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ABSTRACT: 
 

The demand for energy has been increasing, raising concerns about greenhouse gases and 

depleting renewable energy sources. This has made the use of renewable energy sources more 

evident in various applications. These renewable energy sources are recognized for their 
potential to reduce global warming and climate change. The use of smart grids will help in the 

reduction of these GHS’s and CO2 emissions. These grid applications necessitate energy storage 

systems in order to achieve smooth operation. Thus, Energy storage systems have become an 

essential technology for various applications such as land-based grid applications and Lithium- 
ion batteries will play a significant role. 

 

Lithium-ion batteries have seen considerable development in the last couple of decades to 

enhance battery characteristics based on its safety, voltage/current capacities, operating 

temperatures, ageing, etc. Similarly, Lithium titanate oxide (LTO) battery cells have seen 

significant development as it is regarded to play a vital role in energy storage systems for large 

scale stationary grid applications. These batteries use LTO as active anode material instead of 
the traditional graphite. LTO batteries are recognised for various competencies ranging from 

higher safety margins, high thermal stability, low self-discharge rate and superior cycle 

performance. LTO batteries are relatively new, and the behaviour and characteristics of this 

battery are unfamiliar. Thus, the thesis purpose is to study and understand the state-of-art LTO 

battery cell behaviour under controlled situations. 
 

LTO batteries require accurate battery models at different operating conditions due to its non- 
linear behaviour. Thus, extensive experimental characterization tests were developed to study 

the behaviour of the LTO battery to determine the dynamic behaviour of the LTO battery cell. 
The proposed model is suitable for various applications as well as for the development of Energy 

Management Systems (EMS) and Battery Management Systems (BMS). Hence, hybrid pulse 

power characterisation (HPPC) tests were developed and applied to a 2.9 Ah LTO battery cell. A 

second-order equivalent circuit (ECM) model is developed based on the experimental 
characterisation tests conducted at different SOC’s (0 % - 100% at 10% interval) and operating 

temperatures (15°C, 25°C, 35°C and 45°C). The results of HPPC tests will be utilised for the 

parametrisation of the ECM. The ECM variables were incorporated into SOC estimation using 

the Coulomb counting (CC) method. The simulations model was developed in Simscape 

Matlab/Simulink software and were compared with experimental measurements for ECM 

validation. 
 

 

KEYWORDS: Lithium titanate oxide (LTO), Equivalent circuit modelling (ECM), Hybrid pulse 

power characterization (HPPC) test, SOC estimation, Parameter estimation 
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1 Introduction 
 
 

 
1.1 Background and Motivation 

 
Global warming and climate change are the biggest threat to humanity. The ever- 

increasing use of fossil fuels as a source of energy has led to the rapid growth of 

greenhouse gases (GHG) and the depletion of natural resources. The excessive use of 

fossil fuels has caused irreversible impacts on nature. As stated in the IPCC report of 

global warming effects of 1.5 °C due to the growing concentration of greenhouse 

emissions. The energy sector is one of the highest contributors to greenhouse gas 

growth (Allen et al., 2019). Ecological mindfulness and strict regulations in emission have 

increased the need for electricity generation in an eco-friendly manner, increasing land- 

based grid system demand. Recent demands on environmental sustainability have 

resulted in bringing an upsurge in the interest of batteries on a larger scale. This drive 

has translated into a range of development and integration of the energy system ranging 

from smaller handheld devices to electric vehicles. It is essential to move to cleaner and 

more sustainable form of energy sources. 

 
The energy storage system (ESS) has been seen as a prominent technology to create an 

ecologically friendly and sustainable society. The energy storage system will play a vital 

role to increase the use of renewable energy sources (RES) significantly (Guo & He, 2018; 

Ibrahim, Ilinca, & Perron, 2008; Ng, Moo, Chen, & Hsieh, 2009). The use of energy storage 

systems to facilitate renewable energy sources in the current scenario will reduce 

climate change. Energy storage systems have now become a part of our day-to-day lives, 

primarily due to the research and development in handheld devices like portable 

devices, power tools, and electric and hybrid vehicles (Olabi, 2017). 

 
Various energy storage technologies are available, but batteries have substantial 

potential for grid applications. Lithium-ion batteries are best suited for land-based grid 
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applications due to various features such as the higher power capability, faster response, 

low self-discharge rate and long cycle lifetime. Lithium-ion batteries have the ability to 

appease complex and large-scale development applications to the power grid (Chen et 

al., 2020; Stroe, Daniel-Ioan, Knap, Swierczynski, Stroe, & Teodorescu, 2016). 

 
Lithium-ion batteries possess specific challenges as these batteries are not entirely 

stable under certain conditions such as higher temperature, which causes the battery to 

suffer from detrimental chemical reactions. Lithium-ion battery cells can rupture due to 

overheating or uncoordinated overcharging, leading to thermal runaway in the battery 

(Zhao, R., 2018). Lithium titanate oxide battery is a type of rechargeable Lithium-ion 

battery known for its faster-charging capabilities and low thermal runaway. Thus, making 

the battery safe to use. Therefore, LTO battery cells are regarded as crucial for the future 

of ESS (ASIAN DEVELOPMENT BANK., 2018) 

 
It is essential to design and develop a suitable battery management system to observe 

the battery parameters to guarantee the safe operation of Lithium-ion batteries. 

Computer-aided simulations play a vital role in developing a battery system. Various 

elements affect the battery's performance at the system level, such as battery design, 

electrode morphology, battery chemistry, etc. Computer-aided simulations will help to 

predict these factors. Thus, modelling with computer-aided simulations plays an 

influential role in understanding battery characteristics and behaviour (Ceder, Doyle, 

Arora, & Fuentes, 2002). 

 
An accurate battery model is indispensable to study the dynamic behaviour of the 

battery for different applications. Taking an already constructed battery into 

consideration, it is difficult to estimate and understand the battery behaviour under 

certain conditions required for the application. Battery modelling supports addressing 

this issue by testing the battery under certain conditions. The results of battery 

modelling help the user understand the battery’s dynamics at different conditions 

(Spotnitz Robert, 2005). 
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1.2 Thesis goals 

 
The goal of this thesis is to analyse the dynamic behaviour of Lithium-ion battery under 

various parameters such as ambient temperature, state of charge, ageing, etc. Cell 

characterisation tests are conducted under these parameters in the laboratory. A 

comprehensive examination will be conducted on the battery to observe and 

understand the impact of temperature and cycling on the Lithium-ion battery during 

charging and discharging of the battery. The cell characterisation test will be prudently 

inspected to understand the battery performance and dynamic behaviour under 

different conditions. The conducted cell characterisation experiments on the battery will 

be utilised to develop an equivalent circuit model (ECM) to replicate its dynamic 

behaviour at operating conditions. Furthermore, the thesis also aims to provide a 

detailed procedure of computational simulations. 

 
1.3 Research objectives 

 
The cell characterisation tests will be carried out with Neware battery cell testing 

equipment (BTSDA-8000 model) and WEISS Technik temperature test chamber to 

regulate tests at different operating temperatures. The chamber will include a 

temperature sensor to monitor the internal temperature, as well as will employ 

temperature sensor probes to monitor the battery temperature during the experiments. 

The results acquired from these tests will be used to develop an ECM model for the 

Lithium-ion battery to understand the battery behaviour to predict and possibly extend 

the battery lifetime. 

 
The LTO battery cell used in this dissertation is a pouch cell battery type. Pouch cell is 

known for higher packing efficiency. These pouch cells are known for the lower weight 

due to the exclusion of metallic materials for the outer extrusion and provide lower 

internal resistance as compared to lithium-ion batteries. Pouch cell is known for 

providing higher packing efficiency up to 90-90% (Linden, 1995). 
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Objectives of the study are as follows: 

 Investigate the performance of Lithium-ion battery and different State-of-Charge 

(SOC) and observe the effects on capacity and internal resistance of the battery. 

 Understand the impact of temperature and cycling on battery performance. 

 Investigate the effect on capacity concerning temperature. 

 Develop characterisation test procedures for Lithium-ion battery 

 Conduct a hybrid pulse characterisation test on the battery chemistry. 

 Parameterise ECM by utilising the least weight square methodology. 
 
 

1.4 Structure of the thesis 

 
This thesis shows the characterization and modelling of a Lithium titanate battery cell to 

understand the battery behaviour and performance in detail. The thesis is divided into 

six chapters and is described as follows: 

 
Chapter 1 provides a brief description of the topic. The chapter also depicts the 

motivation behind this project. The chapter also describes the background study gap in 

this topic and briefly describes the research goals for the thesis. 

 
Chapter 2 focus on a detailed explanation of the background study of the topic. The 

chapter describes the theoretical findings of Lithium-ion batteries evolution and the 

current scenario and compares different types of Lithium-ion batteries. Various types of 

battery modelling techniques are described in the chapter. 

 
Chapter 3 describes the basics of characterisation tests and gives a brief understanding 

of the experimental equipment and procedure. The chapter also describes the 

developed battery cell holder in detail. 

 
Chapter 4 provides a brief description of the battery modelling technique used in this 

thesis. It states the parameter estimation technique used and the SOC estimation 
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technique  used  in  the  equivalent  circuit  modelling.  It  describes  the  analytical 

observations from the simulations. 

 
Chapter 5 summarizes the results of the experimental and simulated results. It shows a 

brief description of the comparison of the results 

 
Chapter 6 summarizes the thesis and brings forward the main conclusion and future 

scope. 



13 
 

 
 
 

2 Lithium-ion Batteries - State of Art 
 

 
2.1 Overview of Lithium-ion Battery 

 
The first rechargeable battery was invented in 1859 by a French physicist Gaston Planté, 

based on lead-acid chemistry (Kurzweil, 2010). Since this invention, there has been 

considerable research and development in this field, especially in the last two decades 

based on battery chemistries, cell size, performance, etc. The traditional rechargeable 

batteries, which evolved around the late 1800's such as lead-acid and nickel-cadmium, 

faced various physical limitations primarily due to larger sizes and substantially heavy 

weight. These extensive designs also faced other constraints such as low specific energy, 

limited charging acceptance, high self-discharge rate (Scrosati, Garche, & Tillmetz, 2015). 

Lithium-ion batteries showed promising capabilities to overcome these conventional 

battery challenges. Lithium-ion batteries possess high specific energy and hold longer 

cycle life, making it easier to establish as one of the best battery chemistries available. 

Lithium-ion battery characteristics make it possible to have a broader base of application 

ranging from power components in handheld portable devices such as Mobile phone, 

Laptops, Tablets, etc., to the larger scale by playing a protagonist in energy sustainability 

(Zubi, Dufo-López, Carvalho, & Pasaoglu, 2018). 

 
The need for higher density battery systems was realised and pursued since 1958 by 

analysing the solubility of non-aqueous electrolytes and Lithium. This study made it 

evident to pursue Lithium-ion batteries in commercial applications. Since the late 1960s, 

the market experienced an upsurge in demand for non-aqueous Lithium-ion primary 

batteries, which used Lithium sulphur di-oxide as the cathode (Harris, 1958). These 

batteries were predominantly used in military applications. These non-aqueous Lithium- 

ion batteries had certain safety aspects which needed to be elucidated. Thus 

simultaneously, improvements were observed in the understanding of intercalation of 

Lithium in different materials, starting the era of secondary rechargeable Lithium-ion 

batteries. In the last couple of decades, tremendous advancements have been seen in 



14 
 

 
 
 

Lithium-ion battery concerning physical and electrical capabilities (Reddy, Mauger, 

Julien, Paolella, & Zaghib, 2020). Today, Lithium-ion batteries size ranges from a coin with 

smaller capacities of around 5 mAh to more extensive and larger sizes with the range of 

10,000 Ah. 

 
The classification of electrical batteries is based on the capability of being electrically 

charged, viz primary (non-rechargeable) and secondary (rechargeable batteries. Lithium- 

ion batteries fall under the rechargeable battery family. In the early 1970s, due to the oil 

crisis, Stanley Whittingham, and other English chemists, started working on exploring 

the idea of rechargeable battery which can reduce charging time and lead to fossil-free 

energy in the future (Reddy et al., 2020). Exxon's experiments in the early 1970s did not 

yield success to Whittingham's team, and the project was halted. 

