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Memory Clustering using Persistent Homology for
Multimodality- and Discontinuity-Sensitive
Learning of Optimal Control Warm-starts

Wolfgang Merkt∗ Vladimir Ivan∗ Traiko Dinev Ioannis Havoutis Sethu Vijayakumar

Abstract—Shooting methods are an efficient approach to
solving nonlinear optimal control problems. As they use local
optimization, they exhibit favorable convergence when initialized
with a good warm-start but may not converge at all if provided
with a poor initial guess. Recent work has focused on providing an
initial guess from a learned model trained on samples generated
during an offline exploration of the problem space. However,
in practice the solutions contain discontinuities introduced by
system dynamics or the environment. Additionally, in many cases
multiple equally suitable, i.e., multi-modal, solutions exist to
solve a problem. Classic learning approaches smooth across the
boundary of these discontinuities and thus generalize poorly. In
this work, we apply tools from algebraic topology to extract
information on the underlying structure of the solution space. In
particular, we introduce a method based on persistent homology
to automatically cluster the dataset of precomputed solutions
to obtain different candidate initial guesses. We then train a
Mixture-of-Experts within each cluster to predict state and
control trajectories to warm-start the optimal control solver
and provide a comparison with modality-agnostic learning. We
demonstrate our method on a cart-pole toy problem and a
quadrotor avoiding obstacles, and show that clustering samples
based on inherent structure improves the warm-start quality.

I. INTRODUCTION

OPTIMAL control can be used to generate highly dynamic
motions and behaviors by specifying objectives composed

of desirable characteristics with dynamics taken as constraints.
In particular, it allows composing complex maneuvers by
working over a long time horizon. In contrast, instantaneous
control methods such as inverse dynamics are unable to solve
such problems. Examples of this include swing-up of an under-
actuated cartpole or jumps and front-flips on legged platforms
[1]. However, optimal control methods can take longer to
converge if not warm-started and can easily get stuck in a
local minimum if provided with a poor initial guess. Previous
work has focused on exploration of the parameterized optimal
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Figure 1. Illustration of discontinuity and multi-modality: Quadcopter flying
in a complex environment: The different classes of trajectories from start to
goal cannot be continuously deformed into each one another. This violates
the continuous map assumption between problem parametrization and solution
output f : X → Y which is core to function approximation. The number of
clusters and class memberships are automatically extracted using our method.

control problem in an offline computation process to gather
experience to initialize from during runtime [2]–[10].

When considering optimal control problems, one can observe
two cases that make it challenging to directly use learning
as a way of compressing and generalizing across optimal
solution samples: First, discontinuity, where similar problems
(in parameter space) yield vastly different optimal solutions.
Examples of this can be seen in a) the phase space plot of
optimal solutions for a pendulum or cartpole swing-up task
and b) with discontinuities in solution paths introduced by
environment obstacles. Second, multi-modality, where multiple
equally optimal solutions to a problem exist. A prominent
example is the ability to traverse around an obstacle in multiple
ways as seen in Figure 1.1

Both discontinuity and multi-modality can greatly impact
the quality of prediction obtained using function approximation
as regressors smooth across the boundaries between clusters or
modalities. This is expected as efficient function approximation

