Pancakes: A Software Framework for
Distributed Robot and Sensor Networ k
Applications

Patrick Martin, Jean-Pierre de la Croix, and Magnus Egetste

Abstract The development of control applications for multi-ageriiaband sen-
sor networks is complicated by the heterogeneous naturedfyistems involved, as
well as their physical capabilities (or limitations). Wepbse a software framework
that unifies these networked systems, thus facilitatingdineslopment of multi-
agent control across multiple platforms and applicatiomdms. This framework
addresses the need for these systems to dynamically adgistactuating, sens-
ing, and networking capabilities based on physical comggasuch as power lev-
els. Furthermore, it allows for sensing and control aldponis to migrate to different
platforms, which gives multi-agent control applicatiorsimers the ability to adjust
sensing and control as the network evolves. This paperittesdhe design and im-
plementation of our software system and demonstratesdtsesaful application on
robots and sensor nodes, which dynamically modify theirajgenal components.

1 Introduction

The increasing use of wireless sensor networks in disgtbabntrol applications,
such as unmanned surveillance or building automationltesisithe deployment of
heterogenous, mobile computing platforms into new envirents. These systems
are usually connected with wired or wireless interfaceshsas Ethernet, Wi-Fi,
or ZigBee, to enable the sharing of local information amdrgdevices compris-
ing the network. One important development for utilizingdk distributed control
networks is the incorporation of mobile robots, as noted bivarcaet al. [13].
Allowing robots to interact with sensor networks provideswfunctionality in mil-
itary, industrial, and consumer applications. In [13], #u¢hors deployed a robot to

Patrick Martin- Jean-Pierre de la CroidMagnus Egerstedt

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30312 USA

e-mail: {patrick.martin, jdelacroik@gatech.edu, e-mail: magnus@ece.gatech.edu



2 Patrick Martin, Jean-Pierre de la Croix, and Magnus Egdtst

maintain an office garden and its wireless sensors. The esutleveloped their own
software framework that couples their robot with the semsmes embedded into
the office garden. The robot successfully maintained enegpurces of the sensors
as well as detected failures.

To make multi-agent robotics applications, such as ther mi@mple, work
across different types of robots and wireless sensors,|ajees need software
frameworks that help manage the complexity introduced leyttbterogeneity of
computational platforms and communication interfacestifeumore, the robotic
and sensing devices on the network need to respond dynd&miocaphysical
changes (i.e. battery power). Providing the ability to dyically adjust the frame-
work at runtime opens up the possibility of extending ogersl lifetime, as well
as adapting the system to reflect changes in the environment.

In this paper, we propose and demonstrate a software frarkewat unifies
robotic and sensor networks in a seamless way. This frankewalled Pancakes,
gives developers several key features that facilitate ¢éisggdh of multi-agent control
applications. First, Pancakebstracts sensing, actuation, and networking capabil-
ities such that high-level controllers can be implemented withwaorrying about
low-level hardware management. Furthermore, this framlemwmvides a structured
way todynamically adjust the runtime behavior of the sensor and robotic platforms
according changes on the local system, as well as the opeab¢invironment. Com-
plementary to this dynamic adjustment feature, Pancakessfor themigration
of executable components (i.e. sensing and control algorithms) from one platform
to another. This software framework was inspired by theemtrliterature in dis-
tributed and software control middleware, e.g. [6, 9, 16hatics control software,
e.g.[8, 10, 12, 15, 5], and actor-oriented design prinsipeg. [7, 11, 14].

In [6], Abdelzaheret al. developed a software framework that enabled the dy-
namic adjustment of a web server using feedback controlir Thieldleware ex-
posed software “knobs” that could be adjusted to get bettality of service. Mov-
ing beyond this idea of modifying parameters of software gonents is the idea
of reflective middleware [16]. This work describes a systelnere the pieces of the
middleware dynamically adapt their capabilities as charmgeur within the soft-
ware. The work in [9] proposed a larger distributed embedsjestem framework
that enables the development of software across many dlifféypes of comput-
ing platforms, from embedded controllers to desktop systdma similar manner,
Pancakes gives robot and sensor network application dasigine ability to dynam-
ically change how their system operates at runtime. Furibeg, it allows for the
migration of system components across deployed platforms.

