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Abstract 

Nanoparticles have a wide array of uses, one of which is drug delivery. 

Nanoparticle drug delivery systems have advantages over conventional drug delivery 

systems, as they are able to increase bioavailability, solubility and permeability of drugs, 

while also offering the possibility of targeted delivery and controlled release. The 

preparation of nanoparticles can follow different procedures, including polyelectrolyte 

complexation, based on electrostatic interaction of oppositely charged polymers, which 

was used in this work. There are currently a wide number of anionic polysaccharides to 

choose from, either from seaweed, animals or microorganisms. Still, when it comes to 

cationic polysaccharides, the most common choice is chitosan. For this reason, the 

chemical modification of polysaccharides for obtaining positively-charged derivatives is 

worth exploring. 

The main objective of this work was to explore different strategies to chemically 

modify locust bean gum in order to obtain a cationic polyelectrolyte that, by complexation 

with carrageenan, affords nanoparticles with the potential for application in the 

development of drug delivery systems. To achieve this, it was attempted to oxidize locust 

bean gum to the corresponding aldehyde using different oxidizing reagents and then, by 

reductive amination, insert amino groups in the polysaccharide structural units. The 

different oxidation reagents were sodium periodate, TEMPO, Oxone® and ammonium 

persulfate. All obtained derivatives were analyzed through FTIR spectroscopy to access 

the success of each reaction. 

NMR analysis was also performed on amino locust bean gum obtained from 

periodate oxidized gum, which seemed to indicate a high degree of depolymerization 

during the reductive step. 

Nanoparticle production was possible using amino locust bean gum obtained from 

periodate oxidized gum and carrageenan at mass ratios of 4/1, 1/3 and 1/4. These particles 

showed similar size, zeta potential and PdI as other locust bean gum based nanoparticles, 

albeit with a larger deviation. 

 

Keywords: Locust bean gum, Nanoparticles, Polyelectrolyte complexation, 

Polysaccharide modification.   
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Resumo 

As nanopartículas têm um largo espetro de utilizações, um dos quais é a 

veiculação de fármacos. Sistemas de entrega de fármacos baseados em nanopartículas 

têm vantagens face a sistemas mais convencionais, como o aumento de 

biodisponibilidade, solubilidade e permeabilidade dos fármacos e ao mesmo tempo 

oferecem a possibilidade de orientação para alvos terapêuticos específicos e de libertação 

controlada. A preparação de nanopartículas é feita de diversas formas, incluindo a 

complexação polieletrolítica, que se baseia na interação eletrostática de polímeros de 

cargas opostas, a qual se utiliza neste trabalho. Atualmente há várias opções de 

polissacáridos aniónicos, de algas, animais ou microorganismos, enquanto uma das 

únicas opções de polissacárido catiónico é o quitosano. Assim sendo, existe interesse em 

explorar a modificação química de polissacáridos para a atribuição de cargas positivas. 

O objetivo deste trabalho foi explorar diferentes estratégias de modificar a goma 

de alfarroba para obter um polieletrólito que se pudesse complexar com carragenina para 

obtenção de nanopartículas com potencial aplicação em veiculação de fármacos. Para 

isso, tentou-se oxidar a goma para o respetivo aldeído e, através de aminação redutiva, 

introduzir grupos amina nas unidades estruturais do polissacárido. A oxidação foi testada 

com periodato de sódio, TEMPO, Oxona® e persulfato de amónia. Os derivados foram 

analisados por espetroscopia FTIR para verificar o sucesso das reações. 

Também foi feita caracterização por NMR da goma aminada obtida da goma 

oxidada com periodato, que mostrou um elevado grau de despolimerização durante o 

passo de redução. 

A produção de nanopartículas deste derivado com carragenina foi possível e, nas 

razões de massa 4/1, 1/3 e 1/4 estas partículas mostravam tamanho, potencial zeta e PdI 

semelhantes aos de outras nanopartículas baseadas noutros derivados da goma de 

alfarroba. 

 

Palavras-chave: Complexação de polieletrólitos, Goma de alfarroba, Modificação de 

polissacáridos, Nanopartículas. 
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Resumo Alargado 

A veiculação de fármacos é um campo de investigação relativamente novo, mas a 

ideia de utilizar excipientes para alterar as propriedades farmacocinéticas ou 

farmacodinâmicas do fármaco tem vindo a ser cada vez mais estudada. Enquanto 

inicialmente os excipientes numa formulação poderiam alterar, por exemplo, a velocidade 

de libertação de um fármaco, hoje em dia são também utilizados para direcionar os 

fármacos para diferentes alvos biológicos, aumentando a sua eficiência. Uma parte 

significativa da investigação em veiculação de fármacos atual é baseada em 

nanotecnologia.   

A nanotecnologia refere-se originalmente a materiais entre 1 e 100 nanómetros, 

mas a definição foi recentemente alargada para incluir partículas de tamanho até 1 

micrómetro que exibam as propriedades características das nanopartículas, como o 

elevado rácio de área de superfície para volume, que aumenta a sua importância da 

química de superfície. 

As nanopartículas são utilizadas nas mais diferentes áreas, uma das quais é a 

veiculação de fármacos. Os sistemas de veiculação de fármacos baseados em 

nanopartículas possuem muitas vantagens quando comparados com outros sistemas: a sua 

utilização torna possível aumentar a biodisponibilidade, solubilidade e permeabilidade de 

fármacos e permite a sua administração através das mais diversas vias, incluindo a oral, 

intravenosa, tópica ou mesmo pulmonar, para veiculação de pequenas moléculas, 

proteínas ou genes. Para além disso, a nanotecnologia permite a modulação da libertação 

de fármacos, bem como a sua vetorização para alvos terapêuticos específicos. 

As nanopartículas podem ser produzidas de diversas formas, sendo que uma das 

mais vantajosas neste contexto é a complexação polieletrolítica. Este método consiste na 

formação de partículas através da interação eletrostática entre um polímero positivamente 

carregado com um polímero negativamente carregado, e pode ser utilizado com polímeros 

naturais, semissintéticos ou sintéticos. Os polímeros naturais, nomeadamente 

polissacáridos, ou seus derivados semissintéticos, são preferíveis pela sua 

biocompatibilidade e sustentabilidade. Tendo isto em conta, há várias opções de 

polissacáridos aniónicos, de algas, animais ou microorganismos, enquanto uma das 

únicas opções de polissacárido catiónico é o quitosano, um derivado da quitina. 
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Para a produção de polímeros semissintéticos, recorre-se à modificação química 

de polissacáridos naturais. A modificação química de polissacáridos é um ramo 

importante da ciência destas moléculas que permite aumentar a sua aplicabilidade em 

diferentes campos, incluindo as ciências farmacêuticas ou biomédicas. A modificação 

química dos polímeros pode adicionar nova atividade funcional a estas moléculas pela 

alteração de várias propriedades físico-químicas, tais como a solubilidade em água, o peso 

molecular e o grau de substituição. Já estão reportadas diversas modificações de 

polissacáridos naturais, como a ligação a aminas quaternárias, sulfatação, fosforilação, 

carboximetilação, acetilação, metilação, oxidação e aminação redutiva. 

Assim sendo, o objetivo deste trabalho foi estudar a modificação química da goma 

de alfarroba, o que valoriza um produto local, para obter um derivado catiónico que, tal 

como o quitosano, pudesse ser utilizado na formação de nanopartículas por complexação 

polieletrolítica. 

A goma de alfarroba é obtida do endosperma da semente da alfarrobeira 

(Ceratonia síliqua). Tem um alto peso molecular, de 50 a 3000 kDa, e consiste numa 

cadeia linear de unidades 1,4-β-D-manose com resíduos laterais de 1,6-α-D-galactose, 

sendo, portanto, um galactomanano. Este polímero já foi quimicamente modificado para 

obter derivados para utilização na produção de nanopartículas noutros trabalhos do grupo. 

O objetivo da modificação química deste polissacárido foi a introdução de grupos amina. 

A estratégia de modificação foi realizada em duas etapas: oxidação dos grupos hidroxilo 

da goma a aldeídos e aminação redutiva dos mesmos. Entre estas etapas existiu um passo 

de purificação por diálise e o produto final foi isolado por precipitação ou liofilização. 

Assim, obteve-se uma goma com aminas primárias que, em meio ácido, era positivamente 

carregada. O objetivo inicial foi conseguir cerca de 80% de substituição, para obter um 

polímero de carga semelhante ao quitosano. As reações foram testadas em diferentes 

condições de equivalentes de reagente, temperatura e duração e a oxidação foi feita com 

quatro agentes oxidantes distintos. A oxidação foi testada com periodato de sódio, 

TEMPO, Oxona® e persulfato de amónia.  

Após cada reação, os derivados eram avaliados por espetroscopia de 

infravermelho com transformada de Fourier, para se estimar o grau de substituição e 

extensão da reação através dos picos associados ao grupo aldeído ou amina. Através desta 

técnica concluiu-se que a goma aminada mais bem-sucedida foi a obtida através da 

oxidação com quatro equivalentes de periodato de sódio. 



Production of Nanoparticles by Polyelectrolyte Complexation from Novel Locust Bean 

Gum Cationic Derivatives 

X 

 

Para este produto em específico, foi feita a caracterização por ressonância 

magnética nuclear, para tentar perceber a estrutura do polímero final. Esta técnica 

permitiu perceber que o polímero sofria despolimerização, possivelmente durante a fase 

de redução, o que explicou o baixo rendimento da reação. 

Finalmente, foi ainda testada a produção de nanopartículas deste derivado 

aminado com carragenina, um polissacárido aniónico extraído de algas vermelhas. A 

produção de nanopartículas foi testada em diferentes rácios de massa de polímero positivo 

para negativo, de 4/1 a 1/4. Foi possível obter nanopartículas quando foi utilizado o 

derivado obtido da oxidação da goma com quatro equivalentes de periodato de sódio 

referido acima. As nanopartículas produzidas utilizando rácios de massa de polímero 

positivo para negativo de 4/1, 1/3 e 1/4 apresentaram tamanho, potencial zeta e 

polidispersidade semelhantes aos de outras nanopartículas constituídas por derivados 

carregados da goma de alfarroba, embora com uma variação superior. 

Mais estudos são necessários no sentido de obter um substituto do quitosano 

baseado na goma de alfarroba modificada. A nível de síntese, a oxidação por diferentes 

reagentes deve ser mais estudada pois estes preservam mais a estrutura natural da goma 

de alfarroba, enquanto o periodato de sódio cliva ligações das unidades estruturais do 

polissacárido. A nível de condições de reação, o processo deve ser aprimorado para se 

obter um melhor rendimento e grau de substituição. Devem-se criar novas estratégias que 

ajudem na obtenção de um meio de reação mais homogéneo, recorrendo à adição de sais 

ou mesmo a outra técnica de purificação inicial da goma de alfarroba. Quanto à 

caracterização dos derivados, outras técnicas devem ser aplicadas, nomeadamente a 

análise elementar, que permite tirar mais conclusões quanto à estrutura final do polímero 

modificado. No que toca às partículas, devem ainda ser feitos testes de rendimento de 

produção e análise morfológica das mesmas. 
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1 Introduction 

1.1 Drug delivery 

1.1.1 The importance of nanoparticles in drug delivery 

Presently, while some still consider excipients as the pharmacologically inert 

elements of a formulation, it is acknowledged that these components have a role in both 

pharmacokinetics and pharmacodynamics (1). 

