ventilating and air conditioning (HVAC) system
performance an index such as the Air Distribution Index (ADI) can be used. This index,
developed by Awbi [1], considers simultaneously the predicted percentage of dissatisfied
people (PPD), the effectiveness for heat removal (εTC), the percentage of dissatisfied people
related to the air quality (PD) and the effectiveness for contaminant removal (εAQ). An
index which evaluates the ventilation system performance can be used to compare the
performances of different ventilation systems and calculates the influence of the ventilation
method on each occupant and at different locations.

Different applications of the ADI were made to study the performance of ventilations
systems. In Cho et al. [2] the performance of four ventilation systems was compared, in
Cho et al. [3] the performance of a mixing ventilation system was analyzed, in Cho et al. [4]
the performance of confluent jets ventilation system was studied, in Karimipanah et al. [5]
two different floor air supply systems were investigated, Almesri et al. [6] assessed the
thermal comfort (TC) and the indoor air quality (IAQ) levels for different systems and
Awbi [7,8] studied performance of different ventilation systems that can deliver better IAQ
and energy efficiency.

The model developed by Awbi [1] was applied for uniform environments. How-
ever, in Conceição et al. [8] this model was adapted to non-uniform environments. Con-
ceição et al. [8] studied spaces equipped with mixing ventilation and with cold radiant

Energies 2021, 14, 3235. https://doi.org/10.3390/en14113235 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5963-2107
https://doi.org/10.3390/en14113235
https://doi.org/10.3390/en14113235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14113235
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14113235?type=check_update&version=1


Energies 2021, 14, 3235 2 of 19

floor, evaluated the IAQ, TC and Draught Risk (DR) for a virtual classroom using personal-
ized ventilation systems for non-uniform environment. This model was also applied in
Conceição et al. [9] for the evaluation of TC and IAQ quality in a classroom with six and
twelve occupants.

ADI considers the TC and IAQ levels in a space. For TC evaluation, the predicted mean
vote (PMV) and PPD are used. These indexes were developed by Fanger [10] and presented
in ANSI/ASHRAE Standard 55 [11] and ISO 7730 [12]. These indices are functions of the air
temperature, air velocity, relative humidity, mean radiant temperature (Tr), basic clothing
insulation and metabolic rate. For IAQ assessment, the carbon dioxide concentration (see
ANSI/ASHRAE Standard 62.1. [13]) was used in this work.

However, in ventilated spaces DR, presented in ISO 7730 [12] and developed by
Fanger et al. [14], should also be considered. DR is function of the air temperature, air
velocity and air turbulence intensity.

In this work personalized ventilation (PV) is studied. In these kinds of ventilation
systems which have been developed during the last few years, the supply airflow is
promoted in the respiration area, Fanger [15]. Initially a PV system used one ATD, however
in the last few years more than one ATD has been considered, with air supply directed
towards the upper and lower body areas. Initially for a PV system, the IAQ was the main
objective, however in more recent years TC and energy consumption were also considered.

Melikov et al. [16] studied different types of ATDs for PV systems, Gao and Niu [17]
studied the performance of PV systems under different room conditions, Cermak et al. [18]
compared the performance of PV with mixing ventilation and displacement ventilation
systems, Niu et al. [19] studied a chair-based PV strategy, Sun et al. [20] examined the
dynamic performance of PV, Bolashikov et al. [21] analyzed the performance of PV by
considering the airflow around the occupants, Schiavon et al. [22] analyzed the energy
consumption of PV systems in hot and humid climates, Li et al. [23] studied PV system in
combination with an under-floor ventilation system, Yang et al. [24] analyzed the use of a
ceiling mounted PV in hot and humid climate, Chen et al. [25] investigated the integration
of PV with mixing ventilation, Melikov et al. [26] applied PV using seat headrest-mounted
air terminal devices, Makhoul et al. [27] studied the TC and the energy consumption for
ceiling-mounted PV, Cheong and Huang [28] explored PV coupled with displacement
ventilation, Dalewski et al. [29] analyzed PV in conjunction with the displacement ventila-
tion and Chen et al. [30] evaluated the performance of PV system with individual airflow
rate control.