The work in robotics software architectures made the coofrbeterogeneous
systems easier by abstracting the sensors and actuatoexadaple, [10] created
a common interface to the sensors and actuators of the rebdtsat users could
write control software that works on different types of rébavithout having to
know every detail of the robot’s implementation. The aushafr[8] took this idea a
step further by separating the capabilities of a robot insaréte, re-usable compo-
nents that can be assembled into a larger robot controlegtioih. Additionally, the
work in [12] applied multi-agent software design to creapdedform for developing
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distributed robotics applications. The newer softwarekpge, ROS [5], provides
an operating system-like framework in an attempt to stasfidarobotics software
development for many robotics platforms. Pancakes previde same sensor, ac-
tuator, and network abstraction that are commonplace ientebotics software
frameworks, which allow it to unify distributed robots wisensor networks.

To the best of the authors’ knowledge, the combination ofadlyic adjustment
and migration of system components with hardware abstraési a novel contri-
bution to the distributed robotics community. These feadiallow us to create dy-
namic applications that leverage the powerful capalslioéthese heterogeneous
robot and sensor networks. In Section 2 we provide a higbkgescription of how
Pancakes works using an example application. Followirgydterview, we discuss
the architecture design and implementation in Section Seletion 4 we deploy the
Pancakes architecture onto mobile robots that must eaa@rcégion monitored by
a sensor node. We conclude with some final remarks in Section 5

2 Pancakes Overview

Each system deployed with Pancakes is treated at its hi¢ghedtas a software
agent. However, Pancakes is not a general purpose agerd-bafware frame-
work, such as CybelePro [1] or JADE [3]. Instead, Pancakesdes on providing
an infrastructure for the distributed control of robots aedsor networks. The re-
sult is a Java-based system that can be deployed on embeoitipdters, such as
ARM-based platforms, as well as full desktop environments.

Pancakes provides the necessary hardware and networkalusts that have
become a common practice in current robotics software fwaries. These abstrac-
tions let users utilize the system devices that interadt tié environment, such as
actuators and sensors. Also, the networking services &t agent share local in-
formation by passing messages over the network interfaibeut having to micro-
manage the low-level communication protocols.

Internally, each Pancakes agent is composed of the Pankerkes and a col-
lection of actor-like software components that commumiagith each other using
input and output channels provided by the Pancakes kerheltwo types of com-
ponents in Pancakes awesks andservices. Tasks carry out a particular function for
the Pancakes agent, such as reading sensor data or ped@yent discovery. They
publish their results onto their output channels for othsks or services to use.

Services spawn and manage tasks that the agent requirestartion. Services
submit periodic tasks to the kernessheduler for execution. Additionally, event-
driven tasks are configured to listen to their input chanfels®ew messages, use
these messages to carry out their computation, and evnéeald results to an out-
put channel. The services also enable the dynamic recoafignof the middleware
by starting new tasks, adjusting task schedules, stoppingrmt tasks, migrating
tasks across platforms, or shutting down an entire seridgeamic reconfigura-
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tion is especially important when we construct power- anchimanication-aware
applications.

Consider the mobile robots and wireless motion sensor shmo®igure 1, which
are deployed in a building for security monitoring. The twobiie robots, Agents
1 and 2, need to communicate between themselves and the seasoin order to
share information necessary for completing the desireditoramg mission. Some
important questions an application designer needs to densire: what happens
when a mobile robot is low on power? and how can robot tasksansfierred from
one agent to another?
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Fig. 1 Anillustrative example of our desired control applicatfon mobile robots (white circles)
working with a sensor node (grey diamond) to isolate an ditrg agent (grey circle).

