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ARTICLE

Total genetic contribution assessment across
the human genome
Ting Li1, Zheng Ning 1,2, Zhijian Yang1, Ranran Zhai 1, Chenqing Zheng1, Wenzheng Xu1, Yipeng Wang 1,

Kejun Ying 1,3,4, Yiwen Chen 1,5 & Xia Shen 1,2,6✉

Quantifying the overall magnitude of every single locus’ genetic effect on the widely mea-

sured human phenome is of great challenge. We introduce a unified modelling technique that

can consistently provide a total genetic contribution assessment (TGCA) of a gene or genetic

variant without thresholding genetic association signals. Genome-wide TGCA in five UK

Biobank phenotype domains highlights loci such as the HLA locus for medical conditions, the

bone mineral density locus WNT16 for physical measures, and the skin tanning locus MC1R

and smoking behaviour locus CHRNA3 for lifestyle. Tissue-specificity investigation reveals

several tissues associated with total genetic contributions, including the brain tissues for

mental health. Such associations are driven by tissue-specific gene expressions, which share

genetic basis with the total genetic contributions. TGCA can provide a genome-wide atlas for

the overall genetic contributions in each particular domain of human complex traits.
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Understanding the magnitude of ubiquitous genetic effects
across the genome is of fundamental importance for
scrutinising the complexity of genetic architecture. The

concept of pleiotropy, coined 110 years ago by the German
geneticist Ludwig Plate1, describes the phenomenon of a single
genetic variant or gene affecting multiple phenotypes, reflecting
the shared genetic basis across these traits2. During the past
decade, a large amount of genome-wide association studies
(GWAS) of various phenotypes have shown that complex traits
are highly polygenic, influenced by many genetic variants with
small effects3. When many phenotypes are considered, distin-
guishing tiny genetic effects from noise becomes particularly
challenging. Not only the spread of genetic effects, i.e. pleiotropy,
is of concern, but also the magnitude of genetic effects requires
consideration. Which variant, or gene, or part of the genome,
contributes the most genetic effects to the measured human
phenome? The question is yet to be well defined and scientifically
answered.

Quantifying the overall effect of a gene or genetic variant on
the human phenome is not trivial. Although this seems to be as
simple as adding up each variant’s genetic effect on each phe-
notype, there are some major difficulties. The key issue is that it is
hard to distinguish associated phenotypes from noise. Simply
applying a statistical significance threshold to association sum-
mary statistics cannot solve the problem4. For instance, in GWAS
setting, a loose threshold (e.g. P < 0.05) may lead to too many
false positives, while a stringent threshold (e.g. P < 5 × 10−8) may
produce too many false negatives5. Without a significance
threshold, summing up the association statistics across all phe-
notypes also suffer from the issue of too many negatives, so that
noise dominates signals. Thus, it is strongly needed to develop a
threshold-free method, to penalise the unassociated phenotypes
and quantify the total contribution of a gene or genetic variant6.
Correlations across a wide range of phenotypes also need to be
accounted for4.

In this work, we develop a statistic for total genetic contribu-
tion assessment (TGCA) of a genetic variant, addressing the
above difficulties. The TGCA statistic quantifies how much
genetic effect in total a SNP contributes to a group of phenotypes.
We achieve this by modeling GWAS summary statistics across a
wide range of phenotypes in UK Biobank (UKBB). We integrate
TGCA with tissue-specific gene-expression information to high-
light the tissues most relevant and irrelevant to human complex
traits. We also provide functional insights into the discoveries by
integrating TGCA with functional genomic annotations. TGCA
results can be considered as an atlas of general genetic archi-
tecture for complex trait variation.

Results
Overview of the methods. We introduce a threshold-free method
assessing the total genetic contribution for each single SNP based
on GWAS summary statistics of a series of phenotypes. Prior to
statistical modeling, we standardise the GWAS Z-score test sta-
tistics across different phenotypes by the square root of the
sample sizes, so that the subsequent modeling would not be
biased due to unequal study-size-driven power. Subsequently, we
adjust the phenotypic correlations among the Z-scores4, for every
single genetic variant across multiple phenotypes (see Methods),
yielding a vector of adjusted Z-scores per variant that are
uncorrelated with each other. Denote the adjusted Z-scores of
SNP i across k phenotypes as zi= (zi1, . . . , zik). In the TGCA
model, for j∈ {1, . . . , k}, zij is drawn from a mixture Gaussian
distribution of

π�Nðμ�; σ21Þ þ π0Nð0; 1Þ þ πþNðμþ; σ22Þ; ð1Þ

where the three components correspond to the negative effects,
the null effects, and the positive effects. The proportions of the
components are constrained by π−+ π0+ π+= 1. The μ para-
meters are the means of the genetic effects, and the σ2 parameters
measure the dispersion of the genetic effects. We estimate all
these parameters for each genetic variant in the genome by
maximising the full likelihood via an EM algorithm (Supple-
mentary Information).

