
Pancakes: A Software Framework for
Distributed Robot and Sensor Network
Applications

Patrick Martin, Jean-Pierre de la Croix, and Magnus Egerstedt

Abstract The development of control applications for multi-agent robot and sen-
sor networks is complicated by the heterogeneous nature of the systems involved, as
well as their physical capabilities (or limitations). We propose a software framework
that unifies these networked systems, thus facilitating thedevelopment of multi-
agent control across multiple platforms and application domains. This framework
addresses the need for these systems to dynamically adjust their actuating, sens-
ing, and networking capabilities based on physical constraints, such as power lev-
els. Furthermore, it allows for sensing and control algorithms to migrate to different
platforms, which gives multi-agent control application designers the ability to adjust
sensing and control as the network evolves. This paper describes the design and im-
plementation of our software system and demonstrates its successful application on
robots and sensor nodes, which dynamically modify their operational components.

1 Introduction

The increasing use of wireless sensor networks in distributed control applications,
such as unmanned surveillance or building automation, results in the deployment of
heterogenous, mobile computing platforms into new environments. These systems
are usually connected with wired or wireless interfaces, such as Ethernet, Wi-Fi,
or ZigBee, to enable the sharing of local information among the devices compris-
ing the network. One important development for utilizing these distributed control
networks is the incorporation of mobile robots, as noted by LaMarcaet al. [13].
Allowing robots to interact with sensor networks provides new functionality in mil-
itary, industrial, and consumer applications. In [13], theauthors deployed a robot to
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maintain an office garden and its wireless sensors. The authors developed their own
software framework that couples their robot with the sensornodes embedded into
the office garden. The robot successfully maintained energyresources of the sensors
as well as detected failures.

To make multi-agent robotics applications, such as the prior example, work
across different types of robots and wireless sensors, developers need software
frameworks that help manage the complexity introduced by the heterogeneity of
computational platforms and communication interfaces. Furthermore, the robotic
and sensing devices on the network need to respond dynamically to physical
changes (i.e. battery power). Providing the ability to dynamically adjust the frame-
work at runtime opens up the possibility of extending operational lifetime, as well
as adapting the system to reflect changes in the environment.

In this paper, we propose and demonstrate a software framework that unifies
robotic and sensor networks in a seamless way. This framework, calledPancakes,
gives developers several key features that facilitate the design of multi-agent control
applications. First, Pancakesabstracts sensing, actuation, and networking capabil-
ities such that high-level controllers can be implemented without worrying about
low-level hardware management. Furthermore, this framework provides a structured
way todynamically adjust the runtime behavior of the sensor and robotic platforms
according changes on the local system, as well as the operational environment. Com-
plementary to this dynamic adjustment feature, Pancakes allows for themigration
of executable components (i.e. sensing and control algorithms) from one platform
to another. This software framework was inspired by the current literature in dis-
tributed and software control middleware, e.g. [6, 9, 16], robotics control software,
e.g. [8, 10, 12, 15, 5], and actor-oriented design principles, e.g. [7, 11, 14].

In [6], Abdelzaheret al. developed a software framework that enabled the dy-
namic adjustment of a web server using feedback control. Their middleware ex-
posed software “knobs” that could be adjusted to get better quality of service. Mov-
ing beyond this idea of modifying parameters of software components is the idea
of reflective middleware [16]. This work describes a system where the pieces of the
middleware dynamically adapt their capabilities as changes occur within the soft-
ware. The work in [9] proposed a larger distributed embeddedsystem framework
that enables the development of software across many different types of comput-
ing platforms, from embedded controllers to desktop systems. In a similar manner,
Pancakes gives robot and sensor network application designers the ability to dynam-
ically change how their system operates at runtime. Furthermore, it allows for the
migration of system components across deployed platforms.

The work in robotics software architectures made the control of heterogeneous
systems easier by abstracting the sensors and actuators. For example, [10] created
a common interface to the sensors and actuators of the robotsso that users could
write control software that works on different types of robots without having to
know every detail of the robot’s implementation. The authors of [8] took this idea a
step further by separating the capabilities of a robot into discrete, re-usable compo-
nents that can be assembled into a larger robot control application. Additionally, the
work in [12] applied multi-agent software design to create aplatform for developing
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distributed robotics applications. The newer software package, ROS [5], provides
an operating system-like framework in an attempt to standardize robotics software
development for many robotics platforms. Pancakes provides the same sensor, ac-
tuator, and network abstraction that are commonplace in recent robotics software
frameworks, which allow it to unify distributed robots withsensor networks.