 

John B. Goodenough further studied this project with a change in the battery's cathode 

element. In Japan, Akira Yoshino made another change in the anode by using 

carbonaceous material instead of reactive lithium metal. Thus, producing the first 

Lithium-ion battery prototype (Scrosati, 2011). Today, batteries have become so 

ubiquitous that it is almost invisible. In 2019, the Nobel Prize in Chemistry was awarded 

to John B. Goodenough, Stanley Whittingham and Akira Yoshino for their remarkable 

contributions to this development. 

 
2.2 Working of Lithium-ion Battery 

 
Lithium-ion batteries act as an electrochemical unit containing electrodes, separator and 

electrolyte. The rechargeable cell consists of three essential components, viz Cathode, 

Anode and Electrolyte (Manthiram, Muraliganth, Yamaki, & Tobishima, 2011). The 

storage mechanism is achieved by storing the energy in electrodes. The electrodes are 

made up of lithium intercalation compounds. The cathode is made up of substrate 

coated with an active material, whereas the anode is made up of thin copper substrate 

coated with active anode material. To avoid short circuit, a separator is placed between 

these two electrodes, preventing contact between these two electrodes (Warner, John, 
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2015b). The term anode designates to the electrode where during the discharge cycle, 

oxidation occurs. At the anode, oxygen is gained after the reaction occurs; the other 

electrode is a positive electrode known as a cathode. After the oxidation process occurs, 

electrons are released by the anode and are accepted by the cathode, causing a 

reduction reaction. These electrons require a material acting for the medium of transfer 

from cathode to anode and vice-versa. This gel-like liquid material operating as the 

catalyst is called the electrolyte. The roles of the electrodes, anode and cathode 

interchange depending on the direction of flow of current in the battery cell (Warner, 

John, 2015a). 

 
The energy difference between the redox energies of the cathode and anode determines 

the cell voltage. This cell voltage depends majorly on the anode and cathode materials. 

Cell voltage can be co-related to Gibbs Free Energy (ΔG) and equilibrium cell voltage (E). 

Here, F represents the Faradays constant, and n stands for the number of moles. The 

occurrence of the reaction rate is determined by the electrolytic material (Manthiram, 

2020). 

𝛥𝐺 = −𝑛𝐹𝐸 (1) 

 

 

Figure 1 Working principle of a Lithium-ion battery – Schematic (Huang, Wang, Li, Ping, 

& Sun, 2015) 
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Figure 1 illustrates the working principle of the Lithium-ion battery. Figure 1 indicates 

cathode and anode electrodes with a separator in the battery's centre. These electrodes 

are submerged into an electrolyte, which carries positively charged lithium ions from 

the cathode to the anode and vice-versa through the separator. This movement creates 

free electrons at the anode. The separator blocks the flow of electrons internally 

between the electrodes of the battery. The battery composition or the chemistry is 

based on the materials used for cathode and anode. Some of the cathode materials used 

in Lithium-ion battery are oxides of lithium magnesium, lithium cobalt oxide, lithium 

nickel cobalt manganese oxide, etc. (Mishra et al., 2018). Similarly, the anodic materials 

change as per the battery chemistry, and some of these materials used for fabricating 

anode graphite carbon, hard carbon, lithium-titanate, tin-based alloys, etc. (Xu et al., 

2014). The chemical reaction given below takes place in the LixMn2O4 battery during 

the discharge process: 

 

At negative electrode: 
𝐿𝑖𝑦𝐶6 =  𝐶6 + 𝑦𝐿𝑖 + 𝑦𝑒 (2) 

 

At positive electrode: 
 

𝐿𝑖𝑥 − 𝑦𝑀𝑛2𝑂4 + 𝑦𝐿𝑖 + 𝑦𝑒 = 𝐿𝑖𝑥𝑀𝑛2𝑂4 (3) 
 

 
 

2.3 Lithium-ion battery chemistries 

 
The state of art Li-ion battery cathode materials has been represented by lithium 

manganese oxide (LiMn2O4, LMO), lithium cobalt oxide (LiCoO2, LCO), lithium iron 

phosphate (LiFePO4, LFP) as well as cathodes containing mixtures such as the blend of 

aluminium in lithium nickel aluminium cobalt oxide (LiNiCoAlO2, NCA) and lithium nickel 

manganese cobalt oxide (LiNiMnCoO2, NMC) (Hannan, Hoque, Mohamed, & Ayob, 

2017). In some cases, graphite is used for anode materials. In some instances, lithium 

titanate oxide (Li4Ti5O12, LTO), tin or alloys are used (E. Chemali, M. Preindl, P. Malysz, & 

A. Emadi, 2016). 
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The demand for Lithium-ion batteries is continuously rising as the need for ESS is seen 

in various applications. The requirements for the Lithium-ion batteries varies as per the 

application. Lithium-ion batteries are used for grid applications, electric vehicles, 

handheld devices, etc. This range of applications constitutes various requirements from 

the battery. These batteries are now heading into aerospace and military applications on 

a larger scale. Compared to the traditional Nickel-cadmium and Lead-acid batteries, 

Lithium-ion possesses various advantages such as longer life, high energy density, high 

voltage capacity, etc. The major demerit of Li-ion battery is the cost of manufacturing 

(Stroe, Daniel Ioan, 2014). 

 
Thus, various electrochemical storage systems, particularly Li-ion rechargeable batteries, 

have been developed over the period to focus on different market requirements 

(Warner, 2015). There are many different battery Li-ion chemistries based on their 

cathode and anode electrode material composition. Therefore, it is necessary to 

understand the basic cell chemistries of the Li-ion batteries to evaluate the merits and 

demerits for each application. Some of these Li-ion battery chemistries are described 

below: 

 
2.3.1.1 Lithium Nickel Manganese Cobalt Oxide (NMC) 

 
Lithium nickel manganese cobalt oxide is one of the most widely used battery 

chemistries. It is made up of a cathode combination of nickel, manganese and Cobalt. 

Hence, it is known as the NMC battery. NMC battery has been of great importance in the 

development of Li-ion batteries. It is regarded as one of the critical pillars of advanced 

Li-ion battery (Dong et al., 2019). The cathode of the NMC battery consists of around 10- 

20% of Cobalt. 

 
In some cases, but generally consists of one-third of nickel, manganese and Cobalt each. 

NMC battery has been the most common use battery types. Thus, it is cheaper and a 

safe battery type as it has reduced risks of thermal runaway problems. NMC has a lower 

capacity but is known for its continuous discharge current. For e.g., In an optimised cell 
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NMC has a capacity of 2,000 mAh but can deliver continuous discharge of about 20 A 

current (Buchmann & Cadex, 2001). Figure 2 below describes the relative performance, 

safety and functional characteristics of NMC. 

 
 

 

Figure 2 Lithium Nickel Manganese Cobalt Oxide Battery (NMC) 
 

 
2.3.1.2 Lithium Nickel Cobalt Aluminium oxide (NCA) 

 
Lithium Nickel Cobalt Aluminium Oxide battery is also known as NCA battery. It has been 

in the market since 1999 for various applications. Lithium Nickel Cobalt Aluminium 

Oxide is one of the batteries which has started to gain importance due to its use in 

powertrains and grid storage systems due to its increased energy density. In the case of 

batteries, geopolitical influence plays a vital role in the need for material. Today the cost 

of NCA battery is not the highest as compared to other battery chemistries, but the 

requirement of Cobalt, Lithium and Nickel increases the cost of the battery significantly 

as Cobalt is mainly produced in the Democratic Republic of Congo and the rising demand 

will increase the cost of this battery in future (Buchmann & Cadex, 2001). Figure 3 below 

illustrates the NCA battery's relative performance, safety, and functional characteristics. 
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Figure 3 Lithium Nickel Cobalt Aluminium Oxide (NCA) 
 
 
 

 
2.3.1.3 Lithium Titanate Oxide (LTO) 

 
Lithium titanate oxide battery has been known since the 1890s but has seen significant 

interest over the last decade. Unlike the other types, this battery replaces the graphite 

material used for the anode electrode with an LI-titanate material known to form spinel 

structures. The cathode in this battery is similar to that of the NMC battery. This anode 

material creates "tunnel" like structures in three dimensions where lithium-ions are 

inserted. It is commercially one of the most successful anode materials due to its 

superior thermal stability, high life cycle and higher volumetric capacity (Nitta, Wu, Lee, 

& Yushin, 2015). 

 
The use of lithium titanate nanoparticles at the anode instead of carbon helps in faster 

battery charging than other battery chemistries available. Lithium titanium oxide (LTO) 

provides approximately 175 mAh/g capacity but is thermally very stable. LTO is 

considered a "zero strain" battery because of its phase change, which is observed due 

to lithiation and de-lithiation, resulting in low changes in volume. The zero strain of LTO 

batteries helps in offering superior performances even at low temperatures, high power 
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and long cycle life. One of LTO batteries' other advantages is that no solid electrolyte 

interphase (SEI) layer is formed because of low operating voltages. Thus, there is almost 

no chemical reaction in LTO batteries due to lower operating voltages. Therefore, 

lithium titanate as an anode material shows excellent cyclic performances due to the 

voltage properties (Warner, John T., 2019b). 

 

The table below illustrates the amount of series cell needed compared to lithium nickel 

manganese cobalt oxide battery. It can be observed to achieve 350V a system, only 95 

NMC battery cells will be required to higher cell voltage, whereas approximately 160 LTO 

battery cells will be needed to achieve the same output. 

 
 

 LTO NMC 

Cell voltage 2.2 V 3.7 V 

Series cell needed to create 350V system 159 95 

Table 1 Amount of series cell required to obtain same cell voltage 
 

 
LTO batteries will play a vital role in bridging the gap between energy storage systems 

and grid power systems. As the urgency for the need for renewable energy increases, 

batteries need to be versatile in use, allowing synergy between battery storage, wind 

power and solar energy and the grid systems. LTO batteries could be used in achieving 

these goals due to their high-power capability horizon, making it suitable for land-based 

grid application. These applications require short bursts of high-power needs and high 

ramp rates. It possesses immense potential contributing to power system stabilisation 

(Nitta et al., 2015) (Madani, Schaltz, & Knudsen Kær, 2019). 
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Figure 4 Lithium titanate oxide (LTO) 

 
2.3.2   Comparison of battery characteristics 

 
NMC can deliver either high specific energy or higher specific power but cannot offer 

both of these properties. Today it is used in Tesla Powerwall, LG CHEM RESU, etc. (Tesla 

powerwall.; LG chem RESU HV.). It is also used in some power tools as well as in 

powertrains. The low self-heating rate makes it one of the best candidates for electric 

vehicles. The main disadvantages of the NMC battery include its lower voltages than 

other systems and silicon added in graphite. It disforms the anode sizes while discharging 

and charging, resulting in mechanical instability in the cell (Buchmann & Cadex, 2001). 

The other challenge faced by NCM battery is structural degradation because of nickel 

rich combinations, reducing the overall battery cycle life. Cobalt rich combinations also 

suffer from safety concerns and higher costs (Warner, John T., 2019a). 

 
The recent research and development in this battery have given it a prominent status in 

the market for high energy density applications. Lithium nickel cobalt aluminium oxide 

has a significantly higher capacity than Lithium nickel manganese cobalt oxide (NMC) 

and Lithium iron phosphate (LiFePO4). Thus, these batteries are used for moderate-rate 

applications with high energy density. NCA is highly regarded for its durability. NCA is 

also used in electronics devices and Panasonic, Sony and Samsung use NCA battery cells 
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(Buchmann & Cadex, 2001). NCA, unlike NMC, is not known for its safer purposes. It is 

one of the high-risk batteries that can work at the operating temperature of around -20 

to 60°C at discharge and 0 to 45°C at charging (Eddahech, Briat, & Vinassa, 2015). 

