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Decentralized Formation
Selection Mechanisms
Inspired by Foraging
Bottlenose Dolphins

M.A. Haque∗ and M. Egerstedt†

1 Introduction
Formation control is an important sub-problem in multi-agent robotics and a num-
ber of decentralized control strategies have been developed to solve the formation
control problem, e.g., [1], [2], [3]. However, there is still no underlying theory that
governs the selection of a particular formation. In other words, if an agent has
a choice between two formations, which one should it choose? In this paper, we
would like to answer this question by drawing inspiration from foraging bottlenose
dolphins, Tursiops truncatus. In fact, the networked control community has drawn
significant inspiration from interaction-rules in social animals and insects [4], [5],
[6]. In particular, the widely used nearest-neighbor-based interaction rules, used for
example for formation control [7], [8], [9], consensus [3], [10], and coverage control
[11], [12], has a direct biological counterpart, as shown in [4].

Bottlenose dolphins employ an unusual foraging technique known as the hor-
izontal carousal; here the dolphins, after locating a sizeable amount of prey, form a
large circle to trap the prey inside that circle. The prey is usually a school of fish
and the dolphins slowly tighten the encirclement to restrict the movement of the
fish. Eventually, the circle becomes small enough and the dolphins then take turns
to charge through the fish while maintaining the integrity of the circle.

In this paper, we model the first phase of this method of capturing prey, and
offer a choice of two formations for each agent — Large and Small Circle and by using
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tools from hybrid systems and decentralized networked control, we propose three
strategies that enable the agents to switch between these formations. In Strategy 1,
formation switches are based on instantaneous local error information; whereas, in
Strategy 2, they are based on a global performance estimate propagated through the
network. A more elaborate approach to switching is introduced in Strategy 3 where,
through the help of dynamic average estimators, global performance estimates are
improved by injecting new data in the form of the individual agents’ local formation
error.

The outline of the paper is as follows: In Section 2 we describe the social
behavior of bottlenose dolphins with particular focus on their foraging techniques.
In Section 3 we describe the network characteristics and in Section 4, we develop
the three switching strategies for the horizontal carousal method. Simulation results
comparing the three proposed hybrid control strategies are provided in Section 5,
followed by the conclusions in Section 6.

2 Bottlenose Dolphins
Cetaceans (to which bottlenose dolphins belong) are complex and intelligent ani-
mals. The Encephalization Quotient (E.Q.), which is the brain to body mass ratio,
is a factor often used to judge intelligence, and dolphins rate 2nd in E.Q., just
behind human beings. In particular, the bottlenose dolphins, Tursiops truncatus,
display complex social behaviors such as living in so-called fission-fusion societies
[13]. This means that the group can break up into subgroups and later rejoin the
main group to share food or participate in other activities (see [14] for details). The
bottlenose dolphins, found off the coast of Florida and Western Australia, also form
alliances during mating [15] and have a well defined social hierarchy [16]. They also
exhibit cooperative behavior while advertising resources, defending other members,
and while foraging and capturing prey - the cooperative behavior we study in this
paper.

While searching for food, the dolphins are most often spotted in groups and
they maintain very specific formations. Some common types of formations are:
front, double front, team, echelon, tight group, and line [17]. Team and line forma-
tions require a leader and this role usually goes to the largest male, which is again
due to the well-defined social hierarchy of the dolphins. Dolphin formations are in
general highly adaptive. Groups of male bottlenose dolphins are observed to move
in a single file formation near the shore and maintain front formation farther from
shore during foraging. In safe territories, dolphins also perform a diffused search
pattern where individual members scatter off into different directions [17].

Once the dolphins find their prey, they mainly use two methods to actually
catch the fish. One method is to form a front formation and drive the fish against
the shore. The Wall method, as it is known, is not very interesting from a networked
control point of view since the dolphins simply drive their prey against the shore and
capture them from the foam of returning water [17]. The other method is known
as the horizontal carousal and this will serve as inspiration for our mechanism to
select formations. The particulars of this method, together with a mathematical
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model of the foraging dolphins, is the topic of the next section.