This paper is a continuation of the previous work developed initially by Conceição et al. [31]
and Conceição et al. [9] and more recently in Conceição et al. [8]. In the earlier work of
Conceição et al. [31] and Conceição et al. [9], PV configurations were used in classroom
desks with two ATDs located above and below the desk area. In Conceição et al. [31], desks
equipped with PVs and two ATDs and one occupant was evaluated for the TC level that
the occupant was subjected to. Conceição et al. [9] evaluated the IAQ, TC and DR for a
virtual classroom using PV systems for non-uniform environment.

In this numerical simulation, the coupling of three types of software have been con-
sidered. The first integral model simulates the building thermal behavior and calculates
the temperature of internal and surrounding virtual chamber surfaces. Application of this
software is described in Conceição and Lúcio [32]. This work was applied to a complex
topology building with several floor levels and the occupant’s TC was evaluated. Others
models like Bacher and Madsen [33], had the propose of controlling the indoor climate and
evaluating the energy consumption, and that of Pisello [34] with the objective to analyse
the roof’s passive cooling to reduce energy consumption in of the building.

The second integral model simulates the human thermo-physiology and evaluates
the human TC sensation, the tissue and clothing temperatures which is described in
Conceição et al. [35]. In this study, the airflow around a thermal manikin was measured and
the TC was evaluated using the integral human thermo-physiology numerical model. Other
numerical models, related to the human thermal response can be found in Tang et al. [36]
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for the simulation of the local skin temperature in older people and Ozeki [37] for the
evaluation of TC level of occupants subjected to solar radiation.

A third differential numerical model uses computational fluid dynamics (CFD) to
simulate the air flow and evaluate the air quality, air velocity, air temperature, air turbulence
intensity and CO2, can be found in Conceição et al. [38]. Other studies related with the CFD
techniques can be found, as an example, in Takabayashi [39] for evaluating the thermal
environment and TC level and Nilsson and Holmér [40] for evaluating the perceived
thermal climate around a thermal manikin.

In this work a new index, named the Air Diffusion Turbulence Index (ADTI), is
developed. This index considers simultaneously PPD, εTC, PD, εAQ, DR and εDR. For this
study, two PV configurations were used to study the influence of the inlet air velocity, the
air exhaust location and the inlet air temperature on ADI and ADTI.

2. Materials and Methods
2.1. Numerical Models

In this work, which is a continuation of that in Conceição et al. [8] three numerical
models are applied: building thermal response (BTR) model, human thermal response
(HTR) model and a CFD model.

The BTR numerical model evaluates the surrounding room environment and the
body surface temperatures. This information is used by the CFD and the HTR numerical
models in a coupling methodology. The BTR model considers the external environment
conditions, the air change rate (ACR) and the thermal proprieties of the occupants and the
internal room surfaces. More details of the numerical model can be found in Conceição and
Lúcio [35] and details of the solar radiation, thermal proprieties of windows and convection
heat transfer coefficients can be found in Conceição et al. [41]

The coupling of the CFD and HTR numerical models is used to evaluate the airflow
around the occupants, the thermal comfort that the occupants are subjected to and air
quality in the occupants’ respiration area.

The HTR numerical model, that applies for transient and steady-state conditions,
together with the energy and mass balance integral equations, calculate the body and cloth-
ing temperatures, blood flow in the human body, water transpiration flow, blood (arterial
and venous) temperature, clothing temperature, water flow through the clothing and the
mean radiant temperature (Tr) and thermal comfort (TC) level. For the Tr evaluation, the
numerical model considers the view factors, surrounding room surfaces and the body’s
surface temperatures, while for TC the relative humidity, the air temperature and the air
velocity around the occupants are used with consideration of the heat fluxes calculated
around the human body.

The CFD model, which is used under steady-state conditions, evaluates the air temper-
ature and air velocity inside the room and around the occupants, the DR and the IAQ level
using the CO2 concentration data in the respiration area. This model considers the skin and
clothing surface temperature, the room surrounding surfaces temperatures and the ACR.
More details of an application of this modelling approach to moderate and isothermal
environmental conditions without occupants can be found in Conceição et al. [38] and an
application in non-isothermal environmental conditions with an occupant can be found in
Conceição et al. [9].

The CFD numerical model, developed by the authors and applied in this work,
considers:

• partial differential equations;
• finite volume method;
• hybrid scheme in the convective/diffusive fluxes;
• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm used in the

velocity and pressure equations;
• non-uniform approach for the grid generation;
• grid refinement near the surfaces and in the airflow inlet and outlet;
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• density changes with temperature;
• impulsion term in the vertical air velocity equation;
• carbon dioxide equation source term in the breathing area;
• iterative TDMA (Tri-Diagonal Matrix Algorithm) method in the equations system

resolution;
• RNG turbulence model, for high Reynolds number, in the turbulence simulation;
• wall boundary in the surface proximity.