 

LTO battery cells are known for rapid battery charging and discharging. The abilities of 

the LTO battery, primarily due to higher stability, making it safer to use, no formation of 

SEI, greater performance at lower temperatures, longer cycle time, longer life, etc., 

makes it one of the best candidates for this thesis. Thus, LTO batteries have been seen 

in various applications, such as grid systems and e-mobility technologies. Therefore, it is 

regarded as one of the most prominent battery chemistries for the future and is 

considered for its potential for wind power system (Stroe, Ana-Irina, 2018). LTO 

batteries are acknowledged for their longer cycle life due to lower mechanical faults 

such as crack formation because of good cohesion between the electrodes, the current 

collectors and the separators. This ability of LTO battery cells makes it the best fit for 

applications with faster charging of batteries (Warner, 2019). One of the drawbacks of 

the LTO battery is reduced energy density as it can be used with low voltage levels 

around 1.5 -2.7 V. The low voltage operation also makes it challenging to operate at high 

voltage. Thus, the need for a higher number of battery packs at the system level is 

required (Buchmann & Cadex, 2001). 

 

LTO battery structure is created of spinel’s as compared to NMC and NCA, which consists 

of layered formation. NMC and NCA batteries are known for their high voltage levels 

ranging around 3.6 to 3.7 V, whereas LTO batteries have a lower voltage range of 2.4V 

(Burke & Miller, 2009). LTO batteries are considered one of the safest li-ion batteries 

available due to low thermal runaway (Adamec, Danko, Taraba, & Drgona, 2019). LTO 

batteries can be used for applications with lower operating temperatures as compared 

to NMC and NCA. LTO batteries have a longer cycle life of around 3000 to 7000 cycles, 

whereas NCA and NMC batteries have 500 and 1000 cycles, respectively. The table below 

illustrates a comparison of NMC, NCA and LTO battery cells (Buchmann & Cadex, 2001). 
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 NMC NCA LTO 

Structure layered layered spinel 

Voltages 3.6 - 3.7V 3.6 V 2.4V 

Capacity 150-220 

Wh/Kg 

200 -260 Wh/Kg 50 - 80 Wh/Kg 

Charge (C- rate) 0.7 - 1C 0.7C 1C 

Discharge (C -rate) 1C 1C 10C 

Cycle Life 1000 - 2000 500 3000 - 7000 

Thermal runaway 
210℃ 150℃ 

low 

Operating 

temperatures 0 to 55 ℃ -10 to 60 ℃ -20 to 55 ℃ 

Safety Medium low High 

Applications E-bikes, 

medical 

devices, etc 

Medical devices, 

powertrains, etc. 

UPS, electric powertrains, solar- 

powered street lighting, etc. 

 

Table 2 Comparison of characteristics of NMC, NCA and LTO batteries (Adamec et al., 

2019) 

 

 
2.4 State of Charge (SOC) 

 
The state of charge of the battery is defined as the current cell capacity; it is relative to 

its rated capacity in certain conditions but generally relative to its present capacity to 

reduce the error ambiguity. In other words, it is the ratio of current capacity (Q(t)) to the 
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nominal capacity (Qn). The nominal capacity is the capacity of a new cell and is generally 

provided by the manufacturer. The SOC level ranges from 0% to 100%, depending on the 

level of battery charge. In the case of grid application, it is defined in energy kilowatt- 

hours (kWh) (Abdi, Mohammadi-ivatloo, Javadi, Khodaei, & Dehnavi, 2017). 

 
The battery's total capacity or nominal capacity is the maximum amount that can be 

drawn from a fully charged battery cell. This value varies as the battery life decreases 

due to certain factors such as temperature, ageing, etc. The residual capacity of the 

battery is the amount of charge that can be withdrawn from the current state of the 

battery compared to its nominal state (Narayan, 2017). Mathematically SOC is described 

as follows (Sundén, 2019): 

 

 

𝑆𝑂𝐶 (𝑡) =  
𝑄(𝑡)

𝑄𝑛
 (4)

SOC plays as a critical component in battery management systems as it describes the 

level of battery charge available, this also helps to evaluate various elements such as 

battery lifetime, development of BMS, battery ageing, EMS, etc. (Barré et al., 2013; 

Garcia, Fernandez, Garcia, & Jurado, 2009; Haq et al., 2014; Wikner & Thiringer, 2018). 

Various methods can be used to determine the SOC of a battery. These methods help 

estimate the SOC levels of the battery. It is vital to have higher accuracy, smoothness, 

and high robust SOC estimation techniques to achieve high efficiency and safety. Figure 

5 below illustrates the various definitions of SOC of a battery (Baba & Adachi, 2014). 
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Figure 5 SOC definitions of a battery 
 

 

The SOC of the battery can be estimated through various method possible; the primary 

classification is of these methods is given below as follows: 

 Direct measurement – This method is known to be dependent on the physical 

properties of the battery. This method works mainly with the voltage and 

impedance of the battery cell. In some of its methods, longer rest times are 

required increasing the time consumption for this system. It has lower dynamics 

and is sensitive to temperatures. 

 Book-keeping estimation – The book-keeping method uses the discharging 

current as of the input and integrates it over time to calculate the SOC. It is 

suitable for tracking rapid changes in SOC levels. 

 Adaptive systems – Adaptive systems are delf design system which can adapt and 

adjust the SOC for various discharging conditions. It is regarded as the future for 

SOC estimation, but it requires heavy training data for higher accuracy. 

 Hybrid methods – A global optimal estimation performance is available from this 

method as it benefits from various advantages of the SOC estimation. They are 
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known to show the highest accuracy as compared to the rest but require heavy 

data as well as being time-consuming (Chang, 2013) (Ng et al., 2009) 

 
2.5 Open circuit Voltage (OCV) 

 
Open circuit voltage (OCV) is defined as the potential difference between the positive 

and negative electrodes of the battery cell when there is no current flow and the cell is 

in an equilibrium state. In other words, it can be described as the steady-state voltage at 

a terminal of a battery under open circuit condition. OCV also plays an important in 

understanding the performance of the battery. OCV is modelled as an ideal voltage 

source. The OCV of a battery is highly affected by a change in SOC of the battery; 

similarly, temperature also affects the OCV. The OCV-SOC relation differs from battery 

chemistries as well as per different temperatures and ageing of the battery. Thus, OCV- 

SOC relation has been studied in this thesis by conducting tests at different SOC levels 

and temperatures for both charging and discharging (Chang, 2013). 

 
2.6 Battery modelling techniques 

 
The non-linear performance of Li-ion batteries makes modelling the dynamic behaviour 

extremely difficult. This non-linear nature is also affected by various other parameters 

such as SOC, operating temperature, ageing, current rate, etc. Li-ion batteries are 

generally modelled as an ideal DC voltage source or mathematical models (Aristizábal 

et al., 2019; Tariq, Maswood, Gajanayake, & Gupta, 2018). Math based kinetic battery 

models (KBM) were initially developed for lead-acid batteries. Although KBM were 

widely popular, they failed to investigate the non-linear behaviour of the battery. Later, 

researchers developed a wide range of models depending on the complexity to model 

the batteries (Chauhan, Reddy, Bhandari, & Panda, 2018; Manwell & McGowan, 1993; 

Thanagasundram, Arunachala, Makinejad, Teutsch, & Jossen, 2012a). 

 
There are various battery modelling methods such as electrochemical, electrical 

equivalent circuit modelling, thermal models, empirical models, etc. These battery 
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models have different approaches depending on the level of complexity, accuracy and 

parameterisation requirement depending on the application of the battery. Battery 

modelling has been classified into four main sections: Empirical models, Equivalent 

circuit models, electrochemical models, and data-driven models. These models are 

derived from electrochemical modelling and thus, play a different role in modelling a 

battery. Some of these models are described in this section (Meng et al., 2018a). Figure 

6 below illustrates the classification of battery modelling: 

 
 

 
 

Figure 6 Battery modelling method - classification (Meng et al., 2018b) 
 

 
2.6.1 Electrochemical Model 

 
Electrochemical models, as the name suggests, work with the electrochemical process 

inside the battery during the battery charging and discharging, which provides the user 

precise information about the lithium concentrations and the over-potentials in the 

battery. This information is vital to reduce specific side effects in the battery to keep the 

battery in safer conditions. This model was developed by Doyle-Fuller-Newman, 

depicting important aspects in Lithium-ion battery such as reaction kinetics, diffusion 

and migration (Doyle & Newman, 1995). The Electrochemical models are further 

classified  into  two  types,  viz:  pseudo  2D  model  and  single-particle  models.  The 
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electrochemical models are known for its computational efficiency providing higher 

efficiency in voltage calculation. The main disadvantage of using this model is the 

complexity involved due to the use of partial differential equations, which can increase 

decrease the accuracy in different conditions (Tomasov, Kajanova, Bracinik, & Motyka, 

2019)  (Dees, Battaglia, & Bélanger, 2002) 

 
2.6.2 Empirical Model 

 
In this type of battery modelling, the terminal voltage is described as the voltage used 

for representing the SOC and current mathematically. This type of modelling is 

considered the simplified version of electrochemical battery modelling. The polynomial 

expression in  this model  is reduced  compared  to the  electrochemical model  as  it 

represents the required non-linear characteristics of the battery. There are five 

categories in the empirical model, and they are as follows: Shepherd model, Unnewehr 

universal model, Nerst model, enhanced self-correcting model and zero- hysteresis 

model. The empirical models are known for its simplicity, but this affects the model's 

accuracy as it limits the capability of describing the terminal voltages (Moore & Eshani, 

1996). Further comparison between empirical models and equivalent circuit models is 

described by Hussein (Hussein & Batarseh, 2011) 

 

2.6.3 Data-driven model 

 
This method uses different data mining methods, which are rapidly developing in the 

current scenario. The use of machine learning is the base of data-driven models used to 

draw relations between various variable required for estimation without any prior 

knowledge. This type of battery modelling requires sample data that acts as the historical 

data of the measurement, which is established from the training process. This model 

uses the historical data and compares it with real-time data to estimate the behaviour 

intended depending on different scenarios considering the required parameters: SOC, 

temperature, voltage and current. There are four types of data-driven models: neural 

network, SVM model, radial basis function neural network model and ELM models 
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(Meng et al., 2018c). This model type is known for its accuracy as well as no prior 

knowledge is required for running this model. The disadvantage of using a data-driven 

model is difficulty in collecting training data samples which can significantly affect the 

accuracy of the model (Li, He, Su, & Zhao, 2020; Meng et al., 2018). 

 
2.6.4 Equivalent circuit model 

 
Electrical equivalent circuit models (ECM) use a combination of electrical components 

by lumping together battery dynamic such as voltage, resistors, capacitors as well as 

certain non-linear elements. The ECM consist of an open circuit voltage source with 

specific electrical parameters. It uses resistor-capacitor branches and current inputs. It 

is one of the most widely used battery modelling techniques due to its high accuracy and 

sufficient complexity. The design of ECM models is simple and depends on the user's 

accuracy requirement, which also reduces the computational simulation requirement 

significantly. ECM models are made up of three major parts, viz; static part to represent 

the thermodynamics of the battery chemistry, a source and load and a dynamic part 

determining the cell impedance behaviour (Yann Liaw, Nagasubramanian, Jungst, & 

Doughty, 2004). ECMs are less complex as compared to empirical models. ECM models 

are known for the representation of static and dynamic behaviour. Thus, ECM is 

considered the best option for operation with the use of Kalman filters and least square- 

based filters. Therefore, ECM models are best implemented for the benefit of BMS 

systems. The ECM is categorised into four types, namely the RINT model, Thevenin 

models, PNGV model and GNL model. (Waag, Fleischer, & Sauer, 2014) 

 
The ECM model subcategories are interrelated concerning the model's design and are 

used depending upon the accuracy and complexity requirement. Thevenin's model is 

generally preferred in many applications due to sufficient accuracy and complexity. 