3 Network Characteristics

3.1 Topology

Let us consider a pod with Nd bottlenose dolphins and a school of Nf fish, with
the corresponding index sets Nd = {1, . . . , Nd}, Nf = {1, . . . , Nf}. We have used
the convention that the superscripts d and f refer to ”bottlenose dolphins” and
”fish” respectively. We assume that the dolphin and fish states take on values in
a n-dimensional space (in a kinematic dolphin model, n would typically be 3), i.e.,
that xd

i ∈ <n, ∀ i ∈ Nd and xf
i ∈ <n, ∀ i ∈ Nf .

Before we proceed, let us characterize the inter-dolphin interactions, and in
[18] the movement of dolphins in a formation is found to be such that each dolphin
has a ”bubble” around it that other dolphins do not intrude. This implies that
every dolphin is aware of the position of its neighbors. This observation leads us
to postulate the nearest-neighbor rule for inter-agent interactions. Furthermore,
dolphins perceive their environment and share information through their limited
range echolocation system since they are primarily audial creatures using both sonar
and a series of ”chatters” to communicate with one another [13, 19]. Due to the
limited interaction range over which the dolphins can detect each other, we can
define a dolphin proximity graph Gd(t) = Nd × Ed(t), where, for two distinct
dolphins (i, j) ∈ Ed(t) ⇔ ‖xd

i (t) − xd
j (t)‖ ≤ ∆, for some critical interaction

distance ∆. This construction ensures that the interaction graph is simple (no self-
loops) and undirected. In fact, it is a so-called ∆-disk proximity graph, as defined
for example in [8], [11].

We would now like to apply a decentralized control strategy over the set of
dolphins in such a way that the control law is only allowed to contain references to
the relative displacements between a dolphin and its neighbors in the interaction
graph.

3.2 Dolphin Dynamics

As mentioned before, we are interested in the horizontal carousal method of for-
aging. As seen Figure 1, the dolphins encircle the fish and gradually tighten the
encirclement by forming smaller and smaller circles [13]. At one point, when the
circles are small enough, dolphins take turns to charge through the fish and feed.

Dolphins aside, the overarching objective of this paper is to develop decentral-
ized formation selection mechanisms. And, we will assume that the two formations
available to the dolphins are Large and Small Circle. We will also assume that
the fish are stationary. Small fish generally maintain a constant ”inter-individual
distance” [20] and as the dolphins form smaller circles, the fish are increasingly
constrained to move in smaller bubbles. In essence, the dolphins herd their prey
and restrict their movement; and if we assume that the fish are stationary, then the
centroid of the school of fish becomes the point of interest for the dolphins and the
feeding fish will be represented by a single node in the graph. The centroid of the
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Figure 1. Bottlenose dolphins tightening the encirclements around a school
of fish.

fish, ρ, is given by ρ = 1
Nf

∑Nf

i=1 xf
i .

Here xf
i represents the state of fish i and Nf is the number of fish in the

school. Thus, in order to encircle the fish, the dolphins need to stay a distance rj ,
j = 1, 2, from the centroid of the fish (r1 for Large Circle and r2 for Small Circle)
and consequently, maintain a distance Kj(rj) from its single-hop neighbors (K1(r1)
for Large Circle and K2(r2) for Small Circle), given by Kj(rj) = 2rjsin( θ

2 ), where
θ is 2π

Nd .
One standard choice for locally enforcing (e.g. [23]), if feasible, a certain agent

separation (in our case, Kj) is given by

ẋi(t) = −
∑

k|(i,k)∈Ed(t)

(‖ xi(t)− xk(t) ‖ −Kj)(xi(t)− xj(t)), ∀i ∈ Nd, ∀j = {1, 2}.

We will modify this so that the distance between a dolphin and the centroid
of the fish, rj , is enforced as well. As a result, the new dynamics is given by

ẋi(t) =−
∑

k|(i,k)∈Ed(t)

((‖ xi(t)− xk(t) ‖ −Kj)(xi(t)− xj(t))