The numerical models applied in this work were previously validated. The models
for BTR, HTR, CFD, the coupling of HTR with CFD and that of BTR, HTR with CFD were
performed for the validation. In the validation process, the grid, the solution accuracy and
other modelling aspects were evaluated in detail before the numerical models were applied
in this research. Cross ventilation, personalized ventilation and other ventilation systems
were used in the evaluations. Several grids, with different refinements, the RNG and the K-
epsilon turbulence models were used in the evaluation for the air velocity, air temperature,
air turbulence intensity and DR parameters. One example that used simultaneously the
BTR, HTR and CFD numerical models, is described in Conceição and Lúcio [42]. In this
study, the RNG turbulent model produced more accurate predictions than the k-epsilon
turbulent model and this was chosen in this study.

2.1.1. Air Distribution Index (ADI) for Non-Uniform Environment

In a previous work by Awbi [1], the ADI concept was developed with the objective of
obtaining, simultaneously, an evaluation of the TC and IAQ:

ADI = 2
√

NTC × NAQ (1)

where NTC is the thermal comfort number, and NAQ is the air quality number.

2.1.2. Air Distribution Turbulence Index (ADTI) for Non-Uniform Environment

In this work, the ADTI concept was developed with the objective of obtaining, simul-
taneously, the evaluation of the TC, IAQ and DR. This index provides useful information
concerning the ventilation system performance and allows the comparison between differ-
ent systems.

The ADTI concept which is defined below is used in this study:

ADTI = 3
√

NTC × NAQ × NDR (2)

where NDR is the Draught Risk number.
The advantages of ADTI are obtained when the effect of NDR becomes significant,

i.e., when the DR values are high or εDR is low. Using the ADTI concept, it is possible
to evaluate simultaneously the influence of NDR, NTC and NAQ on the TC, IAQ and DR
perception. With the application of the ADTI approach, it does not become necessary to
evaluate TC and IAQ separately for assessing the effect of DR, but the influence of all the
parameters are evaluated simultaneously.

The introduction of the DR in ADTI (when the effect of NDR becomes significant),
could in some cases produce ADTI values lower than ADI (which excludes DR). Thus,
it would be important to include DR in order to provide an overall assessment of the
performance of the ventilation system for achieving acceptable levels of TC, IAQ and DR.
In addition, the influence of inlet air velocity, location of the exhaust air terminal or the
influence of external thermal conditions on the ADTI should also be investigated in the
assessment of different ventilation systems.
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2.1.3. Thermal Comfort

NTC is evaluated by (see Awbi, [1]):

NTC =
εTC

PPD
(3)

PPD is evaluated using a thermo-physiology numerical model (HTR numerical model)
and NTC is expressed as (see Awbi, [1]):

εTC =
T0 − Ti

Tbody − Ti
(4)

where T0 is the air temperature of the outlet air, Ti is the inlet air temperature and Tbody is
the air mean temperature around the human body.

For non-uniform environment, the mean air temperature around the human body is
obtained using (see Conceição et al., [8]):

Tbody =
1

Abody
∑

j
Tbodyj

Abodyj
(5)

where Abody is the human body external area, Tbodyj
is the local air temperature around

the human body at section j and Abodyj
is the body’s external area for the j section.

2.1.4. Air Quality

The air quality number (NAQ) is defined by (Awbi, [1]):

NAQ =
εAQ

PD
(6)

PD for air quality (see Fanger, [43]) is represented by:

PD = 395e(−1.83 Q0.25) (7)

where Q is the ventilating rate per occupant.
εAQ (see Sandeberg, [44]) is expressed as;

εAQ =
C0 − Ci

CR − Ci
(8)

where Co is the contaminant concentration of the outlet air, Ci is the contaminant concen-
tration of the inlet air and CR is the contaminant concentration in the respiration area.

2.1.5. Draught Risk

NDR is evaluated by:
NDR =

εDR

DR
(9)

The εDR is evaluated by:

εDR =
VOZ

VOC
(10)

where VOZ is the mean air velocity in the occupied zone and VOC is the mean air velocity
around the occupant.