Since ancient times, different medicines have been incorporated in different 

formulations to modify their effect on the user. Physicians would prepare medicines with 

different concentrations, excipients and administer them using different routes (2). 

 While drug delivery is a rather new field of research, the idea of using excipients 

to alter properties like the rate of dissolution, in order to have controlled release of drugs, 

was already explored in the sixteenth century by the persian physician Imad, when opium 

pills were made with almond oil, wax and sugar to help extend the effect of the drug, so 

opium addicts were able to not break their fast during Ramadan (3). As such, the ability 

to control the pharmacokinetics of drugs by different formulations has been remotely 

known for a long time. Industrially produced controlled-release drugs appeared more 

recently, in 1952, when Smith Klein Beecham released Dexedrine (dextroamphetamine 

sulfate) (4), which was a product of Spansule® technology, based on the combination of 

wax-coated and uncoated pellets for a particular drug release profile. This was the first of 

many sustained-release products based on control of dissolution or diffusion (5). Later in 

the century, more complicated drug delivery was applied to bigger molecules, peptides 

and proteins, with the most studied case being the delivery of insulin (6,7). Then, in the 

twenty-first century, the most explored use of drug delivery knowledge was tumor 

targeting (5,8). Thanks to advances in other fields of science, a significant branch of 

recent research in drug delivery is also based on nanotechnology (9). 

 

1.1.2 Nanotechnology in biomedical applications 

Nanotechnology originally refers to the use of materials in the nanoscale range, 

meaning from 1 to 100 nanometers. Due to their size, these materials exhibit different 

physicochemical properties and biological effects comparing with the corresponding 

larger size forms. One such feature is the increased surface area to volume ratio, which 
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places more importance on the surface chemistry of these particles. As these properties 

are the defining attribute of nanomaterials, the Food and Drug Administration (FDA) has 

expanded the definition of nanomaterial to include materials out of nanoscale range, up 

to a micrometer, that exhibit similar properties to those of the nanoscale range (10). 

Nanoparticle delivery systems are widely investigated, and have been used in 

various administration routes, like oral, topical, pulmonary and intravenous, for the 

delivery of small molecules, genes or peptides. 

Oral delivery is the most common administration route but poor solubility, 

stability and bioavailability of many drugs can make the therapeutic effect harder to 

achieve. The use of nanoparticles can help protect the molecules from gastrointestinal 

degradation, increase bioavailability and control release and targeting different tissues 

(11). For intravenous administration, the use of nanosystems is a good tool for 

constructing targeted or triggered-released drugs, very useful in cancer treatment (12). In 

topical delivery, nanomaterials have been used to increase drug permeation through the 

skin (13). In inhalable systems, nanoparticles present the disadvantage of having 

inadequate aerodynamic properties to reach the lungs. Despite this, nanoparticles have 

been included in larger, more adequate delivery systems, to take advantage of their large 

contact surface with cells and ability to be modified and used in targeted delivery (14).  

Nanosystems are useful in gene therapy, both as DNA or RNA carriers, as they 

are an alternative to viral vectors, producing a decreased immune response and having 

more design flexibility, as they can be functionalized and targeted to different sites (15). 

In addition, while viral vectors have a small volume and, therefore, limited loading 

capacity, nanomaterials can be used to carry larger nucleic acid molecules (16). In peptide 

and protein delivery, nanotechnology similarly plays an important role as it is a tool to 

circumvent the problems of protein administration, like its susceptibility to enzymatic 

degradation and limited cellular internalization, while also enabling different protein 

administration routes, like oral, nasal, pulmonary and transdermal, to be effectively used 

(17). 

 

1.1.3 Nanoparticle production 

Nanoparticles can be classified according to their various dimensions, shapes and 

materials. Their morphology can be spherical, cylindrical, tubular, conical, spiral, flat, 
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amongst other shapes, with regular or irregular surfaces and a crystalline or amorphous 

structure. According to the materials they are produced from, nanoparticles can be either 

inorganic or organic.  Inorganic nanoparticles are often metal- or metal oxide-based. 

Organic nanoparticles are usually polymer based or lipid based, and present good 

biodegradability and low toxicity, making these ideal candidates for drug delivery. A third 

group of nanoparticles can be considered, the carbon-based nanoparticles, made entirely 

of carbon atoms, like fullerene, graphene and carbon nano tubes or fibers (18–20). 

Production methods of nanoparticles are dependent on the used materials and also 

determinant for the physicochemical properties of the particles. Top down (destructive) 

and bottom up (constructive) methods can be considered, meaning that nanoparticles can 

be produced by either reducing a bulk material to the nanometric scale or by building 

nanoparticles by clustering of matter bellow the nanometric scale (19).  

When it comes to polymers, two common bottom up methods for nanoparticle 

production are ionic gelation and polyelectrolyte complexation, both based on 

electrostatic interactions (21,22). Ionic gelation relies on the ability of polyelectrolytes to 

crosslink in the presence of ions, as it happens with alginate (23) and chitosan (24). 

Meanwhile, polyelectrolyte complexation refers to the interaction between two different, 

oppositely charged, polymers, immediately creating particles. These two methods can be 

used together in order to obtain particles with better physicochemical properties through 

the addition of crosslinking agents (25–27). 

Polyelectrolyte complexation is a popular nanoparticle production method, as it is 

performed in a very mild environment, usually an aqueous solution under mild stirring. 

This production method can be done using synthetic, natural polymers or semi-synthetic 

polymers (which refers to chemically modified polysaccharides) (28). Therefore, it is 

widely used with charged natural or functionalized polysaccharides in different 

formulations (29–32). While anionic polysaccharides are common, when it comes to 

cationic polysaccharides, usually the only option is chitosan (33), which means that the 

functionalization of other polysaccharides to obtain cationic derivatives is a valuable 

research goal. 
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1.2 Polysaccharides in drug delivery and biomedical applications 

Natural materials have been accepted in a wide range of applications, including 

the biomedical field, being used as a replacement for synthetic materials, as they generally 

are biodegradable, sustainable, abundant and cost-effective (34,35).  

Polysaccharides are a natural material composed of monosaccharides, the simplest 

carbohydrate units, joined by O-glycosidic linkages, and the different types of 

monosaccharides and linking between them allows for different physicochemical 

properties in this group of macromolecules (36). These natural polymers can be extracted 

from animals, plants, algae, fungi and bacteria, using different procedures resorting to hot 

water, alkali solution, enzymes or different solvents (37).  

Currently, polysaccharides are extremely useful in drug, gene and protein 

delivery, cell encapsulation, wound healing and tissue engineering  (38). 

 

1.2.1 Alginate 

Alginate is an anionic polysaccharide obtained from brown algae, Phaeophyceae 

class, including various seaweeds from the Laminaria genus (Figure 1.1), Asophyllum 

nodosum and Macrocystis pyrtifera. The polymer is isolated by treatment with an alkali 

solution, and filtration followed by precipitation with a salt, usually sodium or calcium 

chloride, obtaining the alginate salt. Alternatively, alginate bacterial biosynthesis is also 

a source of the polymer (39,40). 

Alginate is a group of linear copolymers containing blocks of (1,4)-linked β-D-

mannuronate and α-L-guluronate residues. Blocks may be composed of repeats of one of 

the residues, or alternating mannuronate and guluronate residues (Figure 1.1). Alginate 

constitution differs based on its origin. 
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Figure 1.1: a) Laminaria digitata (by David Baird) and alginate blocks containing b) 

mannuronate, c) guluronate and d) both. 

 

The polymer is well known for its gelation capacity in the presence of divalent 

cations like Ca2+, possibly caused by crosslinking of the guluronate residues (40). 

Alginate also has mucoadhesive properties, and is considered non-toxic, biodegradable, 

biocompatible and non-immunogenic. These characteristics, along with its availability 

and low cost, make it a widely used polymer in different biomedical applications like 

micro and nano drug delivery systems (41), wound healing and cartilage or bone 

regeneration (42) and even as a bioink for 3 dimensional tissue bioprinting (43). Its 

structure also lends itself to chemical modification and tailoring through different 

reactions through the hydroxyl or carboxyl groups (44). 

 

1.2.2 Carrageenan 

Carrageenan refers to the gel-forming polysaccharides obtained from the 

extraction of some red seaweeds of the class Rhodophyceae. The polysaccharide is a 

sulfated polygalactan with 15 to 40% sulfate ester content and high molecular weight 

(average above 100 kDa). It is formed by alternate units of D-galactose and 3,6-anhydro-

galactose joined by α-1,3 and β-1,4-glycosidic linkages (Figure 1.2). Some structural 

differences, such as the number and position of sulfate ester groups and content of 

anhydro-galactose, affect the polymer’s physical properties, such as solubility. For that 

reason, carrageenan can be classified in different types, from which one of the most 
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commonly used is κ-carrageenan, with a sulfate ester content of 25 to 30 wt% and an 

anhydro-galactose content of 28 to 35 wt% (45). 

 

Figure 1.2: a) Chondrus crispus, a red algae (by Emőke Dénes) and b) kappa carrageenan 

structure. 

 

Like most sulfated polysaccharides, carrageenan exhibits biological activities 

such as anticoagulant activity (46). Unfortunately, the polymer also seems to have 

inflammatory capacity (47). 

Applications to the pharmaceutical field are vast, considering its negative charge 

and gelling properties. It can be used as a matrix in extended-release tablets (48), as a 

gelling agent or viscosity enhancer (49) and as a carrier or stabilizer in micro (50) or 

nanoparticles systems (25,51). It has been employed in the delivery of small drug 

molecules, macromolecules and cells (52). 

 

1.2.3 Cellulose 

Cellulose is by far the most common polysaccharide, being the most important 

skeletal component of plants. It consists of repeating β-d-glucopyranose molecules linked 

through β-1,4 bonds (Figure 1.3). Due to its physicochemical structure, it is unchanged 

when passing through the digestive tract. It can be isolated from plants, some fungus, 

algae and bacteria (53,54).  

Isolated cellulose chains are highly hydrophilic, but these chains usually form 

microfibrils with dimensions from 5 to 50 nm due to hydrogen bonding. Cellulose can 

present different alomorphs that are classified as cellulose Iα, Iβ, II, IIII, IIIII, IVI, IVII, 

with I being the native forms and the more crystalline ones (54–56).  



Production of Nanoparticles by Polyelectrolyte Complexation from Novel Locust Bean 

Gum Cationic Derivatives 

7 

 

 

 

Figure 1.3: a) Cotton, a common cellulose source, and b) cellulose structure. 

 

Cellulose nanocrystals and nanofibrils are two common cellulose products used 

in biomedical applications. Cellulose nanocrystals are produced by acid hydrolysis, with 

different acids yielding slightly different products (57–59). Meanwhile, cellulose 

nanofibrils are created by mechanical treatment of cellulose (60,61). Considering their 

biocompatibility, biodegradability, and modifiable surface, these structures have been 

utilized in drug delivery (62,63) and even as tissue engineering scaffolding (64).  

 

1.2.4 Chitin and Chitosan 

Chitin is a natural polysaccharide, synthesized by an abundance of species, being 

the second most abundant natural polymer after cellulose. Its major commercial source 

are crab and shrimp shells, but chitin is also present in the exoskeleton of most other 

arthropods and in cell walls of fungi and yeasts. Chitin extraction is mainly done by acid 

treatment, to dissolve carbonate, followed by an alkaline solution to dissolve protein 

remnants (53,65,66). 

