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Abstract: Radiotherapy (RT) is an important treatment modality for the local control of breast cancer 

(BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells 

that either possess intrinsic radioresistance or develop resistance during treatment can reduce its 

efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers 

that can predict and/or monitor a tumour’s response to radiation. Here we describe a novel method 

to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on con-

ditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line 

(MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 

33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-

2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene 

expression experiments, using both radiosensitive and radioresistant cells, to identify a signature 

related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins 

showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the 

radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, 

GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using 

CM samples from cell lines confirmed a significant increase in the release of each candidate bi-

omarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant 

increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry 

showed that higher intracellular protein levels of the biomarkers were associated with greater radi-

osensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients 

diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. 

High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recur-

rence-free survival times, indicating that these two candidate biomarkers have the potential to pre-

dict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for 

the identification of biomarkers that may have a potential clinical role in personalising and optimis-

ing RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to 

benefit. 
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1. Introduction 

Radiotherapy (RT), initially utilised for cancer treatment in the 1890s [1], still has a 

crucial role in the multidisciplinary management of breast cancer (BC) today, in spite of 

many advances in both surgery and systemic therapy. Studies have shown that RT can 

benefit up to 83% of BC patients [2] and that whole-breast RT following breast-conserving 

surgery provides local control and survival rates comparable to mastectomy [3–5]. Unfor-

tunately, not all BC patients obtain a therapeutic benefit from RT; although overall five-

year BC survival rates after RT are ~80%, it has been estimated that local recurrences or 

metastatic disease will develop in 30% of these patients, the majority of whom will die 

within 5 years [6]. In BC and other solid tumours, the clinical effects of RT are also only 

observed near the end or after the treatment course has been completed; as such, patients 

who do not respond to RT (due to either innate [7] or acquired radioresistance [8]), will 

initially go undetected. This delay in identifying non-responding cancers exposes patients 

to the risk of acquiring RT-induced side effects for no therapeutic gain [9], allows tumour 

progression, impacts long-term survival and delays the delivery of alternate, more effec-

tive treatments [10]. 

The precision medicine initiative is a concept that is increasingly being implemented 

into BC clinical practices. It can be defined as the prevention, examination and treatment 

of disease, while also considering individual variability [11]. Molecular classification sys-

tems, based on gene expression signatures of BC tissue, are currently being used to classify 

these cancers into specific subtypes that can predict prognosis and treatment response 

[12–16]. While these tools have led to improvements in the systemic treatment of BC pa-

tients, the incorporation of RT into the precision medicine initiative is lagging behind such 

achievements [17]. To improve BC patient outcomes and allow RT to become fully inte-

grated into the precision medicine initiative, we need to identify biomarkers that can not 

only predict RT response before the initiation of treatment but also allow the evaluation 

of a tumour’s response to RT during treatment [18]. These biomarkers could enable per-

sonalised RT treatment regimens to be given to individuals on the basis of individual risk 

and tumour biology and also allow the identification of patients who are unlikely to ben-

efit from RT. 

In response to this unmet clinical need, studies have attempted to produce radiation 

sensitivity gene signatures that can predict tumour radiation response and identify those 

resistant to conventional RT regimens [19–22]. Unfortunately, as of yet, none of these gene 

signatures have been sufficiently validated for clinical use. Rather than using tissue-based 

biomarkers, another method that could be used to personalise RT is the detection and/or 

measurement of tumour secreted biomarkers. Several secretomic studies have used con-

ditioned media (CM, spent media harvested from cultured cells) from BC cell lines cul-

tured in vitro in an attempt to detect clinically relevant biomarkers [23–27]. While these 

secretomic studies have distinguished novel biomarkers of aggressive phenotypes [23,25] 

or biomarkers that act as predictors of chemotherapy response [26], no study has yet ex-

plored the immediate impact of radiation on the secretome of cancer cells as a means of 

evaluating radiation response and/or determining radiosensitivity [28].  

We have previously developed and characterised radioresistant (RR) cells derived 

from oestrogen receptor positive (ER+) BC cell lines [29]. In-depth genotypic, phenotypic 

and functional characterisation identified several important mechanisms (including EMT, 

reduced proliferation, metabolic changes and activation of PI3K, AKT and WNT signal-

ling) that may contribute to the development of radioresistance. In this current study, we 

utilised these RR models, along with their parental cells, to describe a novel method for 

the identification of gene, intracellular protein and secreted protein biomarkers that can 

be used to provide prognostic and/or predictive information on a tumour’s response to 

RT. Utilising secretomic data obtained through liquid chromatography-mass spectrome-

try (LC-MS) with a radiosensitive ER+ BC cell line (MCF-7), we characterised the cancer 

secretome and identified cancer-secreted biomarkers whose release reflected an acute ra-

diation response. In addition, we combined the secretomic results with data from whole-
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transcriptome gene expression experiments, using both radiosensitive and resistant cells, 

to identify a signature related to intrinsic radiosensitivity. Candidate secreted and intra-

cellular biomarkers were then successfully validated in-lab using cell lines, BC xenograft 

tumours and patient tissue samples (Figure 1). We suggest that our methods can be uti-

lised for the identification of biomarkers that could have a clinical role in personalising 

RT dosing regimens, thus optimising treatment and limiting the administration of RT to 

patients who are unlikely to benefit. 

 

Figure 1. Biomarker discovery pipeline. Outline of the methods used to identify and validate bi-

omarkers of BC RT response. Figure created with Biorender.com. 

2. Materials and Methods 

2.1. Cell Culture 

Unless indicated otherwise, cell culture reagents were acquired from Gibco Thermo 

Fisher Scientific (Loughborough, England). MCF-7 and ZR-751 BC cell lines were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% foetal calf se-

rum, 50 U mL−1 penicillin and 50 mg mL−1 streptomycin. Cells were incubated at 37 °C in 

a humidified atmosphere with 5% CO2. These cell lines were obtained from the American 

Type Culture Collection (LGC Standards, Teddington, England). Cells were authenticated 

by short tandem repeat profiling carried out at Public Health England (Porton Down, 

Salisbury, England). Spinner flasks (Cellcontrol Spinner Flask, Integra, Zizers, Switzer-

land), placed onto a magnetic stirrer platform (Cellspin, Integra, Zizers, Switzerland), 

were used to produce multicellular tumour spheroids (MTS) from single cell suspensions. 

MTS were allowed to form over 7 days in normal incubation conditions before use. 
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2.2. Irradiation of Cells and Development of Radioresistant Cell Lines 

Radioresistant (MCF-7 RR and ZR-751 RR) cells were established from their parental 

cell lines within our lab, as described previously [29]. Briefly, parental cell lines were 

treated with weekly doses of radiation using a Faxitron cabinet X-ray system 43855D (Fax-

itron X-ray Corporation, Illinois, USA). After a starting dose of 2 Gy, the radiation doses 

were increased by 0.5 Gy per week over a three-month period. Cells were subsequently 

maintained with additional weekly doses of 5 Gy after the development of radiore-

sistance. 

2.3. Cell Irradiation and Secretome Sample Preparation  

Cells were seeded into six well plates to achieve ~40–50% confluency at 24 h. Cells 

were washed three times with PBS before 2 mL of serum-free media (SFM) was added. 