In order to quantify the total genetic effect per variant, we
define a TGCA statistic Θ= ∣π+μ+∣+ ∣π−μ−∣. Different from an
ordinary pleiotropy concept, which one might define as a SNP
affecting more than one trait, the Θ parameter aims to quantify
the total genetic contribution of each SNP on a group of
phenotypes, standardised by the number of traits modelled due to
the constrain on the π parameters. Its main advantage is being
threshold-free. The statistic is constructed via the non-null
parameters in the above mixture model, so that the π0N(0, 1)
component serves as a penalisation term for phenotypes with null
associations without introducing any significance threshold for
GWAS summary statistics. Θ quantifies how much genetic effect
in total a SNP contributes to the group of traits, the π parameters
assess the proportion of these traits the SNP affects, and the μ
parameters represent the average effect the SNP has on each trait.

The Θ score itself is comparable across SNPs. When inference
on the uncertainty and model fitting is needed, standard errors of
the π and μ parameters are derived from the Hessian of the
likelihood function at its maximum, so that the standard error of
estimated Θ can be obtained via the Delta method (Supplemen-
tary Information). A p-value testing against the null hypothesis of
Θ= 0 can be obtained via a Wald test, i.e. a quadratic
approximation of the likelihood around its maximum.

Simulations. Although the modeling is straightforward, the
identifiability of mixture models is of numerical concern. In order
to assess the validity of the TGCA statistic Θ, we simulated dif-
ferent scenarios of models and parameter values. First, for a
genetic variant, we generated 200 GWAS Z-scores, corresponding
to 200 independent phenotypes, from four different true models:
a mixture distribution with two non-null Gaussian components
π�Nðμ�; σ21Þ þ π0Nð0; 1Þ þ πþNðμþ; σ22Þ, where the π−= π+; a
mixture with one non-null Gaussian π0N(0, 1)+ π+N(μ+, σ2);
a mixture with three non-null Gaussian π�Nðμ�; σ21Þ þ
π0Nð0; 1Þ þ πþNðμþ; σ22Þ þ πþþNðμþþ; σ

2
3Þ, where π−= 2π+=

2π++; and a mixture with two non-null t-distributed heavy-tailed
components π−[t(1)+ μ−]+ π0N(0, 1)+ π+[t(1)+ μ+], where
t(1) denotes a t-distribution with 1 degree of freedom, and π−=
π+. In order to cover a wide range of values in the parameter
space, the true parameters were drawn randomly from given
distributions (Methods). We evaluated whether Θ and the other
parameters can be consistently estimated with different true
values setup (Fig. 1, Supplementary Fig. 1). Across the Gaussian
mixture models, regardless of the violation of the TGCA model,
Θ could be consistently estimated. For the mixture with extremely
heavy-tailed non-null components, although the individual
parameters in the mixture were hard to identify, Θ could still be
consistently estimated.

Second, for the scenario where the phenotypes are correlated,
we generated correlated Z-scores according to the estimated
phenotypic correlations across 1376 traits in the UK Biobank
(UKBB)7. We then decorrelated the Z-scores using the top 955
eigenvectors corresponding to 90% information of the phenotypic
correlation matrix (See Methods). For each of the above Gaussian
mixture true models, we estimated the model parameters and
compared the estimates to the true values (Supplementary Fig. 2).
We found that the individual parameters in the mixture model
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became harder to identify consistently, especially when some
parameters were close to the boundary. Nevertheless, Θ was
identifiable and can be consistently estimated even when the true
model violates the TGCA model.

For the four simulated model and a null model with no genetic
effect, we evaluated the operating characteristics of the p-values
testing the null hypothesis of Θ= 0 (Supplementary Fig. 3). The
three models that violated the TGCA model did not substantially
affect the performance. The p-value distribution under the null,
although slightly inflated, was close to uniform. For the same Θ
value, the more the null effect traits were, the higher the power to
identify Θ, as the model became more identifiable when the
components in the mixture were more apart from each other.