Thevenin's model considers all the significant electrical parameter, and it has higher 

accuracy than the RINT model. In its most basic forms, Thevenin's model consists of an 

open circuit voltage source followed by a series resistor and an RC parallel branch, used 

to estimate the transient load voltages at different SOC levels (Bustos, Siddique, Cheema, 
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Gadsden, & Mahmud, 2018). Figure 7 below illustrates Thevenin's' model 

representation: 

 

Figure 7 Thevenin's second-order equivalent circuit 
 

 
The second-order equivalent circuit model is one of the most popular models due to the 

simplicity and high accuracy rate. Figure 7 above describes Thevenin's second-order 

circuit; it consists of an open circuit voltage source followed by a series resistor. It is 

further series connected to two parallel RC branches. These RC branches consist of 

activation polarisation represented by R1 and R2 and similar concentration polarisation 

byR2 and C2 in the second branch. Thevenin's model is extensively used, but after the 

second-order, the accuracy change is negligible but increases the computational time 

and complexity. Thevenin's second-order equivalent model is regarded as the 

benchmark in lithium-ion battery models. Thus, this dissertation uses a second-order 

equivalent circuit for battery performance modelling of the LTO battery cell (Arunachala, 

2018). 
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3 Characterisation analysis of LTO battery. 

 
Lithium-ion batteries are used widely in the field of smart grid application for various 

purposes. The need for these applications changes from time to time as different goals 

are to be achieved. The performance of any battery is needed to be assessed before it is 

employed for any application. Similarly, the battery behaviour and lifetime are required 

to be monitored and necessary steps need to be taken to enhance these parameters. 

This is achieved by using a Battery management system (BMS). Several parameters affect 

the battery behaviour and performance, such as the State of Charge (SOC), temperature, 

open-circuit voltage (OCV), cell polarisation, etc. (Hua, Zhang, & Offer, 2021). 

 
Lithium titanate batteries are increasingly used in various applications, particularly in the 

field of grid application. It is necessary to evaluate the performance and behaviour under 

various circumstances. It is essential to predict the batteries behaviour and performance 

under different operating conditions such as temperature and SOC levels. Battery 

modelling is a set of equations used under a particular condition, depending upon the 

requirement, complexity and accuracy and is significant in predicting the behaviour of 

the battery (Wang, Jiang, Li, & Yan, 2016). There are various performance models 

available which consider multiple aspects of the battery to assess the required strategies 

and requirement of the battery for a certain ESS. Although modelling of a battery is a 

complex methodology due to the non-linear behaviour, it is essential to use an accurate 

modelling type for any battery as per the need of the application. Therefore, in this 

thesis, the performance modelling of the LTO battery cell is performed by using a second- 

order equivalent circuit; the parameter estimation required for the modelling for the 

battery is achieved by conduction extensive laboratory tests, as explained in the 

following section. 
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3.1 Characterization LTO battery cell 

 
LTO battery is being used in various applications such as grid systems which makes it very 

important to understand the behaviour of the battery under different conditions. Li-ion 

batteries are non-linear systems that are complex due to electrochemical processes, 

various dynamic parameters, internal resistance, capacity, open-circuit voltages, etc. 

Thus, it becomes imperative to model the performance of the battery. As stated in the 

previous section, various models require different parameters to provide useful 

information to estimate the battery behaviour. It is crucial to parameterise these 

functional elements required for modelling with maximum accuracy. In order to 

thoroughly parameterise the battery performance modelling, comprehensive laboratory 

tests are needed to be performed (Stroe, 2018). 

 
Thus, a procedure has been developed to characterise the battery behaviour under 

monitored conditions: at four different temperature levels (15°C, 25°C, 35°C and 45°C) 

inside a thermal chamber as well as at different SOC level – at 10% interval ranging from 

100% - 10 %. This characterisation test is called as Hybrid Pulse Power Characterization 

(HPPC) test. The HPPC tests are widely popular and recommended by the U.S. 

Department of Energy as it is used to determine the internal resistance, capacity, open- 

circuit voltage under the required conditions (Belt, 2010). Details of this methodology 

are presented in the further sections. 

 
3.2 Lithium-ion battery cells used in this research 

 
The table below describes the LTO battery cell specifications used in this project: 

 

Product Name LTO Battery Cell 

Rated capacity 2.9 Ah 

Nominal Voltage 2.4 V 

Minimum Voltage 1.6 V 

Maximum Voltage 2.6 V 

Table 3 LTO battery cell specifications 
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3.3 Battery cell holder 

 
The LTO battery used in this thesis is a pouch cell and the battery dimensions are 10 cm 

in height, 6 cm in length and 1 cm in width. The LTO battery, with the weight of the higher 

cross-sectional cables attached to the battery and with lower battery width, makes it 

difficult for the battery to be in the upright position. Thus, it was necessary to develop a 

battery holder for the battery cell. The battery holder was designed using Autodesk 

Inventor software. 

 
 

 
 

 
Figure 8 Construction of pouch cell and 2.9Ah LTO battery cell (from left to right) 

 

The battery cell holder was developed using the Autodesk Inventor software. The design 

of the cell holder is simplistic in nature; it works as the battery cell holder with the 

battery being placed on the top. The battery holder is rectangular in shape, similar to 

the battery and has sufficient room for air to travel to avoid battery heating due to the 

holder. The battery holder is 10 cm in height, 10 cm in length and 3.6 cm in width. The 

battery holder contains a cavity for the battery to be placed with is 7 cm in height, 7 cm 

in length and 1.6 cm in width. The cavity is provided with extra space in length and width 

to allow enough room for the battery during the expansion due to higher operating 
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temperature. The battery holder cavity is enough to place around 70% of the battery 

height so that sufficient room is provided for the cable to be connected, blocking any 

contact between the 3D printing material and open cables. 

 
 

 

Figure 9 3D printed battery holder design (Autodesk Inventor) 
 

 
The battery cell holder was manufactured with the Ultimaker S3- 3D printer. The 

Ultimaker 3D printer utilises various types of filaments for 3D printing, such as ABS, PLA, 

PTEG, etc. As the experimental tests were conducted at temperatures above 40 °C, the 

material used for the 3D printed holder used was Acrylonitrile Butadiene Styrene (ABS). 

ABS is an opaque thermoplastic and amorphous polymer. This polymer is very popular 

due to its temperature withstanding heat and resistance to impact. The material can 

withstand temperatures ranging from -20°C to 80°C, making it the best candidate for the 

project (Wojtyła, Klama, & Baran, 2017). Ultrafuse Butenediol vinyl alcohol co-polymer 

(BVOH) water-soluble support filament was used for the 3D printing. Figure 9 above 

illustrates the design of the battery holder. The structural opening in the design helps in 

reducing unnecessary temperature rise to allows airflow throughout the structure. The 

design consisted of 30% infill with grid mesh infill patterns reducing the weight and 

maintaining the overall strength. 
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Figure 10 3D printed battery cell holder 
 

3.4 HPPC characterisation test 

 
The HPPC test procedure consists of high current charge/discharge pulses; the effects of 

these pulses are utilized to calculate the battery cell's pulse power and various energy 

capabilities. The HPPC test is generally employed while using ECM modelling technique 

and multiple studies are conducted using simple resistor and resistor-capacitor branches 

for ECM models. The parameters obtained from the HPPC test are used in modelling the 

ECM mode as well, as it helps to comprehend the relationship between various elements 

such as OCV – SOC. The primary purpose of the HPPC test is to measure resistance and 

power during charging and discharging at different SOC levels (Pattipati, Sankavaram, & 

Pattipati, 2011; Samadani, Lo, Fowler, Fraser, & Gimenez, 2013; Yuan, Wu, & Yin, 2013). 

 
The HPPC test procedure consists of various steps required to measure the dynamic 

power capability of the battery during both the charging and discharging pulse of the 

battery. The HPPC test approach is used to linearise the battery behaviour at a certain 

point of life centred on repetitive test cycling nature at different SOC levels of the battery 

and different temperature conditions. This test is intended to result in understanding the 

battery behaviour under these conditions. As LTO battery is known for its working at 

lower as well as higher temperatures as stated in the earlier section, the HPPC test aims 
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to examine the battery behaviour at 15°C, 25°C, 35°C and 45°C (Zhang, Mu, Zhang, & 

Han, 2014) (Buchmann & Cadex, 2001). 

 
HPPC test is utilised to estimate the parameters required for the second-order equivalent 

circuit. The HPPC test can precisely describe the internal characterises of the battery, 

which is vital due to the relationship between operating conditions and model 

parameters. In the HPPC test measurement, current pulses are applied during the 

discharging of the battery for few seconds. Thus, different parameters can be identified 

by studying the corresponding part of the battery voltage response. The battery cell 

impedance is known to be affected by parameters such as SOC, temperature, current, 

etc. Therefore, it is recommended to conduct an HPPC test at different temperatures and 

SOC levels (Yang, Xu, Cao, & Li, 2017) (Stroe, Ana-Irina et al., 2018) (Arunachala, 2018). 

The following section describes certain important technical aspects required for studying 

the HPPC test procedure. 

 
3.5 Experimental set-up 

 
The experiment of the HPPC test is conducted under a controlled environment on the 

LTO battery cell to control the temperature during the experiment. Thus, the use of the 

WEISS Technik climate test chamber was employed. This temperature chamber is used 

to control the temperature at four different temperatures. The experiment requires 

Neware Battery Cell Testing Equipment (BTS8000 model). The Neware equipment 

enables to record data at an application frequency of 10 Hz. The following section 

illustrates the experimental setup used in the thesis. 

 
High power 2.9 Ah LTO battery cell was used in the HPPC experiment. The specifications 

below indicate the model specification for Neware BTS-8000 equipment used in the 

thesis: 
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Channels per unit 4 

Four wire measurement Yes 

Maximum charging current (A) 300 

Minimum charging current (A) -300 

Voltage range during charging/ discharging (V) +5 to 0 

Time resolution (ms) 1 

Current range (Charge/Discharge) 1A to 300A 

 

Table 4 Neware BTS-800 model specification 
 
 

Figure 11 below illustrates the WEISS Technik weather chamber and Neware Battery Cell 

Testing Equipment (BTSDA 8000 software model) used in the experiment: 

 
 

 
 
 

Figure 11 WEISS Technik weather chamber and Neware BTS-8000 model 
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The battery is connected with a thermocouple which helps to monitor the battery 

temperature due to the difference between battery temperature and internal 

temperature due to battery characteristics. The battery cell is connected to the battery 

testing equipment with AIV 20 mm2 cross-section power cables with ring terminals. 

Figure 12 below indicates the LTO battery connection with the Neware battery cell 

testing equipment: 

 

 

Figure 12 Experimental set-up of LTO battery in WEISS Technik Weather chamber 
 

The basic HPPC test is generally started directly by charging the battery, but in this 

project, for safety reasons and higher stability, the charging and discharging was first 

implemented, followed by the HPPC test. The battery charging and discharging test 

involves connecting the battery and resting the battery in the thermal chamber for 1 

hour. The battery is then charged with a constant current/constant voltage (CCCV) charge 

pulse until the upper cut-off voltage limit is met. The upper voltage cut off for the Toshiba 

battery is 2.9 V. A rest of 10 minutes is provided for the battery to settle at the cut off 

voltage.  A constant current discharge pulse follows it up to the rated voltage   
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requirement: this is followed by a rest of 10 minutes. Thus, the charging and discharging of the 

battery is completed. Figure 13 below illustrates the constant current charging and discharging 

curves representing current on the y-axis and time on the x-axis. 

 
 

 
 

 
Figure 13 Schematic representation of the constant current curve 

 

The procedure for the HPPC test is conducted after the charging-discharging is completed. In 

this test, the cells were pulse discharged at 10% SOC step starting from 100% SOC, i.e., fully 

charged battery. The procedure for the HPPC test employed in this thesis is described as follows: 

 
1. Fully charging the battery to the upper cut of voltage with CCCV pulse (2.6 V) 

2. Resting the battery for 1 hour to obtain the equilibrium 

3. Applying a Constant Current (CC) discharge pulse for a span of 10 s 

4. Resting the battery for 40 s 

5. Applying a Constant Current (CC) charge pulse for 10 s 

6. Discharging the battery until the next SOC step is reached 
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The procedure repeats steps 3 – 6 until all SOC levels are reached and for different 

temperatures. Figure 14 below shows the HPPC test results - current profile. The results 

for other temperatures are discussed in the results and discussion chapter. 

