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ABSTRACT 

Seaweeds have been receiving increased interest from the fisheries and 

aquaculture industries in recent years, with red algae continuing to be one of the more 

important components of seaweed aquaculture representing 54% of the harvested biomass 

(around US$ 6.3 billion). These seaweeds are important for both food and diverse of 

biotechnology usages. Asparagopsis taxiformis, a characteristic red alga, has been 

receiving increased attention for its biotechnological applications, the most interesting 

one being its ability to reduce methane emissions on the cattle. A. taxiformis presents a 

triphasic life history, passing from gametophyte to carposporophyte and finally to 

tetrasporophyte. The conditions for the lab manipulation and survival of this species are 

still not know, taking in consideration the difficulty of maintaining gametophyte cultures. 

 In this work, some abiotic factors affecting gametophyte maintenance and 

reproduction were experimentally tested. A. taxiformis gametophyte did not survive any 

common pretreatment used, only surviving in culture if cleaned of epizoa in sterilized 

filtered seawater and by selecting the less epiphyted individuals. A. taxiformis showed the 

highest growth rate when cultivated at 15 ºC, not growing at 20 ºC and dying at 25 ºC. 

An industrial fertilizer used showed similar growth rates compared to the Von Stosch 

medium. Photoperiod manipulation did not result in any sexual differentiation on the 

gametophytes. A low stock density (1 g/L) was required since at higher densities there 

was reduced (2 g/L) or no (4g/L) growth rate. A. taxiformis was able to grow at both 20 

and 40 µmol photon m-2 s-1, showing slightly higher (but not significant) growth rates at 

the latter. Attempts at inducing carposporophyte formation were unsuccessful. 

Temperature and light intensity were the two most important factors to maintain 

gametophyte culture. 

 

 

Keywords: pretreatments, temperature, stock density, photoperiod, light intensity, 

Azores 



 

III 
 

RESUMO 

 Os setores de aquicultura e pescas são importantes para a economia global. Nos 

últimos 30 anos, a aquicultura tem sido o principal responsável pelo aumento no 

fornecimento de peixe e algas para consumo. Cerca de 40 espécies de macroalgas são 

cultivadas no mundo, com um aumento substancial da sua produção registado nos últimos 

20 anos. As algas marinhas têm várias utilizações desde alimentação, rações e a 

aplicações biotecnológicas. As algas vermelhas (Rhodophytas) têm, na sua maioria, um 

ciclo de vida trifásico, que consiste na alternância de fases entre gametófito, 

carposporófito e tetrasporófito. A Asparagopsis taxiformis, uma alga marinha vermelha, 

apresenta diversas utilidades culinárias e biotecnológicas e tem recebido um interesse 

especial a nível global pela sua capacidade de redução das emissões de metanos em gado 

bovino através do seu uso em rações. A. taxiformis apresenta o ciclo típico das algas 

vermelhas, sendo, no entanto ainda desconhecido os fatores bióticos e abióticos que 

levam às alternâncias de fase em laboratório. É sabido que as manipulações de fatores 

como a temperatura e fotoperíodo são comumente os principais fatores para indução de 

reprodução, enquanto que outros fatores abióticos como a qualidade da luz, a intensidade 

desta e a suplementação com nutrientes, são pontos importantes para a manutenção e 

possível manipulação dos ciclos de vida. Nos Açores, Asparagopsis spp. está presente 

anualmente, ocorrendo em maior biomassa durante os meses de primavera/inicio de 

verão. Tanto o gametófito como o tetraesporófito são encontrados no meio natural ao logo 

do ano. Com o interesse comercial crescente deste género, é necessário controlar o seu 

ciclo de vida in vitro para facilitar a sua produção. Este trabalho teve como objetivo 

definir os requerimentos para a manutenção do gametófito de A. taxiformis, incluindo 

vários fatores abióticos promotores de crescimento (pré-tratamentos; qualidade e 

intensidade de luz; temperatura; suplementação de nutrientes; fotoperíodo; e densidade 

de cultivo) e determinar os fatores que permitem a carposporogénese e a respectiva 

libertação de carpósporos in vitro. Os pré-tratamentos que são normalmente utilizados 

para a limpeza de espécimes de algas marinhas vermelhas, tiveram, na sua generalidade, 

efeitos adversos no cultivo desta espécie. Apenas a limpeza com pinças em banhos de 

água do mar filtrada e esterilizada, e a seleção de indivíduos com baixa presença de 

epífitos foram eficientes na manutenção do cultivo. Cultivos a temperaturas superiores a 

20 ºC foram deletérios para o gametófito, que apenas registou taxas de crescimento 

positivas quando cultivada a 15 ºC. A A.taxiformis quando cultivada juntamente com a 

adição de um fertilizante habitualmente utilizado em cultivos de laboratório (Von Stosch) 
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apresentou taxas de crescimento semelhantes aqueles registados quando cultivada com 

um fertilizante comercial, o que facilita o processo de cultivo. A exposição a diferentes 

fotoperíodos não resultou em diferenças nas características sexuais do gametófito durante 

o tempo de cultivo, mas a experiência foi interrompida por questões alheias ao cultivo, 

não tendo, por isto, os resultados sido conclusivos. Densidades de cultivo superiores a 1 

g/L apresentaram taxas de crescimento mais reduzido, sendo que, à densidade de cultivo 

de 4 g/L as taxas de crescimento foram mesmo negativas para o gametófito. Por fim, o 

gametófito apresentou crescimento quando cultivado a 20 e a 40 µmol m-2 s-1, com taxas 

de crescimento ligeiramente maiores (embora não significativas) na última condição. 

Todas as tentativas de indução da formação de carposporófito e da sua maturação não 

foram bem-sucedidas. As duas variáveis testadas que mostraram maior importância na 

manutenção do cultivo do gametófito foram a temperatura e a intensidade de luz. Este 

trabalho conclui que é possível a manutenção em laboratório de A. taxiformis, tendo as 

condições ótimas observadas, dentro do leque de opções testadas, sido o seu cultivo a 

uma temperatura de 15 ºC, com uma intensidade de luz menor ou igual a 40 µmol m-2 s-1 

e uma densidade de cultivo  de 1 g/L. São necessários mais estudos para determinar as 

condições necessárias para a indução e maturação do carpoesporófito.  
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1. INTRODUCTION 

1.1. Overview 

Aquaculture and fisheries are important economic drivers accounting for more 

than 60% of the economic value of the global biosphere (FAO, 2020). Aquaculture has 

been responsible for the increasing supply of marine biotic resources in the last 30 years, 

representing 46% of total fish production and 97% of total seaweed production (FAO, 

2020). Global aquaculture production in 2018 included 82.1 million tons of food fish 

(USD 250.1 billion) and 32.4 million tons of aquatic plants (USD 13.3 billion, mostly 

seaweed), with China being, by far, the largest producer of both (fish and macroalgae) 

sectors (FAO, 2020).  