Genome-wide TGCA across UKBB phenotypes. In real data
application, we first applied the mixture model to the GWAS
summary statistics of 1376 UKBB phenotypes and estimated and
tested genome-wide TGCA Θ of 2,029,920 quality-controlled
SNPs with minor allele frequencies (MAFs) > 0.005. We obtained
all the estimated parameters as well as the TGCA Θ’s with their
standard errors (Supplementary Fig. 4). Based on the analysis of
such a large number of traits, we compared the established sta-
tistics in pleiotropy measurement literature with the estimated
Θ’s across the genome. As we introduced, literature assesses the
level of pleiotropy at each SNP by thresholding GWAS p-values,
e.g. counting associated phenotypes (HOPS Pn statistic4) or
phenotype domains2. The HOPS Pm statistic sums up GWAS χ2

statistics, trying to assess a total genetic effect, however, without
penalising the null associations, the performance is similar to
pleiotropy quantification with thresholding (Supplementary
Figs. 5–9). TGCA was specifically developed for total effect
quantification without statistical cut-off, yielding a new identifi-
able parameter Θ. Although pleiotropy affects Θ, Θ quantifies the
total genetic contribution rather than the level of pleiotropy;
therefore Θ captured different features in the genome-wide
association data (Supplementary Figs. 5–9).

Next, we performed TGCA in five different phenotype
domains, including medical conditions (122 traits), mental health
(189 traits), physical measures (117 traits), lifestyle (172 traits),
and diet (139 traits) (Fig. 2, Supplementary Figs. 10–12). As Θ by
definition is bounded by zero, we mainly focused the results on
the estimated Θ as scores, rather than treating the analysis as a

GWAS with emphasis on the significance of estimated genetic
effects. About 95% of the SNPs had estimated Θ less than 1. For
individual loci, we report those that had Θ̂> 2 (Supplementary
Data 1–3). For instance, the HLA locus had high Θ estimates for
both medical conditions and physical measures. The bone
mineral density locus WNT16 had the highest Θ estimate for
physical measures. The skin tanning locus MC1R, as well as the
smoking behaviour locus CHRNA3, also known to be associated
with human lifespan8, had high Θ estimates for lifestyle
phenotypes.

In the Supplementary Information, we provide further results
on the relationship between these genome-wide TGCA and
different aspects, including LD levels, numbers of gene–gene
interactions and pathways, and genomic functional annotations.

TGCA suggests tissues associated with certain phenotype
domains. Integration of genome-wide summary association sta-
tistics and tissue- or cell-type-level gene-expression data was
shown to be able to locate gene-expression-mediated genetic
regulation of complex diseases, e.g. schizophrenia9 and Parkin-
son’s disease10, to specific tissues. The strategy consists of two
steps: (1) Scoring tissue-specific gene expressions to identify
specifically expressed genes in each tissue; (2) Estimating and
testing the GWAS-analysed trait’s heritability enrichment on
SNPs annotated on tissue-specifically expressed genes.

First, we adopted the same procedure as described by Skene
et al.9, using stratified LD score regression (S-LDSC)11 to test the
enrichment of total genetic contributions in different tissues. The
expression tissue-specificity score of each gene was calculated as
the proportion of expression across 48 GTEx tissues (v7). For
each tissue, the top 10% tissue-specifically expressed genes were
selected, and SNPs on these genes were annotated and passed
onto S-LDSC for genome partitioning (Fig. 3a, Supplementary
Data 4). The analysis suggested that only for mental health traits,
the estimated Θ̂ were substantially enriched in brain tissues.
Although the test statistic ZΘ ¼ Θ̂=s:e:ðΘ̂Þ does not follow a
normal distribution, the correlation structure of ZΘ is a sufficient
statistic for such enrichment inference12. We also observed a
monotonic relationship between Θ̂ and LD correlations (Supple-
mentary Fig. 13), which partly justified the use of S-LDSC for
genome partitioning and enrichment test.
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Fig. 1 Representative simulation results of total genetic contribution assessment (TGCA) under different true models. 200 independent Z-scores for a
single genetic variant were drawn from a mixture distribution with (1) two non-null Gaussian components 0:25Nðμ�; σ21 Þ þ 0:5Nð0; 1Þ þ 0:25Nðμþ; σ22Þ,
(2) one non-null Gaussian component 0.5N(0, 1)+0.5N(μ+, σ2), (3) three non-null Gaussian components 0:25Nðμ�; σ21 Þ þ 0:5Nð0; 1Þ þ 0:125Nðμþ; σ22Þþ
0:125Nðμþþ; σ