Using Pancakes, we can create a control application thawslus to address
these questions in the following way. When the sensor nody @amond) detects
motion from an intruder (Figure 1(a)), it sends a messagegenf\1. This robot ini-
tiates a task that encircles the region where the intruderdegected, as illustrated
in Figure 1(b). While executing this task, Agent 1 can usecBkes to monitor its
power consumption and actively adjust its speed or comnatipitrates to conserve
power. If Agent 1 consumes too much energy, it needs to ertsatehe region is
still monitored bymigrating its currently running task to Agent 2 (Figure 1(c)).
This capability would effectively lengthen the operatibtiae of the network by
letting Agent 2 wait until absolutely necessary before exieg a task. The details
on how Pancakes is designed to facilitate the implememtatighis application is
the subject of the next section.
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3 The Pancakes Architecture

In this section, we describe the architecture of the Parscsdd®ware framework and
how they work together to facilitate the development of mmadtent robotics appli-
cations. Each Pancakes agentis composed of a collecticeofiable components,
or tasks, which are the “workhorses” of Pancakes. These tasks aoeiagsd with a
servicethat maintains a collection of related tasks. Since we afth@dctor-oriented
model of programming [7, 11, 14], tasks and services comoat@iwith each other
through a collection of channels, thaformation stream. Combining these pieces
with a scheduler allows for the construction of parallel @ydamic control appli-
cations for multi-agent systems.

3.1 Information Stream

The information stream sets up the communication chanhatservices and tasks
use to publish new information or subscribe to receive imfion from other Pan-
cakes components. This stream contains five core charmeds:.em sysctrl,
ctrl,network, andl og. Additionally, services can create specialized channels
at runtime that are used to pass service specific informatioong tasks within the
service.

Thesyst emchannel provides a channel for services and tasks to pubjish
tem information to user-made and other system tasks. Fongheaa mobile robot’s
sonar sensor task would publish its most recent data paintesy st emchannel,
which is subscribed to by a control task. Téyesct r I channel serves as a control
messaging channel among the services and tasks. Messatieseethis channel
facilitate the dynamic rescheduling, shut-down, or migrabf tasks. To issue con-
trol commands to actuators, tasks send messages ovet tHe channel. A task
or service that requires network communication publisteesétwork messages to
the net wor k channel. Finally, thé og channel allows any Pancakes component
to perform error, debug, or data logging, which helps in thetgun analysis and
debugging of complex distributed applications.

3.2 Tasks

Task components are the main “actors” in Pancakes: theyupsodnd consume
information in order to affect a change in the deployed sysiteasks can execute in
time-driven, event-driven, or a combination of both modegeahding on the desired
functionality set by the designer. At startup, a time-dnivask is submitted to the
scheduler and is executed at its specified frequency. The-eviven tasks wait for

a message to arrive on one of its incoming channels. Sinke tasnmunicate via

the Pancakes stream channels, there is no need to synahommghared variables.
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Instead, the data necessary for execution is transmitredigh the channels and
delivered to subscribing Pancakes components.

Tasks are a natural way to abstract how different piecesasystem should in-
teract. For instance, as shown in Figure 2, a robot can hasgalesensing tasks,
such as sonar, IR, or local pose, and a control task that takesutput from these
sensors and computes a control input for the actuationmsystarthermore, there
can be a supervisor task that executes in parallel, morttiersutput of all of the
other tasks, and makes higher level decisions. In this el@rife Supervisor Task
examines the sensor inpand the output from the control task in order to adjust
sampling rates of different sensor managed by the DevicéicgerThe advantage
of this approach is that the application designer can focusl@veloping the in-
put/output behavior of each individual task, rather thaal déth complicated thread
management.
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Fig. 2 In this example Pancakes application, a robot is deployéd sanar, IR, and local pose
sensors. This sensor information is communicated to thesysia thesyst emchannel, which

is subscribed to by the Control Task and Supervisor Task.Gdrgrol Task computes a command
for the actuators and sends it over tter | channel. Additionally, the Supervisor Task sends
commands ovesysctr| to the Device Service to adjust runtime components (e.gsdah#ling
rate of the IR task).

ctrl

3.3 Services

The duties of services are 1) to maintain a registry of itkdabat are currently
running, 2) to manage the startup, shutdown, or migratidgasis, and 3) to manage
the shutdown or restart of the service itself. Pancakesdwasdefault services that
are loaded at startup: the Device Service, the Network 8erthie Log Service, and
the Client Service. Furthermore, developers can createspevices that can supply
additional functionality for their system.