The mean Draught Risk around the human body, is evaluated by:

DR =
1

Abody
∑

j
DRbodyj

Abodyj
(11)

where DRbodyj
is the mean DR around the human body for the j section.
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The mean air velocity around the occupied zone is calculated using:

VOC =
1

Abody
∑

j
Vbodyj

Abodyj
(12)

where Vbodyj
is the mean air velocity around the human body for the j section.

Therefore, ADTI is based on the TC level (PPD), the IAQ level (PD), DR, εTC, εAQ
and εDR.

2.2. Numerical Methodology

This study focuses on two different PV configurations in a desk installed in a virtual
chamber. The square desk is equipped with four PV air supplies, each one located on
one side of the desk with two air supply terminal devices located above and another two
devices located below the desktop.

The square desk is occupied with four persons seated on four chairs located at the
four sides of the desk. The occupants are subjected to four ATDs: one upper and one lower
ATD located on the left side of the body area and one upper and one lower ATD located on
the right side of the body area.

The virtual chamber is equipped with an exhaust air terminal attached to a duct
located in the central ceiling area of the room. In the numerical simulations, two exhaust
heights were used: one located at 1.2 m and another located 1.8 m above the floor level.

The numerical simulations were performed for winter and summer conditions. In
the winter condition, the inlet air temperature is 20 ◦C and the outlet air temperature of
10 ◦C, while in the summer conditions the inlet air temperature is 25 ◦C and the outlet air
temperature of 30 ◦C.

In the numerical simulations, the inlet air velocity at the ATD is varied between 1 to
4 m/s and the indoor air relative humidity is 50%.

The basic clothing insulation is 1 clo in winter condition and 0.4 clo in summer
condition. In both situations a typical metabolic rate of 1.2 met is used.

The grid was refined at the air inlet (ATD) and air outlet (air exhaust), near surfaces
(around the occupants) and the surrounding surfaces (wall, floor, ceiling, floor and desk).
Thus, in this numerical simulation, a non-uniform grid is used. For Case I, a grid of
158 × 164 × 113 for the X, Y and Z directions was used, while for Case II a grid of
146 × 152 × 113 in the X, Y and Z directions was used. These grids were chosen as
they produced the best results, as further refinement did not provide any significant
improvement for the results obtained.

In this study the following conditions are used in the simulations:

• two different personalized ventilation systems, Case I and Case II;
• an inlet air velocity between 1 to 4 m/s;
• exhaust air terminal located at 1.2 m and at 1.8 m above the floor level;
• inlet air temperature representing winter and summer conditions.

In this study two PV systems were investigated: Case I and Case II both using two air
ATDs above the desktop and two devices below the desktop, as follows:

• In Case I the distance between the upper two supply ATDs is 45 cm and the same
distance is used between the lower two ATDs. In this Case, the airflow has the ability
to bypass the occupants on both sides as the distance between the air terminal devices
is wider than the upper width of a human body. Thus, the airflow before to exit from
the space promotes a recirculation mainly at the back of the occupant;

• In the Case II the distance between the upper two air ATDs is 25 cm and this was the
same for the lower two air terminal devices. In this Case the airflow is directed onto
the occupant’s body as the distance between the two ATDs is lower than the width
of a human body. Thus, the airflow promotes a recirculation mainly in front of the
occupant before it passes to the air exit terminal.
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2.2.1. Case I

Figure 1 presents the three-dimensional virtual chamber with a desk equipped with
four PVDs with the distance between the upper and lower devices being 45 cm. The figure
(a) is when the exhaust air terminal is located at 1.2 m, while the figure (b) is when it is
located at 1.8 m above the desk.

Energies 2021, 14, x FOR PEER REVIEW 7 of 19 
 

 

the occupant’s body as the distance between the two ATDs is lower than the width 

of a human body. Thus, the airflow promotes a recirculation mainly in front of the 

occupant before it passes to the air exit terminal. 

2.2.1. Case I 

Figure 1 presents the three-dimensional virtual chamber with a desk equipped with 

four PVDs with the distance between the upper and lower devices being 45 cm. The figure 

(a) is when the exhaust air terminal is located at 1.2 m, while the figure (b) is when it is 

located at 1.8 m above the desk. 

The location of the ATDs for 45 cm separation distance is presented in Figure 2. 