 
 

 

Figure 14 Current profile from HPPC test 
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4 Modelling of LTO battery cell 

 
As described in section 2.6.4, Thevenin's second-order equivalent circuit model is the 

most suitable modelling technique for this thesis. Thevenin's second-order equivalent 

circuit is known for its versatility and will successfully emulate the parameters required 

for the modelling methods. Given the necessary experimental analysis, this technique 

will emulate the working of Li-ion batteries at different operating conditions, i.e., SOC, 

C-rate, temperature and ageing. This modelling technique replicates the hysteresis 

effects in the cell and its self-charge characteristics, too (Parthasarathy, Hafezi, & 

Laaksonen, 2020). The ECM technique is stated as a stated benchmark model for 

Lithium-ion batteries due to its accurate depiction of diffusion, charge transfer and solid 

electrolyte interface (SEI) reaction in the form of the resistors and capacitors (Gao, 

Zhang, Yang, & Guo, 2018). 

 
The proposed Thevenin's second-order equivalent circuit (SOEC) is illustrated in Figure 

15 below. This proposed model uses variable parameter reading documented during the 

HPPC tests performed at different temperatures and SOC levels. The circuit parameters 

required in the ECM modelling technique are determined from the HPPC tests conducted 

in the laboratory. These recorded parameters from the experimental tests are used to 

parametrise the required ECM elements, which is stated in the following section. The 

proposed SOEC cell model is developed using the Simscape platform of Matlab/Simulink. 

 
 

 

Figure 15 Proposed second-order equivalent circuit 
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4.1 Parameter Estimation 

 
The OCV is recognised as the protagonist for the parameter estimation and identification 

of the battery system as it is strongly related to the State of Charge (SOC) of the battery 

and State of Health (SOH). The relationship between the OCV and SOC curve is very 

useful in understanding the battery characteristics such as SOC estimation and SOH 

estimation. This is vital, especially when using a Battery management system (BMS) for 

simulating the internal battery charge and discharge with the highest accuracy. Thus, a 

physical model is preferred for applications such as grid systems which require higher 

efficiency and accuracy. Thevenin's second-order equivalent circuit is best suited for this 

purpose (Locorotondo, Berzi, Platz, Nuffer, & Rauschenbach, 2018). 

 

The SOEC is known for its accuracy and flexibility and can be embedded into a micro- 

controller to provide real-time results of the battery output. The components in this 

SOEC include the open-circuit voltage and the series resistance (Ri) followed by the two 

parallel polarisation networks viz: R1, C1 and R2, C2. The OCV, as stated earlier, is an 

essential component in this system; it states the ideal voltage generator and is variable 

concerning the SOC. The series resistance Ri) represents the internal resistance in the 

system responsible for the voltage drop and rise during the charging and discharging 

process. The first parallel polarisation network with components R1 and C1 is known for 

representing the faster dynamics that depict the battery surface effects on the 

electrodes and the reaction kinetic. These components individually represent the charge 

transfer resistance (R1) and double-layered electrochemical capacitance (C1). The 

second polarisation network with components R2 and C2 are representing the slower 

dynamics of the battery system. The diffusion process and the active network in the 

battery are more dependent on this network (Lee et al., 2006; Thanagasundram, 

Arunachala, Makinejad, Teutsch, & Jossen, 2012b). 
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Figure 16 SOEC battery model - Matlab/Simulink 
 

 
The HPPC characterisation tests conducted on the LTO battery cell is used dot capture 

the data for OCV at different stages during the experiment. The OCV data is recorded at 

the end of each rest phase after the high current charge after the discharge pulse is 

injected. The OCV recorded at this point also states that the voltage has attained a 

steady-state value (Locorotondo et al., 2018). The other parameters are calculated using 

the same HPPC characterisation tests results. The voltage response from the 

characterisation tests is recorded and it is used to calculated other parameters in the 

SOEC model. 

 
The ohmic resistance value is observed and recorded from the instantaneous voltage 

drop immediately after the current pulse is applied. The initial period close to 0.1s, 

where the voltage drop is linear, is used to calculate the value of Ri. From Ohm's Law, Ri 

was calculated from equation 5. Here, the value of V0 is recorded before the current 

pulse is applied (OCV) and V1 is the measured voltage after a second resolution span, 

and I is the current pulse amplitude. 

𝑅𝑖 =
𝑉0 − 𝑉1

𝐼
 (5) 
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The two RC parallel network values are based on time transients, as described in the 

equation below. As described earlier, the first RC network represents the fast voltage 

response dynamics, and the second RC network represents the slow voltage 

response dynamics. These transients are described in equation 6 and 7, respectively. 

𝑇1 =  𝑅1𝐶1 (6) 

 

𝑇2 =  𝑅2𝐶2 (7) 

Thus, by using Kirchhoff's current lar in the first RC network, the current charging 

capacitor C1 must be equal to the current through resistor R1. Similarly, for the second 

RC network where t3 and t2 represent the starting and ending of the slow voltage 

process. Additionally, the values of R1 and R2 were calculated by employing Ohm's Law: 

𝑅1 =
𝑉1 − 𝑉2

𝐼
 (8) 

 

                                                         𝑅2 =
𝑉2 − 𝑉3

𝐼
                                                   (9) 

Here, the voltage values were calculated at the same points as the respective time 

transients, i.e., V1, V2, and V3, calculated at time points t1, t2 and t3, respectively. The 

values for capacitance were calculated by using the already estimated values and the 

equation is as follows: 

𝐶1 =
𝜏1

𝑅1
(10) 

 

𝐶2 =
𝜏2

𝑅2
(11) 
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Thus, the values estimated from the SOEC parameters were further used in simulating 

the battery voltage by using the below equation. The obtained result was compared with 

the results obtained from the laboratory experiments. The voltage equation is given 

below as follows: 

𝑉(𝑡) = 𝑉𝑂𝐶𝑉 + 𝐼(𝑡)𝑅𝑖 + 𝐼(𝑡)𝑅1 (1 −  𝑒(−
𝑡

𝑡1
)) + 𝐼(𝑡)𝑅2 (1 − 𝑒(−

𝑡
𝑡2

)) (12)

The least-square curve fitting methodology is widely popular for any given data. It is 

used to understand and determine the position of a trend line for any time series. In this 

method, the mathematical relation is recognised in the time factor and other variables. 

The curve consisting of minimum deviations is regarded as the best fit in this 

methodology. Various measurements are combined to derive the parameters that 

specify the curve for the best fit (Molugaram & Rao, 2017a; Molugaram & Rao, 2017b; 

Nixon & Aguado, 2012). In Simscape, Matlab software uses the least square data fitting 

technique, which requires a parametric model related to the response data of the 

predictor data with one or more coefficients. The least-square curve fitting used in this 

thesis takes various variables into consideration, such as Ri_init, R1_init, R2_init, C1_init 

and C2_init. These values are the product of the HPPC characterisation test. The use of 

a lower bound and upper bound is also considered in the calculation. The equation 

below states the least square curve fit methodology: 

𝑚𝑖𝑛+ ǁ𝐹(𝑥, 𝑥𝑑𝑎𝑡𝑎) − 𝑦𝑑𝑎𝑡𝑎ǁ* = 𝑚𝑖𝑛  𝛴 (𝐹(𝑥, 𝑥𝑑𝑎𝑡𝑎) − 𝑦𝑑𝑎𝑡𝑎)*
 

Here, the given input data is x-data and the observed output y-data, where x-data and 

y-data are matrices of the vectors. F(x, xdata) is matrix values of the same size as y-data. 

It also uses the lower and upper bound of the matrices. The lsqcurvefit provides a 

convenient and straightforward interface for data fitting problems. Rather than 

compute the sum of squares, lsqcurvefit requires the user-defined function to compute 

the vector-valued function 

 
Figure 16 depicts the Simscape version SOEC model for LTO battery cell modelling. AS 

stated in the early section, it consists of six main components. Figure 16 illustrates 
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various elements used in the model recorded from the HPPC characterisation test. The 

two parallel networks required in this model needed to be parametrised using the HPPC 

tests records. Thus, the 10-sec pulse was divided into two more points; the first shows 

the short transient, whereas the second is used to indicate the longer transient and are 

represented by T1 and T2, respectively. The values determined from these two-time 

transients are used to estimate Ri, R1, R2, C1 and C2 using the above formulas from 1-5. 

The values obtained are fed to equation 6, thus simulating the voltage of the LTO battery 

cell. Calculated values at different SOC's and temperatures are then normalised using 

lsqcurvefit in Matlab, which provides a least-squares fitting methodology for non-linear 

data. The voltage response curve obtained from the HPPC characterization tests is 

illustrated in Figure 17 below: 

 

Figure 17 Voltage response 
 

The parameter estimation required for the modelling technique was calculated as stated 

in the equations 5 – 12; the representation of these equations was performed in 

Simscape Matlab software. The result data collection from the HPPC experimental tests 

is imported into the Matlab software. Appendix A – HPPC test Data sorting imports this 

data from excel (.xls) files. The required data is sorted in different timeslots depending 

upon different breakpoints depicting various stages. Similarly, the data sorting for four 

operating temperatures is achieved in this code. 
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Appendix B – Parameter estimation 1 states this representation in Matlab software in a 

structured code. The code initially imports the required data from the excel (.xls) files; 

the OCV is calculated from this data at a designated point. The data from Appendix A – 

HPPC test Data sorting is used to calculate the initial five elements Ri, R1, R2, C1 and C2. 

The initial elements are calculated by using the slow and fast transient characteristics. 

The least square curve fitting methodology is used, which also takes the lower and upper 

bound into consideration (0 and 100 respectively). Thus, the values of Ri, R1, R2, C1 and 

C2 are calculated and sorted as per the requirement in Simulink software. Similarly, 

voltage, current and time span are sorted from the HPPC test data. The procedure is 

repeated for all four temperatures. 

 
The data from Appendix B – Parameter estimation 1 is then loaded in Appendix C – 

Parameter estimation 2, where the results are sorted in various tables separately with 

respect to the operating temperatures. The result is loaded to the Simulink workspace 

required for the simulation. 

 
 

Figure 18 depicts the evolution of the ECM parameters concerning time and SOC on a 3- 

dimensional plot. Figure 4 (a) represents the Ri of the cell pertaining to ΔV0 in the HPPC 

response curve. The Ri value is proportional to SOC and inversely proportional to 

temperature. Similarly, Figure 4 (b) and (c) illustrates short transient parameters of the 

RC branch network derived from the voltage (ΔV1). Figure 4 (d) and (e) represent the 

long transient parameters of the RC branch network and are derived from the voltage 

(ΔV2), which is assumed to describe the dynamics during the diffusion process of cell 

operation. The least-squares fitting methodology for non-linear data is used to calculate 

values at different SOCs and temperatures. OCV values decrease over time and are 

shown in Fig 4(f). 
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(a) (b) 

 

 
 

(c) (d) 

 

 
 

(e) (f) 

 

Figure 18 ECM parameters at different SOC levels and temperatures 
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4.2 SOC estimation using the coulomb counting method 

 
The next step in modelling the LTO battery cell includes the estimation of the SOC of the 

battery. It is one of the most important aspects of any BMS system to provide the SOC 

estimate. In grid systems, similar to the other battery operations, the BMS system is 

required to optimise the overall performance of the battery from time to time, which is 

used to determine the most optimal strategy for the application of the battery cell. Thus, 

SOC is calculated in different sections. As stated earlier, SOC estimation is the ratio of the 

current Ampere-Hour (Ah) to the total available Ampere-Hour (AH) at the initial 

condition (Ng et al., 2009). 

 
Coulomb counting SOC estimation method 

 
It is essential to have a precise SOC estimation as per the application's need in order to 

avoid unwanted interruptions in the system during the application, especially in the case 

of smart grid systems where precision and speed is essential. SOC estimation such as 

adaptive systems and direct measurements are not generally considered best suited due 

to the time requirement and low accuracy. Various factors affect the accuracy of the 

SOC estimation in the direct measurement system and. In contrast, adaptive systems 

are crucial estimation model for the future due to sophisticated accuracy levels but 

require sufficient training data for good precision. The book-estimation methodology is 

one of the best-suited models due to its simplistic design, flexibility and high accuracy 

(Guo & He, 2018; Ng et al., 2009) 

 
The SOC is calculated by the coulomb counting/ampere-hour method in this thesis. This 

method generally measures the battery current and integrates the current overtime to 

estimate the SOC of the battery. This methodology is suitable for applications where 

higher precision is required as it is known for monitoring the rapid fluctuations in SOC. 