+ (‖ xi(t)− ρ ‖ −rj)(xi(t)− ρ)), ∀i ∈ Nd, ∀j = {1, 2}.
We have dropped the subscript ”d” from the dolphin states since we have al-

ready assumed that the fish are stationary. Hence, the dynamics used for performing
Large and Small Circle are governed by the choice of rj . Once rj is specified for the
two formations, then the dynamics ẋi(t) = f1 will denote that agent i is performing
Large Circle and ẋi(t) = f2 will denote that it is performing Small Circle. Now that
we have the established the network characteristics, in the following section we will
propose the three selection strategies for the horizontal carousal problem, simulate,
and evaluate their relative merits and demerits.
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4 Selecting Formations
In essence, any formation selection mechanism is a hybrid control strategy. What
we propose in this paper, is to let the selection be driven by the agents’ estimates of
their errors associated with each formation, and consequently select the formation
with the least error. Here we are simply exploring three different strategies and each
has its own advantages and disadvantages in terms of complexity, communication,
and extraction of global properties. We will now describe these strategies in detail.

4.1 Strategy 1: Local Instantaneous Errors

In this strategy, an agent calculates the instantaneous local error associated with
each formation. Let Ei,j(t) be agent i’s local error associated with formation j,
where j ∈ {1, 2}. We will assign Ei,1(t) to be the error of performing Large Circle
and assign Ei,2(t) to be the error of performing Small Circle. As mentioned before,
to form the encirclement, each agents needs to keep track of the distance from its
neighbors, Kj , and distance from the centroid of the fish, rj ; as a result, for each
agent, we can simply assign the instantaneous local error for each formation to be
the mean squared error of these distances, given by

Ei,j(t)2 =
∑

k|(i,k)∈Ed(t)

((‖ xi(t)− xk(t) ‖ −Kj)2 + (‖ xi(t)− ρ ‖ −rj)2),

∀i ∈ Nd, ∀j = {1, 2}. The selection mechanism we propose is to let agent i
selects the dynamics ẋi(t) = f1 over ẋi(t) = f2 if Ei,1 < Ei,2 and vice versa as
shown in Figure 2.

ẋi = f2
ẋi = f1

Ei,1 > Ei,2

Ei,1 < Ei,2

Figure 2. The hybrid automaton implementing Strategy 1. Agent i selects
the dynamics ẋi(t) = f1 (form Large Circle) over ẋi(t) = f2 (form Small Circle) if
Ei,1 < Ei,2.

The underlying disadvantage of this strategy is that decisions are made based
on local properties and the global performance of the network is not taken into
account by the agents. An agent switches based on its instantaneous error mea-
surements but does not consider what the other agents are trying to do. It is a
reactive behavior which results in a lot of switching back and forth between for-
mations. To address this issue, we propose Strategy 2, which is further categorized
into (a) and (b), based on the nature of the transition rules.
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4.2 Strategy 2a: Instantaneous Averaged Initial Errors

In this strategy, formation switching by each agent is based upon its global perfor-
mance estimate. Let ξi,j(t) be agent i’s global error estimate of formation j, then
ξi,j(t) is determined as follows:

ξ̇i,j(t) = −
∑

k | (i,k)∈Ed(t)

(ξi,j(t)− ξk,j(t)), ∀i ∈ Nd, ∀j = {1, 2} (1)

where ξi,j(0) = Ei,j(0). Hence, the global error estimate of an agent is actually
the average of the initial local errors of itself and its neighbors and we propose that
agent i executes ẋi(t) = f1 if ξi,1(t) < ξi,2(t) and ẋi(t) = f2 if ξi,1(t) > ξi,2(t).
But there is a caveat with this strategy: agents must be able to communicate with
each other. This was not a requirement in Strategy 1 since agents only measured
their positions with respect to their neighbors and the centroid of the fish. Here
neighbors must share their initial local errors to initialize the estimation process.

A problem with both Strategy 1 and Strategy 2a is that agents may potentially
undergo a lot of switches before finally settling on a formation. It might be more
desirable to develop strategies where the agents spend more time ”thinking” than
”moving,” which leads us to Strategy 2b.