Chitin is a long chain polymer of β-1,4-N-acetyl-D-glucosamines (Figure 1.4 a) 

and its lack of solubility is a major problem in native chitin applications . Therefore, most 

applications rely on chitosan, a derivative of chitin usually obtained after its partial 

deacetylation under alkaline conditions. Chitosan is composed of both β-1,4-N-acetyl-D-

glucosamines and β-1,4-D-glucosamines (Figure 1.4 b), in variable proportions according 

to the degree of acetylation. The most used chitosan is around 20% acetylated and is 

soluble in acidic aqueous media due to the presence of amine groups (53,66). 
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Figure 1.4: Crab exoskeleton (by Charles J Sharp), one source of chitin, b) chitosan and c) chitin 

structures. 

 

Chitosan is a non-toxic and biocompatible polymer with antibacterial, antifungal, 

antioxidant, anti-inflammatory and antitumoral properties. It is renowned for its 

mucoadhesive properties and gelling capabilities, and it is vastly used in biomedical fields 

(65,67–73). Chitosan is a very useful polysaccharide in nanosystems assembly, as it is the 

only naturally occurring cationic polysaccharide, thus being an important constituent of 

various  carriers produced by polyelectrolyte complexation (22,29,74,75). Besides, it is 

also used in other delivery systems, such as microspheres, as reported by Cunha et al.. 

(76), tablets, micelles and hydrogels (70). 

 

1.2.5 Curdlan 

Curdlan is a neutral, linear chain, of  as many as 12000 β-1,3-D-glucoses (Figure 

1.5), that may have some intra- or inter-chain 1,6 linkages (77,78). It is produced by 

different microbes, including Alcaligenes faecalis var. myxogenes 0C3 strain. Curdlan is 

insoluble in water and mildly soluble in alkaline media (79). This polysaccharide is well-

known for its thermoreversible unique gelling capabilities (80). 
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Figure 1.5: a) Alcaligenes faecalis (by CDC/ Dr. W.A. Clark - Centers for Disease Control and 

Prevention), gram stained, and b) curdlan structure. 

 

The polysaccharide has recently been shown to have some immunostimulatory 

potential (81,82). Still, curdlan applications in the pharmaceutical field are mostly 

dependent on further functionalization and chemical tinkering to improve water solubility 

and bioactivity (83–86). 

 

1.2.6 Dextran 

Dextran refers to the group of neutral polysaccharides containing a backbone of 

predominantly 1,6-linked α-D-glucose units (87) (Figure 1.6). Commercial dextran is 

usually produced by growing  lactic acid bacteria, mainly Leuconostoc mesenteroides, in 

sucrose rich media (88,89), which it converts into fructose and dextran (90). The 

polysaccharide is then isolated and purified by precipitation in ethanol (91). 

 

 

Figure 1.6: a) Leuconostoc mesenteroides (by Fred Breidt, North Carolina State University) and 

b) dextran structure. 
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Dextran is water-soluble and stable under both mildly acidic and basic conditions 

(92). It is useful in many biomedical applications because it is slowly degraded by human 

enzymes and microbial enzymes in the gastrointestinal tract (93). 

This polymer has been traditionally used as a plasma volume expander (94), but 

recently it has found its uses in drug delivery, in part thanks to the development of 

nanosciences (95). Dextran and its sulphated counterpart have been applied to different 

drug delivery systems, like hydrogels, micro and nanoparticles, micelles, and vesicular 

nanoscaffolds (96–100). 

 

1.2.7 Fucoidan 

Fucoidans are a class of sulfated polysaccharides that are constituents of brown 

seaweed. Fucoidan is composed of α-1,3 and α-1,4 linked L-fucose. Some species may 

have a variable degree of branching, O-acetylation and even contain other 

monosaccharides (Figure 1.7) (101–104). 

 

Figure 1.7: a) Fucus vesiculosus (by Emőke Dénes), one source of fucoidan; and b) common 

structure of fucoidan from  Fucales order algae. R represents possible branching, acetylation and sulfation. 

 

Like most sulphated polysaccharides, fucoidan presents anticoagulant properties 

(105). Some fucoidans have been shown to have antiviral (106,107), antioxidant (108), 

immunomodulatory (109) and anti-inflammatory (110) properties. It has also been 

researched about its hepatoprotective (111), gastroprotective (112), renal protective (113) 

and hypolipidemic effects (114). 
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Fucoidan has been used in drug delivery and chemically modified for biomedical 

applications (115). It was employed in a variety of  micro and nanoparticle systems for 

anticancer therapy (116), as well as antibacterial therapy for tuberculosis (32,117), 

recently explored by our research group. 

 

1.2.8 Hyaluronic acid 

Hyaluronic acid is a linear polysaccharide composed of 2000 to 2500 disaccharide 

units of glucuronic acid and N-acetylglucosamine joined alternately by β-1-3 and β-1-4 

glycosidic bonds (Figure 1.8) (118,119).  Hyaluronic acid is a naturally occurring 

polymer in various animal tissues, including umbilical cords, synovial fluid, cartilage, 

skin and rooster combs, the latter being the most traditionally used and accepted source 

for industrial purposes. However, presently, alternative hyaluronic acid sources like 

Streptococcus capsules have also been accepted (119,120). 

 

Figure 1.8: a) Rooster comb (by Muhammad Mahdi,), a source of hyaluronic acid, and b) 

hyaluronic acid structure. 

 

As hyaluronic acid is naturally present in synovial tissue, its use in orthopaedics 

is one of its classic applications. Hyaluronic acid is important in tissue hydration and in 

the increase of tissue resistance to mechanical stress. The polymer is shown to promote 

the synthesis of cartilage matrix while preventing its degradation and inflammation (121–

123). 

Along with being suitable for chemical modification, hyaluronic acid has good 

biocompatibility, biodegradability, high viscoelasticity, and can bind to specific receptor 

on the cell surface as a signalling molecule for inflammatory regulation (124,125). Taking 

this into account, this polymer has recently been used in cancer targeting (126,127) and 
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protein and gene delivery (128,129). Its versatility is apparent in the different systems it 

can incorporate, like hydrogels, microparticles and nanoparticles (130). 

 

1.2.9 Locust bean gum 

Locust bean gum is obtained from the endosperm of the seed of the locust tree 

Ceratonia siliqua (Fam. Leguminosae), a large evergreen tree. Its fruits are long brown 

pods from where the seeds are collected, dehusked and have the germ removed, to obtain 

the gum, which can be clarified. The gum consists mainly of high molecular weight 

(approximately 50-3000 kDa) polysaccharides with a linear chain of 1,4-linked β-D-

mannose units with 1,6-linked α-D-galactose residues as side chains (Figure 1.9). The 

gum is a white to yellowish white, nearly odorless powder, insoluble in most organic 

solvents including ethanol and partially soluble in water at room temperature and soluble 

in hot (85ºC) water (131). 

 

 

Figure 1.9: a) Locust bean pod and seeds (by Roger Culos) and b) locust bean gum structure. 

 

The gum is a thickener and stabilizer that is used to give viscosity when added to 

different products, improving properties like texture, through water phase management. 

Therefore, it is widely used in food, as well as in the cosmetics industries (132). This 

polysaccharide is also used in biopharmaceutical applications, exhibiting useful 

properties like a high gelling capacity (133), as a controlled release excipient (134) in 

various delivery systems, or as a tablet disintegrant, usually associated with other 

polysaccharides, namely carrageenan (135). Locust bean gum also showed promising 

results as a substract for some charged derivatives synthesis (30,74). 
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1.2.10 Pullulan 

Pullulan is a polysaccharide secreted by the fungus Aureobasidium pullulans. It is 

composed of a linear structure of α-1,6 linked maltotriose units (three glucose units linked 

by α-1,4 bonds) (Figure 1.10) (136,137). It is highly soluble in water and insoluble in 

organic solvents, except for dimethylsulfoxide and formamide. It is considered non-toxic, 

non-mutagenic and non-carcinogenic. It presents considerable mechanical strength, 

adhesive properties, film formation properties and is biodegradable (138,139). 

 

Figure 1.10: a) Aureobasidium pullulans (by Tom Volk at Mushroom Observer) and b) pullulan 

structure. 

 

This polymer and its derivatives have been used in different biomedical 

applications. It has been recently used for drug and gene delivery in different forms, like 

nanoparticles and microspheres, being useful for targeting tumor cells (140–144). 

Nanoparticles produced by polyelectrolyte complexation of charged pullulan derivatives 

have also been reported as a carrier for the delivery of proteins by our research group 

(31,145). 

 

1.2.11 Starch 

Starch is the major dietary source of carbohydrates and the most common storage 

polysaccharide in plants. It exists as granules in the chloroplast of leaves and in the 

amyloplast of seeds, pulses and tubers. This polysaccharide is a co-polymer, and consists 

of 15 to 20% amylose, a linear chain of α-1,4 linked D-glucose, and amylopectin, a larger 

branched polymer made of α-1,4 and α-1,6 linked D-glucose (Figure 1.11) (146). 
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Figure 1.11: a) Corn (by Alabama Extension), a common source of starch, and b) amylose and c) 

amylopectin structures. 

 

Due to its nontoxic properties, as well as its low cost and availability, starch is one 

of the most commonly used polymers in pharmaceutical applications as an excipient, 

diluent, disintegrant, binder or lubricant (147). Despite this, new functions have recently 

been granted to this common polysaccharide and its various derivatives (148). As such, 

drug delivery systems based on starch have recently been studied, including micro and 

nanoparticles (149–152). 

 

1.3 Polysaccharides chemical modification 

Polysaccharides modification is an important branch of polysaccharide science, 

and is done resorting to chemical, physical and biological modification methods, from 

which the chemical modifications are the most widely used (153). Chemical modification 

can add new functional activities to these molecules, by modification of physicochemical 

properties like water solubility, molecular weight, degree of substitution and 

conformation of the main polysaccharide chain (154). Functionalization of 

polysaccharides is, therefore, able to extend the application of bioactive materials to 

different areas, including biomedical areas, and design cost-effective alternatives based 

around non-bioactive polysaccharides (155).  
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1.3.1 Oxidation 

Oxidation  is a common approach in polysaccharide functionalization, in 

particular for controlled drug delivery purposes, in order to modulate polymer 

degradation to better suit its purpose (115). Different oxidizing agents may be employed, 

such as periodate, TEMPO and Oxone®. 

 

1.3.1.1 Periodate 

Periodate oxidation can be applied to molecules with two adjacent hydroxyl 

groups (vicinal diols) which are or can adopt a cis-oriented conformation or, less 

effectively, equatorial trans-oriented conformation. This reaction is referred to as an 

oxidative cleavage, as it cleaves the bond between the two diol carbons, originating two 

equivalents of aldehyde (Figure 1.12). This oxidation method discerns from others, as it 

does not produce carboxylic acids. This reaction is valuable in polysaccharide chemistry, 

as polysaccharides contain several cis-diols and equatorial trans-diols, and its mild 

conditions in aqueous media makes this reaction easy to apply (156). 

 

Figure 1.12: Oxidation of β-D-mannopyranose with periodate. 

 

Obtaining an aldehyde can be an important intermediate step in the synthesis of 

other compounds. Dextran was oxidized with sodium periodate at room temperature in 

the dark, obtaining dextran dialdehyde, that was then conjugated with cholic acid 

hydrazide. Cholic acid hydrazide was produced by esterification of cholic acid with 

ethanol to obtain cholic acid acetate, which reacted with hydrazide monohydrate. Cholic 

acid hydrazide in DMF was added to an aqueous solution of oxidized dextran, stirred at 

30ºC for 24h and filtered. The polymer was precipitated in methanol, dissolved in DMSO 

and dialysed. The product was used to form nanoparticles in aqueous solution (157). 
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Cellulose can be oxidized with periodate to obtain an open ringed structure product. 