To the best of the authors’ knowledge, the combination of dynamic adjustment
and migration of system components with hardware abstraction is a novel contri-
bution to the distributed robotics community. These features allow us to create dy-
namic applications that leverage the powerful capabilities of these heterogeneous
robot and sensor networks. In Section 2 we provide a high-level description of how
Pancakes works using an example application. Following this overview, we discuss
the architecture design and implementation in Section 3. InSection 4 we deploy the
Pancakes architecture onto mobile robots that must encircle a region monitored by
a sensor node. We conclude with some final remarks in Section 5.

2 Pancakes Overview

Each system deployed with Pancakes is treated at its highestlevel as a software
agent. However, Pancakes is not a general purpose agent-based software frame-
work, such as CybelePro [1] or JADE [3]. Instead, Pancakes focuses on providing
an infrastructure for the distributed control of robots andsensor networks. The re-
sult is a Java-based system that can be deployed on embedded computers, such as
ARM-based platforms, as well as full desktop environments.

Pancakes provides the necessary hardware and network abstractions that have
become a common practice in current robotics software frameworks. These abstrac-
tions let users utilize the system devices that interact with the environment, such as
actuators and sensors. Also, the networking services let each agent share local in-
formation by passing messages over the network interface without having to micro-
manage the low-level communication protocols.

Internally, each Pancakes agent is composed of the Pancakeskernel and a col-
lection of actor-like software components that communicate with each other using
input and output channels provided by the Pancakes kernel. The two types of com-
ponents in Pancakes aretasks andservices. Tasks carry out a particular function for
the Pancakes agent, such as reading sensor data or performing agent discovery. They
publish their results onto their output channels for other tasks or services to use.

Services spawn and manage tasks that the agent requires for execution. Services
submit periodic tasks to the kernel’sscheduler for execution. Additionally, event-
driven tasks are configured to listen to their input channelsfor new messages, use
these messages to carry out their computation, and eventually send results to an out-
put channel. The services also enable the dynamic reconfiguration of the middleware
by starting new tasks, adjusting task schedules, stopping current tasks, migrating
tasks across platforms, or shutting down an entire service.Dynamic reconfigura-
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tion is especially important when we construct power- and communication-aware
applications.

Consider the mobile robots and wireless motion sensor shownin Figure 1, which
are deployed in a building for security monitoring. The two mobile robots, Agents
1 and 2, need to communicate between themselves and the sensor node in order to
share information necessary for completing the desired monitoring mission. Some
important questions an application designer needs to consider are: what happens
when a mobile robot is low on power? and how can robot tasks be transferred from
one agent to another?
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Agent 1

Agent 2
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Migrate

Task
Agent 2
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Fig. 1 An illustrative example of our desired control applicationfor mobile robots (white circles)
working with a sensor node (grey diamond) to isolate an intruding agent (grey circle).

Using Pancakes, we can create a control application that allows us to address
these questions in the following way. When the sensor node (grey diamond) detects
motion from an intruder (Figure 1(a)), it sends a message to Agent 1. This robot ini-
tiates a task that encircles the region where the intruder was detected, as illustrated
in Figure 1(b). While executing this task, Agent 1 can use Pancakes to monitor its
power consumption and actively adjust its speed or communication rates to conserve
power. If Agent 1 consumes too much energy, it needs to ensurethat the region is
still monitored bymigrating its currently running task to Agent 2 (Figure 1(c)).
This capability would effectively lengthen the operational time of the network by
letting Agent 2 wait until absolutely necessary before executing a task. The details
on how Pancakes is designed to facilitate the implementation of this application is
the subject of the next section.
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3 The Pancakes Architecture

In this section, we describe the architecture of the Pancakes software framework and
how they work together to facilitate the development of multi-agent robotics appli-
cations. Each Pancakes agent is composed of a collection of executable components,
or tasks, which are the “workhorses” of Pancakes. These tasks are associated with a
service that maintains a collection of related tasks. Since we adoptthe actor-oriented
model of programming [7, 11, 14], tasks and services communicate with each other
through a collection of channels, theinformation stream. Combining these pieces
with a scheduler allows for the construction of parallel anddynamic control appli-
cations for multi-agent systems.

3.1 Information Stream

The information stream sets up the communication channels that services and tasks
use to publish new information or subscribe to receive information from other Pan-
cakes components. This stream contains five core channels:system, sysctrl,
ctrl, network, andlog. Additionally, services can create specialized channels
at runtime that are used to pass service specific informationamong tasks within the
service.

Thesystem channel provides a channel for services and tasks to publishsys-
tem information to user-made and other system tasks. For example, a mobile robot’s
sonar sensor task would publish its most recent data points to thesystem channel,
which is subscribed to by a control task. Thesysctrl channel serves as a control
messaging channel among the services and tasks. Messages sent over this channel
facilitate the dynamic rescheduling, shut-down, or migration of tasks. To issue con-
trol commands to actuators, tasks send messages over thectrl channel. A task
or service that requires network communication publishes its network messages to
thenetwork channel. Finally, thelog channel allows any Pancakes component
to perform error, debug, or data logging, which helps in the post-run analysis and
debugging of complex distributed applications.