4.3 Strategy 2b: Delayed Averaged Initial Errors

This is similar to Strategy 2a except for one crucial difference: switches are not
instantaneous. Agents select a particular formation once Equation (1) ”converges,”
which can be defined as settling below some threshold. Thus, the agents must
wait and process information and this waiting time is given by the convergence
time, Tconv, of Equation (1). Now, as long as the network is connected, the rate of
convergence depends on the algebraic connectivity [21] of the graph and we will use
this fact to solve for Tconv as follows:

Equation (1) can be rewritten in matrix form as ξ̇(t) = −L(t)ξ(t), where
L(t) is the graph laplacian. Now ξ(t) asymptotically approaches ξ̄1, where, ξ̄ =
1

Nd

∑Nd

k=1 ξk(0) and 1 = (1, . . . , 1)T is the vector with ones along each components
[21]. If we assume that the graph is static, then, ‖ ξ(t) − ξ̄1 ‖ ≤ ‖ ξ(0) − ξ̄1 ‖
e−λ2(L(t))t, where, λ2(L(t)) is the second smallest eigenvalue of L(t), also known as
the algebraic connectivity. If ξ(0) is bounded as ‖ ξ(0) − ξ̄1 ‖≥ M and we define
successful convergence as ‖ ξ(t)− ξ̄1 ‖≤ ε, then Tconv ≥ 1

λ2 ln( M
ε )

.
As in Strategy 2a, agent i undergoes the dynamics ẋi(t) = f1 if ξi,1(t) < ξi,2(t)

and ẋi(t) = f2 if ξi,1(t) > ξi,2(t) as seen in Figure 3. This strategy was introduced
to reduce the amount of switching that arises from implementing Strategy 2a, but
in the process, we have introduced the notion that the agents must somehow keep
track of time. Agents are required to wait for Tconv and then select a formation.
From Figure 7 it can be seen that Strategy 2b was an obvious improvement over
Strategy 1 and 2a in terms of the total number of switches.

Agents executing Strategy 2a and 2b took into account ”what everyone else
was doing” before committing to a particular formation; however, the global per-
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formance estimates were based on initial instantaneous local errors and this is a
drawback since the estimation failed to incorporate any new information that might
be available in the network. This leads us to develop Strategy 3a and 3b, which
incorporate new data into the global performance estimate of the network.

ξi,1 < ξi,2

AND
t > Tconv

ξi,j := Ei,j

t := 0

ξ̇i,j = −
∑

k|(i,k)∈E(t)
(ξi,j−ξk,j)

ẋi = f1

ṫ = 1

ξ̇i,j = −
∑

k|(i,k)∈E(t)
(ξi,j−ξk,j)

ṫ = 1

ẋi = f2

AND
t > Tconv

ξi,1 > ξi,2

ξi,j := Ei,j

t := 0

Figure 3. Automaton of Strategy 2b.

4.4 Strategy 3a: Proportional Dynamic Averaged Errors

Strategy 2 can be characterized as a static average consensus, as opposed to a dy-
namic average consensus, where estimates are driven by injection of new information
[22]. For us, this new information may simply arrive in the form of an agent’s in-
stantaneous local formation error and intuitively, it makes sense that a strategy
that combines both Strategy 1 (using current information) and Strategy 2 (using
a global performance estimate) may be a step in the right direction in our search
for an improved method of selecting formations. Thus, we would like to modify
Strategy 2 as follows:

ξ̇i,j(t) = −
∑

k | (i,k)∈Ed(t)

((ξi,j(t)− ξk,j(t)) + F (Ei,j(t)− ξi,j(t)))

∀i ∈ Nd, ∀j = {1, 2}, where F (Ei,j(t)− ξi,j(t)) is an insertion of the instan-
taneous local error, Ei,j(t), of agent i with respect to formation j. This is the idea
behind Strategy 3 as seen in Figure 4.

But inserting new information into a consensus estimation is not trivial. [22]
presents two estimation algorithms: proportional and proportional-integral algo-
rithms and they will form the basis for Strategy 3a and 3b, respectively. Strategy
3a uses a proportional dynamic consensus estimator as follows:

ẇi,j(t) = −γwi,j(t)−
∑

k | (i,k)∈Ed(t)

(ξi,j(t)− ξk,j(t))

ξi,j(t) = wi,j(t) + Ei,j(t), ∀i ∈ Nd, ∀ j = 1, 2
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ξi,1 < ξi,2

AND
t > Tconv

ξi,j := Ei,j

t := 0

AND
t > Tconv

ξi,1 > ξi,2

ξi,j := Ei,j

t := 0

ẋi = f1

ṫ = 1

ξ̇i,j = −
∑

k|(i,k)∈E(t)
(ξi,j−ξk,j)