Wild fish stocks have long stabilized in the last century, with aquaculture 

accounting as the sole driver for the increasing supply of fish for the consumers (FAO, 

2020). Yet, much remains to be done in order to foster a better use of the resources 

available and to mitigate the impact and optimize the cultivation of the existing resources, 

while, at the same time, trying to find new and unexplored sources of food. 

1.2. Seaweeds 

Seaweeds are the common name given to commercially available varieties of 

marine macroalgae (Dawczynski et al., 2007). Seaweeds are described as extractive 

species for they can benefit the environment by removing waste materials, including 

organic waste produced by animals, and thus lowering the nutrient load in the water 

(FAO, 2020). Seaweeds are a diverse group of organisms that traditionally includes 

macroscopic, multicellular species belonging to three main Phyla (Rhodophyta, 

Chlorophyta and Ochrophyta), which are normally divided based on their main pigment 

color (Red: Rhodophyta; Green: Chlorophyta; Brown: Phaeophyceae), but can also 

include microscopic stages of their life cycles (Lee, 2008). 

Around 40 algae are cultivated worldwide. Global production of farmed aquatic 

plants (overwhelmingly dominated by seaweeds) more than tripled in volume from 10.6 

million tonnes (2000) to 32.4 million tonnes (2018) (FAO, 2020). Seaweeds have been 

used by humans for food (nutritional properties) and medicine (healing properties) for 

centuries, with many seaweed species being consumed as “sea vegetables” in Japan, 

China, and Korea (Pereira, 2011). They were also traditionally used as fertilizers, feed, 

and as thickening agents (McHugh, 2003; Lee, 2008). 



 

2 
 

Fish and fish products have a crucial role in nutrition and global food security, as 

they represent a valuable source of nutrients and micronutrients of fundamental 

importance for diversified and healthy diets. Seaweeds have a nutritional contribute, 

mainly, of micronutrient minerals (e.g. iron, calcium, iodine, potassium, selenium), 

vitamins (A, C, B-12), and also one of the only non-fish sources of natural omega-3 long-

chain fatty acids (Angell et al., 2016; FAO, 2020). 

1.3. Rhodophyta (Red Algae) 

The Rhodophyta is a well-characterized and morphologically diverse lineage of 

photosynthetic protists, being one of the oldest groups of eukaryotic algae. They range 

from unicells and uni- or multiseriate (arranged in rows) filaments to large (up to 3 m) 

pseudoparenchymatous, branched or unbranched, terete (cylindrical) to foliose (blade-

like) thalli, including crustose and erect forms, some of which are calcified. More than 

7,300 species are currently reported (Guiry & Guiry, 2020). They comprise the largest 

phyla of algae, currently consisting of two subphyla and seven classes with the majority 

of species being found in the Florideophyceae (6,751 spp.; 95% of all taxa), appearing to 

be a monophyletic group characterized by the presence of tetrasporangia and a 

filamentous gonimoblast in most species; mostly consisting of multicellular, marine 

algae, including many notable seaweed (e.g. Asparagopsis spp.) (Cole & Sheath, 1990; 

Fritsch, 1945; Lewis, 1964; Dixon & Irvine, 1977; Lee, 2008; Yoon et al., 2016). 

The Rhodophyta form a distinct group characterized by having eukaryotic cells 

without flagella and centrioles, chloroplasts that lack external endoplasmic reticulum and 

contain unstacked (stroma) thylakoids, and use phycobiliproteins as accessory pigments, 

which give them their red color. Most red algae are also multicellular, macroscopic, 

marine and reproduce sexually. Additional traits of some red algae include a complex life 

history composed of an alternation of two free-living and independent generations 

(gametophyte and tetrasporophyte) and a third generation, the carposporophyte, that 

occurs on the female gametophyte (Cole & Sheath, 1990; Fritsch, 1945; Lewis, 1964; 

Dixon & Irvine, 1977; Lee, 2008; Yoon et al., 2016). 

Most rhodophytes are marine with a worldwide distribution, playing key roles in 

nearshore ecosystems. Species of red alga range from the upper reaches of intertidal 

shores (e.g. members of Bangiales) to hundreds of meters in depth in clear tropical waters, 

providing habitat for a wide variety of organisms. Some marine species are found on 

sandy shores, however most are found attached to rocky substrata. Red algae are 
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represented by free-living macroalgal forms and smaller endo/epiphytic/zoic forms, 

meaning they live in or on other algae, plants, and animals. In addition, some marine 

species have adopted a parasitic lifestyle and may be found on closely or more distantly 

related algal hosts (Cole & Sheath, 1990; Fritsch, 1945; Lewis, 1964; Dixon & Irvine, 

1977; Lee, 2008; Yoon et al., 2016). 

1.3.1 Life Histories 

The red algal life history is unique in having an additional third phase (i.e. a 

triphasic life history) in most Florideophyceae (e.g. Asparagopsis). The triphasic life 

history is an alternation of generations of three phases, the gametophyte, 

carposporophyte, and tetrasporophyte. The triphasic life history is composed of haploid 

gametophytes (thalli that produce gametes), diploid carposporophytes, and diploid 

tetrasporophytes (thalli that typically produce four spores by meiotic division). 

Gametophytes and tetrasporophytes are generally independent photosynthetic thalli, 

whereas the carposporophyte is diploid tissue that occurs on or within the haploid female 

gametophyte as a result of the fertilization of the egg cell and subsequent development of 

the zygote (Cole & Sheath, 1990; Fritsch, 1945; Lewis, 1964; Dixon & Irvine, 1977; Lee, 

2008; Yoon et al., 2016). Male gametophytic plants produce spermatia (= nonmotile 

sperm) from spermatangial initial cells. Female gametophytic plants produce carpogonial 

branches that are composed of a terminal carpogonium (= egg cell) with a trichogyne (a 

hair-like extension) and differing numbers of subtending cells depending on the 

taxonomic group. Fertilization starts with attachment of spermatia to the trichogyne. 