The coulomb counting method provides higher accuracy at minimal computation effort 

due to lower noise levels in the environment. The initial value of the SOC0 is known at 

the time t0, then the battery SOC at any specific time t can be calculated by using the 
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below formula (Chang, 2013; Guo & He, 2018; Jeon, Yun, & Bae, 2015; Zhao, L., Lin, & 

Chen, 2016): 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) +  
𝐼(𝑡)

𝑄𝑛
 ∆𝑡 (13) 

 

Several factors such as temperature, battery ageing, history of usage, initial SOC and 

cycle life all affect the precision of the coulomb counting methodology. If any initial 

errors occur in recording the initial current value I then the accuracy of this method is 

affected, causing more significant errors in estimation. Thus, the accuracy of the current 

measurement plays an important role in achieving higher accuracy in the coulomb 

counting method for SOC estimation (Attanayaka, Karunadasa, & Hemapala, 2019; Jeon 

et al., 2015; Ng et al., 2009). However, in this work, the initial SOC values and current 

measurements are provided by the experimentation with Neware BTS8000 cycler, which 

has high accuracy in measurements. Thus, the Coulomb counting method provides the 

least computational burden in SOC calculation and the highest prediction accuracy 

(Nemounehkhah et al., 2020). The representation of the coulomb counting method in 

the Simscape Matlab/Simulink software is illustrated in the Figure 19 below: 

 
 
 

Figure 19 Coulomb counting SOC estimation method (Simscape Matlab/Simulink 

software) 
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As stated earlier, the input required for the coulomb counting method is current and 

SOC. Thus, the information is fed to the block from current to an integrator used in 

Simulink to give an output of the value of the integral of the input signal with respect to 

time. This is important as time span plays an important factor in this methodology. It is 

further fed ahead with a constant value and together, it is compared with the actual 

capacity of the LTO battery cell, which in this case is 3.7046 mAh. They are compared 

and calculated ahead with the nominal capacity Qe_init. 

 
Furthermore, it is fed to a saturation block, giving an output signal with respect to the 

upper and lower bounds applied for the process. Thus, the SOC is estimated using the 

coulomb counting methodology. Figure 20 below illustrates the output of SOC 

estimation by coulomb counting: 

 
 

 

Figure 20 SOC estimation output (coulomb counting method) 
 

 
The data analysed in the earlier step of modelling was stored and fed to the developed 

Simulink software model. Figure 21 below illustrates the primary model developed in 

Simscape Simulink: 
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Figure 21 Battery model 
 

 
The battery model consists of the SOC estimation model, battery parameter estimation 

model and the SOEC model. Figure 22 below illustrate the three developed models. 

 

Figure 22 SOC estimation model, battery parameter estimation model and the SOEC 

model 

The parameter estimation block uses the output from the SOC calculation block as well 

as the operating temperature. This block takes these two values and is used as 

breakpoints for the 2-D lookup table for different variables. The Lookup table uses the 
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Akima spline interpolation method. The below illustrates the parameter estimation 

block developed in Simscape Simulink software. 

 
 

 

 

Figure 23 Parameter estimation block 
 

 
The results of these models were recorded at different temperatures and SOC levels 

similar to that of the HPPC test results. The results from these two tests were 

superimposed to understand the difference in the results reported by the modelling of 

the battery cell. Similarly, the results between the tests were studied to find the error 

difference between these tests. 
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5 Results and Discussion 

 
In this thesis, the proposed research of analysing the characteristics behaviour of the 

Toshiba LTO battery cell at different SOC levels and four different temperatures were 

achieved in this thesis. The characterisation was achieved by using experimental tests 

conducted in VEBIC labs at the University of Vaasa. The HPPC test was conducted for the 

characterisation of the battery cell. This was followed by modelling the battery cell to 

understand the behaviour and compare the modelling results with the experimental 

results of the battery. 

 
For the characterisation of the battery, the hybrid pulse power characterisation tests 

were employed in the laboratories. The use of WEISS Technik weather chamber and 

Neware Battery cell testing equipment's were utilised for testing the battery cell. The 

HPPC test procedure was developed in a stepwise manner keeping various safety 

considerations as the top priority. The Toshiba LTO battery cell used in this experiment 

was a weather chamber at four different temperatures 15°C, 25°C, 35°C and 45°C. The 

LTO battery cells are known for their working even at lower temperatures. Thus, the 

lowest temperature decided for testing was 15°C. The characterisation test procedure 

carried out a specific script developed in the Neware battery cell testing equipment 

software, BTSDA-8000 model. The battery parameters such as open-circuit voltage, 

internal resistance and the power capability of the battery were recorded during the 

HPPC test at different SOC levels ranging from 0% to 100% at 10% interval. The 

measurements mentioned earlier were recorded during the discharging of the battery 

cell. The results from the characterisation tests were recorded and studied to understand 

the battery behaviour during the controlled situations. Various findings from the battery 

characterisation tests at different temperatures are shown below in Figure 24, Figure 25, 

Figure 26 and Figure 27: 
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Figure 25 HPPC test results at 25°C 

 

 

 
 
 
 
 

 
Figure 24 HPPC test results at 15°C 
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Figure 27 HPPC test results at 45°C 

 

 

 
 
 

 

Figure 26 HPPC test results at 35°C 
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The above figures illustrate the HPPC test results at 15°C, 25°C, 35°C and 45°C using the 

same HPPC test script developed using Neware BTSDA-8000 model software. The script 

for 35°C varied slightly but did not have any effect on the outcome of the final readings. 

The HPPC test starting voltage was always reached at 100% SOC level, which was 2.6497 

V. This value is then stepwise discharged by giving current pulses; the voltage value 

dropped slightly more in the experiments with higher temperatures compared to a lower 

temperature. This was a cumulative factor that affected the final temperature drop in 

the last SOC level across temperatures. Thus, the final voltage recorded at the end of 

each HPPC test, voltage recordings were higher at lower temperatures. In contrast, at 

that higher temperatures, the voltage readings were comparatively lower. 

 

The HPPC test characterisation experiments recordings were used in developing the 

proposed SOEC models. These models were developed, and the battery behaviour was 

recorded from the models. Both results of the experimental tests and modelled 

recordings were compared to study the accuracy of the model. 

 
The proposed SOC estimation was developed from the parameters estimated from the 

HPPC characterization tests. The SOC estimation was successfully performed using the 

coulomb counting method. In the initial stage of the coulomb counting method, the 

initial value of the SOC0 is known at the time t0, then the battery SOC at any specific time 

t is calculated. 

 

The proposed SOEC model was developed in this thesis. This modelling technique 

required various electrical parameters which were recorded from the HPPC test 

experiments. The SOEC model was developed using Simscape Matlab/Simulink software. 

The estimation of the parameters was conducted using Matlab software consisting of 

parameter estimation mathematical algorithms — the recorded BTSDA software data is 

used as the input for parameter estimation. The imported data was analysed, and data 

sorting was implemented to store the required data. The data sorting procedure is 

important to reduce the time consumed in the analysis. This data was fed as the initial 
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data for certain parameters, which were further calculated. This sorted data was in non- 

linear form and was normalised using the least square curve fit method, 'lsqcurvefit' in 

Simscape Matlab software. The output of this is stored to be used in the Simulink 

software. 

 
The validation of the SOEC model is achieved with the extracted parameters from the 

optimisation script. These parameters are used to simulate the cell voltage response for 

the LTO battery cell along with the HPPC test profile used for extraction of parameters. 

The simulated voltage response at 35°C is shown in Figure 30 below. The validation of 

the proposed model is validated from Figure 30, as the simulated voltage curve almost 

superimposes the experimental curve. Figure 34 illustrates the error percentage for the 

model at 35°C. The overall modelling error observed is approximately less than 2% for 

the range of 10% to 100% SOC levels. The model response is quite poor at SOC levels 

below 10%, with a model error percentage ranging around 5%; this is due to the abrupt 

behaviour of battery cells at lower SOC levels and exponential voltage changes during 

charge/discharge. Similar results were observed at different temperatures, i.e., 15°C, 

25°C and 45°C represented in Figure 32, Figure 33 and Figure 35 repectively. 

 
 

 

Figure 28 SOEC model performance in comparison with the experimental curve at 15°C 



59 
 

 
 
 
 
 

 
 

Figure 29 SOEC model performance in comparison with the experimental curve at 25°C 
 
 
 

 

Figure 30 SOEC model performance in comparison with the experimental curve at 35°C 
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Figure 31 SOEC model performance in comparison with the experimental curve at 45°C 
 

 

Figure 32 Comparison of error percentage at 15°C 
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Figure 33 Comparison of error percentage at 25°C 
 
 

 

 

 
Figure 34 Comparison of error percentage at 35°C 
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Figure 35 Comparison of error percentage at 45°C 
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6 Conclusion 

 
The ever-increasing GHG’s need for renewable energy sources has become evident. 

Energy storage systems are seen as the future and Li-ion batteries will play a vital role. 

The recent development in Li-ion batteries has seen various types of batteries in the 

market. LTO batteries will play an influential role in land-based smart grid applications 

due to their versatility in design and features. However, it is necessary to understand and 

observe battery behaviour at different conditions due to their non-linear behaviour. 

 
This study focuses on the LTO battery cell and its behaviour under controlled conditions. 

The study stated the battery behaviour is influenced by various aspects but mainly by 

the operating temperature and SOC level. The battery behaviour of an LTO battery cell 

at different temperatures (15°C, 25°C, 35°C and 45°C) and SOC levels (0% - 100%) were 

studied. The thesis also aims to establish an extensive SOEC model for the LTO battery 

cell to observe the parameters affecting battery behaviour. Through comprehensive 

literature, including the state of the art of Li-ion batteries have been evaluated. 

Characterization test experiments procedure were developed and conducted in the 

laboratory on the LTO battery cell. Based on the characterization tests, the SOEC battery 

model was developed, which can be used for land-based grid applications as well as 

other similar applications. 