This allows for linking of other functional groups through the aldehyde, like amino 

groups. Zhang et al. used this strategy to graft silver nanoparticles with amino groups to 

cotton, creating a fabric with excellent antibacterial properties. The fabric was prepared 

by immersing cotton in a sodium periodate solution (2 g/L) at 40ºC for 30 min, washing 

it and immersing it in a solution of silver nanoparticles for 30 min at room temperature, 

washing again and drying (158). Likewise, carboxymethyl cellulose (CMC) has also been 

oxidized with periodate to obtain dialdehyde CMC that was then crosslinked with 

chitosan to form a full-polysaccharide membrane in which silver ions were reduced with 

sodium borohydride to obtain silver nanocomposites with antibacterial properties (159). 

Alginate is another polysaccharide that has been modified with periodate. After 24 

h of reaction at room temperature in the dark, oxidized alginate was dialyzed. This 

alginate derivative was used to design prodrug nanogels for cancer diagnostic and 

treatment. This was followed by grafting the oxidized aldehyde with folate-terminated 

poly(ethyleneglycol) and rhodamine B-terminated poly(ethyleneglycol) using 

carbodiimide chemistry. To obtain the nanogel, the modified polymer was crosslinked 

using cystamine. Finally, doxorubicin hydrochloride loading was performed via acid-

labile Schiff base bond. This created a carrier for doxorubicin that could be taken up by 

tumor cells through Folate-Receptor-mediated endocytosis and release was triggered in 

contact with the reductant and acid environment in the tumor, releasing the drug and 

emitting a strong fluorescence due to rhodamine B (160). The modification with periodate 

is essential in this system, as it enables control over chain length and creates more 

derivable groups. 

Carboxymethyl pullulan, a pullulan derivative, was oxidized with sodium periodate 

for 24 h at room temperature, protected from light. The remaining periodate was 

inactivated by reaction with ethyleneglycol and the product dialysed. The modified 

polysaccharide was then used for production of nanoparticles, through reaction with 

difunctional JEFFAMINE® polyetheramines for application in the biomedical area (161). 

Hyaluronic acid can be oxidized with periodate, for 2 h at room temperature in the 

dark before quenching the reaction with ethyleneglycol, to obtain aldehyde hyaluronic 

acid. This derivative can be used alongside N,O-carboxymethyl chitosan to create a 

hydrogel. The gel results from crosslinking of amino groups of N,O-carboxymethyl 



Production of Nanoparticles by Polyelectrolyte Complexation from Novel Locust Bean 

Gum Cationic Derivatives 

17 

 

chitosan with aldehyde groups of aldehyde hyaluronic acid. The hydrogel was successful 

in preventing post-operative peritoneal adhesions, according to a rat model (162). 

Dialdehyde starch has also been synthesized using sodium periodate. This modified 

starch was then cross-linked with phosphoryl chloride in water-in-oil micro-emulsion to 

obtain dialdehyde starch nanoparticles to be used as a carrier for fluoruracil. 

As seen by the approaches described, periodate oxidation is a very useful tool, 

especially when followed by crosslinking or grafting reactions, as the aldehyde groups 

make the substrate more reactive. The formation of aldehyde groups in polysaccharides 

is also an indispensable step in the preparation of the polymers for insertion of amine 

groups by reductive amination, as exemplified in 1.3.2. 

 

1.3.1.2 TEMPO 

Oxidation with 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) is also 

a very common chemical reaction in polysaccharide chemistry. In aqueous media, 

TEMPO is oxidized by the stoichiometric oxidant (usually sodium hypochlorite) to 

generate a nitrosonium cation, which is the actual oxidant of the alcohol. During the 

oxidation of the alcohol group of the carbohydrate, the cation is reduced to a 

hydroxylamine. The hydroxylamine is then reoxidized back to a nitrosonium ion 

completing the catalytic cycle. In a first cycle, the alcohol is converted to aldehyde and, 

in a subsequent one, completion of the oxidation to carboxylic acid is achieved. 

Hypochlorite is usually employed as primary oxidant, with bromide as a co-catalyst, as 

shown in Figure 1.13 (163). 
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Figure 1.13: TEMPO-mediated oxidation of β-D-mannopyranose. 

 

Cellulose has been successfully modified to have carboxylate groups by using 

TEMPO-mediated oxidation (164). The reaction was performed at room temperature, at 

pH=10, using sodium bromide and sodium hypochlorite. Reaction times of 1, 2, 4 and 8 

h yielded progressively higher carboxylate ratios, identified by electric conductivity 

titration. The obtained product after 1 h reaction, in the form of sodium carboxylate 

cellulose, was immersed in a silver nitrate solution to obtain silver carboxylate cellulose. 

In situ thermal reduction of the silver cations enabled the formation of silver nanoparticles 

along the cellulose structure. These silver-associated cellulose pellicles displayed high 

antibacterial activity against E. coli and S. aureus and high biocompatibility, making this 

product a viable tool for wound dressing. 

TEMPO-mediated oxidation of cellulose was also employed for the production of 

a drug delivery system consisting of cellulose carboxylate and aminated nanodextran 

combined with modified graphene oxide through electrostatic interaction forming layered 

nanocomposites for carrying curcumin, to be used in anticancer therapy. Drug release was 

engineered to be triggered by acidic environment or near infrared stimuli (165). 
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Locust been gum was successfully oxidized with TEMPO, sodium hypochloride 

and sodium bromide, at pH=9.3, yielding an anionic polysaccharide to be used in 

nanoparticle production for drug delivery purposes, by polyelectrolyte complexation with 

a cationic locust bean gum derivative (74). 

Starch was also modified by TEMPO, sodium hypochloride and sodium bromide, 

with pH=9.5. Ultrasonication of this starch derivative promoted the formation of 

carboxylate starch nanoparticles. These nanoparticles are able to interact with proteins, 

therefore having potential applications as nano drug carriers (166) 

Carboxylic curdlan was similarly oxidized with 4-acetamido-TEMPO. The reaction 

proceeds similarly, but using a 4-acetamido-TEMPO/NaClO/NaClO2 system under acidic 

conditions (pH=4,8) (167). This compound was later modified by the linkage of 

deoxycholic acid, creating an amphiphilic curdlan derivative. This derivative self-

aggregated, forming nanoparticles that could be used for carrying hydrophobic drugs, like 

doxorubicin (83). 

 

1.3.1.3 Oxone® 

Oxone® is a trade name referring to the triple salt 2KHSO5·KHSO4·K2SO4, a high 

stability form of potassium peroxymonosulfate, the potassium salt of peroxymonosulfuric 

acid, also known as Caro’s acid. This compound serves as a stoichiometric oxidizing 

agent under a variety of conditions, including aqueous solutions (Figure 1.14) (168). 

  

Figure 1.14: Oxidation of β-D-mannopyranose  with Oxone®. 

 

Oxone® was used to oxidize cellulose, producing cellulose nanofibers. Cellulose 

was dispersed in water by ultrasonication and 2.4 equivalents of Oxone® were added. 

After 24 h at 80ºC, the oxidized cellulose was filtered. This modified polysaccharide 
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contained over 80% carboxylate. After mechanical treatment of the cellulose derivative, 

cellulose nanofibers were obtained (169).  

 

1.3.2 Reductive amination 

Reductive amination is an important tool for the creation of new carbon-nitrogen 

bonds. It is based on the condensation of an aldehyde or ketone with an amine, followed 

by the reduction of the resulting imine, as represented in Figure 1.15 (170). Various 

polysaccharides may be turned into amines by use of this reaction. 

 

Figure 1.15: Reductive amination of β-D-mannopyranose dialdehyde. 

 

Reductive amination was used to create nanowhisker-based drug delivery 

systems. Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis of bleached 

softwood pulp, then oxidized with sodium periodate to introduce aldehyde groups. 

Finally, a suspension of cellulose dialdehyde was mixed with acetate buffer (pH=9) and 

10 equivalents of γ -aminobutyric acid were added. The mixture was stirred for 24 h at 

45 ºC and the resulting imine was reduced in situ with 2.5 equivalents of sodium 

cyanoborohydride. After dialysis and lyophilization, the dry product was obtained with a 

80-90% yield. The nanowhiskers were further modified by esterification of the 

aminobutyric acid residue with a syringyl alcohol linker. This design presents a carrier 

molecule to be adapted for delivery of enzymes, proteins and drugs, by selecting different 

linker molecules (171). 
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Alginate was modified with periodate oxidation followed by reductive amination 

to link it to 4-pentyn-1-amine. After oxidation, the polysaccharide was dissolved in a 

water/methanol mixture and 5 equivalents of 4-pentyn-1-amine were added. Reactions 

were performed for 48-96 h at room temperature with pH adjusted to 5.8 with acetate 

buffer. The samples were dialyzed and lyophilized. The aminated alginate was further 

modified by grafting of β-cyclodextrin (a starch macrocycle). The new polymer combined 

the gelation ability of alginate with the inclusion complex ability of cyclodextrins and has 

potential for application in controlled drug release (172). 

Reductive amination of alginate was also performed on alginate oxidized with 

periodate using 4-(2-aminoethyl)-benzoic acid as the amine and picoline-borane as 

reducing agent with phosphate buffer (pH=6). The resulting alginate derivative can form 

a hydrogel for pH-controlled drug release (173). 

Dextran was aminated with spermine, a polyamine. A solution of oxidized 

polysaccharide was added to a borate buffer solution (pH=11) containing 1.5 equivalents 

of polyamine. After 24 h of stirring at room temperature, excess sodium borohydride was 

added to reduce the imine that formed, during 24 h. After dialysis and lyophilization, 

amine-based conjugates were obtained with a 50% yield. The polymer was used in the 

preparation of nanoparticles as a vector of siRNA for gene silencing with application in 

colorectal cancer treatment (174). 

This reaction can be used to synthesize polymers with primary amino groups if 

ammonia is used instead of an organic amine, creating cationic polysaccharides 

comparable with chitosan. This technique was applied to cellulose after its oxidation with 

periodate. Cellulose dialdehyde (1 g) reacted with an ammonium hydroxide solution (50 

mL, 37% ammonia) at 50 ºC protected from light for 3 h and using sodium 

cyanoborohydride (1:1 mass ratio to polymer) dissolved in ethanol as the reducing agent. 

After 18 h of reaction at 100 ºC under reflux, the product was dried, redissolved, dialyzed 

and lyophilized. This novel cationic polymer showed better pH-independent hydration 

and better mucoadhesive properties than chitosan (175). 

Polysaccharides carrying primary amino groups were also made from starch 

dialdehyde (1 g), and reductive amination was performed with an ammonium hydroxide 

solution (50 mL, 32% ammonia) at 50 ºC protected from light for 3 h and using sodium 

cyanoborohydride (1:1 weight ratio to polymer) dissolved in ethanol as the reducing 
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agent. After 3 days, the aminated starch was purified by solvent evaporation, dialysis and 

lyophilization. The novel cationic polysaccharide showed superior mucoadhesive 

properties and less cytotoxic effect than chitosan (176). 

 

1.3.3 Alkylation with ammonium quaternary salts 

Another pathway to the introduction of amino groups in polysaccharides is 

through alkylation with trimethylammonium compounds, commonly used for obtaining 

quaternary ammonium derivatives of polysaccharides (Figure 1.16). 