2
3Þ, and (4) two non-null heavy-tailed t-distributed components 0.25[t(1)+ μ−]+ 0.5N(0, 1)+ 0.25[t(1)+ μ+], respectively. The simulation

was repeated for 999 times. In each simulation, the negative effect size μ− was randomly drawn from −∣N(1, 1)∣, the positive effect size(s) μ+ and μ++ were
drawn from ∣N(1, 1)∣, and the σ2 parameters from χ2(1). The y-axis compares the estimated Θ̂ ¼ jπ̂þμ̂þj þ jπ̂�μ̂�j and the relevant parameters with the true
values. Source data are provided as a Source Data file.
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Nevertheless, secondly, in order to ensure that the majority of
the observed enrichment results was not caused by the non-
normal distribution of Θ̂, we adopted another strategy similar to
the LD-corrected scores in the HOPS method4. We regressed the
Θ̂ values on each binary annotation variable, defined for each

tissue based on its specifically expressed genes, and the LD scores
of the SNPs were used as a covariate. The SNPs included in the
regression was LD-pruned to prevent potential bias (see
Methods). This alternative analysis strategy also revealed some
similar results as S-LDSC, e.g. the estimated Θ̂ for mental health

Fig. 2 Genome-wide total genetic contribution assessment (TGCA) Θ̂ and the p-values testing against Θ= 0 in three UK Biobank trait domains.
Nearest gene(s) to the lead variant at each top locus are labeled. Source data are provided as genome-wide summary statistics in Data Availability.
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Fig. 3 Gene-expression-induced association analysis between 48 human tissues and total genetic contribution assessment (TGCA) of five trait
domains. a Association between TGCA Θ and each tissue was tested using stratified LD score regression (LDSC) for the enrichment of Θ in tissue-
specifically expressed genes. b The Θ-tissue association was analysed using a linear regression of Θ̂ on the annotations of top 10% tissue-specifically
expressed genes, corrected for the LD scores of the SNPs. The median regression coefficients of the annotation variables across 100 sets of LD-pruned
SNPs are plotted. c Comparison of the resulted association scores by the two methods in a and b via rank-based correlations. The regression lines with the
95% prediction interval bands are shown. Source data are provided as a Source Data file.
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traits were enriched in brain tissues (Fig. 3b, Supplementary
Data 5). As a triangulation strategy, if the results were more
similar between the two analysis pipelines for a certain phenotype
domain, the tissue enrichment conclusion would be more
trustworthy. Thus, we evaluated the rank-based correlation across
tissues between the two methods in each phenotype domain
(Fig. 3c). The results for mental health, medical conditions, and
physical measures showed agreement between the two analysis
methods, whereas poor correlations were observed for lifestyle
and diet phenotypes. The different correlations reflected different
power in detecting the association between Θ scores and tissue-
specific genes. Therefore, for instance, top enriched tissues such
as brain for mental health, lung for medical conditions, and
sigmoid colon for physical measures, etc., were evident based on
these analyses.

Connection between TGCA and cis-regulatory loci of gene
expressions. The cis-regulatory variants for gene and protein
expressions are centred around transcription start sites (TSS)13,
which explain substantially enriched heritabilities for a wide
range of complex traits11. With the assessment of total genetic
contribution in different trait domains, we expected that the
overall genetic contribution would also enrich at cis-expression
quantitative trait loci (eQTL). Furthermore, if a particular tissue is
associated with a certain domain of phenotypes via tissue-specific

gene expressions, we hypothesised that such an association were
driven by the cis-eQTL of the tissue-specifically expressed genes.

In order to test this, we extracted the cis-eQTL scan summary
statistics of the tissue-specifically expressed genes in each tissue.
The tissue-specifically expressed genes were the same as in the
above S-LDSC analysis. We represent each cis-eQTL with its lead
variant, i.e. the SNP with the smallest p-value across the tested cis-
SNPs by both the eQTL scan and our TGCA analysis. We
examined the squared Z-score (χ2) distribution for Θ̂ in each
phenotype domain, stratified on the cis-eQTL for specifically
expressed genes in each tissue (Fig. 4, Supplementary Fig. 14). As
described above, such an investigation might not be trustworthy
for lifestyle and diet phenotypes, while evidence could be found
for the other phenotype domains. For example, in brain anterior
cingulate cortex, the TGCA signals for mental health traits were
strong across the eQTL for the particular tissue-specifically
expressed genes. Strong TGCA signals for medical conditions
were observed at the eQTL for lung-specifically expressed genes.
Such signals were also enriched for physical measures in colon
sigmoid.

Discussion
We developed a mixture modelling technique and derived a
unified statistic to assess the total genetic contribution of each
genetic variant across a wide range of phenotypes. Being
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Fig. 4 Distribution of total genetic contribution assessment (TGCA) χ2 statistic at cis-eQTL of specifically expressed genes in three different tissues.
The quantile-quantile plots compare the observed TGCA χ2 statistics for Θ̂ at the cis-eQTL of top 100 specifically expressed genes in each tissue. The
expected null values were drawn from a χ2(1) distribution. Source data are provided as a Source Data file.
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threshold-free and penalising null associations, the TGCA Θ
statistic quantifies an overall genetic effect or a total genetic
contribution of a single variant on a group of phenotypes. We
applied the method to the UKBB genome-wide summary asso-
ciation statistics for five different domains of phenotypes, high-
lighted top loci for some phenotype domains, and investigated the
genetic regulation mediated via tissue-specific gene expressions.
The inferred genome-wide total genetic contribution atlas is
useful as a reference, describing the contribution architecture
across the human genome. The model itself can be applied to
various domains or clusters of phenotypes to assess an overall
genetic architecture.