 
The results from the simulations models were validated by comparing them with the 

experimental curves. The comparison between the simulation and experimental curves 

show extraordinary results as the error percentage of these two results was 

approximately less than 2% for the majority of the model. At lower SOC levels from 10% 

- 0% observed higher error percentage around 5%. The SOEC model structure could be 

improvised for lower SOC levels and other parameter estimation methods could be a 

possible solution for increasing the accuracy and model performance. Thus, improving 

the existing LTO battery cell model forms a basis for future studies. 
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Appendix A – HPPC test Data sorting 

 
clear 
clc 
% % Start of 15C Data 
opts  =  detectImportOptions('second_15C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table11 = readtable('second_15C.xls', opts); 
opts  =  detectImportOptions('second_15C.xls',  'Sheet','sheet2',  'Range',  'A6:T1337', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table12= readtable('second_15C.xls', opts); 
Table_1 = [Table11;Table12] 
% Table_2{:,1} = (1:51858).'; 
% Table_2(:,1) = [] 
Cap_1(1,:) = Table_1.Var3(Table_1.Var6 < -8.2); 
Cap_1(2,:) = Table_1.Var4(Table_1.Var6 < -8.2); 
Cap_1(3,:) = Table_1.Var5(Table_1.Var6 < -8.2); 
Cap_1(4,:) = Table_1.Var6(Table_1.Var6 < -8.2); 
Cap_1 = Cap_1'; 
save HPPC_Test_LTO.mat 
diff_mat_1 = diff(Cap_1(:,1)); 
break_pt_1 = [0; find(diff_mat_1 ~= 1);994]; 
for i = 1:length(break_pt_1)-1 

Dis_pulse_1 {i,1} = Cap_1(break_pt_1(i)+1:break_pt_1(i+1),:); 
end 
% Dis_pulse([1,3,5,7,9,11,13,15,17,19,21],:) 
Dis_pulse_1 = Dis_pulse_1 
% % Start of 25C Data 
opts  =  detectImportOptions('second_25C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table21 = readtable('second_25C.xls', opts); 
opts  =  detectImportOptions('second_25C.xls',  'Sheet','sheet2',  'Range',  'A6:T4886', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table22= readtable('second_25C.xls', opts); 
Table_2 = [Table21;Table22] 
% Table_2{:,1} = (1:51858).'; 
% Table_2(:,1) = [] 
Cap_2(1,:) = Table_2.Var3(Table_2.Var6 < -8.2); 
Cap_2(2,:) = Table_2.Var4(Table_2.Var6 < -8.2); 
Cap_2(3,:) = Table_2.Var5(Table_2.Var6 < -8.2); 
Cap_2(4,:) = Table_2.Var6(Table_2.Var6 < -8.2) 
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Cap_2 = Cap_2'; 
save HPPC_Test_LTO.mat 
diff_mat_2 = diff(Cap_2(:,1)); 
break_pt_2 = [0; find(diff_mat_2 ~= 1);995]; 
for i = 1:length(break_pt_2)-1 

Dis_pulse_2 {i,1} = Cap_2(break_pt_2(i)+1:break_pt_2(i+1),:); 
end 
% Dis_pulse([1,3,5,7,9,11,13,15,17,19,21],:) 
Dis_pulse_2 = Dis_pulse_2 

save Dis_pulse_2 
% % Start of 25C Data 
opts  =  detectImportOptions('second_35C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table_3 = readtable('second_35C.xls', opts); 
% Table_2{:,1} = (1:51858).'; 
% Table_2(:,1) = [] 
Cap3(1,:) = Table_3.Var3(Table_3.Var6 < -8.2); 
Cap3(2,:) = Table_3.Var4(Table_3.Var6 < -8.2); 
Cap3(3,:) = Table_3.Var5(Table_3.Var6 < -8.2); 
Cap3(4,:) = Table_3.Var6(Table_3.Var6 < -8.2); 
Cap3 = Cap3'; 
save HPPC_Test_LTO.mat 
diff_mat_3 = diff(Cap3(:,1)); 
break_pt_3 = [0; find(diff_mat_3 ~= 1);995]; 
for i = 1:length(break_pt_3)-1 

Dis_pulse_3{i,1} = Cap3(break_pt_3(i)+1:break_pt_3(i+1),:); 
end 
save Dis_pulse_3 
opts  =  detectImportOptions('second_45C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table41 = readtable('second_45C.xls', opts); 
opts  =  detectImportOptions('second_45C.xls',  'Sheet','sheet2',  'Range',  'A6:T1181', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8]); 
Table42= readtable('second_45C.xls', opts); 
Table_42 = [Table41;Table42] 
% Table_2{:,1} = (1:51858).'; 
% Table_2(:,1) = [] 
Cap_4(1,:) = Table_42.Var3(Table_42.Var6 < -8.2); 
Cap_4(2,:) = Table_42.Var4(Table_42.Var6 < -8.2); 
Cap_4(3,:) = Table_42.Var5(Table_42.Var6 < -8.2); 
Cap_4(4,:) = Table_42.Var6(Table_42.Var6 < -8.2); 
Cap_4 = Cap_4'; 



79 
 

 
 
 

save HPPC_Test_LTO.mat 
diff_mat_4 = diff(Cap_4(:,1)); 
break_pt_4 = [0; find(diff_mat_4 ~= 1);993]; 
for i = 1:length(break_pt_4)-1 

Dis_pulse4 {i,1} = Cap_4(break_pt_4(i)+1:break_pt_4(i+1),:); 
end 
% Dis_pulse([1,3,5,7,9,11,13,15,17,19,21],:) 
Dis_pulse_4 = Dis_pulse4 

save Dis_pulse_4 
clearvars -except Dis_pulse_1 Dis_pulse_2 Dis_pulse_3 Dis_pulse_4 

Dis_pulse(:,1) = Dis_pulse_1 
Dis_pulse(:,2) = Dis_pulse_2 

Dis_pulse(:,3) = Dis_pulse_3 

Dis_pulse(:,4) = Dis_pulse_4 
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Appendix B – Parameter estimation 1 

 
clear 
clc 
% % Start of 15C Data 
opts  =  detectImportOptions('HOUR_15C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_10 = readtable('HOUR_15C.xls', opts); 
opts   =   detectImportOptions('HOUR_15C.xls',   'Sheet','sheet2',   'Range',   'A6:T1881', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_11 = readtable('HOUR_15C.xls', opts); 
Table_12 =[Table_10;Table_11] 
OCV1(:,2) = Table_12{strcmp(Table_12{:, 'Var4'}, '1:00:00.000'), 'Var5'}; 
OCV1(:,1) = Table_12{strcmp(Table_12{:, 'Var4'}, '1:00:00.000'), 'Var3'}; 
OCV1( ~any(OCV1,2), : ) = []; 
OCV1([1, 12],:) = []; 
OCV_1 = OCV1',; 
save OCV_1.mat 
load Dis_pulse_1; 
Dis_pulse_1 = Dis_pulse_1'; 
[m, n] = size(Dis_pulse_1); 
Ri1 = cell(m, n); 
R11 = Ri1; 
R12 = Ri1; 
C11 = Ri1; 
C12 = Ri1; 
OCV_1 = Ri1; 
% OCV_long = cell(m, 101); 
% SOC_long = linspace(0,1,101); 
tou1_init1 = 8; 
tou2_init1 = 10; 
for i = 1:m 

OCV_1(:,i) = OCV_1(:,2); 
for j=1:n 

xdata = Dis_pulse_1{i, j}(:,1:2); 
ydata = Dis_pulse_1{i, j}(:,3); 
OCP = ydata(1); 
options = optimoptions('lsqcurvefit'); 
Ri_init1 = (ydata(6)-ydata(10))/8.68; 
R1_init1 = (ydata(11)-ydata(41))/8.68; 
R2_init1 = (ydata(42)-ydata(end))/8.68; 
C1_init1 = tou1_init1/R1_init1; 
C2_init1 = tou2_init1/R2_init1; 
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x0 = [Ri_init1, R1_init1, C1_init1, R2_init1, C2_init1]; 
lb = x0/100; 
ub = x0*100; 
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata, lb, ub, options); 
clc; 
Ri1{i,j} = x(1); 
R11{i,j} = x(2); 
C11{i,j} = x(3); 
R12{i,j} = x(4); 
C12{i,j} = x(5); 
OCV_1{i,j} = OCP; 
Ri_est1{i,j} = Ri_init1; 
R1_est1{i,j} = R1_init1; 
R2_est1{i,j} = R2_init1; 
C1_est1{i,j} = C1_init1; 
C2_est1{i,j} = C2_init1; 

end 

end 
clearvars -except Ri1 R11 R12 C11 C12 OCV_1 *_est1 *_long1 

SOC1 = linspace(100,0,11); 
Capacity_LUT1 = 3.0746; 
Qe_init1 = 0; 
R1_est1 = fliplr(R1_est1); 
R2_est1 = fliplr(R2_est1); 
Ri_est1 = fliplr(Ri_est1); 
C1_est1 = fliplr(C1_est1); 
C2_est1 = fliplr(C2_est1); 
C11 = fliplr(C11); 
C12 = fliplr(C12); 
OCV_1 = fliplr(OCV_1); 
SOC1 = fliplr(SOC1); 
R1_est1 = cell2mat(R1_est1); 
OCV_1 = cell2mat(OCV_1); 
R2_est1 = cell2mat(R2_est1); 
C11 = cell2mat(C11); 
C12 = cell2mat(C12);   
Ri_est1 = cell2mat(Ri_est1); 
C1_est1 = cell2mat(C1_est1); 
C2_est1 = cell2mat(C2_est1); 
opts  =  detectImportOptions('second_15C.xls',  'Sheet','sheet1',  'Range',  'A6:T65531', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_13 = readtable('second_15C.xls', opts); 
opts   =   detectImportOptions('second_15C.xls',   'Sheet','sheet2',   'Range',   'A6:T881', 
'PreserveVariableNames', true); 
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opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_14 = readtable('second_15C.xls', opts); 
Table_15 = [Table_13;Table_14] 
Table_15 = rmmissing(Table_15,'DataVariables',{'Var3'}) 
voltage1 = Table_15.Var5(Table_15.Var5 < 2.7)   
current1 = Table_15.Var6(Table_15.Var6 < 9) 
current1([1],:) = []; 
time1 = linspace(1,66331,66331); 
time1 = time1'; 
save fitdata1.mat 
% % Start of 25C Data 
opts  =  detectImportOptions('HOUR_25C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_20 = readtable('HOUR_25C.xls', opts); 
opts   =   detectImportOptions('HOUR_25C.xls',   'Sheet','sheet2',   'Range',   'A6:T4886', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_21 = readtable('HOUR_25C.xls', opts); 
Table_22 = [Table_20;Table_21]; 
OCV_2 = Table_22{strcmp(Table_22{:, 'Var4'}, '1:00:00.000'), 'Var5'}; 
OCV_2( ~any(OCV_2,2), : ) = []; 
OCV_2([1,2,3,4, 16],:) = []; 
OCV_2 = OCV_2',; 
save OCV_2.mat 
load Dis_pulse_2; 
Dis_pulse_2 = Dis_pulse_2'; 
[m, n] = size(Dis_pulse_2); 
Ri2 = cell(m, n); 
R21 = Ri2; 
R22 = Ri2; 
C21 = Ri2; 
C22 = Ri2; 
OCV_2 = Ri2; 
% OCV_long = cell(m, 101); 
% SOC_long = linspace(0,1,101); 
tou1_init2= 8; 
tou2_init2 = 10; 
for i = 1:m 

OCV_2(:,i) = OCV_2(:,2); 
for j=1:n 

xdata = Dis_pulse_2{i, j}(:,1:2); 
ydata = Dis_pulse_2{i, j}(:,3); 
OCP = ydata(1); 
options = optimoptions('lsqcurvefit'); 
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Ri_init2 = (ydata(6)-ydata(10))/8.68; 
R1_init2 = (ydata(11)-ydata(41))/8.68; 
R2_init2 = (ydata(42)-ydata(end))/8.68; 
C1_init2 = tou1_init2/R1_init2; 
C2_init2 = tou2_init2/R2_init2; 
x = [Ri_init2, R1_init2, C1_init2, R2_init2, C2_init2]; 
lb = x/100; 
ub = x*100; 
[x,resnorm] = lsqcurvefit(@myfun,x,xdata, ydata, lb, ub, options); 
clc; 
Ri2{i,j} = x(1); 
R21{i,j} = x(2); 
C21{i,j} = x(3); 
R22{i,j} = x(4); 
C22{i,j} = x(5); 
OCV_2{i,j} = OCP; 
Ri_est2{i,j} = Ri_init2; 
R1_est2{i,j} = R1_init2; 
R2_est2{i,j} = R2_init2; 
C1_est2{i,j} = C1_init2; 
C2_est2{i,j} = C2_init2; 

end 

end 
clearvars -except Ri2 R21 R22 C21 C22 OCV_2 *_est2 *_long2 

SOC2 = linspace(100,0,11); 
Capacity_LUT2 = 3.0746; 
Qe_init2 = 0; 
R1_est2 = fliplr(R1_est2); 
R2_est2 = fliplr(R2_est2); 
Ri_est2 = fliplr(Ri_est2); 
C1_est2 = fliplr(C1_est2); 
C2_est2 = fliplr(C2_est2); 
C21 = fliplr(C21); 
C22 = fliplr(C22); 
OCV_2 = fliplr(OCV_2); 
SOC2 = fliplr(SOC2); 
R1_est2 = cell2mat(R1_est2); 
OCV_2 = cell2mat(OCV_2); 
R2_est2 = cell2mat(R2_est2); 
C21 = cell2mat(C21); 
C22 = cell2mat(C22);   
Ri_est2 = cell2mat(Ri_est2); 
C1_est2 = cell2mat(C1_est2); 
C2_est2 = cell2mat(C2_est2); 
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opts  =  detectImportOptions('second_25C.xls',  'Sheet','sheet1',  'Range',  'A6:T65531', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_21 = readtable('second_25C.xls', opts); 
Table_21 = rmmissing(Table_21,'DataVariables',{'Var3'}); 
voltage2 = Table_21.Var5(Table_21.Var5 < 2.7) 
current2 = Table_21.Var6(Table_21.Var6 < 9) 
current2(1,:) = []; 
time2 = linspace(1,65459,65459); 
time2 = time2'; 
save fitdata2.mat; 
% % Start of 35C Data 
opts  =  detectImportOptions('HOUR_35C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_30 = readtable('HOUR_35C.xls', opts); 
OCV_3 = Table_30{strcmp(Table_30{:, 'Var4'}, '1:00:00.000'), 'Var5'}; 
OCV_3( ~any(OCV_3,2), : ) = []; 
OCV_3([1, 12],:) = []; 
OCV_3 = OCV_3',; 
save OCV_3.mat 
load Dis_pulse_3; 
Dis_pulse_3 = Dis_pulse_3'; 
[m, n] = size(Dis_pulse_3); 
Ri3 = cell(m, n); 
R31 = Ri3; 
R32 = Ri3; 
C31 = Ri3; 
C32 = Ri3; 
OCV_3 = Ri3; 
% OCV_long = cell(m, 101); 
% SOC_long = linspace(0,1,101); 
tou1_init3= 8; 
tou2_init3 = 10; 
for i = 1:m 