1We note that in some cases one mode may be less optimal than another,
however, as most work relies on locally optimal samples generated using a
stochastic precomputation process, this may not be known a priori. Additionally,
storing multiple modes can increase warm-start success and robustness as one
mode may, for instance, be obstructed by an obstacle.
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methods such as Locally Weighted Projection Regression
(LWPR) [11] and Gaussian Process Regression (GPR) [12]
assume uni-modal distributions and continuity. One workaround
to avoid multi-modality is to bias the sampling/exploration stage
to include/enforce only one modality (e.g., [7]). Alternatively,
we can consider machine learning models that can handle
multi-modality and discontinuity directly [13]. These are often
a combination of multiple local models that each model one
continuous cluster of data well. Clustering time-series data
and learning trajectories has been widely explored under
the paradigm of Programming by Demonstration (PbD) to
extract a set of alternative, feasible solutions from a dataset of
demonstration trajectories. For input partitioning, hierarchical
clustering has previously been applied using simple distance-
based geometric approaches [14] and Hidden Markov Models
(HMMs) [15], [16]. The former required heuristics to be set
while the latter was reported by [14] to be unstable. Previous
work circumventing this issue used trajectory libraries queried
with nearest neighbor [2]–[4], [8], [17], a hyper-local model that
returns the closest neighbor without any interpolation. Thus, the
returned solution is valid (i.e., does not violate any constraints
for a similar problem), but does not generalize between samples
(and also does not compress the original dataset). In order to
improve success rates for handling discontinuous and multi-
modal distributions directly, Mixture-of-Experts (MoE) [18] and
Product-of-Experts (PoE) [19] systems have been proposed. In
MoE, a gating function or network determines which expert will
provide the best output. The rationale is that a regressor trained
exclusively on a continuous subset of the data will do well when
queried within that subset but poorly outside. Traditionally,
MoE systems first partition the data based on the similarity of
the input-output mapping and then train experts individually
on subsets of data. If a clustering is not known, joint training
using a loss function that encourages both specialization and
cooperation between the local experts, and thus automatically
assigns samples to classes, can be employed [18]. PoE methods,
on the other hand, combine the output of multiple probabilistic
models to form a prediction. An example is the Gaussian
Mixture Models (GMMs) which can capture multi-modality
directly, however, they require information on the number of
classes present or the tuning of hyper-parameters. [20], for
instance, use a Dirichlet process which can possibly represent
an infinite number of clusters, while [21] applies a Dirichlet
distribution prior with a fixed number of clusters.

The authors of [9] used a MoE approach for discontinuity-
sensitive learning of initialization seeds. They applied k-
means clustering informed by expert knowledge on the input-
output relationship such as periodicity of angles or Lagrange
multipliers of constraints. They then learned a MoE system
and applied it on a pendulum, 2D car, and a quadrotor with a
single spherical obstacle.

We argue that while these approaches may work well on
small problems and with datasets where a system designer’s
intuition is readily available, it is challenging to extract
heuristics for labeling data (or to extract the number of clusters)
on higher dimensional tasks. Furthermore, due to the stochastic
nature of the exploration stage, the dataset may not include
samples of all topologically distinct classes or modalities.

The authors of [22] took a different approach to cluster
trajectories. They used filtrations of simplicial complexes and
persistent homology for modeling trajectories in configuration
spaces. They then used the persistency of simplicial complexes
to classify trajectories with fixed start and end points. This
method looks at the changes in topology across different
scales and identifies at which scale topological features
(connected components and holes) appear and disappear. The
theory behind this approach has been studied in [23], and
computationally efficient algorithms have been proposed in
[24]. These were further improved for computational speed
and memory efficiency in [25] and [26]. Motivated by this,
we aim to automatically extract information on the underlying
solution space.

Similar to [22], we use filtrations of simplicial complexes
to extract information about the topological structure of
trajectories in a dataset—in particular, to reason about the
classification of trajectories using the first homology group. In
contrast to [22], we use Vietoris-Rips complexes for scalability
and introduce filtrations based on trajectory segment distances
which allows us to scale to larger datasets and further offers
adaptability to particular applications through the selection of
the segment distance metric. In our experiments, we show
scalability to 78-dimensional trajectories and analyze the
scalability of our method. Our method focuses on extract-
ing equivalence classes based on the persistent topological
structure of the sample data to train a memory-of-motion to
initialize/warm-start optimal control planning. We evaluate
our method on initializing Differential Dynamic Programming
(DDP)-style optimal control methods for cartpole and quadrotor
navigation tasks. We further explore scalability through a
humanoid manipulation example. The key benefit here is to
allow incorporating global information with local trajectory
optimization methods [22].

In this paper, we make the following contributions:
1) We introduce a novel method for clustering time-series

data based on persistent homology to identify multiple
modes and discontinuities among continuous trajectories
within a precomputed dataset.