Fusion of the gametic nuclei occurs in the carpogonium. The resulting diploid nucleus is 

either transferred, via an outgrowth from the carpogonium, to another cell (called the 

auxiliary cell), or remains in the carpogonium. In both cases, mitotic divisions of the 

diploid nucleus within a filamentous outgrowth (the gonimoblast) eventually result in the 

production of diploid carposporangia. Carpospores are released from the carposporangia 

and germinate to give rise to free-living diploid tetrasporophytes. Meiosis then occurs in 

specialized cells (tetrasporangial initial cells) in the tetrasporophyte, and the resulting 

tetrads of haploid spores are shed from the thallus. Individual spores germinate to give 

rise to gametophytes, completing the cycle (Yoon et al., 2016). The typical life history 

includes isomorphic gametophytes and tetrasporophytes; however, in some red algae, 

heteromorphic generations, in which the tetrasporophyte is morphologically distinct from 

the gametophyte, also occur (e.g. Bonnemaisoniales) (Yoon et al., 2016). 
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1.3.2 Commercial Importance 

Red algae continue to be an important component of seaweed aquaculture, 

representing 54% of the harvested biomass and nearly 50% of the value (US $6.3 billion 

in 2018) (FAO, 2020). Most red seaweeds, either collected from the wild or farmed, are 

used in the production of human food (Gaspar et al., 2019). Direct consumption as sea 

vegetables is important in the Asia Pacific region, and red algal hydrocolloids are used 

widely in the food and other industries. New applications are being developed for marine 

algal products (e.g. functional foods, medicine (as anti-inflammatory, antiviral, anticancer 

uses), cosmetics and cosmeceuticals, and as biomaterials in skeletal replacement or 

regeneration (Pereira, 2018; Gaspar et al., 2019)). Some red algae are known to produce 

secondary metabolites, which appear to play a key defensive role against both herbivory 

and fouling (Paul et al., 2006; Persson et al., 2011). Paul et al. (2006) examined the 

possible connection between the chemical composition of Asparagopsis armata and its 

ecological roles, which showed antifouling properties and therefore can be a protection 

against harmful bacterial colonization. 

Recently, there has been an effort to understand the utility of the metabolites 

produced by the genus Asparagopsis, which has resulted in the discovery of interesting 

activities as antifouling (Paul et al., 2006), antimicrobial (Paul et al., 2006; Blunt et al., 

2009; Genovese et al., 2009, 2012; Pinteus et al., 2015), antiviral (Haslin et al., 2001; 

Alburquerque et al., 2019), antioxidant and cytotoxic activity (Neethu et al., 2017), 

cosmetical applications (Pereira, 2018); in agriculture (Alburquerque et al., 2019) and in 

food biotechnology, for both humans (Nunes et al., 2018; Shannon & Abu-Ghannam, 

2019) and farmed animals (Machado et al., 2014, 2015; Li et al., 2016; Vucko et al., 

2017; Roque et al., 2019). 

1.4. Asparagopsis  

Asparagopsis spp. (Figure 1.1) are characterized by creeping prostrate bases 

(stolons) anchored by rhizoids; bases giving rise to cylindrical erect axes radially 

branched to several orders, divisions becoming progressively finer so plants are soft and 

silky, ultimate filaments consisting of few cells; erect axes unbranched below, densely 

branched above. Tetrasporangial phase occurs as diminutive tufts of terete branched 

filaments with polysiphonia-like structure, each central axial cell surrounded by 3 

uncorticated pericentral cells; gland-like vesicles between cells of filaments, highly 

refractive. Tetrasporangia cruciate divided, the result of meiosis in pericentral cells. 
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Spermatangia on short, club-like branchletes. Auxiliary cells lacking; carposporophyte 

large, usually with broadened base, pedicellate (Abbott, 1999).  

 

Figure 1.1. Asparagopsis taxiformis without rhizoids (A), collected from the wild 

in Pranchinha, São Miguel, Açores. Mature carposporophytes present (B) and 

carpospores being released (C). 

 

Recent studies (Zanolla et al., 2014; Zanolla et al., 2017) have reported 

Asparagopsis taxiformis to be monoecious, having both male and female gametes on the 

same thallus. 

Only two species have been taxonomically recognized Asparagopsis armata 

(Harvey) and Asparagopsis taxiformis (Delile) Trevisan (Guiry & Guiry, 2020) for this 

genus. The genus has been holistically studied in the last years, with a focus in areas such 

as ecology, physiology and ecophysiology (Andreakis et al., 2004; Andreakis et al., 2016; 

Chualáin et al., 2004; Cardigos et al., 2006; Paul et al., 2006; Padilla-Gamiño & 

A B 

C 
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Carpenter, 2007; Altamirano et al., 2008; Zanolla et al., 2015, 2018, 2019; Martins et al., 

2019); aquaculture (Oza, 1989; Guiry & Dawes, 1992; Schuenhoff et al., 2006; Figueroa 

et al., 2008; Mata et al., 2006, 2007, 2010, 2012, 2017) and in its biotechnological 

potential (Woolard et al., 1979; McConnell & Fenical, 1976; Paul et al., 2006; Mata, 

2008; Genovese et al., 2012; Kinley et al., 2016; Castanho et al., 2017; Vucko et al., 

2017; Clark et al., 2018; Pinteus et al., 2018; Nunes et al., 2018, 2020). 

Asparagopsis taxiformis (Delile) Trevisan has been getting increased interest in 

recent years (e.g. Greener GrazingTM, 2020; Blue Ocean Barns, 2020; Symbrosia, 2020). 

It is characterized by gametophytes of 10 to 20 cm tall, with several to many erect, 

generally plumose fronds, plumose portions to 3 cm diameter, lower axes usually naked, 

to 2 mm diameter, branching starting at lower fourth or third of each axis; dark rose to 

dark red unless subjected to intertidal exposure. Tetrasporangial phase known as 

“Falkenbergia hillenbrandii”, uncommon in intertidal or shallow subtidal habitats but 

common as epiphyte on large number of other algae from 4 to 60 m depths. 

1.5. Fertility Induction on Algae 

Defining optimal culture conditions for cultivated algae species can increase yield 

and protect against undesired invasions by other algae. It is rather important the available 

knowledge of the ecological and molecular factors controlling the growth and 

reproduction, since the complex life cycles of algae, which often involves free-living 

haploid and diploid life stages, makes understanding and controlling life cycles 

challenging (Liu et al., 2017). Many species of algae have been studied in the last decades, 

with fundamental studies finding solutions for controlled laboratory fertility induction 

(e.g. blue light on Laminaria saccharina (Lüning & Dring, 1972), or photoperiod and 

temperature manipulation (Breeman et al., 1988)). Light quality and intensity, 

temperature, photoperiod and nutrient composition have been some of the major abiotic 

factors accounted for the successful life cycle manipulation in algae (Oza, 1989; Nash et 

al., 2005; Agrawal, 2009). Each phase of the life cycle of red seaweeds is dependent on 

several environmental and biotic factors. The reproductive behavior of algae may be 

triggered by one or more conditions, usually associated with seasonal changes (Hansen 

& Doyle, 1976). Many red seaweeds show strong seasonal fluctuations, with cystocarp 

formation and carpospore release peaking during spring (Pacheco-Ruiz et al., 2011). 

Florideophyceae gametophytes are known to develop reproductive structures during the 
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summer and early fall months, and most overwinter in their tetrasporophytic stage 

(Agrawal, 2009). 

The in vitro reproductive behavior of red algae may be manipulated by changing 

culture conditions. The release of carpospores in some red seaweeds can be induced by 

immersing them in sterile seawater (Mantri et al, 2009, Avila et al., 2011). Nash et al. 