  

(a) (b) 

Figure 1. Personalized quadruple ventilation system with a distance between the two upper and two lower ATDs of 45 

cm and the exhaust air terminal located at 1.2 m; (a) and at 1.8 m; (b) above the floor level. 

 

Figure 2. ATDs for Case I. 

2.2.2. Case II 

Figure 3 presents a three-dimensional virtual chamber containing a desk equipped 

with four PV supply terminals with a distance between the upper two and lower terminals 

being 25 cm. Figure 3 a is for the exhaust air terminal located at 1.2 m, while the Figure 3b 

is for the terminal located at 1.8 m above the floor level, as shown in Figure 4. 

Figure 1. Personalized quadruple ventilation system with a distance between the two upper and two
lower ATDs of 45 cm and the exhaust air terminal located at 1.2 m; (a) and at 1.8 m; (b) above the
floor level.

The location of the ATDs for 45 cm separation distance is presented in Figure 2.

Energies 2021, 14, x FOR PEER REVIEW 7 of 19 
 

 

the occupant’s body as the distance between the two ATDs is lower than the width 

of a human body. Thus, the airflow promotes a recirculation mainly in front of the 

occupant before it passes to the air exit terminal. 

2.2.1. Case I 

Figure 1 presents the three-dimensional virtual chamber with a desk equipped with 

four PVDs with the distance between the upper and lower devices being 45 cm. The figure 

(a) is when the exhaust air terminal is located at 1.2 m, while the figure (b) is when it is 

located at 1.8 m above the desk. 

The location of the ATDs for 45 cm separation distance is presented in Figure 2. 

  

(a) (b) 

Figure 1. Personalized quadruple ventilation system with a distance between the two upper and two lower ATDs of 45 

cm and the exhaust air terminal located at 1.2 m; (a) and at 1.8 m; (b) above the floor level. 

 

Figure 2. ATDs for Case I. 

2.2.2. Case II 

Figure 3 presents a three-dimensional virtual chamber containing a desk equipped 

with four PV supply terminals with a distance between the upper two and lower terminals 

being 25 cm. Figure 3 a is for the exhaust air terminal located at 1.2 m, while the Figure 3b 

is for the terminal located at 1.8 m above the floor level, as shown in Figure 4. 

Figure 2. ATDs for Case I.

2.2.2. Case II

Figure 3 presents a three-dimensional virtual chamber containing a desk equipped
with four PV supply terminals with a distance between the upper two and lower terminals
being 25 cm. Figure 3 a is for the exhaust air terminal located at 1.2 m, while the Figure 3b
is for the terminal located at 1.8 m above the floor level, as shown in Figure 4.



Energies 2021, 14, 3235 8 of 19Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

  

(a) (b) 

Figure 3. Personalized quadruple ventilation system with a distance between the two upper and two lower air supply 

terminal of 25 cm, and exhaust air located at 1.2 m; (a) and at 1.8 m; (b) above the floor level. 

 

Figure 4. ATDs for Case II. 

3. Results and Discussion 

In this section the parameters influencing the four variables of the ADI and ADTI are 

discussed. These are: 

 the PV geometry, namely two different PV configuration, represented by Case I and 

Case II; 

 the inlet air velocity; 

 the exhaust system location, namely, exhaust system located at 1.2 and 1.8 m above 

floor level; 

 seasonal conditions for summer and winter, i.e., inlet air temperature. 

The results are presented in four sections, namely: 

 TC; 

 IAQ; 

 DR; 

 ADI and ADTI. 

In the following figures the S and W are associated, respectively, to the Summer and 

Winter conditions, while I and II are associated, respectively, to Cases I and II. 

3.1. Thermal Comfort 

The results for εTC, PPD and NTC are presented, respectively, in Figures 5–7. 

Figure 3. Personalized quadruple ventilation system with a distance between the two upper and two
lower air supply terminal of 25 cm, and exhaust air located at 1.2 m; (a) and at 1.8 m; (b) above the
floor level.

Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

  

(a) (b) 

Figure 3. Personalized quadruple ventilation system with a distance between the two upper and two lower air supply 

terminal of 25 cm, and exhaust air located at 1.2 m; (a) and at 1.8 m; (b) above the floor level. 

 

Figure 4. ATDs for Case II. 

3. Results and Discussion 

In this section the parameters influencing the four variables of the ADI and ADTI are 

discussed. These are: 

 the PV geometry, namely two different PV configuration, represented by Case I and 

Case II; 

 the inlet air velocity; 

 the exhaust system location, namely, exhaust system located at 1.2 and 1.8 m above 

floor level; 

 seasonal conditions for summer and winter, i.e., inlet air temperature. 