 

Figure 1.16: Alkylation of β-D-mannopyranose with glycidyltrimethylammonium chloride. 

 

Chitosan, dissolved in alkaline aqueous medium, at 80 ºC, was alkylated with 

glycidyltrimethylammonium chloride, which was added 3 times with 2 h intervals, 

totaling 3 equivalents. The product was isolated, dialyzed and lyophilized. The quaternary 

ammonium chitosan salt had a degree of alkylation of 90%. This modification improved 

water solubility in the whole pH range. Cytotoxicity increased with alkylation, but so did 

its efficacy as a transfection vector (177). 

Curdlan was also cationized by alkylation, using different alkylating agents, either 

glycidyltrimethylammonium chloride or 3-chloro-2-hydroxypropyltrimethylammonium 

chloride. Curdlan was dissolved in a 0.5 M sodium hydroxide solution and the 

quaternization agent was added dropwise under constant stirring, with reaction times 

ranging from 4 to 6 h and temperatures ranging from 50 to 70 ºC. The modified curdlan 

was precipitated, redissolved in water, neutralized, purified by diafiltration and 

lyophilized. The cationic curdlan synthesis was more successful with 

glycidyltrimethylammonium. Cationic curdlan was conjugated with anionic curdlan, 
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forming curdlan nanoparticles through polyelectrolyte complexation that could be used 

as drug carriers (178). 

Pullulan was alkylated with glycidyltrimethylammonium (27 equivalents) in an 

aqueous solution of KOH (9 equivalents). The reaction took 24 h at 60 ºC. After dilution, 

neutralization, dialysis and lyophilization, the quaternary ammonium pullulan was 

obtained. This polysaccharide was used for the preparation of pullulan-based 

nanoparticles by polyelectrolyte complexation, along with sulfated pullulan. These 

particles presented adequate characteristics for drug delivery applications and were able 

to associate bovine serum albumin (145). 

Locust bean gum was similarly alkylated with glycidyltrimethylammonium in a 

potassium hydroxide solution. Glycidyltrimethylammonium was added twice, after 5 h 

and later after 24 h. The mixture was neutralized, dialyzed and dried. Using 

polyelectrolyte complexation, this cationic derivative was combined with an anionic 

locust bean gum derivative to produce nanoparticles with adequate properties for drug 

delivery applications (74). 

 

1.3.4 Carboxymethylation 

Carboxymethylation is one of the most well-known polysaccharide modifications 

since the preparation of CMC. The reaction is usually carried out in an alkaline solution, 

using monochloroacetic acid or its sodium salt for introduction of carboxymethyl groups 

in polysaccharides (Figure 1.17) (179). Recently, more unconventional polysaccharides 

have been carboxymethylated for biomedical applications. 

 

Figure 1.17: Carboxymethylation of β-D-mannopyranose with chloroacetic acid. 
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To modify curdlan, the reaction was performed in a suspension of 

isopropropanol/water with sodium hydroxide and 3 additions, at 10 min intervals, of 

monochloroacetic acid, with the reaction taking 5 h at 55 ºC. After filtration, washing, 

dialysis and lyophilization, the product was coupled with cholesterol by EDC/NHS-

mediated ester formation. This compound was used as a nanoparticle carrier system for 

epirubicin. Results showed that the carrier prolonged the drug retention time in the plasma 

circulation, modified its biodistribution and enhanced its efficacy, while reducing its 

toxicity (84). 

Carrageenan was carboxymethylated in variable conditions, suspended in an 

isopropanol-containing sodium hydroxide aqueous solution and using monochloroacetic 

acid as reagent. The modified carrageenan was recovered through vacuum filtration, 

washed and dried. This derivative displayed pH-dependent swelling and encapsulation 

efficiency, providing an alternative approach for oral delivery of macromolecules to the 

intestinal tract (180). 

Carboxymethyl groups have also been added to starch. The reaction was done in 

an isopropropanol/water mixture with sodium hydroxide and monochloroacetic acid, 

heated to 60 ºC for 2 hours. After washing and drying, carboxymethyl starch with a degree 

of substitution of 49% was obtained. Along with chitosan, this starch derivative was used 

to produce nanoparticles to be loaded with 5-aminosalicylic acid, for drug delivery to the 

colon (181). 

N,O-carboxymethyl chitosan was obtained by a similar procedure, with sodium 

hydroxide added in 5 instances, in 5 min intervals, to the isopropanol and polymer 

mixture, and monochloroacetic acid added in 5 portions over 20 min. After 3 h at 60 ºC, 

the mixture was filtered and the product washed and dried. This derivative was 

crosslinked with hyaluronic acid oxidized with periodate, forming an hydrogel that was 

successful in preventing post-operative peritoneal adhesions, as demonstrated in a rat 

model (162). 

Carboxymethyl pullulan was also synthesized. Pullulan and sodium borohydride 

were dissolved in water, to which sodium hydroxide and monochloroacetic acid were 

added in 3 steps, initially, after 1 h and after 30 min, with a total reaction time of 18 h at 

70 ºC. Carboxymethylpullulan with a degree of substitution of 70% was recovered after 
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dialysis by lyophilization. Interpenetrating this pullulan derivative with poly(N-

isopropylacrylamide), a temperature-sensitive polymer, was achieved by crosslinking 

with N,N’-methylenebisacrylamide, creating a thermo and pH-sensitive hydrogel for drug 

delivery applications (182). 

Locust bean gum has also been carboxymethylated. The gum was kneaded with 

an ice-cold sodium hydroxide solution and a variable amount of a chloroacetic acid 

solution was added over 1 h at 15 ºC. Then the semisolid mass was heated to 65 ºC and 

left to react for 1 h more. The modified polymer was washed, dialyzed and dried. 

Poly(vinyl alcohol) was utilized along with the carboxymethyl locust bean gum to prepare 

interpenetrating polymer network microspheres of buflomedil hydrochloride for 

controlled drug delivery, and in vitro tests showed retarded drug release up to 12 h (183). 

 

1.3.5 Sulfation 

Sulfated glycosaminoglycans have versatile biological activities and are also 

interesting as drug delivery materials. Therefore, the introduction of sulfate groups in 

other polysaccharides is a technique used to obtain new derivatives that mimic those 

properties. This can be achieved with different sulfating agents, such as sulfuric acid, 

sulfur trioxide or chlorosulfonic acid in dimethylformamide (DMF) (Figure 1.18)  (184). 

 

Figure 1.18: Sulfation of β-D-mannopyranose with SO3∙DMF. 

 

Chitosan was sulfated using a mixture of sulfuric acid and chlorosulfonic acid 

cooled to 0-4 ºC, then warmed to room temperature and stirred for 30 min. The derivative 

was precipitated in cold diethyl ether, dissolved in water, neutralized, dialysed and 

lyophilized. Later, the polysaccharide was coupled with 3-O-hemisuccinate 

glycyrrhetinic acid by EDC/NHS-mediated amide formation, which served as both a 
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hydrophobic group and a liver-targeting ligand. This new compound was used to prepare 

micelles loaded with doxorubicin, which showed potential as a liver-cancer targeting 

carrier (185). 

Sulfated pullulan was prepared by dispersing pullulan in dimethylformamide 

DMF and adding sulfur trioxide/DMF complex. The reaction took 4 h at 60 ºC. The 

mixture was cooled and neutralized and the solvent was evaporated. The product was 

dissolved in water for dialysis, and then lyophilized. This derivative was used for the 

preparation of pullulan-based nanoparticles by polyelectrolyte complexation, along with 

quaternary ammonium pullulan (145). 

A sulfated derivative of locust bean gum was similarly prepared. This polymer 

was successfully used to produce nanoparticles by polyelectrolyte complexation with two 

cationic polysaccharides (chitosan and a quaternary ammonium locust bean gum 

derivative) with adequate properties for drug delivery applications (74). 

 

1.3.6 Phosphorylation 

Phosphorylation of polysaccharides consists in the substitution of hydroxyl groups 

of the carbohydrates by phosphate or phosphonate groups. This can be achieved with 

different methods, such as using phosphorous acid (Figure 1.19), resulting in a 

phosphonate, or phosphorus pentoxide  yielding a phosphate (186) . 

 

Figure 1.19: Phosphorylation of β-D-mannopyranose with phosphorous acid. 

 

Curdlan was modified to have phosphonate groups by reaction with phosphorous 

acid in molten urea at 145 ºC for 3 to 5 h. After cooling, the mixture is dissolved in a 

sodium hydroxide solution and precipitated in methanol various times to purify the 

product, then redissolved, diafiltrated and recovered by lyophilization (187). This 
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polysaccharide was used in the preparation of nanoparticles with cationic curdlan (178) 

and crosslinked with epichlorohydrin to form anionic microgels for controlled drug 

release of cationic drugs (85). 

Starch and its derivative hydroxypropyl starch were phosphorylated using 

phosphorus pentoxide mixed in water. The reaction was done at room temperature for 1 

h and then the mixture was dialysed and dried. These modified starches were loaded into 

self-emulsifying drug delivery systems, which optimized mucus diffusion properties, due 

to a zeta potential shift to positive. This strategy may increase bioavailability of drugs 

administered via mucosal membranes (188). 

Chitosan was phosphorylated by dissolution in an acetic acid solution, heated to 

70 ºC, to which a phosphorous acid solution and a formaldehyde solution were added. 

After 3 h of reaction, the mixture was cooled and ethanol added to precipitate the polymer, 

which was then washed, dialyzed and lyophilized. The phosphorylated chitosan was used 

as a base for a hydrogel containing ovalbumin as a vaccine delivery system that induced 

antigen-specific immune response when injected in test mice (189). 
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2 Objectives 

This work aims at chemically modifying a polysaccharide from the seeds of a 

native plant, the locust bean gum, and to create and characterize a cationic polymer, 

through different synthesis pathways. This polymer of added value will then be used in 

the production of nanoparticles with carrageenan, much like chitosan is usually 

employed, in different mass ratios to obtain nanoparticles with suitable properties for drug 

delivery. 
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3 Materials and methods 

3.1 Materials 

Locust bean gum (LBG) was gifted by Industrial Farense (Faro, Portugal). 

Potassium bromide (KBr), silver nitrate (AgNO3) sodium periodate, Oxone®, 

monopersulfate compound, sodium borohydride, 2,2,6,6-tetramethylpiperidin-1-yloxy 

radical (TEMPO) were obtained from Sigma-Aldrich (USA). K-Carrageenan (CRG) and 

iron (II) sulfate heptahydrate (FeSO4·7H2O) from Fluka (Denmark); sodium hypochlorite 

from Honeywell (USA); hydrochloric acid 37% from VWR (USA); ammonium 

persulfate from Riedel-de Haën (Germany); sodium bromide and piperidine from Merck 

(Germany); ammonium chloride, from José Manuel Gomes dos Santos, Lda (Portugal). 

Ultrapure water was obtained from Mili-Q plus, Milipore (Portugal) and ethanol 

was from Álcool e Géneros Alimentares, S.A. (Portugal). 

Dialysis was performed using SnakeSkinTM Dialysis Tubing (Pierce, USA) and 

lyophilization was performed on a Labconco® FreeZone 6 Liter Benchtop Freeze Dry 

System freeze dryer.  

Reactions were followed with a Thermo Evolution 300 UV-Vis 

Spectrophotometer. 

FTIR spectra were acquired using Bruker Tensor 27. Samples were ground in a 

mortar and pestle with KBr and compressed into disks. The spectra were obtained by 

collecting 32-scan interferograms in transmittance mode with 4 cm-1 resolution in the 

4000-400 cm-1 region. 