The cells were serum-starved for 2 h. Cells were then exposed to radiation and the CM 

was harvested at appropriate time points. Secretome samples underwent processing for 

LC-MS or western blot (WB) analysis immediately following collection. Following CM 

harvesting, cells were routinely trypsinised and counted using a haemocytometer with 

trypan blue exclusion (Sigma-Aldrich, Gillingham, England).  

CM samples were centrifuged at 3000× g for 15 min at 4 °C to remove dead cells and 

large debris. Proteins were concentrated from the supernatant using the Amicon Ultra-0.5 

Centrifugal Filter Unit with Ultracel-3 membrane (Merck Millipore, Livingston, Scotland) 

as per the manufacturer’s protocol. Briefly, 500 µL of the CM was added to the Amicon 

Ultra filter device and the sample was centrifuged at 14,000× g for 30 min at 4 °C. The filter 

was removed and placed upside down into a new 1.5 mL microcentrifuge tube. The sam-

ple was centrifuged at 1000× g for 2 min at 4 °C to elute the concentrated protein. The 

ultrafiltrate was then stored at −80 °C. 

2.4. Liquid Chromatography-Mass Spectrometry and Secretome Analysis 

In-solution digests of secretomic samples were performed for LC-MS analysis. Pro-

tein concentrations of the CM samples were ascertained using a bicinchoninic acid assay 

(Sigma-Aldrich, Gillingham, England). 50 µg of protein was added to 100 mM tris/2 M 

urea/10 mM DTT and heated for 30 min at 50 °C; this was performed in 96 well plates with 

silicon lids. 55 mM iodoacetamide was then added and incubated in darkness for 30 min 

at room temperature. After this, trypsin (1:100 dilution) was added and incubation was 

performed overnight at room temperature. Of this peptide solution, 10 µg was inserted 

into an activated (20 µL methanol) and equilibrated (100 µL 0.1% trifluoroacetic acid 

(TFA)) C18 StAGE tip; washing was performed with 100 µL of 0.1% TFA. The bound pep-

tides were eluted into Protein LoBind tubes with 20 µL of 80% acetonitrile (ACN) and 

0.1% TFA solution. The samples were concentrated to volumes <4 µL using a vacuum 

concentrator. Final sample volumes were adjusted to 6 µL using 0.1% TFA. Online LC was 

performed using a Dionex RSLC Nano. After the C18 clean-up, 5 µg of the peptide solu-

tion was injected onto a C18 packed emitter and eluted over a gradient of 2–80% ACN for 

2 h with 0.1% TFA. Eluted peptides were ionised at +2 kV and data-dependent analysis 

was carried out on a Thermo Q-Exactive Plus. MS1 was obtained with resolution 70,000 

and mz range 300–1650 and the top 12 ions were chosen for fragmentation with a normal-

ised collision energy of 26 and an exclusion window of 30 sec. MS2 was collected with a 

resolution of 17,500. The AGC targets for MS1 and MS2 were 3×106 and 5×104, respectively. 

All spectra were obtained with 1 microscan without lockmass. 

Data were analysed using MaxQuant in conjunction with uniport fasta database with 

matching between runs. Prior to the analysis, all data were log2 transformed. For fold 

change analysis, data were normalised to untreated controls at each time point using R 

(Bioconductor) software and packages [30]. Venn diagrams were generated using jvenn 

[31]. Heatmap and cluster analyses were performed using TM4 MeV (multiple experiment 

viewer) software [32]. Heatmap clustering was carried out using Pearson correlation with 
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average linkage. Protein interaction networks of candidate biomarkers were generated 

using the STRING protein interaction database [33] and Markov clustering algorithms 

[34]. All secretomic datasets generated and/or analysed within this study are available on 

the PRoteomics IDEntifications Database (PRIDE) [35,36]; these can be found with the 

PRIDE project accession number PXD027572. 

2.5. Lactate Dehydrogenase Assay 

Lactate dehydrogenase (LDH) levels within the CM used for secretome analysis were 

analysed to confirm the absence of cell death after radiation treatment. LDH levels were 

measured using the CyQUANT LDH Cytotoxicity Assay Kit (Invitrogen, Inchinnan, Scot-

land) as per the manufacturer’s protocol. Briefly, 50 µL of CM was transferred to a 96-well 

plate, along with 50 µL of the reaction mixture. The plates were incubated at room tem-

perature for 30 min. 50 µL of stop solution was then added to the wells and absorbance 

was measured at 490 nm and 680 nm using a Spark 20M multimode reader (Tecan, Männe-

dorf, Switzerland). 

2.6. RNA Extraction and Whole-Transcriptome Gene Expression Analysis 

Cells were seeded into 75 mm plates (3×106 cells/plate). Following 24 h of incubation, 

cells were serum-starved for 2 h (providing the same experimental conditions as for CM 

collection) and then exposed to radiation. Pellets containing up to 10,000,000 cells were 

collected by trypsinisation at 0, 2 and 8 h post-radiation, snap-frozen on dry ice and stored 

at −70 °C. RNA was extracted from the cells with the RNeasy Mini Kit using QIAshredder 

technology (Qiagen, Manchester, England). Spin technology was used to purify total RNA 

from the cells, as per the manufacturer’s protocol. RNA was quantified and examined for 

contaminants using the NanoDropTM Spectrophotometer ND1000 and the Qubit RNA IQ 

Assay (Thermo Fischer Scientific, Loughborough, England). RNA quality was assessed by 

producing RNA integrity numbers (RIN) for each of the samples using the Agilent Bioan-

alyzer (Agilent Technologies Ltd., Stockport, England); each sample had RIN values 

above 9.7 (Supplementary Table S1). The ZR-751 2 h 2 Gy sample failed in sequencing and 

was removed from further analysis. Lexogen QuantSeq 3′ FWD sequencing technology 

produced full genome expression read-counts on an Illumina flow cell; these were 

scanned using the Illumina HiScanSQ system (Edinburgh Clinical Research Facility, Uni-

versity of Edinburgh, Scotland). Next-generation sequencing reads were generated to-

wards the poly(A) tail with read 1 directly reflecting the mRNA sequence. The FASTQ 

files were pre-processed with the BlueBee high-performance next generation sequencing 

analysis software; this uses poly(A) tail trimming and alignment to the Genome Reference 

Consortium Human genome build 38 reference genome using the Spliced Transcripts 

Alignment to a Reference (STAR) algorithm [37].  

Filtering was carried out on the data, removing all genes that had fewer than five 

reads per sample in at least 90% of samples. Overall, 17,243 genes were mapped to human 

Ensembl gene identifiers. Data were log2 transformed and quantile normalised in R (Bio-

conductor) software and packages [30] before any analysis was carried out. Heatmap and 

cluster analyses were performed with the TM4 MeV (multiple experiment viewer) soft-

ware [32]. Heatmap clustering was implemented using Pearson correlation with average 

linkage. Correction for batch effects was performed to integrate gene expression data pro-

duced in this study with public datasets; this was carried out using the ComBat package 

in R, as described previously [38,39]. Gene enrichment analysis was performed in DAVID 

Functional Annotation Bioinformatics Microarray Analysis [40] and also using the KEGG 

[41] and Reactome [42,43] databases. Differential gene expression analysis was performed 

using ranked products with a false discovery rate of 0.01. All gene transcriptomic datasets 

generated and/or analysed within this study are available in the NCBI’s Gene Expression 

Omnibus [44]; these can be found with the GEO Series accession number GSE120798. 
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2.7. Protein Isolation and Detection 

Whole-cell lysates were procured as previously described [45], with protein concen-

trations ascertained using a bicinchoninic acid assay. Sodium dodecyl sulphate (SDS) pol-

yacrylamide gel electrophoresis was used to separate proteins. After separation, proteins 

were transferred to Immobilon-P transfer membranes (Merck Millipore, Livingston, Scot-

land). Membranes were incubated in LI-COR Odyssey blocking buffer solution (1:1 with 

PBS) for 1 h at room temperature. The membranes were then incubated overnight at 4 °C 

with primary antibodies DKK1 (abcam ab93017), GNPNAT1 (abcam ab234981) and TK1 

(abcam ab76495). IRDye 800CW and IRDye 680LT fluorescently labelled secondary anti-

bodies (LI-COR, Bioscience, Cambridge, England), diluted in LI-COR Odyssey blocking 

buffer solution, were used to bind to the primary antibodies. An LI-COR Odyssey Imager 

was used to detect the presence of signals from the bound secondary antibodies.  