(2005) showed that all Bonnemaisonia hamifera tetrasporophytes grown in reduced 

nitrogen and phosphorous conditions became reproductive, developing tetrasporangia 

after 21 days, and later releasing viable tetraspores. Asparagopsis armata 

tetrasporophytes have been shown to develop tetrasporangia only when grown under 

short day conditions (8L:16D) at 15 ºC, when cultured in a medium with reduced N and 

P (Oza, 1977). Guiry & Dawes (1992) later confirmed that daylight and temperature were 

the primary factors to control tetrasporogenesis in this species. Therefore, laboratory 

cultivation conditions can help define life cycle events, opening the possibility of 

manipulating the abiotic factors to characterize the conditions needed to trigger vegetative 

or reproductive growth. 

Algal life history is largely dependent on the germination of spores which allows 

for the transition between different life stages. Asparagopsis taxiformis has a complex 

life cycle, having both a gametophyte and tetrasporophyte stage, which produce 

carpospores and tetraspores, respectively (Yoon et al, 2016). Many environmental factors 

(e.g. light, temperature, nutrients, pH and water movement) affect algal spore germination 

(Agrawal, 2009). Agrawal (2009) found that the presence of inorganic nutrients, the 

presence of light, the presence of organic carbon and the need for a substrate where the 

spore can adhere to, were some of the most important factors for spore germination. 

Asexual reproduction is mostly used in cultivation since it is an easier way to 

increase the biomass by area, avoiding the need of the reproductive effort in laboratory 

(e.g. fragmentation: Ulva spp. and some brown seaweeds). Asparagopsis armata 

gametophyte has long slender barbs which, when detached, are capable of regenerating 

into new thalli. However, fragments of fronds and stolons in this genus have no 

regenerative capacity (Haslin & Pellegrini, 2001). In contrast, the gametophytes of the 

sister species (Asparagopsis taxiformis) are reported to reproduce vegetatively by means 

of propagules formed at the tips of ultimate branches, which break off from the original 

frond and develop into young stolons (Haslin & Pellegrini, 2001). 
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1.6. Rationale 

The genus Asparagopsis has a long history of being considered invasive, with two 

cryptic lineages of A. armata (both invasive) and six lineages of A. taxiformis, two of 

them considered to be invasive (L2 and L3) (Andreakis et al., 2004, 2016; Dijoux et al., 

2014). This is an ecological problem but a profitable possibility for human use of new 

available resources (Andreakis & Schaffelke, 2012).  

In the Azores, populations of Asparagopsis spp. are present yearly with greater 

mass occurring in late spring-beginning of summer (Neto et al., 2000; Neto, 2000, 2001). 

A. armata presents a cyclic exchange between gametophyte (fall/winter) and 

tetrasporophyte stages (winter/spring), with most of the gametophyte population 

disappearing in late summer (Tittley & Neto, 2005). A. taxiformis is a subtropical/tropical 

species (Womersley, 1996), which the gametophyte stage is present all year-round in the 

Azores (Tittley & Neto, 2005). Recently the abundance of A. armata has increased 

relative to the abundance of A. taxiformis, being highly present outside the marine 

protected areas (MPAs) while A. taxiformis is mostly present inside those areas 

(Cacabelos et al., 2019). 

A. taxiformis is known for many different bioactivities (Pinteus et al., 2015; 

Neethu et al., 2017; Nunes et al., 2018; Roque et al., 2019) and is traditionally used in its 

native range (Hawaii) for human consumption (McDermid et al., 2019). The biomass 

available in the Azorean shores is already used for both food and biotechnological 

purposes (SeaExpert, 2019), but with increasing demand for the feed in the cattle industry 

(McDermid et al., 2019), new sources of this seaweed are needed.  

The tetrasporophyte stage is already well studied for the sister species, A. armata 

(see works by Mata et al.), and there are on-going trials for massive supply of off-shore 

ropes with ‘seeds’ (Greener GrazingTM). Therefore, there is interest in closing the 

Asparagopsis life cycle in in vitro laboratory conditions, to reduce the pressure to wild 

populations of Asparagopsis. 

In the Azores, Asparagopsis armata is considered an invasive species, competing 

for space with Asparagopsis taxiformis (Cardigos et al., 2006), which is regarded as 

native. Considering the Portuguese legislation, which prohibits the cultivation of marine 

invasive species (Decreto-Lei n.º 92/2019), and considering the fact that this work was  

developed under an entrepreneurship scope (AQUAZOR, SA), this thesis focused on the 
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study of Asparagopsis taxiformis (non-invasive) life cycle in order to be able to produce 

it at a wider scale. 

1.7. Objectives 

The objective of this thesis was to define culture requirements for Asparagopsis 

taxiformis, including the abiotic factors that promote the growth and reproduction of each 

stage of its life cycle: (1) via the optimization of maintenance and growing conditions of 

the gametophyte stage (testing the effects of (a) pretreatment requirements; (b) light 

quality; (c) temperature; (d) nutrient requirements; (e) photoperiod; (f) stock density; (g) 

light intensity), and (2) to determine the factors that allow for the carposporogenesis to 

occur and promote its successful liberation in vitro. 
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2. MATERIAL & METHODS 

To understand the cultivation requirements of Asparagopsis taxiformis several 

experiments were made. For the gametophyte stage, experimental trials tested (1) 

pretreatment requirements; (2) the effects of light quality and intensity; (3) temperature; 

(3) photoperiod; (4) nutrient requirements; and (5) stock density. In addition to this, the 

potential effects of variations in photoperiod and temperature on the carposporogenesis 

were also tested.  

2.1. Material Collection 

Fresh Asparagopsis taxiformis gametophytes were collected by snorkelling at 

different rocky shores around the south coast of São Miguel island (e.g. São Roque; 

Caloura) depending on weather and sea conditions, from October 2019 to May 2020. All 

the Asparagopsis taxiformis caught was brought to the laboratory in seawater to prevent 

air exposure in a thermic box at reduced temperature (freeze boards). 

2.2. Pretreatment/Routine Cleaning 

Fresh material was rinsed in seawater, cleaned of epiphytes and epifauna, and 

checked at a magnifier microscope (ZEISS Stemi 508). The presence or absence of 

reproductive structures and carpospores was observed to select for carposporophyte 

studies. The remaining non-fertile material was treated accordingly to each respective 

trial.  

2.3. Material Preparation 

All laboratory material was hand-washed with fresh water and deionized water, 

and monthly washed with soap or bleach to prevent the possible build-up of experimental 

residues. All glass material was sterilized in an autoclave (2 atm, 121ºC, 20 min., model 

Uniclave) and other non-glass material was passed in UV light for 10 min. 

2.4. Medium Preparations 

All seawater obtained from the nearby shore was filtered through two filters (1.2 

and 0.2 µm pore-size membrane filters) using vacuum filtering to remove any sediments 

and phytoplankton. The filtered seawater was sterilized in an autoclave (2 atm, 40 min., 

121ºC, model Uniclave) and left at room temperature to cool. When cold, the salinity of 

this Sterilized Filtered Seawater (SFS) was checked and corrected with deionized water 
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to have ca. 35 PSU. Von Stosch Medium (VS) was prepared with SFS following Guiry 

and Cunningham protocol (Guiry & Cunningham, 1984). Commercial Fertilizer (F) is a 

liquid fertilizer (Nutrea 12-4-6, Genyen®) with a known formula. To make the medium 

with this fertilizer a ratio of 250 µL (fertilizer) to 1 L (SFS) is used, giving a similar 

macronutrient content to Von Stosch Medium. 