Although the same type of mixture model was not formally
evaluated before, we introduced a similar model to assess the
proportion of phenotypes that a deletion had effects on14. Here
we extended from such a modelling technique to develop an
identifiable threshold-free score for overall genetic effects. Mix-
ture modelling is flexible, and we expect future development
along this line to address relevant scientific questions.

In our model setup, a SNP with high π+ and low μ+ could have
the same Θ as a SNP with low π+ and high μ+. This can apply to
both the estimated Θ and the true Θ, so the model-estimated Θ
itself cannot distinguish the two types of SNPs. The estimated π
and μ parameters, although sometimes hard to be consistently
identified, can help distinguish these two different scenarios. For
the same true value of Θ, the power to identify Θ varies across
different π–μ combinations. For the same value of true Θ, the
power is higher for low π+ and high μ+ as the locations of the
mixture components are more apart and identifiable.

We do not necessarily expect that the effects truly follow the
described TGCA model. In fact, we do not know the true model.
Nevertheless, there are two advantages of the three-Gaussian
TGCA: (1) The parameters are straightforward to interpret, such
as on what proportion of the traits the SNP affects (the π’s), and
what the average effect the SNP has on each trait (the μ’s), and
how much genetic effect in total a SNP contributes to the traits
(Θ); (2) The Gaussian mixture is easier to handle computationally
in an EM algorithm. Numerically, in the UKBB analysis, there
were about 5% SNPs for which the mixture model fitting could
not be stably achieved due to likelihood boundary properties.
Some of such lost SNPs could harbour interesting loci, so
mathematical and computational algorithms for mixture models
might be developed further to increase parameter identifiability.

We found that the number of traits considered in the model
does affect the power (Supplementary Fig. 15), nevertheless, for
the same true Θ value, as discussed above, π–μ combinations
appear to affect the power more. In general, a larger number of
traits would increase the power of the mixture model to identify
the parameters. Less polygenic traits, e.g. omics phenotypes, can
have major loci with relatively larger effects, which may require
less number of phenotypes to identify the mixture components.

In order to balance the sample size difference across the traits,
we standardised the GWAS Z-scores by the square root of the
sample sizes as weights, with a constrain that the average weight
across the traits equals to 1. Although modelling the null com-
ponent variance differently for traits with different sample sizes
would fit the data better, modeling the null component as N(0, 1)
is reasonable, as the expected variance of the GWAS Z-scores is 1
under the null due to the constrain. We have shown via simu-
lation that the simple model is generally applicable and identifi-
able in various scenarios.

Given the widespread pleiotropy in the human genome, the
power for revealing previously known pleiotropic loci seems to be
low if we only look at the p-values testing the total genetic con-
tribution parameter against Θ= 0. First, the power for the infer-
ence of Θ and any other parameter in the mixture model increase

with both the sample sizes of the GWASs and the number of
phenotypes modelled (Supplementary Figs. 15 and 16). Second, Θ
is a quantity with its own meaning, and the hypothesis testing
against Θ= 0 is not very informative. We emphasise the value of
Θ itself rather than how significant it is compared to zero, as the
relative magnitudes of Θ’s across different SNPs are more inter-
esting. In order to highlight the top-ranked loci that have not only
widespread pleiotropic but also relatively larger effects on many
traits, we report the loci with Θ̂> 2, corresponding to the 99.97%
quantile for all our Θ estimates. Nevertheless, the cut-off is arbi-
trary depending on the aim of the analysis. The threshold-free
parameter Θ, regardless of power, provides a unified evaluation
across the genome. Similar to GWAS summary statistics of a
phenotype, although only a small proportion of loci can be dis-
covered in the GWAS, the whole-genome profile has its
own value.