2.8. Murine Xenograft Experiments 

As part of a complementary study, radiation-treated mouse xenograft tissue was 

available for analysis. These in vivo murine studies were undertaken under a UK Home 

Office Project Licence in accordance with the Animals (Scientific Procedures) Act 1986. All 

experiments received approval from the University of Edinburgh Animal Welfare and 

Ethical Review Board. The recommended guidelines for the welfare and use of animals in 

research were followed. CD-1 immunodeficient female nude mice (Charles River Labora-

tories, Tranent, Scotland) ≥8 weeks of age were allowed at least a seven-day period of 

acclimatisation to a sterile, pathogen-free environment with ad libitum access to food and 

water. Mice were housed in groups of five in individually ventilated cages in a barrier 

environment.  

Approximately 5×108 MCF-7 and MCF-7 RR cells were grown routinely and re-sus-

pended in individual aliquots of 0.5 mL of SFM and 0.5 mL of Matrigel Matrix (Corning, 

Ewloe, Wales). Under gaseous isoflurane anaesthesia, each mouse received a 0.72 mg 17B-

Oestradiol pellet (60-day release, Innovative Research of America, Florida, USA) im-

planted subcutaneously in the dorsum using a 10 G trocar. 0.1 mL of either the MCF-7 or 

MCF-7 RR cell suspension was injected bilaterally into subcutaneous flank tissue using a 

22 G needle connected to a 1 mL syringe. Once stock tumours had grown to ~1.0 cm in 

length mice were euthanised by cervical dislocation. In a sterile cabinet, xenograft tu-

mours were harvested and placed into DMEM with no additives and sectioned into frag-

ments ~1–2 mm in length. Implantation of tumour fragments into experimental mice was 

performed under gaseous isoflurane anaesthesia using a 12 G trocar. Each mouse received 

a 0.72 mg 17B-Oestradiol pellet as previously described and one tumour fragment was 

injected into the subcutaneous tissue of the flank. Mice were monitored for the develop-

ment of xenograft tumours which occurred within 6–8 weeks post-implantation. Once the 

tumours had grown to ~1.0 cm in length, they were radiated. Mice were euthanised 24 h 

post-radiation and the tumours harvested (n = 5). Control tumours were left untreated 

and harvested at the same time (n = 5).  

2.9. Human Breast Tissue Experiments 

To investigate whether candidate biomarkers could predict response to RT we iden-

tified ER+ positive breast cancer patients within a unique series of patient-derived BC tis-

sues known as the Edinburgh Breast-Conserving Series (BCS) [46]. The Edinburgh BCS 

comprises a fully documented consecutive cohort of 1,812 patients treated by breast con-

servation surgery, axillary node sampling or clearance and whole breast radiotherapy be-

tween 1981 and 1998. Over the study period, patients were managed by a specialist mul-

tidisciplinary team of surgeons, radiologists, pathologists and oncologists. Patients were 

those considered suitable for breast-conserving therapy and were T1 or T2 (<30 mm), N0 

or N1 and M0 based on conventional TNM staging. Post-operative breast radiotherapy 

was given over 4–5 weeks at a dose of 45 Gy in 20–25 fractions. Notably, 12.7% of patients 
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received no additional adjuvant therapy (chemotherapy or endocrine therapy) and of 

those 37% were ER-rich tumours (n = 80). It is these cases which were selected for analysis 

in this study. Clinicopathological data were available, including patient age, lymph node 

status, ER and PR status, tumour size and grade (see Supplementary Table S2). To gener-

ate tissue microarrays (TMAs) from these patients, formalin-fixed paraffin-embedded tis-

sue blocks were initially created from patient-derived surgical excision specimens. These 

blocks were analysed by a pathologist to identify tumour regions. TMAs were then con-

structed in triplicate with representative cores (diameter ~700 μm) taken from three dif-

ferent random areas of the tumour. Each of the triplicates was then placed into three dif-

ferent TMA blocks. For use in our study, these three blocks were stained independently 

to assess intracellular protein levels of candidate biomarkers. The staining results of the 

three matched cores were then averaged. Following TMA processing, between 74 and 78 

cases with intact triplicate samples were available for analysis. Recurrence-free survival 

data were available with a median follow-up of 12.7 years. Ethical approval for the study 

was granted under the Lothian NRS BioResource approval number 20/ES/0061.  

2.10. Immunohistochemistry 

Immunohistochemistry (IHC) was performed on formalin-fixed human TMAs, MTS 

and murine xenograft tumours, in addition to methanol-fixed cells cultured in Lab-Tek II 

chamber slides (Thermo Fisher Scientific, Loughborough, England). Formalin-fixed sam-

ples were deparaffinised and rehydrated, after which antigen retrieval was performed. 

3% H2O2 (Dako, Ely, England) was used to block endogenous peroxidase activity. All sam-

ples were incubated with Total Protein Block (Dako, Ely, England) for 1 h at room tem-

perature. Primary antibodies DKK1 (abcam ab93017), GNPNAT1 (abcam ab234981) and 

TK1 (abcam ab76495) were incubated for 1 h at room temperature. One drop of Envision 

labelled polymer (Dako, Ely, England) was added to each sample for 30 min, after which 

DAB and substrate buffer (Dako, Ely, England) was applied for 10 min. Haematoxylin 

was used to counterstain the tissues, after which the slides were dehydrated and mounted 

with coverslips using a DXP mountant (Sigma-Aldrich, Gillingham, England). 

IHC scoring of the Breast-Conserving Series TMAs was performed independently by 

two researchers. The scoring system used depended on the staining pattern observed. If 

staining intensity was consistent within a sample for a candidate biomarker (DKK1 and 

GNPNAT1), the scores given ranged from 0 (no staining), 1+ (weak staining), 2+ (moder-

ate staining) and 3+ (strong staining). If staining intensity varied within a sample (TK1), 

then each sample was given a score that was dependent on the staining intensity (0, 1+, 2+ 

or 3+) combined with the percentage of cells with that intensity of staining, providing a 

final score ranging from 0-300.  