The results are presented in four sections, namely: 

 TC; 

 IAQ; 

 DR; 

 ADI and ADTI. 

In the following figures the S and W are associated, respectively, to the Summer and 

Winter conditions, while I and II are associated, respectively, to Cases I and II. 

3.1. Thermal Comfort 

The results for εTC, PPD and NTC are presented, respectively, in Figures 5–7. 

Figure 4. ATDs for Case II.

3. Results and Discussion

In this section the parameters influencing the four variables of the ADI and ADTI are
discussed. These are:

• the PV geometry, namely two different PV configuration, represented by Case I and
Case II;

• the inlet air velocity;
• the exhaust system location, namely, exhaust system located at 1.2 and 1.8 m above

floor level;
• seasonal conditions for summer and winter, i.e., inlet air temperature.

The results are presented in four sections, namely:

• TC;
• IAQ;
• DR;
• ADI and ADTI.

In the following figures the S and W are associated, respectively, to the Summer and
Winter conditions, while I and II are associated, respectively, to Cases I and II.
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3.1. Thermal Comfort

The results for εTC, PPD and NTC are presented, respectively, in Figures 5–7.
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located 1.8 m above floor level).
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Figure 7. Variation of NTC with inlet air velocity for the Case I and II with the exit air terminal located
at 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer, W = Winter,
I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and 1.8 = exhaust system
located 1.8 m above floor level).

According to Figure 5, εTC:

• is higher for Case I than Case II;
• decreases when the inlet air velocity increases;
• is higher when the exit air terminal is located 1.2 m than when it is located 1.2 m above

the floor level for winter condition, but the opposite is the case for summer condition;
• is higher for summer condition than for winter condition.

In accordance with Figure 6 the PPD related to the TC conditions:

• is higher for Case II than Case I in the summer conditions, and is higher for Case II
than Case I for winter conditions with the lowest inlet air velocity, but is lower for
Case II than Case I for highest inlet air velocity;

• for summer conditions, PPD decreases when the inlet air velocity increases, while in
winter conditions it initially decreases as the inlet air velocity increases but then starts
to increase as the air velocity increases;

• it is slightly higher when the exit air terminal is located at a height of 1.2 m than
when located at 1.8 m for summer conditions in Case II, and is lower when the exit
air terminal is located at 1.2 m than when located 1.8 m, for the Case I, however for
winter conditions PPD is slightly higher when the exit air terminal is located 1.2 m
than when located 1.8 m, for the Case II;

• is generally higher for summer condition than for winter conditions.

Generally, the TC comfort level is acceptable for winter conditions and for summer
conditions at the highest inlet air velocity levels.

In accordance with the Figure 7, NTC:

• is generally higher for Case I than Case II;
• decreases when the inlet air velocity increase for winter condition and increases when

the inlet air velocity increase for summer condition;
• is generally higher when the exit air terminal is located at 1.2 m than when it is located

at 1.8 m;
• is higher for summer condition than for winter conditions for the highest air velocities,

but lower for summer condition than for winter conditions for the lowest air velocities.
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3.2. Air Quality

Figures 8–10 present, respectively, εAQ, CO2 in the respiration area (CR) and NAQ.
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Figure 9. Variation of CO2 concentration in the respiration area with inlet air velocity for Cases I and
II with the exit air terminal located at 1.2 and 1.8 m above the floor level (for summer and winter
conditions). (S = Summer, W = Winter, I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m
above floor level and 1.8 = exhaust system located 1.8 m above floor level).
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Figure 10. Variation of NAQ with inlet air velocity for the Cases I and II with the exit air terminal
located at 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer,
W = Winter, I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and
1.8 = exhaust system located 1.8 m above floor level).

Based on the results in the Figure 8 the εAQ:

• is higher for Case II than Case I;
• increases for Case II as the inlet air velocity increases;
• is higher when the exit air terminal is located at 1.2 m than when it is at 1.8 m for the

Case II.
• is almost the same for winter and summer conditions.

Based on the results of Figure 9 the CO2 concentration in the respiration area:

• is higher for Case I than Case II;
• decreases when the inlet air velocity increases;
• is higher when the exit air terminal is located at 1.8 m than when it is located at 1.2 m.
• is almost the same for winter and summer conditions for Case II.