2.5. Trials 

Most trials were done in the Cultivation Room of the AQUAZOR facilities under 

controlled temperature, photoperiod, and light intensity. For the trials which used 

different temperatures, cultivation chambers were used (Climatic Chamber, FITOCLIMA 

600PL, SANYO, model MLR-351). 

Trials were performed using plastic Petri Dishes (40 mL) and Erlenmeyers (500 

mL). The latter had bottom aeration by aquaria tubes with attached sterilized points 

(Figure 2.1).  

 

Figure 2.1. Example of Asparagopsis taxiformis in cultivation conditions inside 

a FITOCLIMA chamber. 

2.5.1 Gametophyte 

2.5.1.1 Pretreatments 

This experiment aimed at seeing the gametophyte response to the different 

cleaning solutions normally used in seaweed to remove epiphytes/epizoa. 

Collected gametophytes were sliced in their apical parts into 5 mm small segments 

maintaining a bush-like appearance. These segments were treated with different cleaning 

solutions, which are normally used in seaweeds: Freshwater (FW); Betadine 10%; Agar 

plates and Germanium Dioxide (GeO2) (Mata et al., 2017; Patarra et al. 2014, 2017, 2019; 

Shea & Chopin, 2007).  
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These segments were submitted to 9 different treatments (Control, A to H) to test 

the effects of cleaning in Asparagopsis taxiformis, corresponding to (i) Freshwater (A); 

(ii) Freshwater and Agar Plate (B); (iii) Freshwater and Betadine 10% (C); (iv) Freshwater 

and Germanium Dioxide (D); (v) Freshwater, Agar Plate and Betadine 10% (E); (vi) 

Freshwater, Agar Plate and Germanium Dioxide (F); (vii) Freshwater, Betadine 10% and 

Germanium Dioxide (G); (viii) Freshwater, Agar Plate, Betadine 10% and Germanium 

Dioxide (H); (ix) SFS (Control).  

Each treated segment was transferred in triplicated to Petri Dishes (40 mL) with 

SFS, in a 12L:12D (Light:Dark) photoperiod, at 20 ºC and 20 µmol photon m-2 s-1. Mass 

of the tips was recorded at the beginning and end of the experiment. Pigmentation status 

was scored every day for first three days of cultivation (survivability) and weekly 

thereafter. 

2.5.1.2 Light Quality, Intensity and Medium 

The effects of medium (SFS, VS, F), light intensity (10, 20 and 40 µmol photon 

m-2 s-1) and quality (blue, red, white) was tested in an orthogonal experiment with 

triplicated Petri Dishes per combination of treatments totaling 81 Petri Dishes. Triplets of 

segments totaling 0.1 g of A. taxiformis tips were added in combination with 40 mL of 

selected medium to each Petri Dish. All replicates were cultivated under a 12L:12D 

photoperiod and a temperature of 20ºC. Each week, surviving tips (noticed mainly by 

pigment coloration) were accounted and weighted. Media was refreshed weekly.  

2.5.1.3 Temperature 

This experiment aimed at understanding the response of the A. taxiformis 

gametophyte to the different temperatures experienced in the wild throughout the year. 

The effect of temperature (15, 20, and 25 ºC) on the growth of A. taxiformis was 

tested using 0.5 L Erlenmeyers. The selected temperatures correspond to the average 

range of temperatures experienced by this species during Winter, Spring and Summer in 

the Azores archipelago (Amorim et al., 2017). All replicates were cultivated under a 

12L:12D photoperiod and at 20 µmol photon m-2 s-1. Prior to the start of the experiment, 

all seaweed stayed an initial week in SFS to acclimatize to culture conditions. Afterwards, 

cultivation was done using a commercial fertilizer (F) with weekly exchanges of medium. 

Algal mass was recorded weekly. 
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2.5.1.4 Media  

This experiment aimed at understanding the gametophyte response to different 

media to understand if Asparagopsis was nutrient-limited and to find an easier solution 

for nutrient supplementation. 

The effect of the media, (i) VS, (ii) F, (iii) 2F (double of Genyen®) on the growth 

of A. taxiformis was tested using 0.5 L Erlenmeyers. The selected media were chosen 

based on preliminary trials that showed a possibility of switching Von Stosch Medium 

based cultivation to this industrial based solution. All replicates were cultivated under a 

12L:12D photoperiod, at 15 ºC and at 20 µmol photon m-2 s-1. Prior to the start of the 

experiment, all seaweed stayed an initial week in SFS to acclimatize to culture conditions. 

Afterwards, cultivation was done with weekly exchanges of medium. Algal mass was 

recorded weekly. 

2.5.1.5 Photoperiod 

This experiment aimed at understanding the response of the gametophyte to the 

different photoperiods that A. taxiformis naturally experiences throughout the year in the 

Azores. 

The effect of photoperiod (14L:10D, 12L:12D, 10L,14D) on the growth of A. 

taxiformis was tested using 0.5 L Erlenmeyers. The selected photoperiods correspond to 

the average range of photoperiods experienced by this species during Summer, 

Autumn/Spring and Winter in the Azores (Amorim et al., 2017). All replicates were 

cultivated at 15 ºC and 20 µmol photon m-2 s-1. Prior to the start of the experiment, all 

algae stayed an initial week to acclimatize to culture conditions in SFS. Afterwards, 

cultivation was done using a commercial fertilizer (F) with weekly exchanges of medium. 

Algal mass was recorded weekly. 

2.5.1.6 Stock Density 

This experiment aimed at understanding the gametophyte response to the different 

stock densities at which it can be cultivated. 

The effects of different stock densities (1, 2, and 4 g/L of fresh algal mass) on the 

growth of A. taxiformis was tested using 0.5 L Erlenmeyers under a 12L:12D photoperiod, 

at 15 ºC and 20 µmol photon m-2 s-1. Prior to the start of the experiment, all algae stayed 

an initial week to acclimatize to culture conditions in SFS. Afterwards, cultivation was 
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done using a commercial fertilizer (F) with weekly exchanges of medium. Algal mass 

was recorded weekly and the density was reduced to the initial stock density. 

2.5.1.7 Light Intensity 

This experiment aimed at understanding the gametophyte response to the different 

light intensity at which it can be cultivated. 

The effects of two different light intensities (20 and 40 µmol photon m-2 s-1) on 

the growth of A. taxiformis were tested using 0.5 L Erlenmeyers under a 12L:12D 

photoperiod, at 15 ºC. Prior to the start of the experiment, all algae stayed an initial week 

to acclimatize to culture conditions in SFS. Afterwards, cultivation was done using a 

commercial fertilizer (F) with weekly exchanges of medium. Algal mass was recorded 

weekly. 