2.11. Statistical Analysis 

One-way ANOVA, with Holm–Šídák multiple comparisons tests, was used to check 

for differences in secretion levels of candidate biomarkers within a cell line in the western 

blot CM experiments. Two-way ANOVA tests were performed to assess for differences in 

intracellular levels of candidate biomarkers between parental and RR cell lines in the west-

ern blot experiments using whole-cell lysate samples. For the Kaplan–Meier analysis of 

recurrence-free survival data in relation to candidate biomarker expression levels, the p-

value was derived from log-rank (Mantel-cox) tests. The p-values ≤0.05 were deemed sta-

tistically significant. Graphs and statistical analysis were generated with GraphPad Prism 

9 for Windows (GraphPad Software Ltd., California, USA). 

3. Results 

3.1. Characterisation of the MCF-7 Basal Secretome 

Initial analysis was performed using CM samples procured from untreated MCF-7 

cells 24 h after serum starvation to characterise the basal secretome before irradiation. The 
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total number of proteins identified in the untreated secretome was 808. A cut-off of 2 was 

used to enable a functional analysis to be performed for the identification of key enriched 

pathways. Using this cut-off value, 318 proteins were detected within the CM of untreated 

MCF-7 cells; of these, 231 were shown to interact with one another. These secreted pro-

teins were predominately involved in metabolic pathways, immune and cytokine signal-

ling and cell cycle regulation (Figure 2A). The majority of these proteins have been re-

ported/predicted to be secreted in exosomes/microvesicles or are released directly; only 

37 had an unknown method of secretion (Figure 2B). 

 

Figure 2. Characterisation of the MCF-7 basal secretome. (A) Functional protein association network showing the subset 

of 231 secreted proteins with known interactions from the total 318 proteins identified in the untreated basal secretome 

(after cut-offs were applied). Graph produced in STRING based on co-expression with high-confidence interaction score 

(0.7), clustered using the Markov Clustering algorithm. Significantly enriched pathways from the KEGG [41] and Reac-

tome [42,43] databases are highlighted and labelled (lists of proteins in each pathway are provided in Supplementary 

Table S3). (B) Venn diagram showing proportions of proteins identified in the basal secretome and their reported/pre-

dicted method of secretion; (pink) unknown, (green) secreted in exosomes/microvesicles (ExoCarta [47] and Vesiclepedia 

[48]), and (blue) directly secreted (Human Protein Atlas [49], SignalP [50], Phobius [51] and SPOCTOPUS [52]). 

3.2. Characterisation of the MCF-7 Radiation-Induced Secretome 

Following characterisation of the MCF-7 untreated secretome, we wished to identify 

differentially secreted proteins in response to radiation. To achieve this, MCF-7 cells were 

treated with a single dose of 2 Gy and CM samples were obtained up to 24 h post-radia-

tion. To ensure that radiation treatment was not causing significant cell death, cell counts 

(using trypan blue exclusion) and LDH quantification (using CM from these cells) were 

performed. Results demonstrated no difference in total cell numbers or LDH levels be-

tween untreated and radiation treated groups at 24 h (Supplementary Figure 1).  

The total number of proteins detected in the CM 24 h after 2 Gy was 552. A total of 

159 proteins were identified which exhibited at least a 50% increase in secretion levels 

following 2 Gy of radiation compared with 24 h untreated controls. As in the basal secre-

tome, some of the secreted proteins were involved in immune and cytokine signalling and 



J. Pers. Med. 2021, 11, 796 9 of 26 
 

 

metabolism, whereas proteins involved in translation, spliceosome, RNA processing, pro-

tein metabolism and the proteasome were found only in the secretome of irradiated MCF-

7 cells (Figure 3A). While there was some overlap between the secretomes of untreated 

and treated cells, the majority of the proteins isolated in the irradiated secretome were not 

found in the basal CM (Figure 3B). Like the basal secretome, most of the proteins identified 

in the radiation secretome were reported/predicted to be secreted (Figure 3C). 

 

Figure 3. Characterisation of radiation-induced MCF-7 secretome. (A) Functional protein association network of the subset 

of 120 proteins with known interactions from the total number of 159 secreted proteins at 24 h with at least a 50% increase 

in secretion level following 2 Gy of radiation compared with 24 h untreated controls. Graph produced in STRING based 

on co-expression and reported STRING interactions with high-confidence interaction score (0.7), clustered using the Mar-

kov Clustering algorithm. Significantly enriched pathways from the KEGG [41] and Reactome [42,43] databases are high-

lighted and labelled (lists of proteins in each pathway are provided in Supplementary Table S4). (B) Venn diagrams show-

ing the overlap in secreted proteins between the basal secretome and the radiation-induced secretome in respect of all 

secreted proteins and enriched pathways in both secretome profiles. (C) Venn diagram showing proportions of proteins 

identified in the radiation-induced secretome and their reported/predicted method of secretion; (pink) unknown, (green) 

secreted in exosomes/microvesicles (ExoCarta [47] and Vesiclepedia [48]), and (blue) directly secreted (Human Protein 

Atlas [49], SignalP [50], Phobius [51] and SPOCTOPUS [52]). 

Analysis was performed to assess differences in the enriched pathways identified in 

the 24 h treated secretome across earlier time points. Secretion levels, relative to untreated 

controls at each time point, were assessed following 2 Gy of radiation at 1, 2, 4, 8 and 24 h 

(Figure 4). Results showed that the pathways enriched in the secretome at 24 h were also 

identified at the earlier time points, but secretion levels of the proteins were highest at 24 

h. These results provided justification for focusing on the 24 h time point for biomarker 

discovery. 



J. Pers. Med. 2021, 11, 796 10 of 26 
 

 

 

Figure 4. Comparison of secreted protein level by enriched pathways across all timepoints. Heatmap is based on log2 

secretion levels following 2 Gy of radiation at 1, 2, 4, 8 and 24 h compared to untreated controls at each timepoint in respect 

of pathways enriched in the radiation-induced secretome. Functional enrichment was performed in STRING using the 

KEGG [41] and Reactome [42,43] databases. Clustering of proteins is based on Pearson correlation with average linkage. 

Heatmap colours denote log2 change in secretion level compared to untreated controls at each time point as denoted by 

the colour bar. 

3.3. Gene Expression Changes Associated with Response to Radiation in Parental Radiosensitive 

and Derived Radioresistant MCF-7 Cells 

Global gene expression analysis was carried out to identify differences between the 

parental radiosensitive MCF-7 cells and their RR derivatives at 2 and 8 h post-radiation, 

time points that have previously been used to assess differences in DNA damage response 

pathways between radiosensitive and RR cells [29,53]. Within the MCF-7 radiosensitive 

cells, a 2 Gy radiation dose led to the upregulation of genes involved in DNA damage 

repair, apoptosis and cell cycle arrest; whereas genes involved in cell cycle, gene splicing 

and transcription were downregulated. The radiation response of the MCF-7 RR cells was 

different from that of the radiosensitive cells, with an overall reduction in gene expression 

changes being observed (Figure 5). Similar results were observed within the ZR-751 pa-

rental and RR cell lines (Supplementary Figure S2). 
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Figure 5. MCF7 and MCF-7 RR gene expression changes associated with response to radiation. Heatmaps reflect log2 

mean-centred gene expression changes with clustering based on Pearson correlation with average linkage (red = higher 

expression, black = no change, green = lower expression). Radiosensitive MCF-7 parental cells and their RR derivatives are 

shown in adjacent heatmaps. For each cell line, untreated baseline controls at 0 h are shown along with both the treated (2 

Gy radiation) and untreated controls at 2 h and 8 h. The genes shown are the most differentially expressed in sensitive 

parental MCF-7 cells, with the largest gene expression differences seen between the untreated controls and the 2 Gy treated 

cells at 8 h. 