Based on the results of Figure 10, NAQ:

• is higher for Case II than Case I;
• generally, it increases as the inlet air velocity increases, but NAQ is higher for Case II

than Case I;
• for Case II, it is generally higher when the exit air terminal is located at 1.2 m than

when it is at 1.8 m;
• is almost similar for winter and summer conditions.

3.3. Draught Risk

The variations of εDR, body mean DR and the NDR are presented in Figures 11–13
respectively.
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Figure 11. Variation of εDR with inlet air velocity for the Cases I and II with the exit air terminal
located at 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer,
W = Winter, I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and
1.8 = exhaust system located 1.8 m above floor level).
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Figure 12. Variation of body mean DR with inlet air velocity for the Cases I and II with the exit
air terminal located at 1.2 and 1.8 m above the floor level (for summer and winter conditions).
(S = Summer, W = Winter, I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level
and 1.8 = exhaust system located 1.8 m above floor level).
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Figure 13. Variation of NDR with inlet air velocity for the Case I and II with the exit air terminal
located 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer,
W = Winter, I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and
1.8 = exhaust system located 1.8 m above floor level).

Based on the results of Figure 11, εDR:

• is higher for Case II than Case I;
• in the Case II it increase slightly as the inlet air velocity increases, but in Case I it

decreases slightly as the inlet air velocity increases;
• generally, it is higher when the exit air terminal is located at 1.8 m than when it is

located at 1.2 m;
• is almost similar for winter and summer conditions.

Based on the results of Figure 12, the body mean DR:

• for Case I is higher than Case II;
• increases when the inlet air velocity increases;
• for the Case II, is slightly higher when the exit air terminal is located 1.8 m than when

the exit air terminal is located 1.2 m;
• is higher for winter condition than for summer conditions.

Based on the results of Figure 13, NDR:

• is higher for Case II than Case I;
• it decreases as the inlet air velocity increases;
• is quite similar for the exit air terminal located at 1.2 m and when it is located at 1.8 m;
• is higher for summer condition than for winter conditions.

3.4. Air Distribution Index and Air Distribution Turbulence Index

Figures 14 and 15 show, respectively, the variation of ADI and ADTI with the inlet air
velocity, for Cases I and II under summer and winter conditions, when the exit air terminal
is located at 1.2 and 1.8 m above the floor level.

Based on the results in Figure 14, ADI:

• is higher for Case II than Case I;
• it generally increases as the inlet air velocity increases;
• is higher when the exit air terminal is located at 1.2 m than when it is located 1.8 m;
• is higher for winter condition than for summer conditions for the lower air velocity

range, and is higher for summer condition than for winter condition, for higher air
velocity range.
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Figure 14. Variation of ADI with inlet air velocity for Cases I and II with the exit air terminal located
at 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer, W = Winter,
I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and 1.8 = exhaust system
located 1.8 m above floor level).
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Figure 15. Variation of ADTI with inlet air velocity for Cases I and II with the exit air terminal located
at 1.2 and 1.8 m above the floor level (for summer and winter conditions). (S = Summer, W = Winter,
I = Case I, II = Case II, 1.2 = exhaust system located 1.2 m above floor level and 1.8 = exhaust system
located 1.8 m above floor level).

Based on the results in Figure 15 ADTI:

• is higher for Case II than Case I;
• it generally increases as the inlet air velocity increase;
• is higher when the exit air terminal is located 1.2 m than when it is located 1.8 m for

Case II;
• is higher for summer condition than for winter condition.

In general, the ADI and ADTI increase when the inlet air velocity increases, but the
increase is higher for ADI than for ADTI.
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4. Discussion

In this section the four parameters that influence ADI and ADTI, namely the PV
geometry, the inlet air velocity, the exhaust air terminal location and the season’s condition,
which also impact on the three parameters NTC, NAQ and NDR are evaluated.

4.1. Indoor Environment Numbers

In this section the influence of the PV geometry, inlet air velocity, exhaust air terminal
location and the seasonal conditions on the indoor environment numbers, namely NTC,
NAQ and NDR are discussed.