OCV_3(:,i) = OCV_3(:,2); 
for j=1:n 

xdata = Dis_pulse_3{i, j}(:,1:2); 
ydata = Dis_pulse_3{i, j}(:,3); 
OCP = ydata(1); 
options = optimoptions('lsqcurvefit'); 
Ri_init3 = (ydata(6)-ydata(10))/8.68; 
R1_init3 = (ydata(11)-ydata(41))/8.68; 
R2_init3 = (ydata(42)-ydata(end))/8.68; 
C1_init3 = tou1_init3/R1_init3; 
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C2_init3 = tou2_init3/R2_init3; 
x = [Ri_init3, R1_init3, C1_init3, R2_init3, C2_init3]; 
lb = x/100; 
ub = x*100; 
[x,resnorm] = lsqcurvefit(@myfun,x,xdata, ydata, lb, ub, options); 
clc; 
Ri3{i,j} = x(1); 
R31{i,j} = x(2); 
C31{i,j} = x(3); 
R32{i,j} = x(4); 
C32{i,j} = x(5); 
OCV_3{i,j} = OCP; 
Ri_est3{i,j} = Ri_init3; 
R1_est3{i,j} = R1_init3; 
R2_est3{i,j} = R2_init3; 
C1_est3{i,j} = C1_init3; 
C2_est3{i,j} = C2_init3; 

end 

end 
clearvars -except Ri3 R31 R32 C31 C32 OCV_3 *_est3 *_long3 

SOC3 = linspace(100,0,11); 
Capacity_LUT3 = 3.0746; 
Qe_init3 = 0; 
R1_est3 = fliplr(R1_est3); 
R2_est3 = fliplr(R2_est3); 
Ri_est3 = fliplr(Ri_est3); 
C1_est3 = fliplr(C1_est3); 
C2_est3 = fliplr(C2_est3); 
C31 = fliplr(C31); 
C32 = fliplr(C32); 
OCV_3 = fliplr(OCV_3); 
SOC3 = fliplr(SOC3) 
R1_est3 = cell2mat(R1_est3); 
OCV_3 = cell2mat(OCV_3); 
R2_est3 = cell2mat(R2_est3); 
C31 = cell2mat(C31); 
C32 = cell2mat(C32);   
Ri_est3 = cell2mat(Ri_est3); 
C1_est3 = cell2mat(C1_est3); 
C2_est3 = cell2mat(C2_est3); 
opts  =  detectImportOptions('second_35C.xls',  'Sheet','sheet1',  'Range',  'A6:T65531', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_31 = readtable('second_35C.xls', opts); 
Table_31 = rmmissing(Table_31,'DataVariables',{'Var3'}); 
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voltage3 = Table_31.Var5(Table_31.Var5 < 2.7) 
current3 = Table_31.Var6(Table_31.Var6 < 9) 
time3 = linspace(1,44130,44130); 
time3 = time3'; 
save fitdata3.mat; 
% % % % % Start of 45c Data 
opts  =  detectImportOptions('HOUR_45C.xls',  'Sheet','sheet1',  'Range',  'A6:T65536', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_40 = readtable('HOUR_45C.xls', opts); 
opts   =   detectImportOptions('HOUR_25C.xls',   'Sheet','sheet2',   'Range',   'A6:T881', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_41 = readtable('HOUR_45C.xls', opts); 
Table_42 =[Table_40;Table_41] 
OCV4(:,2) = Table_42{strcmp(Table_42{:, 'Var4'}, '1:00:00.000'), 'Var5'}; 
OCV4(:,1) = Table_42{strcmp(Table_42{:, 'Var4'}, '1:00:00.000'), 'Var3'}; 
OCV4( ~any(OCV4,2), : ) = []; 
OCV4([1, 12],:) = []; 
OCV_4 = OCV4',; 
save OCV_4.mat 
load Dis_pulse_4; 
Dis_pulse_4 = Dis_pulse_4'; 
[m, n] = size(Dis_pulse_4); 
Ri4 = cell(m, n); 
R41 = Ri4; 
R42 = Ri4; 
C41 = Ri4; 
C42 = Ri4; 
OCV_4 = Ri4; 
% OCV_long = cell(m, 101); 
% SOC_long = linspace(0,1,101); 
tou1_init4 = 8; 
tou2_init4 = 10; 
for i = 1:m 

OCV_4(:,i) = OCV_4(:,2); 
for j=1:n 

xdata = Dis_pulse_4{i, j}(:,1:2); 
ydata = Dis_pulse_4{i, j}(:,3); 
OCP = ydata(1); 
options = optimoptions('lsqcurvefit'); 
Ri_init4 = (ydata(6)-ydata(10))/8.68; 
R1_init4 = (ydata(11)-ydata(41))/8.68; 
R2_init4 = (ydata(42)-ydata(end))/8.68; 
C1_init4 = tou1_init4/R1_init4; 
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C2_init4 = tou2_init4/R2_init4; 
x0 = [Ri_init4, R1_init4, C1_init4, R2_init4, C2_init4]; 
lb = x0/100; 
ub = x0*100; 
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata, lb, ub, options); 
clc; 
Ri4{i,j} = x(1); 
R41{i,j} = x(2); 
C41{i,j} = x(3); 
R42{i,j} = x(4); 
C42{i,j} = x(5); 
OCV_4{i,j} = OCP; 
Ri_est4{i,j} = Ri_init4; 
R1_est4{i,j} = R1_init4; 
R2_est4{i,j} = R2_init4; 
C1_est4{i,j} = C1_init4; 
C2_est4{i,j} = C2_init4; 

end 

end 
clearvars -except Ri4 R41 R42 C41 C42 OCV_4 *_est4 *_long4 

SOC4 = linspace(100,0,11); 
Capacity_LUT4 = 3.0746; 
Qe_init4 = 0; 
R1_est4 = fliplr(R1_est4); 
R2_est4 = fliplr(R2_est4); 
Ri_est4 = fliplr(Ri_est4); 
C1_est4 = fliplr(C1_est4); 
C2_est4 = fliplr(C2_est4); 
C41 = fliplr(C41); 
C42 = fliplr(C42); 
OCV_4 = fliplr(OCV_4); 
SOC4 = fliplr(SOC4); 
R1_est4 = cell2mat(R1_est4); 
OCV_4 = cell2mat(OCV_4); 
R2_est4 = cell2mat(R2_est4); 
C41 = cell2mat(C41); 
C42 = cell2mat(C42);   
Ri_est4 = cell2mat(Ri_est4); 
C1_est4 = cell2mat(C1_est4); 
C2_est4 = cell2mat(C2_est4); 
opts  =  detectImportOptions('second_45C.xls',  'Sheet','sheet1',  'Range',  'A6:T65531', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_43 = readtable('second_45C.xls', opts); 
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opts   =   detectImportOptions('second_45C.xls',   'Sheet','sheet2',   'Range',   'A6:T881', 
'PreserveVariableNames', true); 
opts.SelectedVariableNames = opts.SelectedVariableNames([3, 4, 5, 6, 8, 17]); 
Table_44 = readtable('second_45C.xls', opts); 
Table_45 = [Table_43;Table_44] 
Table_45 = rmmissing(Table_45,'DataVariables',{'Var3'}) 
voltage4 = Table_45.Var5(Table_45.Var5 < 2.7) 
current4= Table_45.Var6(Table_45.Var6 < 9) 
current4([1],:) = []; 
time4 = linspace(1,54476,54476); 
time4 = time4' 
save fitdata4.mat 
clearvars -except fitdata1 fitdata2 fitdata3 fitdata4 
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Appendix C – Parameter estimation 2 

 
clear 

clc 
load fitdata1.mat 

load fitdata2.mat 

load fitdata3.mat 

load fitdata4.mat 

Temperature_LUT(1,:) = [288 298 308 318]; 

% Temperature_LUT = Temperature_LUT'; 

% 

SOC(1,:) = SOC1 

SOC(2,:) = SOC2 

SOC(3,:) = SOC3 
SOC(4,:) = SOC4 

SOC = SOC'; 

OCV(1,:) = OCV_1 

OCV(2,:) = OCV_2 

OCV(3,:) = OCV_3 

OCV(4,:) = OCV_4 

OCV= OCV'; 

Ri(1,:) = Ri1 

Ri(2,:) = Ri2 

Ri(3,:) = Ri3 

Ri(4,:) = Ri4 

Ri = Ri'; 
Ri_est(1,:) = Ri_est1 

Ri_est(2,:) = Ri_est2 

Ri_est(3,:) = Ri_est3 

Ri_est(4,:) = Ri_est4 

Ri_est = Ri_est' 

R1(1,:) = R11 

R1(2,:) = R21 

R1(3,:) = R31 

R1(4,:) = R41 

R1 = R1'; 
R1_est(1,:) = R1_est1 

R1_est(2,:) = R1_est2 

R1_est(3,:) = R1_est3 

R1_est(4,:) = R1_est4 

R1_est = R1_est'; 

R2(1,:) = R12 

R2(2,:) = R22 

R2(3,:) = R32 

R2(4,:) = R42 

R2 = R2'; 

R2_est(1,:) = R2_est1 

R2_est(2,:) = R2_est2 
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R2_est(3,:) = R2_est3 

R2_est(4,:) = R2_est4 

R2_est = R2_est'; 

C1(1,:) = C11 

C1(2,:) = C21 

C1(3,:) = C31 

C1(4,:) = C41 

C1 = C1'; 

C1_est(1,:) = C1_est1 

C1_est(2,:) = C1_est2 

C1_est(3,:) = C1_est3 

C1_est(4,:) = C1_est4 

C1_est = C1_est'; 

C2(1,:) = C12 

C2(2,:) = C22 

C2(3,:) = C32 

C2(4,:) = C42 

C2 = C2'; 

C2_est(1,:) = C2_est1 

C2_est(2,:) = C2_est2 

C2_est(3,:) = C2_est3 

C2_est(4,:) = C2_est4 

C2_est = C2_est'; 

Capacity_LUT(1,:) = Capacity_LUT1 

Capacity_LUT(2,:) = Capacity_LUT2 

Capacity_LUT(3,:) = Capacity_LUT3 

Capacity_LUT(4,:) = Capacity_LUT4 

Capacity_LUT = Capacity_LUT'; 

Qe_init = 0  

voltage(1,:) = voltage1; 

current(1,:) = current1; 

time(1,:) = time1; 

clearvars -except voltage current time R1_est Ri_est R2_est C1_est C2_est 

Capacity_LUT1 Capacity_LUT Qe_init SOC SOC1 SOC2 SOC3 SOC4 OCV 

Temperature_LUT R1 R2 C1 C2 

save Parameter_estimation_Data 