3.2 Tasks

Task components are the main “actors” in Pancakes: they produce and consume
information in order to affect a change in the deployed system. Tasks can execute in
time-driven, event-driven, or a combination of both modes depending on the desired
functionality set by the designer. At startup, a time-driven task is submitted to the
scheduler and is executed at its specified frequency. The event-driven tasks wait for
a message to arrive on one of its incoming channels. Since tasks communicate via
the Pancakes stream channels, there is no need to synchronize on shared variables.
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Instead, the data necessary for execution is transmitted through the channels and
delivered to subscribing Pancakes components.

Tasks are a natural way to abstract how different pieces in the system should in-
teract. For instance, as shown in Figure 2, a robot can have several sensing tasks,
such as sonar, IR, or local pose, and a control task that takesthe output from these
sensors and computes a control input for the actuation system. Furthermore, there
can be a supervisor task that executes in parallel, monitorsthe output of all of the
other tasks, and makes higher level decisions. In this example, the Supervisor Task
examines the sensor inputand the output from the control task in order to adjust
sampling rates of different sensor managed by the Device Service. The advantage
of this approach is that the application designer can focus on developing the in-
put/output behavior of each individual task, rather than deal with complicated thread
management.
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Task
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Task
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Fig. 2 In this example Pancakes application, a robot is deployed with sonar, IR, and local pose
sensors. This sensor information is communicated to the system via thesystem channel, which
is subscribed to by the Control Task and Supervisor Task. TheControl Task computes a command
for the actuators and sends it over thectrl channel. Additionally, the Supervisor Task sends
commands oversysctrl to the Device Service to adjust runtime components (e.g. thesampling
rate of the IR task).

3.3 Services

The duties of services are 1) to maintain a registry of its tasks that are currently
running, 2) to manage the startup, shutdown, or migration oftasks, and 3) to manage
the shutdown or restart of the service itself. Pancakes has four default services that
are loaded at startup: the Device Service, the Network Service, the Log Service, and
the Client Service. Furthermore, developers can create newservices that can supply
additional functionality for their system.

The Device Service creates the system device tasks, which are the hardware ab-
stractions for sensors and actuators, and schedules any that require timed execution.
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The Network Service enables communication with other Pancakes agents on the net-
work. This service creates a network client task that listens to thenetwork channel
for any outgoing network messages and transmits them to the intended target. The
Log Service listens to thelog channel and displays error and debug messages to the
console; additionally, it can record messages to a file for later analysis. Finally, the
Client Service spawns user tasks and channels for inter-task communication. Users
implement tasks to carry out communication and control algorithms, which are then
loaded into the Client Service at system startup.

3.4 Dynamic Adjustment and Migration of Components

One of the key features of Pancakes is the ability to adjust services and tasks as an
application executes on a deployed system. This feature lets the application adjust
the capabilities within the architecture according to dynamic effects from software
(i.e. logic statements, software controllers) or the physical environment (i.e. power
consumption, sensing data). For example, a task can requestthat network discov-
ery be slowed down to reduce the number of network transmissions; therefore, it
can reduce the rate of power consumption of the application.Also, a more drastic
power savings could be achieved by requesting the Network Service to shut down
temporarily.

We enable this feature by establishing a messaging protocolfor tasks and ser-
vices to request a change the runtime behavior of other tasksand services. The
currently supported control operations arestop, restart, start, or reschedule. For a
task or service to initiate one of these controls, it must send a control message over
thesysctrl channel within Pancakes. All services subscribe to this channel and
inspect the message to determine if it has to change its behavior or that of one of
its tasks. Once the message is received at the target service, the service calls on
the scheduler to stop, start, or reschedule the task. Additionally, if the service is re-
quested to stop or restart, it shuts down all of its currentlyrunning tasks and requests
the scheduler to stop or restart itself.

A complementary feature to dynamic adjustment is the ability to migrate tasks
among deployed Pancakes systems. As illustrated in the example of Section 2, mo-
bile robots and sensor networks can use this capability to achieve a longer mission
lifetime. Task migration is managed by the Task Migrator task in the Network Ser-
vice, since it must communicate with neighboring agents to find a suitable candidate
for migration. The migration protocol involves sending thetask and its dependencies
for execution (i.e. required sensors and/or actuators) to all neighbors of the current
agent. Once candidate agents are found, the migrating agentchooses the one that
has the lowest execution “cost.” In its current implementation, our cost metric is
based on the system load of the candidate agent, for example,the number of tasks
running on the deployed system.
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3.5 Implementation

To enable the concurrent operation of multiple hardware andnetworking devices,
Pancakes makes use of the actor-oriented programming modelas described in
[7, 11, 14]. This model creates software components that focus on concurrency and
communication rather than interface methods, such as remote method invocation:
a common technique in object oriented software [14]. By using an actor-oriented
approach, Pancakes avoids the common issues of thread blocking in concurrent ap-
plications, since information is shared via message passing among the components,
rather than through direct function calls.