On the technical side, we estimated phenotypic correlations
using a simple method based on low-MAF variants, which for the
traits analysed, gives estimates very close to the bivariate LDSC
intercept estimates (Supplementary Fig. 19). However, the latter
requires more computational time and is prone to a loss of
estimation efficiency7, thus we do not recommend the use of
bivariate LDSC intercept when estimating phenotypic correla-
tions across a large number of traits. With the estimated phe-
notypic correlation matrix, the decorrelation step was needed so
that the inference of the mixture model became straightforward.
Although there are non-unique solutions of the decorrelated Z*

matrix, as long as it’s a linear transformation of Z, the procedure
redistributes the estimated genetic effects onto uncorrelated
vectors. Therefore, each single value in the Z* matrix does not
represent an association statistic on an original phenotype any-
more, but rather an “association statistic” for a linear combina-
tion of many original phenotypes. This is also why, in the context
and aim of this work, trying to identify a total genetic contribu-
tion parameter Θ would be more meaningful, rather than iden-
tifying which phenotypes the SNP affects. It should be noted that
for a large number of traits or an ill-conditioned phenotypic
correlation matrix, regularisation of the phenotypic correlation
matrix is needed so that the noise gets penalised (Supplementary
Fig. 18). Eigen-decomposition enables such regularisation by
taking the top eigenvectors. Cholesky decomposition can also
achieve the decorrelation purpose (Supplementary Fig. 17), but
the algorithm could be problematic for ill-conditioned correlation
matrix and not suitable for matrix regularisation.

Methods
Summary association statistics in UK Biobank. We downloaded the UK Biobank
round 2 genome-wide association study (GWAS) summary statistics released by
the Neale’s lab. The GWAS was conducted on 361,194 genomic British individuals
(194,174 females and 167,020 males) for 4203 phenotypes. The analysis corrected
from baseline characteristics including sex, age, age2, age × sex, age2 × sex, and 20
genomic principal components. UK Biobank has full ethical approval from the
NHS National Research Ethics Service (11/NW/0382; 16/NW/0274).

Quality control of the phenotypes. We selected the phenotypes that were har-
monised via PHESANT transformation15. For continuous and ordinal phenotypes,
we filtered out the phenotypes for which there were less than 50,000 non-missing
samples. For binary phenotypes, we filtered out those with less than 1000 cases.
This resulted in 1511 phenotypes in total, including 1036 binary, 237 continuous,
and 238 ordinal phenotypes (Supplementary Data 6).

Estimation of phenotypic correlations. In order to model independent test sta-
tistics from multiple GWAS, the correlation between the genetic effects of each pair
of phenotypes, β1 and β2, needs to be considered. As the genetic effect per single
nucleotide polymorphisms (SNP) βij is tiny, for each SNP j, the correlation between
two estimates β̂1j and β̂2j is essentially the correlation between the residuals in the
GWAS linear regression model, which is approximately the correlation between the
two phenotypes.
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Under the null hypothesis of β1= β2= 0, i.e. no genetic effect, the Pearson’s
correlation coefficient between the two estimated genetic effects vectors β̂1 and β̂2
provides an unbiased estimator of their phenotypic correlation16. Such an
estimator has two major advantages: (1) it naturally incorporates the level of
sample overlap between the two GWAS, which reduces to zero when the two
GWAS are performed on independent samples; (2) it directly produces phenotypic
correlations for binary phenotypes on corresponding continuous logistic scale,
making the estimates mathematically more straightforward to handle. In practice, it
is tricky to select SNPs with zero true genetic effects. The above estimation
procedure is valid as long as the genetic variance captured by each selected SNP is
small. Thus, instead of putting constraints on estimated SNP effects, we selected the
169,537 SNPs that have minor allele frequency (MAF) less than 5 × 10−4 and used
the correlation matrix of their test statistics (Z-scores) as the estimate of the
phenotypic correlation between the 1511 traits, which is also an estimate of the
correlation matrix of the GWAS test statistics for each single variant in the genome.
The use of such low-MAF variants provides more efficient estimates of the
phenotypic correlations than the other state-of-the-art methods7. We removed the
phenotypes that have an estimated correlation larger than 0.9 with another trait.
This resulted in an estimated phenotypic test statistic correlation matrix R for 1376
traits (Supplementary Data 7).

Quality control of the SNPs. We selected 10,301,794 SNPs, whose MAFs were
greater than 0.005 to be the candidate evaluated SNPs. For each candidate eval-
uated SNP, Kolmogorov–Smirnov test was used to test whether its p-values across
GWAS of 1376 filtered traits deviated from the uniform distribution. We selected
2,787,891 SNPs with p-values less than 0.1 as the final set of SNPs to be evaluated.