2.5.2 Carposporophyte 

This experiment aimed at understanding the nutritional needs to promote 

carposporophyte growth and maturation.  

The effect of cultivation medium (SFS and VS) on the onset of reproductive traits 

of A. taxiformis was tested using 0.5 L Erlenmeyers. All replicates were cultivated in a 

16L:8D photoperiod, at 22 ºC and 20 µmol photon m-2 s-1 and were followed daily for 

changes in reproductive traits. Prior to the start of the experiment, all algae stayed an 

initial week to acclimatize to culture conditions in SFS, and afterwards cultivated in their 

respective treatments with weekly exchanges of medium. Algal mass was recorded 

weekly. Photos were taken to assess visual changes in reproductive traits. 

2.6. Growth Parameters 

To define growth, sample material was weighted using known practices (e.g. 

blotting) to access fresh mass (fm). Consisting of drying the fresh material in paper to 

remove excess water. All samples were weighted at beginning (w0) and end (wf) of each 

week of their respective trial. 

An experiment to access dry mass (dm) was performed, in which A. taxiformis 

samples (n = 15) were dried at 60 ºC for 72h, and final dry mass was compared with initial 

fresh mass.  
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Following Hung et al. (2009), daily growth rates (DGR) and Productivity were 

used to quantify growth: 

(i) DGR (%fm day-1) = ([(wf) / (w0)] ^ (1/Δt) – 1)* 100; 

(ii) Productivity (g dm m-3 day-1) = dm x [((wf-w0)/Δt) v] 

Where w0 and wf are initial and final fresh masses (fm) in grams, Δt is time in 

days, dm is the proportion of dry mass to fresh mass (mean of 15 samples = 0.114 ± 

0.005), and v is the volume (0.0005) in m3 of the Erlenmeyers. 

2.7. Data Analyses 

Generally, in each experiment, the effects of treatments were tested using a 2-way 

Analysis of Variance (ANOVA) with treatment and time as factors. Due to lack of 

independence of samples through time, most analyses were done using a Repeated 

Measures Analysis ANOVA (rmANOVA). Prior to analysis, data were checked for 

sphericity and transformation was applied where necessary (Underwood, 1997). Where 

data failed the sphericity prerequisite, data were analysed using a 1-way ANOVA for each 

time. In this case, heteroscedasticity was tested using Cochran’s C test and 

transformations were applied where necessary (Underwood, 1997). A posteriori 

comparison, where needed, were tested using Bonferroni in the case of rmANOVA or 

Student-Newman-Keuls (SNK) in the case of ANOVA. rmANOVAs were done using the 

package rstatix in R (RStudio Version 1.2.5033), whilst ANOVAs were done using GAD 

package in R (RStudio Version 1.2.5033). Results were plotted using the graphical 

software Sigmaplot (12th edition, Systat Software, Inc). 
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3. RESULTS  

3.1. Gametophyte 

3.1.1 Pretreatments 

The use of pretreatments (Fresh water, Agar Plate, Germanium Dioxide and 

Betadine) to clean A. taxiformis had a negative effect in the survivability of the individuals 

(Figure 3.1). Only non-treated seaweed (Control) survived more than a week in 

cultivation without showing depigmentation. Single pretreatments (A to D) had more 

survivability in the first day of cultivation but nevertheless most individuals in the 

different treatments died by day 2. 

 

Figure 3.1. Pigmentation Loss (%) by Treatment in subsequent days of 

Asparagopsis taxiformis submitted to nine treatments (Control – Sterilized Filtered 

Seawater; A – Fresh Water; B – Fresh Water & Agar Plate; C –  Fresh Water & Betadine 

10%; D – Fresh Water & Germanium Dioxide; E – Fresh Water,  Agar Plate and Betadine 

10%; F – Fresh Water, Agar Plate and Germanium Dioxide; G – Fresh Water, Betadine 

and Germanium Dioxide; H – Fresh Water, Agar Plate, Betadine 10% and Germanium 

Dioxide). Values are mean ± SE (n = 3). 

3.1.2 Light Quality, Intensity and Medium 

This experiment aimed to test the best possible cultivation conditions of 

Asparagopsis taxiformis, since the bibliography showed difficulty in cultivating it. 

Although the seaweed survived for four weeks (most died after this, so the trial ended) 

the results were not conclusive for any of the treatments involved, with variable rates of 

growth during the four-week trial, with most replicates decreasing in mass weekly under 
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all the tested cultivation conditions (Figure 3.2). Some of the observed growth spikes may 

be due to experimental error owing to the great number of variables tested simultaneously 

plus the cultivation in Petri Dishes, which offers some limitations. Under no treatments 

was there an alteration of the reproductive characteristics.  
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Figure 3.2. Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

submitted to a three-way experiment, (A) Medium (SW = Sterilized Filtered Seawater, 

VS = Von Stosch, F = Fertilizer), (C) Light Quality (bulb light color emission: White, 

Blue, Red) and (E) Light Intensity (Low = 10 µmol photon m-2 s-1, Medium = 20 µmol 

photon m-2 s-1, and High = 40 µmol photon m-2 s-1); Productivity (g dw m-3 day-1) by 

Treatment of Asparagopsis taxiformis submitted to a three-way experiment, (B) Medium 

(SW = Sterilized Filtered Seawater, VS = Von Stosch, F = Fertilizer), (D) Light Quality 

(bulb light color emission: White, Blue, Red) and (F) Light Intensity (Low = 10 µmol 

photon m-2 s-1, Medium = 20 µmol photon m-2 s-1, and High = 40 µmol photon m-2 s-1). 

Values are mean ± SE (n = 27). The absence of letters indicates no statistically significant 

differences. Different letters represent statistically significant differences among the 

treatments on the given day (p < 0.05). 

3.1.3 Temperature 

Among the temperatures tested, A. taxiformis only showed positive growth at 15ºC 

(overall mean: 0.653 ± 0.312 %/day; 0.00040 ± 0.00005 g dw m-3 day-1). Asparagopsis 

taxiformis exposed to 20 ºC and 25ºC did not grow during the experimental period, with 

the latter (25 ºC) showing substantial structural degradation over time (Figure 3.3). Both 

DGR and Productivity showed significant differences between all treatments (p < 0.05) 

by the end of the experiment. Under no treatments did A. taxiformis showed any 

modifications of the reproductive characteristics.  
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Figure 3.3. (A) Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

submitted to three temperatures (15, 20 and 25 ºC). (B) Productivity (g dw m-3 day-1) by 

Treatment of Asparagopsis taxiformis submitted to three temperatures (15, 20 and 25 ºC) 

at the end of the experimental period. Values are mean ± SE (n = 6). The absence of letters 

indicates no statistically significant differences. Different letters represent statistically 

significant differences among the treatments on the given day (p < 0.05). 