The Device Service creates the system device tasks, whacthahardware ab-
stractions for sensors and actuators, and schedules amgdjugre timed execution.
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The Network Service enables communication with other Reascagents on the net-
work. This service creates a network client task that listerthenet wor k channel

for any outgoing network messages and transmits them tatbeded target. The
Log Service listens to theog channel and displays error and debug messages to the
console; additionally, it can record messages to a file fer lanalysis. Finally, the
Client Service spawns user tasks and channels for interetaamunication. Users
implement tasks to carry out communication and controlrligms, which are then
loaded into the Client Service at system startup.

3.4 Dynamic Adjustment and Migration of Components

One of the key features of Pancakes is the ability to adjustces and tasks as an
application executes on a deployed system. This featusdHetapplication adjust
the capabilities within the architecture according to dyitaeffects from software
(i.e. logic statements, software controllers) or the ptglsenvironment (i.e. power
consumption, sensing data). For example, a task can retinasietwork discov-
ery be slowed down to reduce the number of network transomssitherefore, it
can reduce the rate of power consumption of the applicafitsn, a more drastic
power savings could be achieved by requesting the Netwankicgeto shut down
temporarily.

We enable this feature by establishing a messaging profocéhsks and ser-
vices to request a change the runtime behavior of other taséisservices. The
currently supported control operations atep, restart, start, or reschedule. For a
task or service to initiate one of these controls, it mustisenontrol message over
thesysct rl channel within Pancakes. All services subscribe to thisichband
inspect the message to determine if it has to change its let@vthat of one of
its tasks. Once the message is received at the target setivécservice calls on
the scheduler to stop, start, or reschedule the task. Additly, if the service is re-
quested to stop or restart, it shuts down all of its curremthning tasks and requests
the scheduler to stop or restart itself.

A complementary feature to dynamic adjustment is the ghititmigrate tasks
among deployed Pancakes systems. As illustrated in the@garhSection 2, mo-
bile robots and sensor networks can use this capabilityliceae a longer mission
lifetime. Task migration is managed by the Task Migratok iasthe Network Ser-
vice, since it must communicate with neighboring agentsi di suitable candidate
for migration. The migration protocol involves sending thgk and its dependencies
for execution (i.e. required sensors and/or actuatorsl) treayhbors of the current
agent. Once candidate agents are found, the migrating apenses the one that
has the lowest execution “cost.” In its current implementatour cost metric is
based on the system load of the candidate agent, for exathplaumber of tasks
running on the deployed system.
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3.5 Implementation

To enable the concurrent operation of multiple hardwarersatd/orking devices,
Pancakes makes use of the actor-oriented programming nasddescribed in
[7, 11, 14]. This model creates software components thatsfon concurrency and
communication rather than interface methods, such as eemethod invocation:
a common technique in object oriented software [14]. By gisin actor-oriented
approach, Pancakes avoids the common issues of threadrigaclconcurrent ap-
plications, since information is shared via message pgssitong the components,
rather than through direct function calls.

We implemented Pancakes in Java to ensure its operationvenaséypes of
computational platforms and operating systems. In pdaticthe robots and sen-
sors nodes in our lab use low-power ARM processors and andaiedd inux/GNU
OS. We use the open source virtual machine JamVM [2], whichbeacompiled
for several processor architectures. Another reason wéayseas our implementa-
tion language is the existence of robust Java librarieseghable concurrency and
message passing. The Java SE 6 standard library has newr@rgyutools that
efficiently handle multiple threads using specialized ddrpools. Complementary
to this library, we make use of the Jetlang [4] library, whimlovides messaging
services for multi-threaded applications.