+F (Ei,j − ξi,j)

ẋi = f2

ṫ = 1

ξ̇i,j = −
∑

k|(i,k)∈E(t)
(ξi,j−ξk,j)

+F (Ei,j − ξi,j)

Figure 4. Automaton of Strategy 3. As opposed to Strategy 2b, Strategy 3
incorporates new data in the form of the instantaneous local error Ei,j(t) into the
global performance estimate of the network.

where, wi,j(t) is the estimator state, and γ ≥ 0 is the rate at which new
information is introduced. The algorithm requires us to assume that the input
Ei,j(t) and its derivative is bounded [22]. Again, ξi,j(t) is agent i’s estimate of the
global error of performing formation j and it is initialized as before by ξi,j(0) =
Ei,j(0).

Figures 7(d) shows that this improved global error estimate decreases the
number of switches made by the agents; however, this is computationally more
complex than all the previous strategies. In particular, compared to Strategy 1, we
now require agents to have the ability to communicate with their neighbors, keep
track of time, and implement a dynamic consensus estimator.

4.5 Strategy 3b: Proportional-Integral Dynamic Averaged Errors

In this final strategy, the new information is introduced into the global estimate
using a proportional-integral dynamic consensus estimator as follows:

ξ̇i,j(t) = γ(Ei,j(t)− ξi,j(t))−
∑

k | (i,k)∈Ed(t)

(ξi,j(t)− ξk,j(t))

+
∑

k | (i,k)∈Ed(t)

(wi,j(t)− wk,j(t))

ẇi,j(t) = −
∑

k | (i,k)∈Ed(t)

(ξi,j(t)− ξk,j(t)), ∀i ∈ Nd ∀ j = 1, 2

where wi,j(t) is the estimator state for agent i implementing formation j and
as before, the estimator is initialized by ξi,j(0) = Ei,j(0).

As mentioned in [22], the advantage of this estimator lies in the fact that the
input Ei,j(t) does not directly affect ξi,j and hence, it provides better filtering of
noisy inputs.
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Figure 5. Simulation of six agents executing Strategy 1. The centroid of
the fish is shown with a ’×’. The circles around the centroid represent the orbits
where the agents must lie for each formation.

5 Simulations
To compare the strategies, we simulate each one under the same initial positions for
all the agents. Some agents undergo a lot of switching and a plot of the local error
of agent 5 is provided in Figure 6. All the strategies deliver a successful formation if
the graph is connected and we ensure this by initially placing the agents sufficiently
close to each other [23].

6 Conclusions
In this paper, we address the issue of switching between formations. In particular,
we draw inspiration from bottlenose dolphins, the Tursiops truncatus, and we model
these dolphins as networked, first-order systems in which dolphin interactions are
defined through spatial proximity. Using tools from hybrid systems and decentral-
ized networked control we propose three strategies that enable us to switch between
formations. In Strategy 1, formation switches are based on instantaneous local error
information; whereas in Strategy 2, they are based on a global performance estimate
propagated through the network. In Strategy 3 where, through the help of dynamic
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is the instantaneous local error of Large Circle and Ei,2 is the instantaneous local
error of Small Circle. This agent also undergoes the most switching.

1 2 3 4 5 6
0

5

10

15

20

25

30

Agent

N
um

be
r 

of
 s

w
itc

he
s

(a) Strategy 1

1 2 3 4 5 6
0

200

400

600

800

1000

1200

Agent

N
um

be
r 

of
 s

w
itc

he
s

(b) Strategy 2a

1 2 3 4 5 6
0

5

10

15

20

25

30

Agent

N
um

be
r 

of
 s

w
itc

he
s

(c) Strategy 2b

1 2 3 4 5 6
0

5

10

15

20

25

30

Agent

N
um

be
r 

of
 s

w
itc

he
s

(d) Strategy 3a and 3b

Figure 7. Number of switches made by agents under each strategy and
identical initial positions.

average estimators, global performance estimates are improved by injecting new
data in the form of an agents local formation error. Finally, simulation results are
provided to compare the three proposed hybrid control strategies.
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