3.1.4 Media 

The growth rate of A. taxiformis was statistically similar (p = 0.053) both with the 

commercial fertilizer (at the two concentrations) and the commonly used Von Stosch 

Medium (Figure 3.4A). Despite the similar growth rates, over the entire experimental 

period, productivity of Asparagopsis taxiformis was significantly greater in 2F compared 

to F and VS, suggesting that it may be nutrient limited in the latter two treatments (Figure 

3.4B). The treatments did not show any modifications to reproductive characteristics. 

 

Figure 3.4. (A) Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

submitted to three different culture media (Von Stosch (VS); Fertilizer (F); 2 times 

Fertilizer (2 F)). (B) Productivity (g dw m-3 day-1) by Treatment of Asparagopsis 

taxiformis submitted to three treatments (Von Stosch (VS); Fertilizer (F); 2 times 

Fertilizer (2 F)). Values are mean ± SE (n = 6). The absence of letters indicates no 

statistically significant differences. Different letters represent statistically significant 

differences among the treatments on the given day (p < 0.05).  

3.1.5 Photoperiod 

There were no significant differences in the growth rate of Asparagopsis 

taxiformis grown under the three photoperiods (p = 0.953; Figure 3.5A). Overall, the 

productivity of A. taxiformis was negative and similarly so among the different 
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photoperiods (Figure 3.5B) Although the growth of A. taxiformis appears to show an 

increasing trend towards the last week of cultivation (third week), this experiment was 

abruptly terminated due to unforeseen circumstances (COVID-19 lockdown).  

Despite the observed decreasing mass in A. taxiformis during the cultivation 

period across all treatments (Figure 3.5B), female reproductive structures could be 

observed in all treatments but with no increased development into carposporophyte. 

 

Figure 3.5. (A) Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

cultivated under three photoperiods (Winter photoperiod - 10L:14D; Spring/Fall 

photoperiod - 12L:12D; Summer photoperiod – 14L:10D). (B) Productivity (g dw m-3 

day-1) by Treatment of Asparagopsis taxiformis cultivated under three photoperiods 

(Winter photoperiod - 10L:14D; Spring/Fall photoperiod - 12L:12D; Summer 

photoperiod – 14L:10D). Values are mean ± SE (n = 6). The absence of letters indicates 

no statistically significant differences. 

3.1.6 Stock Density 

The growth rate of A. taxiformis was significantly greater when cultivated at the 

lowest initial stock density of 1 g/L and similar when cultivated at the stock densities of 

2 and 4 g/L (Figure 3.6A). When considering the productivity of A. taxiformis over the 

entire period of the experiment, there was no significant differences among stock densities 

(Figure 3.6B), although the productivity tended to be null at the greatest stock density of 

4 g/L. 
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Figure 3.6. (A) Daily Growth Rate (%/day) by Treatment of Asparagopsis 

taxiformis cultivated under three stock densities (1 g/L; 2 g/L; 4 g/L). Values are mean ± 

SE (n = 30). (B) Productivity (g dw m-3 day-1) by Treatment of Asparagopsis taxiformis 

submitted to three treatments (1 g/L; 2 g/L; 4 g/L). Values are mean ± SE (n = 6). The 

absence of letters indicates no statistically significant differences. Different letters 

represent statistically significant differences among the treatments on the given day (p < 

0.05). 

3.1.7 Light Intensity 

Previous experiments were mostly done at 20 µmol photon m-2 s-1, since 

preliminary studies showed that more light intensity tends to promote the individual loss 

of pigmentation and eventually death of Asparagopsis taxiformis (data not shown). This 

experiment showed that, generally, growth rate of A. taxiformis was greater when 

cultivated under 40 µmol photon m-2 s-1 but this result was only significantly so at the 

second week of cultivation (Figure 3.7A). This result, however, becomes apparent when 

considering the productivity, which was significantly greater at 40 µmol photon m-2 s-1 

(Figure 3.7B). There were no modifications in reproductive characteristics over the 

experimental period. 
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Figure 3.7. (A) Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

submitted to two treatments (20 µmol photon m-2 s-1 and 40 µmol photon m-2 s-1). (B) 

Productivity (g dw m-3 day-1) by Treatment of Asparagopsis taxiformis submitted to two 

treatments (20 µmol photon m-2 s-1 and 40 µmol photon m-2 s-1). Values are mean ± SE 

(n = 6). The absence of letters indicates no statistically significant differences. Different 

letters represent statistically significant differences among the treatments on the given 

day (p < 0.05). 

3.2. Carposporophyte 

Despite the presence of reproductive structures in all A. taxiformis, their 

development into carposporophytes was never observed during the cultivation period and 

regardless of treatment (Figure 3.8). In all cases, algae tend to die; in the nutrient enriched 

cultures, A. taxiformis became contaminated with epiphytes, whilst in the unenriched 

culture A. taxiformis lost pigmentation and bleached. 
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Figure 3.8. Daily Growth Rate (%/day) by Week of Asparagopsis taxiformis 

submitted to two treatments (SFW and Von Stosch). Values are mean ± SE (n = 6). The 

absence of letters indicates no statistically significant differences.  

A number of other pilot and small studies were done to try to induce 

carposporophyte formation, but results were invariably unsuccessful.  

4. DISCUSSION 

The genus Asparagopsis has received much research attention in recent years (e.g. 

Mata et al., 2017; Alburquerque et al., 2019; Roque et al., 2019) with major 

breakthroughs in its cultivation having been made in the last decade but only on the 

Falkenbergia stage of its life cycle (Mata et al., 2006, 2007). The tetrasporophyte stage 

is known to be a more resistant-like state of the complex life cycle of the Florideophyceae 

(Agrawal, 2009). The Falkenbergia stage of the Asparagopsis spp. is mostly present in 

the fall-winter months in the Azores (Neto, 2000).  

Despite the existence of some studies on the cultivation of the different stages in 

Asparagopsis armata (e.g. Mata et al., 2006), there is yet, to the best of my knowledge, 

no publications regarding the cultivation of the gametophyte of Asparagopsis taxiformis 

reporting a success in its cultivation. As such, this work presents itself as a breakthrough 

by showing that it is possible to maintain and grow the gametophyte of A. taxiformis 

under a strict set of cultivation conditions. 
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4.1. Gametophyte 

4.1.1 Pretreatments  

Cleaning pretreatments are a usual component of all seaweed cultivation starting 

point, since there is a need to clean macroalgae from debris and epizoa/epiphyte that may 

contaminate and ruin the cultivations (Andersen, 2005). This is a particularly important 

procedure when pure cultures are required.  