Adjusting phenotypic correlations. Denote the Z-score matrix of the k pheno-
types on the columns and 2,787,891 SNPs on the rows as Z, re-weighted by the

square roots of the sample sizes N= (N1, . . . ,Nk), i.e. zij ¼ wjβ̂ij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var ðβ̂Þ
q

, where

wj ¼ 1
k∑

k
i¼1

ffiffiffiffiffi

Ni

p

=
ffiffiffiffiffi

Nj
p

. R is the correlation matrix of the columns of Z. We have
Z0Z ¼ cR, where c is a constant. As R is symmetric and semi-positive definite,
∃ Z*= ZR−1/2 so that Z�0Z� ¼ R�1=2Z0ZR�1=2 ¼ cR�1=2RR�1=2 ¼ cI, i.e. the
adjusted test statistics as the columns of Z* are uncorrelated, which is similar to the
decorrelation procedure in the HOPS method4. We obtained R−1/2 via eigen-
decomposition of the estimated Rmatrix. We approximated the R−1/2 matrix by its
firstM eigenvectors, yielding Z*= ZR−1/2 withM columns, whereM is determined
with a cut-off on the eigenvalues so that the eigenvectors capture 90% of the
information in R. For each SNP, we conduct modeling of the distribution of the
Z* values.

Phenotype domains. Among the 1,376 QCed phenotypes, 122 traits were classified
into the medical conditions domain, 189 traits were classified as mental health
traits, 117 traits as physical measures, 172 traits as lifestyle traits, and 139 traits
were classified as diet-related according to the UK Biobank phenotype catalogue
(Supplementary Data 8–12).

Statistical modelling of TGCA. For each SNP j, the adjusted GWAS test statistics
Z�
j were modelled as drawn from a mixture Gaussian distribution of

π�Nðμ�; σ21Þ þ π0Nð0; 1Þ þ πþNðμþ; σ22Þ, where the π parameters represent the
proportions of negative effects, null effects, and positive effects, and π−+ π0+
π+= 1. The μ parameters denote the means of the genetic effects, and σ2 para-
meters measure the effects dispersions. By maximizing the full likelihood via an EM
algorithm, implemented in the R/mixtools package, we estimated all parameters in
the model. We define Θ= ∣π+μ+∣+ ∣π−μ−∣ as a unified quantification of the total
genetic contribution per SNP.

Simulations with independent Z-scores. We generated 200 independent Z-scores
for a single genetic variant that came from four scenarios of true models: Two
non-null Gaussian mixture distribution π�Nðμ�; σ21Þ þ π0Nð0; 1Þ þ πþNðμþ; σ22Þ,
where the π−= π+; One non-null Gaussian mixture distribution
π0N(0, 1)+ π+N(μ+, σ2); Three non-null Gaussian mixture distribution
π�Nðμ�; σ21Þ þ π0Nð0; 1Þ þ πþNðμþ; σ22Þ þ πþþNðμþþ; σ

2
3Þ, where π−= 2π+=

2π++; Two non-null t-distributed heavy-tailed components π−[t(1)+ μ−]+ π0N
(0, 1)+ π+[t(1)+ μ+], where t(1) denotes a t-distribution with 1 degree of free-
dom, and π−= π+. μ− was randomly drawn from −∣N(1, 1)∣, μ+ and μ++ were
drawn from ∣N(1, 1)∣, and the σ2’s were randomly come from χ2(1). Five different
true values of π0, 0.1, 0.3, 0.5, 0.7, and 0.9 were examined. In each scenario, the
estimates of all model parameters including Θ were estimated and compared to the
true values. The simulation was repeated for 999 times.

For each true model, the true value of Θ was determined by knowing the
generated Z-scores from their pre-assigned components in the mixture
distribution. Denoting a set of independent Z-scores as
fz�1; � � � ; z�k�

; z01; � � � ; z0k0 ; zþ1; � � � ; zþkþ
g, where k0= π0k, k+= π+k, k−=

π−k, and the + and − subscripts indicate that the Z-scores were generated from
positive and negative components of the mixture, respectively. The true value of Θ

was calculated as j 1
k�
∑k�

i¼1 z�ij þ j 1
kþ
∑kþ

i¼1 zþij, where the z’s are the elements of Z−

and Z+ vectors, respectively. The true values are comparable across different true
models. The true Θ measures the weighted average non-null genetic effect.

Simulations with correlated Z-scores. For the three true models above with
Gaussian components, the real phenotypic correlation matrix between 1376 UKBB
phenotypes were used to generate 1376 correlated Z-scores for a single genetic
variant. We adjusted the phenotypic correlations as described above prior to the
TGCA analysis. The simulation was repeated for 999 times.

Similar to the case with independent Z-scores, for each true model,
denoting a set of generated correlated Z-scores as
fz�1; � � � ; z�k�

; z01; � � � ; z0k0 ; zþ1; � � � ; zþkþ
g, where k0= π0k, k+= π+k, k−=

π−k, and the + and − subscripts indicate that the Z-scores were generated from
positive and negative components of the mixture, respectively. The true value of Θ

was calculated as j 1
k�
∑k�

i¼1 z
�
�ij þ j 1

kþ
∑kþ

i¼1 z
�
þij, where z*’s are the elements of Z�

� ¼
Z�R

�1=2
� and Z�

þ ¼ ZþR
�1=2
þ , and R+ and R− are the correlation matrices for Z−

and Z+ vectors, respectively.