According to the results obtained, the main reasons for the variation in the values of
TC, IAQ and DR in the Case I and II, are associated with the airflow difference for the two
PV system. In Case I the airflow has the ability to bypass the occupants on both sides as
the distance between the air terminal devices is wider than the upper width of a human
body, while in the Case II the airflow is directed onto the occupant’s body as the distance
between the two ATDs is lower than the width of a human body. Thus, in Case I the airflow
promotes a recirculation mainly at the back of the occupant before exiting from the space,
while in Case II the airflow promotes a recirculation mainly in front of the occupant before
it passes to the air exit terminal.

Case I presents the highest TC level for summer condition, due the airflow promoting
a recirculation at the back of the occupant, while Case II presents the highest TC level for
winter condition. As for TC, the DR for Case I presents highest levels. The IAQ is highest
for Case II, due the airflow promoting a recirculation in front of the occupant before it
passes to the air exit terminal.

The numbers NTC, NAQ and NDR used in this study are affected as follows:

• In general, NTC is higher for Case I than Case II;
• NAQ is higher for Case II than Case I;
• NDR is higher for Case II than Case I.

As the inlet air velocity increases:

• NTC and NAQ increase for summer condition;
• NTC and NDR decrease for winter.

As for the influence of the exit air terminal location, NTC and NAQ are generally higher
when the exit air terminal is located at 1.2 m than at 1.8 m.

In general, the NTC (for lower inlet air velocity range) and NDR are higher for summer
than for winter conditions.

4.2. Air Distribution Index and Air Distribution Turbulence Index

ADI and ADTI are higher for Case II than for Case I. These indices increase as the inlet
air velocity increases, but the values for ADI are higher than for ADTI. ADI and ADTI are
generally higher when the exit air terminal is located at 1.2 m than when it is at 1.8 m. also,
both ADI and ADTI are generally are higher for summer than for winter conditions.

5. Conclusions

This work evaluates the integral effect of TC, IAQ and DR for a desk equipped with
personalized ventilation systems supplying fresh air to four manikins. A new index, ADTI,
is used to consider simultaneously the TC, IAQ, DR using effectiveness parameters εTC,
εAQ and εDR.

The results show that the air supply and extract arrangement described under Case
I presents the highest εTC. For this Case, εTC and εAQ decreases as the inlet air velocity
increases and the εTC is higher for summer than for winter condition. The Case II presents
highest εAQ and εDR. For this Case εTC decreases and εDR increases as the inlet air velocity
increases and εTC is higher for summer than for winter conditions.

In general, Case II provides better IAQ and DR level than Case I. The IAQ improves
when the exit air terminal is located at 1.2 m above the floor than when it is located at



Energies 2021, 14, 3235 17 of 19

1.8 m, the TC level is better for winter than for summer conditions and the DR is better for
summer than for winter conditions.

NTC is higher for Case I than Case II, while NAQ and NDR are higher for Case II than
Case I. When the inlet air velocity increases NTC for summer condition and NAQ both
increase, while the NTC number for winter condition and the NDR both decrease. NTC and
NAQ are higher when the exit air terminal is located at 1.2 m than when it is at 1.8 m. NTC
and NDR are generally higher for summer condition than for winter conditions.

ADI and ADTI are generally higher for Case II than for Case I, they increase when the
inlet air velocity increases, are higher when the exit air terminal is located at 1.2 m than
when is at 1.8 m and are higher for summer condition than for winter condition. However,
the values of ADI are higher than ADTI due the inclusion of DR in the latter.

Thus, when it is required to evaluate simultaneously the parameters for TC, IAQ, DR,
and the related effectiveness values, applying these parameters to determine ADTI for the
room can provide a more complete assessment of air supply to room occupants.
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Nomenclature

ADI Air Distribution Index.
ADTI Air Distribution Turbulence Index.
ATD Air Terminal Device.
BTR Building Thermal Response.
CFD Computational Fluid Dynamics.
CO2 Carbon Dioxide (ppm).
DR Draught Risk (%).
HTR Human Thermal Response.
HVAC Heating, Ventilating and Air Conditioning.
IAQ Indoor Air Quality.
NAQ Air Quality Number.
NDR Draught Risk Number.
NTC Thermal Comfort Number.
PD Percentage of Dissatisfied people due the indoor air quality (%).
PPD Predicted Percentage of Dissatisfied people (%).
PV Personalized Ventilation.
TC Thermal Comfort.
Tr Mean Radiant Temperature (◦C).
εAQ Effectiveness for contaminant removal (%).
εDR Effectiveness for room air removal (%).
εTC Effectiveness for heat removal (%).
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