3.4. MCF-7 Candidate Biomarker Selection  

From the 159 proteins which exhibited at least a 50% increase in secretion at 24 h 

following 2 Gy of radiation, cluster analysis identified 33 proteins that had significantly 

increased secretion levels (up to 12-fold) at all radiation doses tested (Figure 6A). While a 

small number of these proteins exhibited increased or decreased secretion levels com-

pared to untreated controls at earlier time points, the secretion levels of the majority of 

the proteins did not change (Figure 6B). From these 33 proteins, we identified those which 

were known to be secreted and those which belonged to the previously identified en-

riched pathways; we hypothesised that it might be these biomarkers that play a role in RT 

response. Gene expression analysis assessing the levels of these 33 proteins in both MCF-

7 and MCF-7 RR cells showed that 5 of the 33 proteins had higher levels of expression in 

the radiosensitive compared to the RR cells (Figure 6C); similar results were observed 

within the ZR-751 parental and RR cell lines (Supplementary Figure S3). We chose to focus 

on these 5 proteins (DKK1, EIF4EBP2, GNPNAT1, TK1 and YBX3) as our candidate bi-

omarkers. 
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Figure 6. Candidate biomarker selection. (A) Protein secretion heatmap showing the log2 secretion level of all 159 proteins 

identified from the radiation-induced secretome across all doses of radiation (2, 4, 6, 8 and 10 Gy) at 24 h. Cluster analysis, 

performed using Pearson correlation with average linkage, gave rise to two clusters. The upper cluster was found to con-

tain 33 proteins with significantly higher levels of secretion in response to radiation across all doses at 24 h. Heatmap 

colours indicate log2 secretion level as denoted by the colour bar. (B) Protein secretion heatmap showing the log2 secretion 

level changes of the 33 proteins from the upper cluster in Figure 3A across all timepoints and radiation doses, normalised 

to untreated controls at each timepoint. Heatmap colours indicate log2 secretion level changes compared to untreated 

controls at each timepoint as denoted by the colour bar (red = higher expression, green = no change, blue = lower expres-

sion). Proteins belonging to pathways found to be enriched in the radiation-induced secretome are highlighted according 

to the legend. (C) Heatmap of log2 mean-centred gene expression data from both untreated controls and radiation treated 

MCF-7 and MCF-7 RR cells, comparing the expression levels of the 33 secreted proteins at the gene level. Clustering was 

performed using Pearson correlation with average linkage (red = higher expression, black = no change, green = lower 

expression). 

3.5. Candidate Biomarker Expression and Intrinsic Sensitivity to Radiation 

As these five candidate biomarkers had higher inherent gene expression levels within 

the radiosensitive cells compared to their acquired RR derivatives, we further investigated 

whether these biomarkers might be linked to intrinsic radiosensitivity. SF2 values (a com-

monly used experimental indicator of cellular radiosensitivity) of parental and derived 

RR cells determined within our lab [29] were combined with SF2 values of a panel of ER+ 

BC cell lines ascertained by others in the literature [19,54–57]. Cell lines with SF2 values 

<0.4 and >0.4 were classed as radiosensitive and RR, respectively (this threshold has been 

previously used to define radiosensitivity and radioresistance [58]). Gene expression lev-

els of our five biomarkers were observed to be higher in the more radiosensitive cell lines 

than in RR models (Figure 7). These results suggest that our candidate biomarkers may be 

associated with intrinsic radiosensitivity.  
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Figure 7. Candidate biomarker expression and intrinsic sensitivity to radiation. Mean-centred gene expression heatmap 

(red = higher expression, black = no change, green = lower expression) showing the levels of genes encoding the 5 lead 

candidate biomarkers, ranked left to right by highest mean expression, across a panel of ER+ BC cell lines from a public 

dataset (GSE50811). SF2 values of parental and derived RR cells determined within our lab [29] were combined with SF2 

values of a panel of ER+ BC cell lines ascertained by others in the literature [19,54–57]. Cell lines with SF2 values <0.4 and 

>0.4 were classed as radiosensitive and RR, respectively [58]. The intrinsic radiosensitivity of individual cell lines is indi-

cated by highlighted colour (blue = sensitive, yellow = resistant). 

3.6. In Vitro and In Vivo Validation of Candidate Biomarkers  

To validate the secretomic results and further investigate the potential use of these 

proteins as biomarkers of radiosensitivity, the secreted and intracellular protein levels of 

our candidate biomarkers were assessed through WB and IHC, respectively, using both 

parental radiosensitive and derived RR cell lines. While we initially set out to validate all 

five candidate biomarkers, we were unable to find suitable antibodies for two of the pro-

teins (EIF4EBP2 and YBX3); we therefore focused on validating DKK1, GNPNAT1 and 

TK1.  

WB analysis was performed using CM samples to assess secreted protein levels from 

MCF-7 parental and RR cell lines 24 h after the cells had received a single radiation dose 

of 2 Gy (Figure 8A). Compared to untreated controls, the secretion levels of DKK1, 

GNPNAT1 and TK1 were significantly increased in MCF-7 cells 24 h after irradiation. In 

comparison, biomarker levels in the CM samples from untreated and radiation-treated 

MCF-7 RR cells remained low. Increased levels of secretion of our candidate biomarkers 

after irradiation was also observed in radiosensitive ZR-751 cells, with no increase in se-

cretion detected in ZR-751 RR cells (Supplementary Figure S4). 

Intracellular expression levels of the candidate biomarkers were assessed in both 2D 

and 3D culture conditions. WB analysis of whole cell lysates of cells cultured in 2D showed 

that the protein expression levels of DKK1 and GNPNAT1 were significantly higher in 

the radiosensitive parental MCF-7 cells compared to the RR cells (Figure 8B). Both the 2D 

ICC and 3D IHC indicated that the parental MCF-7 cells had higher basal levels of the 

three candidate biomarkers compared to the RR cells (Figure 8C). Similar results were also 

observed with the ZR-751 radiosensitive and RR cell lines (Supplementary Figure S4). 
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Figure 8. In vitro validation of lead candidate biomarkers. (A) WB analysis assessing the secretion levels of lead candidate 

biomarkers in MCF-7 and MCF-7 RR cell lines using CM samples obtained up to 24 h following 2 Gy of radiation. NS is a 

non-specific band used to confirm equal loading (One-way ANOVA with Holm–Šídák multiple comparisons test; data 

expressed as mean ± SEM, n = 3, * p ≤ 0.05, ** p ≤ 0.01). (B) WB analysis assessing the intracellular levels of lead candidate 

biomarkers in whole-cell lysates of MCF-7 and MCF-7 RR cell lines obtained up to 24 h following 2 Gy of radiation (Two-

way ANOVA; data expressed as mean ± SEM, n = 3). (C) IHC assessing the intracellular levels of the lead candidate bi-

omarkers in MCF-7 and MCF-7 RR cells cultured in 2D and 3D environments. 

We further assessed the link between the intracellular levels of these biomarkers and 

radiosensitivity using mouse xenograft tumours consisting of either MCF-7 parental or 

MCF-7 RR cells. IHC was performed on these mouse xenograft tumours, which were har-

vested 24 h post-radiation. Results showed that, while there was no increase in intracellu-

lar protein expression levels 24 h after radiation, the intracellular basal levels of the bi-

omarkers were higher in the parental tumours compared to the RR tumours (Figure 9). 
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Figure 9. In vivo intracellular levels of lead candidate biomarkers. IHC assessing the intracellular levels of the lead candi-

date biomarkers in mouse xenograft tumours harvested 24 h after radiation. Representative images taken from five MCF-

7 and five MCF-7 RR xenograft tumours. 