Nuclear magnetic resonance was performed on a 500 MHz Jeol spectrometer. 

Nanoparticles size and PdI were measured by dynamic light scattering and zeta 

potential was measured by laser Doppler anemometry using a Zetasizer Nano ZS 

(Malvern instruments, UK). 

 

3.2 Synthesis of LBG derivatives 

3.2.1 Purification of LBG 

Purification of LBG is necessary to remove the protein content (3 to 7 %) that is 

usually present in commercial samples (131). The procedure consisted in wetting 5.0 g of 

LBG with ethanol and adding distilled water, preheated to 85 ºC, and stirring for 1 h. 

After this, the dispersion was cooled to room temperature and subsequently centrifuged 

(22,000 × g, 20 ºC, 1 h). The supernatant (LBG solution free of protein) was added to an 
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equal volume of ethanol to precipitate the LBG. After vacuum filtration, the precipitate 

was finally dried in a vacuum oven at 30 ºC during 72 h. The purified product was a white 

powder, weighting 3.3 g, which was ground and stored until necessary. 

 

3.2.2 Oxidation 

3.2.2.1 Oxidation with periodate 

Oxidation of LBG was performed by an adaptation of a described procedure (190). 

Purified LBG (2 g) was dispersed in distilled water (180 mL) previously heated to 65 ºC 

and stirred for 24 h at room temperature. Sodium periodate was added to the solution and 

the mixture allowed to react for 6 h to 26 h, at room temperature, protected from light. 

The mixture was then dialyzed for 72 h against water, with the dialysis medium being 

changed twice a day. The presence of iodate in the dialysis medium was tested by the 

silver nitrate precipitation essay. After dialysis, the mixture was frozen to -80 ºC and 

lyophilized. The resulting products, periodate oxidized LBG i), ii) and iii) were a white, 

fibrous, cotton-like material. The different sets of conditions were: 

i) Two equivalents of sodium periodate were used (1.06 g). The reaction mixture 

was divided in two vessels, letting one of them react for 6 h and the other for 

26 h. The obtained masses were 0.743 g and 0.931 g, corresponding to the 6 h 

and 26 h reactions. 

ii) Four equivalents of sodium periodate were used (2.11 g). The reaction mixture 

was divided in two vessels, letting one of them react for 4 h and the other for 

6 h. The obtained mases were 0.801 g after the 4 h reaction plus 0.830 g after 

the 6 h reaction. 

IR (KBr): 1712 cm-1 (C=O). 

iii) Eight equivalents of sodium periodate were used (4.22 g). The mixture reacted 

for 6 h. Finally, the product weighted 1.675 g. 

IR (KBr): 1718 cm-1 (C=O). 

 

3.2.2.2 Oxidation with TEMPO 

Oxidation of LBG was performed using TEMPO as the oxidizing agent, following 

the method described by Braz et al., (74) for oxidizing LBG’s primary alcohols to  
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carboxyl groups, but using half the oxidizing agent, in order to stop the oxidation at the 

carbonyl stage. 

Purified LBG (500 mg) was dispersed in distilled water (200 mL) heated to 80 ºC 

for 30 min. After 30 min, the mixture was left to cool until room temperature. Water was 

added to complete 200 mL, replenishing the water that evaporated, and the mixture was 

cooled in an iced water bath. Then 2.6×10-3 equivalents of TEMPO (10 mg) and 1.9×10-2 

equivalents of NaBr (50 mg) were added, while stirring. A 15% sodium hypochlorite 

solution (1.5 mL) with pH adjusted to 9.3 with HCl (2 M) solution, was mixed with the 

reaction mixture. The pH was kept at 9.3 during 4 h by the addition of NaOH (0.05 M) 

when necessary. The mixture was then dialyzed for 72 h against water, with the dialysis 

medium being changed twice a day. After dialysis, the mixture was frozen to -80 ºC and 

lyophilized. The resulting product weighted 0.380 g and was a gray, fibrous, cotton-like 

material. 

IR (KBr): 1730 cm-1 (C=O) 

 

3.2.2.3 Oxidation with Oxone® 

Oxidation of LBG was performed using Oxone® as oxidizing agent, in the 

presence of manganese sulfate, adapting the procedure of Sánchez et al. (191). 

Purified LBG (2 g) was wetted with ethanol and distilled water (180 mL), 

previously heated to 65 ºC, was added. The mixture was kept at 65 ºC for 1 h and then 

left to cool until room temperature and stirred for 48 h, until mostly dissolved. Then, 1 

equivalent of Oxone® (3.04 g) and 1 equivalent of manganese sulfate (1.70 g) were added. 

The reaction was monitored by UV-Vis spectrophotometry (aliquots transferred to a 

quartz cuvette and scanned from 190 to 900 nm) to verify that the reaction was complete, 

at 9 h. The mixture was then dialyzed for 72 h against water, with the dialysis medium 

being changed twice a day. After dialysis, the mixture was concentrated under reduced 

pressure at 60 ºC, precipitated in ethanol and centrifuged (22 000 × g, 20 min). The 

precipitate was left to dry for 48 h and further dried in a vacuum oven at 40 ºC for 1 day, 

affording 1.792 g of light gray solid that was grinded and stored until further use. 

IR (KBr): 1730 cm-1 (C=O) 
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3.2.2.4 Oxidation with ammonium persulfate 

Oxidation of LBG was performed using ammonium persulfate as the oxidizing 

agent and iron (II) sulfate heptahydrate as catalyst. This kind of reaction was proven 

effective by Rodriguez et al. (192). 

Purified LBG (500 mg) was dispersed in distilled water (200 mL) heated to 80 ºC 

for 30 min, after which the mixture was left to cool until room temperature. After cooled, 

one equivalent of ammonium persulfate (0.563 g) and 4.9×10-3 equivalents of iron (II) 

sulfate heptahydrate (0.034 g) were added under stirring. After 4 h of reaction, the mixture 

was then dialyzed for 72 h against water, with the dialysis medium being changed twice 

a day. After dialysis, the mixture was frozen to -80 ºC and lyophilized. The resulting 

product weighted 0.335 g and was a gray, fibrous, cotton-like material. 

IR (KBr): 1740 cm-1 (C=O) 

 

3.2.3 Reductive amination  

3.2.3.1 Reductive amination of periodate oxidized LBG 

Reductive amination of the oxidized polymer was performed according to a 

procedure described by Bergman et al. (193). 

Oxidized LBG was humidified with ethanol. Then, ammonium chloride was 

added to the reaction flask, along with piperidine. The mixture was then heated to 75 ºC 

in an oil bath under stirring and protected from moisture. The following sets of conditions 

for periodate oxidized LBG were tried:  

i) 500 mg of oxidized LBG, 1 equivalent of ammonium chloride (133 mg) and 

1 equivalent of piperidine (245 µL) and 24 h of reaction time; 

ii) 500 mg of oxidized LBG, 2 equivalents of ammonium chloride (270 mg) 

and 2 equivalents of piperidine (490 µL) and 24 h of reaction time; 

iii) 500 mg of oxidized LBG, 1 equivalent of ammonium chloride (133 mg) and 

1 equivalent of piperidine (245 µL) and follow up of carbonyl disappearance 

by FTIR spectroscopy (air dried aliquots pressed in KBr disks), which was 

complete after 5 h of reaction. 

After the imine was formed, distilled water heated to 85 ºC was added to the 

reaction flask to dissolve it and the solution was left to cool down to room temperature. 
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Then, sodium borohydride was added, to reduce the imine. The different sets of 

conditions were:  

i) 4 equivalents of sodium borohydride (375 mg) were added and the reaction 

mixture stirred overnight; after heating to 50 ºC in an oil bath for 4.5 h, the 

mixture was left to cool down before the addition of 4 more equivalents of 

sodium borohydride. After the addition, the mixture was reheated and left to 

react overnight. 

ii) 8 equivalents of sodium borodydride (750 mg) were added and the mixture 

was heated at 50 ºC overnight. Then, another 8 equivalents were added, 4 at a 

time in two different instants, 18 and 20 h after the initial addition, and left to 

react overnight. 

iii) 4.3 equivalents of sodium borohydride (400 mg) were added and the mixture 

was heated to 50 ºC. The reaction was monitored by UV-Vis 

spectrophotometry at 30 min intervals (aliquots transferred to a quartz cuvette 

and scanned from 250 to 700 nm) until completion, at 2 h. 

Finally, the mixture was dialyzed against distilled water (method i) or pH 4 

hydrochloric acid solution (methods ii and iii) for 72 h, with the dialysis medium being 

changed twice a day. After dialysis, the mixture was frozen to -80 ºC and lyophilized. 

After lyophilization and grinding, amino LBG (ALBG) was obtained as a brownish 

powder. The masses of product obtained were i) 0.135 g, ii) 0.168 g and iii) 0.104 g. 

ii)  IR (KBr): 1060 cm-1 (C-N) 

1H-NMR (D2O),  (ppm): 3.380 (-CH-CH2-, dd, J1 = 12 Hz, J2 = 6.5 Hz); 

3.474 (-CH- + -CH2-, m); 3.539 (-CH-,d); 3.3562 (-CH- + -CH2-, m); 3.605 (-CH-, 

tt, J1= 7 Hz, J2= 4 Hz). 

iii)  IR (KBr): 1718 cm-1 (C=O) 

 

3.2.3.2 Reductive amination of TEMPO oxidized LBG 

Reductive amination was performed on the TEMPO oxidized polymer, in the 

following conditions: 0.348 g of oxidized LBG, 1 equivalent of ammonium chloride (92.4 

mg) and 1 equivalent of piperidine (171 µL), and 5 h of reaction time. Distilled water 

heated to 85 ºC was added to the reaction flask to dissolve the polymer and the solution 
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was left to cool down to room temperature. Four equivalents of sodium borohydride (230 

mg) were added and the mixture was heated to 50 ºC. The reaction was monitored by UV-

Vis spectrophotometry at 30 min intervals (aliquots transferred to a quartz cuvette and 

scanned from 250 to 700 nm) until completion, at 3 h. 

Finally, the mixture was neutralized with hydrochloric acid and dialyzed against 

pH 4 hydrochloric acid solution for 72 h, with the dialysis medium being changed twice 

a day. After dialysis, the mixture’s solvent was evaporated, leaving behind a film of 

polymer that was collected and dried in a vacuum oven at 40 ºC for 1 day. ALBG was 

obtained as a yellow powder. The mass of product obtained was 0.250 g. 