2) We improve scalability to large datasets of time-series data
by leveraging a segment-to-segment distance for filtration
and use a pairwise trajectory distance for clustering.

3) We propose a procedure based on half-life to automatically
extract the number of clusters from the persistence of
cohomology groups.

4) We demonstrate that this method can be applied on state
spaces of different dimensions and is also applicable to
high-dimensional task spaces.

5) We evaluate the scalability of the method w.r.t. the number
of trajectory samples and the number of time steps per
sample.

6) We show that our method outperforms methods that
do not exploit the clustering for warm-starting and we
demonstrate this on a dynamic optimal control task in a
complex environment.

To the best of our knowledge, we are the first to describe a
fully automatic trajectory clustering pipeline based on persistent
homology; and the use of these tools on a dataset of motions



of highly dynamic systems such as a cartpole and a quadrotor
as well as to warm-start optimization solvers.

II. OPTIMAL CONTROL

We focus on discrete-time, finite-horizon nonlinear optimal
control. Consider a dynamical system for which we aim to
find a policy u = π(x) that minimizes a cost function

J = `f (xT ) +

T−1∑
t=1

`(xt,ut). (1)

Starting from an initial state x0, the system evolves according
to the state transition function xt+1 = f(xt,ut), which
incorporates the differential system dynamics and an integration
scheme. `f (xT ) denotes the state cost at the end of the horizon
and `(xt,ut) the general running cost. We discretize in T
time steps and minimize J to obtain a sequence of controls
U = [u1,u2, · · · ,uT−1], where all controls are bounded with
upper and lower limits ut ∈ [u,u]. We refer to the minimal
cost for a state x at time t as the cost-to-go V (xt, T ).

For the purpose of this work, we will solve the above optimal
control problem using a direct-indirect hybridization approach
[27], a recent extension to shooting methods with improved
globalization (i.e., robustness to poor initialization) and the
ability to provide initial guesses for both state and control
trajectories. Because of this, we only consider general costs
and bounded control constraints. We do not explicitly use
constraints on the states but include these as cost terms or
enforce them in the forward simulation.

A. Differential Dynamic Programming

DDP is a second-order shooting method optimizing only
over the unconstrained control space displaying quadratic
convergence [28], [29]. As a gradient descent method, it
uses locally-quadratic approximations of the dynamics and
cost functions. DDP alternates between a backward pass on
a reference trajectory to generate a new sequence of local
feedback control laws, and a forward pass computing the new
state trajectory. Following [30], if Q is the variation of the
cost-to-go V (with the subsequent cost-to-go denoted as V ′),
we can expand its variation to second-order using a Taylor
series as:

Q(δx, δu) ≈ 1

2

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 , (2)

where the individual terms are:

Qx = `x + fTxV
′
x (3)

Qu = `u + fTuV
′
x (4)

Qxx = `xx + fTxV
′
xxfx + V ′x · fxx (5)

Quu = `uu + fTuV
′
xxfu + V ′x · fuu (6)

Qux = `ux + fTuV
′
xxfx + V ′x · fux. (7)

Solving for the optimal change in control δu∗ given a change
in state δx we have

δu∗ = arg min
δu

Q(δx, δu) (8)

= −Q−1uu(Qu +Quxδx), (9)
= k + Kδx (10)

where k is the feed-forward term and K the feedback gain
matrix. Using this result, Equation (2) can be solved for the
quadratic model of the value change:

∆V = − 1
2QuQ

−1
uuQu (11)

Vx = Qx −QuQ
−1
uuQux (12)

Vxx = Qxx −QxuQ
−1
uuQux. (13)

We apply regularization on the states and controls following
[30, Ch. 2] to ensure that the problem remains numerically
well-conditioned. To directly incorporate bound constraints on
the controls without sacrificing convergence, [31] introduced
the use of a projected-Newton class active-set Quadratic
Programming (QP) method. Line search with variable step
sizes is used to achieve convergence. Recent improvements to
DDP introduced a hybridization called Feasibility-driven Dif-
ferential Dynamic Programming (FDDP) which is comparable
to multiple shooting and which has shown greater globalization
from poor initial guesses [1]. Here, we use a recent variant
that combines [1] and [31], Control-limited Feasibility-driven
Differential Dynamic Programming (BoxFDDP), to explicitly
handle control bounds [27].