3.7. Validation in a Retrospective Patient Cohort 

Previous gene and protein expression analysis indicated that intracellular levels of 

the candidate biomarkers may be linked with radiosensitivity. Further investigation into 

whether these candidate biomarkers could predict response to RT was carried out. To do 

this, we performed IHC to assess the intracellular levels of the three candidate biomarkers 

using pre-treatment biopsy tissues from ER+ BC patients identified in the Breast-Conserv-

ing Series. We hypothesised that patients exhibiting higher levels of our candidate bi-

omarkers would have a better response to RT compared to those with lower levels. High 

intracellular levels of both DKK1 (Figure 10Ci) and GNPNAT1 (Figure 10Cii) were asso-

ciated with significantly increased recurrence-free survival (DKK1, p = 0.014; GNPNAT1, 

p = 0.022), indicating that these two candidate biomarkers have the potential to predict 

sensitivity to RT. No significant differences in recurrence-free survival were observed in 

those patients with either low or high intracellular TK1 levels (Figure 10Ciii). High mag-

nification images of the TMA samples are presented in Supplementary Figures S5–S7. 
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Figure 10. Validation in a retrospective patient cohort. (A) Frequency distribution histograms with gaussian regression 

curves fitted showing distribution of IHC grading histoscores of DKK1 (Ai) and GNPNAT1 (Aii), along with the distribu-

tion of IHC grading immunoscores for TK1 (Aiii), across a cohort (n = 78) of post-menopausal ER+ BC patients treated with 

surgery and adjuvant RT alone. (B) Representative images of IHC staining for DKK1 (Bi), GNPNAT1 (Bii) and TK1 (Biii). 

(C) Kaplan–Meier analysis of recurrence-free survival in relation to DDK1 (Ci), GNPNAT1 (Cii) and TK1 (Ciii) biomarker 

expression in the patient cohort. Median follow-up is 12.3 years. p-value derived from log-rank (Mantel-cox) test. 

4. Discussion 

RT is a frequently used curative and palliative treatment for BC. However, for some 

patients intrinsic and acquired radioresistance can substantially limit the efficacy of RT, 

ultimately leading to local recurrence, disease progression and/or metastasis. While some 

studies have investigated tissue-based gene signatures as a way of predicting tumour ra-

diation response [19–21], others appreciate the advantages of using blood-based bi-

omarkers as they can be detected less invasively pre-, post- and during treatment; this can 

allow a patient to be continually monitored. Various clinical studies have explored the 

utilisation of blood-based biomarkers, such as carbohydrate antigen 15-3 and carcinoem-

bryonic antigen for primary cancer diagnosis and metastatic disease detection [59–64], 

while the association between serum human epidermal growth factor receptor 2 (HER2) 

levels and tumour HER2 status has also been studied [65–68]. Pre-clinical studies typically 

focus on the cancer secretome for the identification of secreted biomarkers. Several secre-

tomic studies have used it to identify biomarkers of aggressive phenotypes or predictors 

of chemotherapeutic response [23,25,26]. Previous work has also identified secreted bi-

omarkers related to radiosensitivity. One study examined the secretome of BC cells 6 days 

after treatment with a single dose of 10 Gy, showing that the secretion of cyclophilin A 

was related to intrinsic radiosensitivity [27]. While this study demonstrated that protein 

secretion can increase following radiation, and that secreted proteins can relate to radio-

sensitivity, acute cancer secretome changes after radiation treatment were not assessed. It 
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is these early changes that could potentially be more useful in a clinical setting. As a result 

of increased clinical interest in the use of blood-based biomarkers to evaluate pre- and on-

treatment RT response [11], along with the potential of tissue-based biomarkers to predict 

tumour radiosensitivity, our study aimed to develop a novel method to identify both se-

creted and intracellular biomarkers of RT response. 

The ER+ MCF-7 cell line was chosen as the initial model for biomarker discovery, as 

it is a well-characterised cell line that has been used in many previous secretomic studies 

[25,26,69–73]. The first stage of our study involved the acquisition of CM samples from 

MCF-7 cells for LC-MS. For this, we used the CM of cells cultured in SFM, as serum bovine 

proteins can dilute the cancer secretome and hinder the identification of secreted proteins 

due to the close sequence homology of cattle proteins to many human proteins [74]. Even 

though the effect of serum starvation on cancer cells is disputed [75–78], studies have 

demonstrated that culturing cells in SFM does not significantly alter the composition of 

secreted proteins [79,80] and that cell death is minimised under appropriate culture con-

ditions [25,69,81]. Researchers have recommended that optimal incubation times and cell 

numbers are needed to diminish the cytosolic protein contamination that arises from cell 

death. Incubating cells with SFM for up to 30 h, with less than 70% cell confluency, are 

considered optimal conditions for the acquisition of secretome samples; these culture con-

ditions were followed in all of our experiments. A washing step was also carried out in 

our study before incubating the cells in SFM; previous studies have demonstrated that 

washing reduces the contamination of CM with serum proteins and also increases the 

quantity of secreted proteins isolated, without having any effect on cell growth or viability 

[82].  

All CM samples underwent centrifugation to reduce contamination by dead cells and 

debris, with concentration performed to enrich secreted proteins. This approach has been 

successfully used previously [83,84] and is necessary because secreted proteins are gener-

ally present in low abundance [85]. Control secretome samples were also acquired at each 

time point to account for the potential effects of serum starvation. To confirm that radia-

tion was not having an effect on cell number or causing significant cell death at 24 h post-

treatment, we performed cell counts and LDH assays. LDH is an intracellular enzyme 

involved in metabolism, if present in the CM it indicates that plasma membrane rupture 

and cell death has occurred [86]. Our results showed no significant differences in viable 

cell numbers or LDH levels between the controls and radiation-treated samples. This sug-

gests that radiation-induced changes in secreted protein levels would be a result of 

changes in secretion processes rather than altered proliferation rates or radiation-induced 

cell lysis. Our results are in accordance with other secretomic studies that have demon-

strated the absence of any significant levels of cell death up to 24 h after treatment with 

10 Gy [67–69].  

Our secretome sample preparation method likely led to the co-collection of directly 

secreted proteins and those secreted through exosome/microvesicle pathways. Using da-

tabases such as ExoCarta and Vesipedia we identified that a proportion of our identified 

secreted proteins had been previously identified within exosomes/microvesicles. Interest-

ingly, exosomal structural proteins were not present within our samples. One possible 

explanation for this is that exosomes and microvesicles can differ in the composition of 

their structural proteins including ALIX, TSG101, CD81, CD63 and CD9 [87]. It may be 

that the primary method of secretion for the proteins we identified using ExoCarta and 

Vesipedia (which do not differentiate between exosomes and microvesicles) is via mi-

crovesicles or even direct secretion rather than in exosomes. Indeed, our current work is 

focused on answering this important question by repeating our proteomic analysis of se-

creted samples after applying specific methods to isolate exosomes, microvesicles and di-

rectly secreted proteins. 