4 Experimental Results

In this section, we use Pancakes to implement the exampleajpn described in
Section 2. The platforms used in our experiment are showigitré 3. Pancakes is
deployed on two Khepera lll robots, which perform the tasgetirclement behavior
with a BUG sensor node as described in the example scena$ecfon 2. To
determine the local pose of each system we use a Vicon motiptuie system.
Since this local pose data is produced off-board by the matapture system, itis a
“virtual” local sensor on each robot. The Vicon system teaitle reflective points on
each robot and transmits the local pose data to each robetewiine data is received
and handled by a Local Pose task in Pancakes.

The following experiment uses two robots to perform sutarie, and a BUG
sensor node for motion monitoring. The robots have two taskslable: 1) a
ScanTar get task, which implements the boundary tracking algorithnidf and
2) aGoHorre task, which drives the robot back to its home station. The Bld@-
sor has a taskybt i onDet ect i on, that monitors its motion detection sensor and
transmits its location to its neighbors when motion is die@clnitially, the BUG
is set near the center of the monitored area and both rob®isitialized. Agent 1
starts with itsScanTar get task initialized and agent 2 is held idle for reserve.

Figure 4 shows how the systems execute during the initiad@lod the experi-
ment. Agent 1, the\ symbol, starts from its initial position in the top right dfet
area. It converges to a circle around the BUG sensor, dehgtdte 0 near the ori-
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Fig. 3 This figure shows the hardware devices used in our experinidm figure shows one
of the two K-Team robots circling a BUGLabs BUGBase, whiclois sensor node to detect
intruders. These systems were provided with indoor loatibn data from the motion capture
systems shown.

gin. Agent 2, denoted by the waits in the bottom right of the region to be assigned
a task. Once agent 1's battery level drops below a partit¢hiashold, it begins its
task migration, such that agent 2 can take over BeanTar get task.

Agent 1 sends a migration message to all of its neighbors;iwinicludes the
task itself and a list of dependencies the task needs to &xdeor now, these de-
pendencies are the types of devices the platform suppogtss@nar, local pose,
motors). When a neighbor receives the message, it checkie fendencies and, if
compatible, returns a positive reply with a “cost” valueisltost is currently calcu-
lated by counting the number of active tasks running on tadqgim; however, the
framework is flexible enough that a more complicated coslctbe calculated from
power levels, communication rates, or other important prig@s of the platform.
Agent 1 inspects all of its valid replies, chooses the agétft tive lowest cost, and
migrates the task to that agent.

Figure 5 shows the trajectories of the systems after mmrdias taken place.
Agent 1 has started itSoHone task and agent 2 is encircling the BUG sensor node
using the migrate@canTar get task. Agent 2 continues to circle the sensor node,
as shown in Figure 6, and agent 1 has returned to its homegooit the duration
of the mission. This experiment shows how the Pancakes frankeenabled the
creation of a dynamic control application for a small tearmpdsed of mobile
robots and a sensor node.
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Fig. 4 This figure shows the agent 1, denoted/byith trajectory, encircling the BUG sensas (
near the origin). Agent 2, denoted by thes idle to the bottom right.

5 Conclusion

In this paper we designed and demonstrated a new softwassinfcture for de-
veloping control applications for mobile robots and sensstworks. The benefits
of this system are its ability to abstract the sensors, #mtsigand network devices
as well as the ability to dynamically change how these coreptmoperate. Fur-
thermore, the systems allows for the migration of tasks eioagents that have
the necessary capabilities to execute them. Our experahersults show that this
framework facilitates the development of dynamic contral aensing applications
that can incorporate heterogeneous distributed systems.
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Fig. 5 Once the first agentX) runs low on its battery level, it sends out a migration mgega the
other two agents. Since agentd) hias the necessary devices needed to execute, it accefaskhe
and starts the same encirclement algorithm. At the same éigeait 1 begins itSoHorre behavior.
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