IR (KBr): 1730 cm-1 (COOH) 

IR (KBr): 1090 cm-1 (C-N) 

 

3.2.3.3 Reductive amination of Oxone® oxidized LBG 

Reductive amination was performed on the Oxone oxidized polymer, in the 

following conditions: 1.55 g of oxidized LBG, 1 equivalent of ammonium chloride (411 

mg) and 1 equivalent of piperidine (760 µL). Follow up of carbonyl disappearance was 

performed by FTIR spectroscopy (air dried aliquots pressed in KBr disks), which was 

complete after 4 h of reaction. Ethanol was added to the reaction flask and the solution 

was left to cool down to room temperature. Four equivalents of sodium borohydride 

(1.164 mg) were added and the mixture was heated to 50 ºC. The reaction was monitored 

by UV-Vis spectrophotometry at 30 min intervals (aliquots transferred to a quartz cuvette 

and scanned from 190 to 900 nm) until completion, at 4 h. The ethanol was evaporated 

under reduced pressure and water heated to 80 ºC was added to the reaction flask. As 

some sodium borohydride still had not dissolved, the reaction continued, as seen by the 

release of gas bubbles. Therefore, the mixture was left to react 1 h more. Then, the mixture 

was neutralized with hydrochloric acid and dialyzed against pH 4 hydrochloric acid 

solution for 72 h, with the dialysis medium being changed twice a day. After dialysis, the 

mixture was concentrated under reduced pressure at 60 ºC, precipitated in ethanol and 

centrifuged (22 000 × g, 20 min). The precipitate was left to dry for 48 h and further dried 

in a in a vacuum oven at 40 ºC for 1 day, affording 1.101 g of gray solid that was grinded 

and stored until further use. 
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IR (KBr): 1085 cm-1 (C-N) 

 

3.2.3.4 Reductive amination of ammonium persulfate oxidized LBG 

Reductive amination was performed on the ammonium persulfate oxidized 

polymer, in the following conditions: 0.240 g of oxidized LBG, 1 equivalent of 

ammonium chloride (64.2 mg) and 1 equivalent of piperidine (119 µL). Follow up of 

carbonyl disappearance was performed by FTIR spectroscopy (air dried aliquots pressed 

in KBr disks), which was complete after 5 h of reaction. Distilled water heated to 85 ºC 

was added to the reaction flask to dissolve the polymer and the solution was left to cool 

down to room temperature. Four equivalents of sodium borohydride (192 mg) were added 

and the mixture was heated to 50 ºC. The reaction was monitored by UV-Vis 

spectrophotometry at 30 min intervals (aliquots transferred to a quartz cuvette and 

scanned from 250 to 700 nm) until completion, at 2 h. 

At last, the mixture was neutralized with hydrochloric acid and dialyzed against 

pH 4 hydrochloric acid solution for 72 h, with the dialysis medium being changed twice 

a day. After dialysis, the mixture’s solvent was evaporated, leaving behind a brown gum 

that was collected and left to air dry at room temperature. As the yield was very low, the 

product was not enough for characterization nor nanoparticle production, and was 

discarded. 

 

3.3 Production of ALBG/CRG nanoparticles 

Nanoparticles were prepared by polyelectrolyte complexation as per Braz et al. 

(30) using mass ratios of ALBG to CRG from 4/1 to 1/4. To prepare the particles, 0.8 mL 

of one polymer solution, diluted from the stock solution to different concentrations, was 

added to 2 mL of the other polymer stock solution (Figure 3.1). The resulting mixture is 

gently stirred for 10 min, after which the particles, which formed instantaneously, are 

ready for analysis. 
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Figure 3.1: Nanoparticle production procedure scheme. 

 

To allow for various mass ratios while keeping the same method and volumes, 

two different pairs of stock solution were prepared. The first pair, used to make particles 

with a higher ratio of ALBG, consisted of a 1 mg/mL ALBG solution, to be used directly 

and a 2 mg/mL CRG solution, to be diluted before use. On the other hand, for particles 

with a higher ratio of CRG, the solutions were a 1 mg/mL ALBG solution and a 2.5 

mg/mL CRG solution to be diluted before use. 

The stock solutions were prepared using ultrapure water, heated to 60 ºC, stirred 

for 1 h and filtered with a 0.45 µm filter before use. 

 

3.4 Characterization of ALBG/CRG nanoparticles 

Determination of the nanoparticles size, zeta potential and polydispersity index 

(PdI) were performed immediately after preparation. Samples consisted of 40 µL of 

nanoparticles solution diluted in 1 mL of ultrapure water. 
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4 Results and discussion 

4.1 Synthesis and characterization of locust bean gum derivatives 

4.1.1 Oxidation of LBG 

Oxidation employing periodate results in the double oxidation of a cis-diol, and 

also, to a lower extent, of an equatorial trans-diol, to two aldehydes and cleavage of the 

carbon-carbon bond between the carbons bearing the hydroxyl groups (190), as shown in 

Figure 4.1. 

 

Figure 4.1: Mechanism of periodate diol cleavage. 

 

Oxidation was performed using different quantities of periodate (2, 4 and 8 

equivalents) and different reaction times (4, 6 and 26 h) were also tried, with the goal of 

oxidizing two cis-diols per structural unit, ending up with 4 aldehydes. This would afford, 

in the final product, a degree of substitution near 80 mol%, similar to that found in 

commercial chitosan.  

FTIR spectroscopy analysis confirmed the presence of aldehyde groups in the 

products obtained in all reaction conditions tested, by the appearance of the aldehyde 

C=O stretching band at 1712 cm-1, shown in Figure 4.2 a). 
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a) 

 
 

b) 

 

c) 

 

d) 

 

Figure 4.2: a) FTIR spectra of LBG, LBG oxidized with 4 equivalents of periodate and ALBG.  

Arrows indicate the carbonyl band in oxidized LBG and that of C-N in ALBG.  b) FTIR spectra of LBG, 

LBG oxidized with 8 equivalents of periodate and ALBG.  Arrow indicates the carbonyl band in oxidized 

LBG.  c) FTIR spectra of LBG, LBG oxidized with TEMPO and ALBG. Arrows indicate the carbonyl band 

in oxidized LBG and that of carboxylic acid and C-N in ALBG. d) Second derivative of the FTIR spectrum 

of LBG oxidized with TEMPO. The arrow points the carboxylate band. e) FTIR spectra of LBG, LBG 

oxidized with Oxone® and ALBG. Arrows indicate the carbonyl band in oxidized LBG and that of C-N in 

ALBG. f) FTIR spectra of LBG and ammonium persulfate oxidized LBG. Arrow indicates the carbonyl band 

in oxidized LBG. 
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e) 

 
 

f) 

 

Figure 4.2 (continued) 

 

From the relative intensity of this band, it appears that the different samples have 

different quantities of aldehyde groups, with the sample obtained by reaction with 8 

equivalents of periodate Figure 4.2 b) showing the highest amount, while the sample 

obtained by reaction with 2 equivalents (data not shown) showed the lowest. The different 

reaction times in the same reaction conditions seemed to lead to similar band intensities, 

therefore those products were deemed equal and combined.  

Reaction of galactomannans with TEMPO has been shown to result in oxidation 

of C-6 (194),yielding mostly carboxyl groups, as represented in Figure 1.13. To 

investigate if the reaction could produce a polysaccharide that was only once oxidized, 

resulting in aldehyde groups instead of carboxyl, the procedure described in reference 

(74) was repeated, using only half the amount of reagents to the same quantity of polymer. 

While the periodate reaction produced a polymer with a very different structure, 

due to cleavage of the carbon-carbon bond and breaking of the ring, oxidation of the 

primary alcohol at C-6 should preserve the polysaccharide original structure, as shown in 
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Figure 4.3. The amount of hypochlorite used was 1.2 equivalents per each of the four 

primary hydroxyl groups prone to oxidation, one belonging to the galactopyranosyl 

residue and the others to the unsubstituted mannopyranosyl units. 

 

 

Figure 4.3: C-6 oxidation of a β-D-mannopyranose with  a. TEMPO, b. Oxone®, c. ammonium 

persulfate, followed by reductive amination. 

 

 After FTIR spectroscopy analysis (Figure 4.2 c)), a band around 1730 cm-1 could 

be observed, which could be attributed to the presence of an aldehyde group. Based on 

the observation of the second derivative of this spectra, in Figure 4.2 d), it seemed 

possible that there was oxidation to carboxylate, represented by the band at 1610 cm-1 

which is identifiable in the second derivative but overlapped by the adsorbed water band 

in the original spectrum. 

  Oxone® was also used as an oxidizing agent for LBG, in the presence of MnSO4. 

Like TEMPO, its targets are primary alcohols (191), in this case the unsubstituted C-6 

carbons, keeping the structure of LBG mostly intact, while theoretically providing 4 

carbonyl groups per structural group. FTIR spectra analysis, in Figure 4.2 e), showed the 

presence of a band at 1730 cm-1, representative of a carbonyl group.  

As Oxone® is a persulfate compound, a similar reaction was attempted using 

ammonium persulfate and iron (II) as catalyst. This reaction has already proven successful 

in obtaining carbonyl groups (192). In this case, FTIR spectra analysis, (Figure 4.2 f)), 

seems to confirm the presence of aldehyde in the sample, as a band around 1740 cm-1 can 

be observed.  
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4.1.2 Reductive amination of LBG 

Reductive amination is a reaction between a carbonyl and an amino group, 

forming an imine, followed by reduction of the C=N bond by addition of a reducing agent 

(195), as shown in Figure 4.4. 

 

Figure 4.4: Reductive amination of an aldehyde group. 

 

After oxidation of LBG, in order to obtain aldehyde groups, these were reacted 

with ammonium chloride, in the presence of piperidine, to form imines (193) that were 

subsequently reduced to primary amines by sodium borohydride (Figure 4.5). Dialysis 

against an acidic solution (pH=4) allowed to obtain the final product (ALBG) in the form 

of hydrochloride, in order to increase water solubility.  

 

Figure 4.5: Oxidation by periodate and reductive amination of a β-D-mannopyranose. 

 

Reductive amination of LBG oxidized with periodate was performed under 

different conditions. In the formation of the imine intermediate, different amounts (1 or 2 

equivalents) of ammonium chloride were used and the time of reaction was also varied 

(5 or 24 h); for the reduction to amine, the reducing agent was varied between 4 and 16 

equivalents and reaction time between 2 h and 2 days.  
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In the FTIR spectrum of the product, the bands relative to the amine, like the N˗H 

stretch (3400-3380 cm-1), are impossible to identify, being covered by the polysaccharide 

hydroxyl groups. Meanwhile, the C-N stretch at 1060 cm-1 can be observed, as marked in 

Figure 4.2 

From the relative intensity of this band, it appears that the different samples have 

different quantities of amine groups, with the sample obtained by reaction of oxidized 

LBG (prepared using 4 equivalents of sodium periodate) with 2 equivalents of ammonium 

chloride for 24 h showing the highest degree of substitution, followed by the reaction of 

oxidized LBG (prepared with 8 equivalents of periodate) with 1 equivalent of ammonium 

chloride for 5 h. The reaction of oxidized LBG (prepared with 2 equivalents of periodate) 

with 1 equivalent of ammonium chloride was the least successful, as expected by the lack 

of aldehyde groups observed. It was expected to obtain a better degree of substitution 

after performing the reductive amination in LBG oxidized with 8 equivalents of periodate, 

but this was not the case, and that ALBG spectra also preserved a peak at 1718 cm-1, 

which can correspond to aldehyde groups in the bulk undispersed gum that did not contact 

with the reagents. The unreliability of the different reactions can be attributed to the 

difficulty in obtaining a homogenous gum-ethanol dispersion for the reductive amination 

to take place, as well as an aqueous or ethanolic solution in the reduction step. 

This reaction proved to be troublesome as its yield is very low. The reaction time 

was reduced from 24 to 5 h to avoid the polysaccharide hydrolysis, and reductive 

amination in ethanol instead of water was tested, but a better yield was not achieved. 

Like the oxidation with periodate, every other oxidation reaction was followed by 

a reductive amination in order to obtain the desired primary amine groups. For reductive 

amination of TEMPO oxidized LBG, 1 equivalent of ammonium chloride was used to 

form the imine, for 5 h. Then the imine was reduced using 4 equivalents of sodium 

borohydride for 3 h. After dialysis, this product was isolated by solvent evaporation 

instead of lyophilization, which did not show any ill effect to the product. 