TGCA in the UK Biobank. We applied the mixture model to the above UK
Biobank Z* matrix across 2,787,891 QCed SNPs. Standard errors of the parameters
were obtained through the Hessian matrix of the likelihood function. The SNPs
whose model fitting did not converge in 9999 iterations were filtered out. The SNPs
that could not obtain standard errors due to numerically ill-conditioned likelihood
surface, i.e. the maximum likelihood estimates could not be properly identified near
the boundaries, were filtered out. For each SNP, the standard error of Θ̂ was
calculated via the Delta method (Supplementary Information). We eventually
obtained the estimation results of 2,224,394 SNPs for medical conditions, 2,166,115
SNPs for physical measures, 2,366,615 SNPs for mental health, 2,253,831 SNPs for
diet, and 2,468,978 SNPs for lifestyle phenotypes across the genome.

Testing the association between tissues and TGCA. We downloaded the mean
gene-expression data summarised from RNA sequencing by the GTEx project. The
GTEx v7 data covers gene expressions of 19,791 genes in 48 human tissues. Gene-
expression values were normalised to numbers of transcripts per million reads
(TPM) so that they are comparable across tissues. In order to measure the
expression specificity of each gene in each tissue, the specificity was defined by
dividing the expression of each gene in each tissue by the total expression of that
gene in all tissues, leading to specificity ranging from 0 to 1 for each gene.

First, we used stratified LD score regression (S-LDSC)11, 17 to test whether the
10% most specifically expressed genes in each tissue were enriched for Θ̂ in each of
the five traits domains. The Z-scores of Θ̂ for each domain of traits were
harmonised by the munge_sumstats.py procedure of the ldsc software. LD
scores of HapMap3 SNPs (MHC region excluded) for the annotations of
specifically expressed genes in each tissue were computed using a 1-cM window
(default). The association between each tissue and Θ̂ was evaluated by an
enrichment score of the proportion of Θ̂ variability divided by the proportion of
annotated SNPs.

Second, similar to the strategy used by the HOPS method4, we used a SNP-
based regression with LD-corrected Θ̂ to estimate the effect of tissue-specifically
expressed genes on Θ̂, for each tissue and each phenotype domain:

Θ̂j ¼ αþ δ‘j þ γAj þ ϵj ð2Þ

where ℓj is the LD score of the j-th SNP, pre-calculated by the ldsc software; Aj

takes a value of zero or one, as an indicator for whether the SNP is annotated to be
within a tissue-specifically expressed gene; γ is the parameter of interest. The more
the tissue-specifically expressed genes can explain the variation in Θ̂, the more
positive γ would be. As LD exists across the analysed SNPs, directly applying the
regression to all the SNPs would underestimate var ðγ̂Þ. We split the SNPs into
100 subsets, where each subset contained SNPs j, j+ 100, j+ 200,⋯ , j= 1, 2,⋯ ,
100, so that the LD correlations were pruned. These resulted in 100 γ̂ estimates,
and we report the median of them.

Enrichment of TGCA signals at cis-eQTL of tissue-specific genes. From the
GTEx v7 data resource, we extracted the cis-eQTL scan summary statistics of the
top 100 tissue-specifically expressed genes in each tissue. We represent each cis-
eQTL with its lead variant, i.e. the SNP with the smallest p-value across the tested
cis-SNPs by both the eQTL scan and our TGCA analysis. We examined the squared
Z-score (χ2) distribution for Θ̂ in each phenotype domain, stratified on the cis-
eQTL for the 100 specifically expressed genes in each tissue, where the Z-score
is Θ̂=s:e:ðΘ̂Þ. The distribution was evaluated in a quantile-quantile plot against the
χ2(1) distribution under the null.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23124-w

8 NATURE COMMUNICATIONS |         (2021) 12:2845 | https://doi.org/10.1038/s41467-021-23124-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The whole-genome summary statistics of TGCA for the five phenotype domains are
available at the figshare repository https://doi.org/10.6084/m9.figshare.14216324. UK
Biobank GWAS summary statistics are available at http://www.nealelab.is/uk-biobank/
ukbround2announcement. Gene expression and eQTL data for 48 tissue types are
available at: https://www.gtexportal.org/home/datasets. Source data are provided with
this paper.

Code availability
The TGCA source code is available at https://github.com/xiashen/TGCA18. The FUMA
tool is available at https://fuma.ctglab.nl. The LDSC source code is available at: https://
github.com/bulik/ldsc.
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