The genus Asparagopsis is known to have many chemical and antifouling 

properties that naturally eliminate their possible “parasites” (Paul et al., 2006). My results 

showed that the common pretreatments used to clean macroalgae in literature (e.g. Shea 

& Chopin, 2007; Mata et al., 2017; Patarra et al., 2017) all had negative effects on the 

gametophyte of A. taxiformis. Since all treatments except the control had total mortality 

after 2 days, this may, perhaps, be associated with the use of Freshwater (across all 

pretreatments), taking in consideration the delicate nature of the gametophyte, which 

could have increased the sensibility to the remaining treatments.  

Given these results, all macroalgae were never pretreated during the subsequent 

experiments of this work, except the cleaning of epizoa and the selection of healthy/low 

epiphyte presence individuals in SFW baths. These were enough to have experimental 

trials with no significant growth of epiphytes during many cultivation weeks.  

4.1.2 Light Quality, Intensity and Medium 

This was the first experiment of this thesis and was designed to cross test a number 

of variables that are known to be important in the cultivation and reproduction of marine 

macroalgae. For instance, some brown seaweeds are known to be affected in different 

ways by differences in light colour (Lüning & Dring, 1972). Likewise, light intensity can 

be a stimulus for the induction or inhibition of growth in algae (Goh et al., 2012). 

Unfortunately, the growth of A. taxiformis was negative across all the treatments. As 

demonstrated by the subsequent experiment (see point 4.1.3), growth of A. taxiformis is 

negatively affected by temperatures above 20 ºC. Since this experiment was done at 20 

ºC without this a priori knowledge of the potential negative effect of this temperature, it 

is likely that the overall negative results were a consequence of the cultivation 

temperature. This experiment should be repeated if possible, under a different set of 

temperatures.  
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4.1.3 Temperature 

Asparagopsis spp. is known to have greater biomass between winter and spring 

months (January to April) in the Azores, although Asparagopsis taxiformis is observed 

all year round (Neto et al., 2000; Neto, 2000, 2001). Results showed that cultivation of 

A. taxiformis was only positive (and with good visual aspect) when it was done at 15 ºC. 

There was no growth when cultivated at 20 ºC and 25 ºC with its mass eventually 

decreasing with time. These results seem to be in accordance to its ecology in the Azores 

where temperatures of the seawater never reach 25 ºC for more than a couple of days a 

year and being mostly around 15 ºC during the spring months (Amorim et al., 2017).  

The effect of lower temperatures and a wider range of temperatures in the growth 

of A. taxiformis should be tested to further define optimal cultivation temperature. 

4.1.4 Media 

Nutrient supplementation in seaweed cultivation is a common practice to achieve 

higher growth rate or for laboratory management of cultures. The most used media for 

red seaweeds, the Von Stosch Medium (Guiry & Cunningham, 1984), as many other 

artificial media, is time-consuming and volume-restricted in its makings. For that 

purpose, a commercial concentrated fertilizer, with similar components to Von Stosch, 

was tested for the cultivation of Asparagopsis taxiformis. Results showed that 

Asparagopsis taxiformis could be grown with both media, facilitating the process of 

media exchange for the other experiments. Interestingly, doubling the amount of the 

commercial fertilizer led to increased productivity, even compared to that observed in the 

Von Stosch suggesting that the latter may limit the growth of A. taxiformis in some way. 

4.1.5 Photoperiod 

Light is an important factor for autotrophic organisms such as seaweeds. 

Photoperiod is known to have implications in many aspects of seaweed life cycles, 

including a response in growth rate (Breeman et al., 1988; Agrawal, 2009). The 

gametophyte of Asparagopsis taxiformis is normally present all year round, although the 

Falkenbergia state only appears during brief periods of the year (Neto, 2000). This pattern 

appears to suggest that a changing photoperiod over the year could have some effect on 

the development of the Falkenbergia. However, my results show that, at least for the 

duration of the experiment and under the cultivation settings used, changing the 
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photoperiod did not affect the growth or the reproductive behavior of the gametophyte. It 

is possible that a concomitant change in photoperiod and other abiotic factors (e.g. 

temperature) is required to trigger the onset of reproduction in A. taxiformis. The 

orthogonal test of the effects of photoperiod and temperature was planned but logistical 

constraints (COVID-19) made it impossible.  

4.1.6 Stock Density 

Stock Density is an important factor for seaweed cultivation. Stock density works 

in a way to reduce time of direct exposure to light while allowing space for growth of 

algae (Mata et al. 2006).  In the case of Asparagopsis taxiformis gametophyte, the lowest 

stock density of 1 g/L showed the best result. It is possible that the delicate fronds of A. 

taxiformis are negatively affected by abrasion at greater densities. To further explore this, 

a system where the fronds are fixed to a substrate, and thus reducing the abrasion among 

fronds, could be tested. 

4.1.7 Light Intensity 

Light Intensity needs to be high enough to sustain the photosynthetic process and 

maximize growth but not as high as to cause stress, photoinhibition and damage to the 

photosynthetic apparatus (Goh et al., 2012).  

Results showed that the gametophyte of Asparagopsis taxiformis could be 

successfully cultivated at low light intensity (≤ 40 µmol photon m-2 s-1). Studies on the 

Asparagopsis spp. tetrasporophyte showed similar light intensity needs (Oza, 1989; Mata 

et al., 2007).  

Trials should be made to assess the effect of a wider range of light intensities on 

the growth of gametophyte of Asparagopsis taxiformis. 

4.2. Carposporophyte 

Cultivation of the genus Asparagopsis has focused mostly on the tetrasporophyte 

stage of its life cycle (e.g. Mata et al. 2006), with a lack of knowledge on the conditions 

needed to stimulate the change from the gametophyte stage into the tetrasporophyte stage. 

The genus Asparagopsis has been showed to be monoecious (Zanolla et al, 2014, 2017), 

which was confirmed in our collected samples. Unfortunately, although it was possible 

to release carpospores from fertile carposporophytes to produce Falkenbergia, it was not 

possible to uncover the conditions under which the gametophyte undergoes 
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carposporogenesis. More trials regarding the photoperiod, temperature and nutrient 

supplementation should be done to understand the possible mechanisms of gametophyte 

induction. 

Finally, under the laboratory conditions, growth rate of Asparagopsis taxiformis 

gametophyte was very low (close to 1% /day in most of the trials). This is very low when 

compared to growth rates observed in the cultivation of other species worldwide (e.g. 

Ulva pertusa – 12%/day (Le et al., 2018)). Given these growth rates, at the moment, the 

indoor cultivation of the gametophyte of A. taxiformis seems likely unfeasible from a 

commercial point of view. 

5. CONCLUSION 

Although the life cycle of Asparagopsis taxiformis could not be closed in this 

work, the optimum abiotic conditions for the growth the gametophyte were tested. 

Temperature and light intensity were shown to play a key role for the successful 

cultivation of the gametophyte. The Azorean form of Asparagopsis taxiformis only grew 

at temperatures lower than 20 ºC and under very low light intensities (< 40 µmol photon 

m-2 s-1). Yet, even under the best growing condition, growth rates were close to 1% per 

day, which is a very low value taking in consideration the rest of the seaweed cultivation 

market. 
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