After reductive amination, the band around 1730 cm-1 was still present (Figure 4.2 

c)). Considering aldehydes would either react with the ammonium chloride or be reduced 

by sodium borohydride back to alcohols, the band is possibly due to carboxylic acid 

groups, which would be stable enough to avoid reduction. Therefore, it is thought that 

some aldehyde groups were still present in the polysaccharide, which were aminated 
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resulting in the band around 1090 cm-1, but most of the oxidation resulted in carboxylate 

groups which, after aldehyde reduction and at a lower pH, could easily be identified in 

the ALBG spectrum. With 1.2 equivalents of hypochlorite per each of 4 hydroxyl groups, 

it was expected that 4 aldehyde groups were obtained. Instead, it appears that less 

hydroxyl groups were oxidized and some were twice oxidized, resulting in carboxyl 

groups.  

On the reaction using Oxone® oxidized LBG, imine was also formed using 1 

equivalent of ammonium chloride, which reacted for 4 h. Reduction was performed for 4 

h in ethanol plus 1 h in water, with 4 equivalents of borohydride. This was the only assay 

where reduction was attempted in ethanol for most of the time, in order to tackle the low 

yield problem. The attempt did not prove useful, as reaction time had to be lengthened in 

ethanol and the final yield was similar. To isolate the product, the dialyzed solution was 

poured in ethanol to precipitate the product, centrifuged and the precipitate was dried.  

Observing the ALBG FTIR spectrum on Figure 4.2 e), the new band at 1085 cm-1 can 

represent the C-N stretch, therefore some amine groups are expected to be present in this 

compound. 

 Regarding the reductive amination of LBG oxidized with ammonium persulfate, 

the product isolated was too little to collect, therefore no FTIR spectrum was acquired.  

 On all the performed reactions, one obstacle was the preparation of a homogenous 

reaction media, either a solution or a uniform suspension. Dissolution of the polymer was 

impossible to achieve completely, and the remaining solid polymer regularly formed 

dense materials, making it harder for the core of the polysaccharide to contact with the 

reagents. In the future, a pretreatment of the polymer, like a partial hydrolysis (196) or 

the use of salts (175), to make it easier to work with, could help overcome this difficulty. 

The ALBG sample obtained by reductive amination of the LBG oxidized with 4 

equivalents of periodate was also analyzed using 1H and HSQC spectroscopy. The 

obtained results are shown in Figure 4.6.  
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Figure 4.6: a) 1H and b) HSQC NMR spectra of ALBG. 

 

Comparing the ALBG spectra with that of unmodified LBG (74), the most striking 

observation is the disappearance of the anomeric protons signals and a shift to a higher 

field of all the remaining signals. The disappearance of the anomeric proton can be 

explained by ring opening of 1,3-dioxane-type acetals of the polymer during the reduction 

phase of the reaction (197) which happens as represented in Figure 4.7. 
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Figure 4.7: Regioselective ring opening of carbohydrates in a reductive medium. 

 

Considering that not all mannose and galactose units reacted with periodate, 

various polymer fragments were obtained after degradation during the reduction phase 

(Figure 4.8), therefore explaining the complexity of the NMR spectra. Mannose and 

galactose units that were not cleaved by reaction with periodate produce fragments a) and 

b), respectively, while the fragments shown in c) and d) are a product of 1,3 cleavage 

mannose and e) and f) are products of the cleavage of oxidized galactose. It should be 

noted that fragment f) would be lost during dialysis due to its low size. 

 

 

Figure 4.8: Fragments of ALBG after ring opening in reductive medium. a) and b) represent 

unoxidized mannose and galactose units after ring opening, c) and d) represent the fragments obtained 

after cleavage of oxidized mannose and e) and f) represent the fragments obtained after cleavage of 

oxidized galactose. 

 



Production of Nanoparticles by Polyelectrolyte Complexation from Novel Locust Bean 

Gum Cationic Derivatives 

46 

 

The dd at 3.380 ppm can be attributed to a proton of a CH2 group next to a CHOH, 

since a geminal coupling (J=12 Hz) and a vicinal coupling (J=6.5 Hz) are observed. The 

signal centered at 3.474 can be attributed to protons of CH and CH2. The signal centered 

3.539, is possibly a multiplet corresponding to protons of very similar CH that appears to 

be a dd due to low resolution of the NMR. The signal centered at 3.3562 can corresponds 

to protons of CH and CH2. The tt at 3.605 ppm can be attributed to the proton of a CH 

linked to the OH and two CH2 (which exists in Figure 4.8, fragment e)). 

 

4.2 ALBG/CRG nanoparticles 

Considering a complete reaction, ALBG should present 4 charged groups per 

structural unit, with each structural unit weighting 956 g/mol (in chloride salt form). 

Therefore, the polymer in acidic aqueous solution has 0.00418 charges per gram. 

Comparing with the structure of CRG, constituted by structural units weighting 408 g/mol 

and bearing 1 charged groups, resulting in 0.00245 charges per gram, different charge 

ratios were estimated for the different mass ratios of polysaccharide, as shown in Table 

4.1. 

Table 4.1: Charge ratio of ALBG/CRG nanoparticles and concentration of each polysaccharide 

in the mixture. 

Mass ratio Charge ratio* [ALBG]  [CRG] 

ALBG/CRG (+/-) (mg/mL) (mg/mL) 

4/1 6.83 0.71 0.18 

3/1 5.12 0.71 0.24 

2/1 3.41 0.71 0.36 

1/1 1.71 0.71 0.71 

1/2 0.85 0.36 0.71 

1/3 0.57 0.24 0.71 

1/4 0.43 0.18 0.71 
  *Theoretical charge ratio considering full conversion 

 

PdI values range from 0 to 1, lower PdI indicating more uniform size distribution 

and stability. In the same manner, a smaller particle size and a higher zeta-potential also 

improve nanoparticle systems stability (198).  

Results for the characterization of ALBG/CRG nanoparticles prepared with the 

LBG derivative obtained when using 2 equivalents of sodium periodate, did not show 
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effective formation of nanoparticles, which might indicate a lack of cationic groups in the 

derivative. 

When 4 equivalents of sodium periodate were used, a larger amount of aldehyde 

groups were obtained and later turned into cationic ammonium groups. Using this 

derivative, the complexation with CRG allowed for the preparation of particles with 

adequate size, PdI and zeta-potential, as shown in Table 4.2. From the nanoparticles 

prepared, those corresponding to the 4/1, 1/3 and 1/4 mass ratios of ALBG to CRG 

displayed lower PdI, thus being the more adequate of the set for a possible application in 

drug delivery. As it can be seen in Figure 4.9, the particles size remains similar with the 

exception of those made with a 1/2 ratio. When the concentration of CRG is higher than 

that of ALBG, the particles display a negative zeta-potential. The particles produced 

generally present a larger size than that obtained in similar systems with other 

polysaccharides (31,145). Comparing to other LBG derivatives, the particles have similar 

characteristics (74). Still, the high standard deviation value for size should be noted. One 

possibility of optimization could be the addition of a crosslinking agent such as TPP (25). 

It should be noted that, after mixing the two polymer solutions, a precipitate could be 

observed for the 3/1, 2/1 and 1/1 mass ratios. This seems to imply that the charge ratio in 

these mixtures was near 1, making the repulsion between particles weak enough to form 

precipitate conglomerates. This fact may imply that only part of the amount of amine 

groups that should be present after the chemical reactions on LBG was, in fact, obtained.  

 

Table 4.2: Physicochemical characteristics of ALBG/CRG nanoparticles (mean ± SD; n = 3). 

Mass ratio Size PdI Zeta-potential 

ALBG/CRG (nm)   (mV) 

4/1 257.5 ± 139.2 0.30 ± 0.09 +9.0 ± 0.9 

3/1 ** ** ** 

2/1 ** ** ** 

1/1 ** ** ** 

1/2 672.5 ± 326.7 0.59 ± 0.14 -38.3 ± 7.9 

1/3 368.7 ± 95.1 0.42 ± 0.05 -43.6 ± 3.6 

1/4 301.1 ± 62.5 0.44 ± 0.02 -40.3 ± 2.1 
**Precipitated. 
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Figure 4.9: Effect of ALBG/CRG mass ratio on nanoparticle size and zeta potential (mean ± SD, 

n = 3). 

 

Taking this hypothesis into account, the amount of sodium periodate was doubled 

to 8 equivalents to try to get the intended degree of substitution. Although doubling the 

amount of periodate did allow for more oxidation, the corresponding amination was not 

as effective. It has been observed (199) that polysaccharides oxidized with periodate 

depolymerized further, the higher the amount of periodate, and that is to be expected in 

these reactions. 

As for ALBG obtained by reductive amination of C-6 oxidized LBG, reliable 

nanoparticles were not obtained upon combination with carrageenan. This is most 

probably due to lack of cationic groups on those LBG derivatives and lack of their 

uniform distribution along the polymer. Therefore, the chemical modifications should be 

attempted again with slight changes, namely more reagent equivalents and a better 

dissolution of LBG to provide a more uniform reaction. 

 

5 Conclusions and future work 

While the production of polysaccharide-based nanoparticles by polyelectrolyte 

complexation is common and useful for drug delivery purposes, options for cationic 

polysaccharides are lacking, with chitosan usually being the only one. 
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In this essay, it was attempted to synthesize cationic LBG derivatives through the 

addition of amine groups, which are positively charged in acid media. This addition was 

performed by oxidation of LBG alcohol groups to aldehyde, followed by reductive 

amination. Different reaction conditions and different oxidizing agents were tested 

(periodate, TEMPO, Oxone® and ammonium persulfate). The most successful reaction 

was performed using 4 equivalents of periodate, followed by reductive amination.  

While the goal was to have 4 amine groups per structural unit, it seems that the 

degree of substitution was lower than expected. One of the main holdbacks of the 

reactions was the difficulty in getting a homogenous mixture. This possibly significantly 

reduced the degree of substitution of the polymer. 

The yield of the reductive amination was also lower than expected, which is 

possibly due to cleavage in reductive medium. This hypothesis was confirmed by NMR 

analysis of ALBG, which supports the theory that there was degradation of the polymer. 

The derivatives were used in nanoparticle production by polyelectrolyte 

complexation with CRG in different mass ratios. The mentioned flaws led to less than 

ideal nanoparticle production, with most derivatives not being able to create nanoparticles 

with CRG. The best particles (considering their size, zeta-potential and PdI) were 

obtained using ALBG produced through oxidation with 4 equivalents of periodate and 

CRG in mass ratios of 4/1, 1/3 or 1/4, which showed similar properties to other particles 

based on LBG derivatives, but with a higher deviation.  

Taking all this into account, much more work needs to be put into producing 

cationic LBG derivatives. New strategies must be tried in order to get a more homogenous 

reaction mixture. These might include other purification procedures or the addition of 

salts in order to increase the solubility of the polymer. While the reaction employing 

periodate was the most successful in this project, the use of other reagents that oxidize 

the sixth carbon and maintain the main structure of the polymer should still be explored. 

The different reaction steps should also be optimized in terms of temperature and duration 

to get a higher yield and substitution degree. The polymer should also be further 

characterized by elemental analysis. 

When it comes to the nanoparticles, different assays should also be performed, 

such as the determination of production yield and morphological analysis, in order to have 



Production of Nanoparticles by Polyelectrolyte Complexation from Novel Locust Bean 

Gum Cationic Derivatives 

50 

 

more understanding of the particles properties and possible applications. Finally, if 

possible, it should also be tested if these particles could be used as drug carriers.  
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