We implemented Pancakes in Java to ensure its operation on several types of
computational platforms and operating systems. In particular, the robots and sen-
sors nodes in our lab use low-power ARM processors and an embedded Linux/GNU
OS. We use the open source virtual machine JamVM [2], which can be compiled
for several processor architectures. Another reason we useJava as our implementa-
tion language is the existence of robust Java libraries thatenable concurrency and
message passing. The Java SE 6 standard library has new concurrency tools that
efficiently handle multiple threads using specialized thread pools. Complementary
to this library, we make use of the Jetlang [4] library, whichprovides messaging
services for multi-threaded applications.

4 Experimental Results

In this section, we use Pancakes to implement the example application described in
Section 2. The platforms used in our experiment are shown in Figure 3. Pancakes is
deployed on two Khepera III robots, which perform the targetencirclement behavior
with a BUG sensor node as described in the example scenario ofSection 2. To
determine the local pose of each system we use a Vicon motion capture system.
Since this local pose data is produced off-board by the motion capture system, it is a
“virtual” local sensor on each robot. The Vicon system tracks the reflective points on
each robot and transmits the local pose data to each robot, where the data is received
and handled by a Local Pose task in Pancakes.

The following experiment uses two robots to perform surveillance, and a BUG
sensor node for motion monitoring. The robots have two tasksavailable: 1) a
ScanTarget task, which implements the boundary tracking algorithm of [17] and
2) aGoHome task, which drives the robot back to its home station. The BUGsen-
sor has a task,MotionDetection, that monitors its motion detection sensor and
transmits its location to its neighbors when motion is detected. Initially, the BUG
is set near the center of the monitored area and both robots are initialized. Agent 1
starts with itsScanTarget task initialized and agent 2 is held idle for reserve.

Figure 4 shows how the systems execute during the initial phase of the experi-
ment. Agent 1, the△ symbol, starts from its initial position in the top right of the
area. It converges to a circle around the BUG sensor, denotedby the2 near the ori-
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Fig. 3 This figure shows the hardware devices used in our experiment. The figure shows one
of the two K-Team robots circling a BUGLabs BUGBase, which isour sensor node to detect
intruders. These systems were provided with indoor localization data from the motion capture
systems shown.

gin. Agent 2, denoted by the◦, waits in the bottom right of the region to be assigned
a task. Once agent 1’s battery level drops below a particularthreshold, it begins its
task migration, such that agent 2 can take over theScanTarget task.

Agent 1 sends a migration message to all of its neighbors, which includes the
task itself and a list of dependencies the task needs to execute. For now, these de-
pendencies are the types of devices the platform supports (i.e. sonar, local pose,
motors). When a neighbor receives the message, it checks fordependencies and, if
compatible, returns a positive reply with a “cost” value. This cost is currently calcu-
lated by counting the number of active tasks running on the platform; however, the
framework is flexible enough that a more complicated cost could be calculated from
power levels, communication rates, or other important properties of the platform.
Agent 1 inspects all of its valid replies, chooses the agent with the lowest cost, and
migrates the task to that agent.

Figure 5 shows the trajectories of the systems after migration has taken place.
Agent 1 has started itsGoHome task and agent 2 is encircling the BUG sensor node
using the migratedScanTarget task. Agent 2 continues to circle the sensor node,
as shown in Figure 6, and agent 1 has returned to its home position for the duration
of the mission. This experiment shows how the Pancakes framework enabled the
creation of a dynamic control application for a small team comprised of mobile
robots and a sensor node.
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Fig. 4 This figure shows the agent 1, denoted by△ with trajectory, encircling the BUG sensor (2

near the origin). Agent 2, denoted by the◦, is idle to the bottom right.

5 Conclusion

In this paper we designed and demonstrated a new software infrastructure for de-
veloping control applications for mobile robots and sensornetworks. The benefits
of this system are its ability to abstract the sensors, actuators, and network devices
as well as the ability to dynamically change how these components operate. Fur-
thermore, the systems allows for the migration of tasks to other agents that have
the necessary capabilities to execute them. Our experimental results show that this
framework facilitates the development of dynamic control and sensing applications
that can incorporate heterogeneous distributed systems.
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Fig. 5 Once the first agent (△) runs low on its battery level, it sends out a migration message to the
other two agents. Since agent 2 (◦) has the necessary devices needed to execute, it accepts thetask
and starts the same encirclement algorithm. At the same time, agent 1 begins itsGoHome behavior.
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