Our secretomic analysis initially focused on CM samples obtained 24 h after irradia-

tion. Cancer patients are typically treated with daily radiation fractions; therefore, the 
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measurement of biomarkers at 24 h after the first dose of fractionated RT might be appro-

priate in clinical practice. In theory, biomarker levels could be analysed just before daily 

treatment, that is, 24 h after a patient’s preceding dose. Initial analysis characterised the 

MCF-7 untreated basal secretome. The number of proteins isolated and the key enriched 

pathways in which they function (metabolism, carbohydrate metabolism, immune and 

cytokine signalling and cell cycle regulation) were in agreement with previous studies 

using various tumour types, including BC cell lines [24,88]. The majority of the proteins 

detected in the secretome 24 h after radiation differed from those of the basal secretome, 

specifically those involved in translation, spliceosome and RNA processing, protein me-

tabolism and the proteasome. Proteins involved in some of these pathways have previ-

ously been shown to be secreted from BC cells 6 days after a 10 Gy radiation dose [27].  

In order to identify the most suitable candidate biomarkers to be taken forward for 

validation, we wanted to identify biomarkers that exhibited a straightforward secretion 

profile, whereby levels were minimal at earlier time points, then demonstrated a large 

increase at 24 h, as this might potentially increase the probability of successful validation. 

Of the proteins that had been identified in the radiation-induced secretome, 33 proteins 

were found to have significantly increased secretion levels (up to 12-fold) at all radiation 

doses tested at 24 h, with low secretion at earlier time points. 

Further analysis of these 33 proteins focused on their gene expression levels within 

the MCF-7 radiosensitive and RR cell lines. Initial comparative analysis of the two cell 

lines showed differences in their gene expression patterns in response to 2 Gy treatment, 

with radiosensitive cells exhibiting up-regulation of genes involved in DNA damage re-

pair pathways and arrest of the cell cycle, and down-regulation of genes involved in the 

cell cycle. Similar gene expression changes have been found in other studies using the 

MCF-7 cell line [89] and patient samples [90]. These recognised radiation-induced gene 

expression changes did not occur in the RR cells. DNA damage repair pathways play a 

crucial role in the response of cells to radiation; previous studies have also shown there to 

be differences in the expression of DNA damage related genes between radiosensitive and 

RR cell lines [53]. Given the differences in response to radiation, we proposed that any of 

our 33 secretomic candidate biomarkers that were differentially expressed between the 

sensitive and resistant cell lines could hold value as biomarkers of RT response or ac-

quired radioresistance. Gene expression analysis assessing the 33 proteins showed that 

DKK1, EIF4EBP2, GNPNAT1, TK1 and YBX3 had higher expression levels in the radio-

sensitive cells. Further evidence of a relationship between the gene expression levels of 

these 5 candidate biomarkers and radiosensitivity was shown in a panel of ER+ cells, with 

the more radiosensitive cells expressing higher levels of the candidate biomarkers. Vali-

dation experiments focusing on DKK1, GNPNAT1 and TK1 showed that these biomarkers 

were secreted in response to radiation treatment, but only in radiosensitive cells. These 

results were recapitulated in a second ER+ cell line (ZR-751). Results from the in vitro and 

in vivo experiments indicated that intracellular protein levels of these three biomarkers 

may also be associated with radiosensitivity. Further evidence of the biomarkers potential 

to predict RT response was seen through assessing intracellular protein expression levels 

using samples from the Breast-Conserving Series. Here, survival analysis identified that 

patients with higher intracellular DKK1 and GNPNAT1 expression levels were associated 

with significantly increased recurrence-free survival. 

Prior studies have linked our three lead candidate biomarkers with cancer. DKK1 is 

a soluble antagonist of Wnt/β-catenin signalling [91]. Previous work has suggested that 

Wnt signalling and DKK1 are involved in bone metastasis [92] and that DKK1 can stimu-

late osteoclast activity and inhibit the production and differentiation of osteoblasts. Inhi-

bition of the effects of Wnt on the bone can help generate a microenvironment that allows 

tumours to expand [93]. DKK1′s role in stimulating osteolytic metastases has been estab-

lished in investigations of multiple myloma-associated bone disease [94,95], with differing 

studies also supporting the role of DKK1 in BC bone metastasis. Serum concentrations of 

DKK1 have also been shown to be increased in BC patients; moreover, patients with bone 
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metastases were shown to have significantly increased serum DKK1 levels when com-

pared to non-metastatic BC patients [96]. Elevated serum DKK1 concentrations have also 

been correlated with more advanced disease stage and grade of BC, along with shorter 

recurrence-free and overall survival times [97]. A further study demonstrated that alt-

hough DKK1 was present in 70% of BC tissues, it could be identified in all patients using 

serum samples [96]. Altogether, these studies show that DKK1 is a promising intracellular 

and secreted biomarker for assessing BC prognosis.  

GNPNAT1 is an enzyme involved in the hexosamine biosynthetic pathway (HBP). 

The HBP produces UDP-N-acetylglucosamine (UDP-GlcNAc), which is thought to be an 

essential nutrient sensor [98]. UDP-GlcNAc itself is used as substrate in glycosylation re-

actions; these post-translational changes are highly altered in tumour cells and can regu-

late the function of proteins involved in various tumour-associated processes such as gene 

regulation, metabolism, cell signalling and epithelial-to-mesenchymal-transition [98]. 

GNPNAT1 expression has been linked with prognosis in prostate cancer; higher expres-

sion levels have been associated with a lower risk of biochemical recurrence [99], whereas 

lower levels are typically seen in advanced, castrate-resistant prostate cancer when com-

pared to localised disease [100]. Studies have demonstrated that GNPNAT1 is upregu-

lated in lung adenocarcinoma tissues compared to normal tissues [101,102], with Liu et al. 

concluding that this protein may have potential as a prognostic biomarker [101]. Our re-

sults indicate that GNPNAT1 may additionally have a role to play in BC. This is in line 

with other recent studies which have demonstrated that elevated GNPNAT1 gene expres-

sion levels are present in BC tissue samples [103].  

TK1 is involved in cell cycle regulation through the production of thymidine mono-

phosphate, an essential requirement for DNA replication [104,105]. TK1 has been identi-

fied in extracellular vesicles from numerous cancer types [106–109]. Some studies have 

suggested that it could be used as a proliferation biomarker [110] with both diagnostic 

and prognostic potential [104,111]. In BC, increased intracellular TK1 expression has been 

correlated with disease grade and stage [112], with serum levels having been investigated 

for monitoring treatment responses [113] and for predicting the risk of developing distant 

and/or regional recurrence post-surgery [114].  

In BC, RT is traditionally carried out in the adjuvant setting, after breast-conserving 

surgery and sometimes after mastectomy to eliminate any residual cancer cells left behind 

after surgery. While our results are promising, there are potential limitations to their trans-

latability to the clinic. A potential issue is that there could be differences in secreted bi-

omarker levels when RT is given neoadjuvantly to shrink in situ cancers compared with 

levels seen after post-operative adjuvant RT dealing with residual tumour cells. However, 

RT does also have a role in the management of BC in the neoadjuvant setting, where it can 

be combined with chemotherapy in patients with locally advanced cancer [115–121]. Ne-

oadjuvant RT alone has been used for the treatment of BCs that are unsuitable for primary 

conservative surgery [122]. There is also increasing interest in the use of neoadjuvant ac-

celerated partial breast irradiation alone to help reduce treatment-related morbidities as-

sociated with external beam irradiation [123,124]. Recent work has additionally shown 

that neoadjuvant RT alone may significantly increase disease-free survival without de-

creasing overall survival in patients with early-stage BC; these results were most evident 

for ER+ BC patients [125]. As our study used ER+ BC cell lines, our results may be of par-

ticular utility to early-stage patients suffering from this BC subtype. Recent work has also 

shown that neoadjuvant RT alone, followed by radical surgery, is a feasible treatment op-

tion and is associated with good long-term locoregional control [126]. Therefore, while 

pre-surgical RT is not currently the standard treatment option for patients, neoadjuvant 

RT has the potential to challenge the current treatment paradigm. This BC treatment strat-

egy will ultimately require biomarkers, such as ours, that can predict and monitor RT 

response.  

Although previous studies have shown that each of our candidate biomarkers is se-

creted from BC cells [106], with some of them linked to BC prognosis, ours is the first 
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study to describe a link between the intracellular/secreted levels of these biomarkers and 

radiosensitivity. Whilst our initial model for secreted biomarker discovery was only per-

formed using the MCF-7 cell line, our secretomic results have been comprehensively val-

idated using two different ER+ cell lines. Although these results are promising, additional 

work is now needed to assess whether these biomarkers can be detected in blood samples 

using animal models. Following on from our successful use of BC xenograft tumours and 

patient tissues from the Breast-Conserving Series, we will now look to investigate the bi-

omarker’s ability to predict radiosensitivity in larger patient cohorts. Furthermore, exper-

iments will be needed to investigate the mechanisms of biomarker secretion and elucidate 

what roles these biomarkers play in cellular radiosensitivity. Although our study is par-

ticularly focused on BC, it is possible that the biomarkers we have identified are not BC-

specific but may be more generic measures of tumour radiosensitivity. The methods we 

have used to identify biomarkers of radiation response are equally applicable to other 

solid tumours; future studies could therefore utilise our validated methods for biomarker 

discovery in other cancer types. 

5. Conclusions 

For clinicians to be able to deliver biologically adapted, personalised RT for BC pa-

tients they must be able to stratify patients based on individual tumour radiosensitivity 

before commencing treatment. Clinicians should also be able to monitor RT responses 

during treatment. To begin to address these clinical needs we developed an integrated 

secretomic and transcriptomic approach using both radiosensitive and RR cell lines to 

identify biomarkers of radiation sensitivity and response. To our knowledge, we are the 

first to report the use of secretomic experiments to identify radiation-induced BC secreted 

biomarkers that are released within 24 h of treatment. Furthermore, we showed that dif-

ferential biomarker secretion, gene expression and intracellular protein levels can indicate 

cellular radiosensitivity. Initial validation using clinical samples also suggested that two 

of our selected candidate biomarkers have the potential to predict RT outcomes in ER+ BC 

patients. For any of these intracellular/secreted candidate biomarkers to be used in the 

clinic, further research will have to prove their validity and demonstrate their ability to 

improve outcomes or refine patient selection for RT. The incorporation of individual bi-

omarkers and/or signatures with advanced radiation delivery techniques, already availa-

ble in the clinic, would enable the development of a precision medicine platform that 

could significantly improve the efficacy of RT in the treatment of BC patients.  

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/jpm11080796/s1. Supplementary Figure S1. Cell numbers and LDH cytotoxicity assays 

at 24 h post-radiation treatment. (A) Cell counts using trypan blue exclusion were performed with 

MCF-7 and ZR-751 parental and RR cell lines to confirm that no changes in proliferation or cell death 

were occurring after treatment with a single dose of up to 10 Gy radiation (one-way ANOVA with 

the Holm–Šídák multiple comparisons test, comparing only values within each cell line; data ex-

pressed as mean ± SEM, n = 3). (B) LDH cytotoxicity assays were performed with MCF-7 and ZR-

751 parental and RR cell lines to confirm that no cell death was occurring after treatment with 2 Gy 

of radiation (unpaired t-test performed on the control and treated cells for each cell line; data ex-

pressed as mean ± SEM, n = 3). Supplementary Figure S2. ZR-Z51 and ZR-751 RR gene expression 

changes associated with response to radiation. Heatmaps reflect log2 mean-centred gene expression 

changes with clustering based on Pearson correlation with average linkage (red = higher expression, 

black = no change, green = lower expression). Radiosensitive ZR-751 parental cells and their RR 

derivatives are shown in adjacent heatmaps. For each cell line, untreated baseline controls at 0 h are 

shown along with both treated (2 Gy radiation) and untreated controls at 2 h and 8 h. The 2 h 2 Gy 

ZR-751 sample failed in sequencing and was removed from further analysis. The genes shown are 

the most differentially expressed in sensitive parental MCF-7 cells, with the largest gene expression 

differences seen between the untreated controls and the 2 Gy treated cells at 8 h. Supplementary 

Figure S3. Gene expression levels of the 33 candidate biomarkers within ZR-751 parental and RR 

cell lines. Heatmap of log2 mean-centred gene expression data from both untreated controls and 

radiation-treated parental ZR-751 and ZR-751 RR cells. Clustering was performed using Pearson 
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correlation with average linkage (red = higher expression, black = no change, green = lower expres-

sion). Supplementary Figure S4. In-lab validation of lead candidate biomarkers in the ZR-751 cell 

line. (A) WB analysis assessing the secretion levels of lead candidate biomarkers in ZR-751 and ZR-

751 RR cell lines using CM samples obtained up to 24 h following 2 Gy of radiation. NS is a non-

specific band used to confirm equal loading (One-way ANOVA with Holm–Šídák multiple com-

parisons test; data expressed as mean ± SEM, n = 3, * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001). (B) WB 

analysis assessing the intracellular levels of lead candidate biomarkers in whole-cell lysates of ZR-

751 and ZR-751 RR cell lines obtained up to 24 h following 2 Gy of radiation (Two-way ANOVA; 

data expressed as mean ± SEM, n = 3). (C) IHC assessing the intracellular levels of the lead candidate 

biomarkers in ZR-751 and ZR-751 RR cells cultured in 2D and 3D environments. Supplementary 

Figure S5: High magnification TMA images stained for DKK1. Images are taken from those tissues 

presented in Figure 10. Supplementary Figure S6: High magnification TMA images stained for 

GNPNAT1. Images are taken from those tissues presented in Figure 10. Supplementary Figure S7: 

High magnification TMA images stained for TK1. Images are taken from those tissues presented in 

Figure 10. Supplementary Table S1. RNA quality of the samples used for gene expression analysis. 

RNA integrity numbers (RIN) for the gene expression analysis samples. Supplementary Table S2. 

Clinicopathological data from 80 patients within the Breast-Conserving Series were used to investi-

gate whether the candidate biomarkers could predict response to RT. Supplementary Table S3. List 

of proteins identified in each pathway from the untreated MCF-7 cell secretome. In total, 318 pro-

teins were identified in the untreated basal MCF-7 secretome. Proteins involved in the significantly 

enriched pathways identified from the KEGG and Reactome databases are shown. Supplementary 

Table S4. List of proteins identified that exhibited at least a 50% increase in secretion level following 

2 Gy of radiation compared with 24 h untreated controls. A proportion of the secreted proteins were 

involved in immune signalling, metabolism, translation, RNA processing and the proteasome. 
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