The resulting control sequence and trajectory will be locally
optimal. We obtain a set of locally optimal solutions by
initializing DDP with different initial control sequences and
from different initial states.

Having obtained a set of solutions to parameterized op-
timal control problems as a dataset, we are interested in
learning a mapping f : X → Y from the problem encod-
ing/parameterization to control trajectory output. There is,
however, no guarantee that the dataset is uni-modal nor that
any of the solutions is the global optimum. Therefore, to train a
warm-start model that can initialize the solver close to a global
optimum, we are first interested in grouping the trajectories
into uni-modal clusters.

III. CLUSTERING USING PERSISTENT HOMOLOGY

Our objective is for all trajectories within a cluster to not
have any topological holes (e.g., caused by obstacles) between
them that would cause the warm-start to get stuck in a local
minimum. In topology, such property can be described using
homotopy. A homotopy between two trajectories exists if we
can define a smooth continuous function that transforms one
trajectory into another [32]. Defining homotopies is an active
subject of research and it is considered a difficult problem in the
field of topology. However, topological features such as clusters
and holes define homology equivalences that are commonly
used to approximate homotopy equivalences. Here, efficient
algorithms exist to compute homology groups of simplicial
complexes (see below). Knowledge of these homology groups



allows us to reason about the global properties of a space based
on local computations [33].

To analyze a dataset, we consider it as a set of points
associated with a distance metric. The points are the state and
control trajectories as computed by an optimal control method,
discretized in time. From these points, we are particularly
interested in computing the invariant cohomology of the output
space. This can be interpreted as the number of “holes” that
would separate the data into clusters. A key building block
of algebraic topology are simplicial complexes made up of
simplices: Points are 0-simplices, edges/lines between two
points form a 1-simplex, three points forming a triangular face
are a 2-simplex, and so on for higher-dimensional simplices.
During filtration, we increase the distance (or scale) parameter
r. For each point in the dataset, we connect all points within
distance r to form simplices. We record when simplices emerge,
e.g. two points (0-simplices) get connected by an edge, forming
a 1-simplex. This event is also called the birth of a simplex.
At the same time, one of the 0-simplices disappears as it
merges into the larger connected component (the edge). This is
marked as a death of the shorter-lived simplex. We plot these
events on the persistence diagram by a dot along the Birth and
Death axis. The events are color-coded by the dimension of
the simplex or complex that died in the event (0-simplices -
H0, 1-simplices - H1, etc.) As the value of r increases, we
track how simplices get merged into larger complexes and the
persistence of the data is revealed by the distance of the death
event from the birth (along the vertical axis). Alternatively, we
can plot a persistence diagram as in Figure 2c where the x-axis
denotes the Birth and the y-axis shows the Lifetime (Lifetime =
Death − Birth). Invariant features of the underlying dataset
have a long persistence/lifetime (are higher up) and can thus
be read off the homology diagram. Alternatively, these features
can be visualized using a barcode diagram [34]. Here, the rank
of the zeroth-dimensional homology group (H0) corresponds
to the number of connected components, while the rank of
the first-dimensional homology group (H1, the number of one-
dimensional “holes”) allows us to reason about the number of
clusters in the data.

A. Dealing with time-series data

As the trajectories represent time-series data (the state or
controls at time steps t1, . . . , tT ), we cannot directly use them
as a dataset for filtration.

Suppose we have N samples of M -dimensional time-series
data with T time steps. As we are interested in the structure of
the M -dimensional space, a naı̈ve point-cloud approach would
be to stack the samples into an NT -dimensional vector to
create a pairwise distance matrix of dimension (NT )× (NT ).
However, we have to choose a large number of samples and
time steps to cover the solution space sufficiently densely. One
way to reduce the size of the distance matrix without sacrificing
the coverage is to compute the distance between trajectory
segments instead of the trajectory knot points. We propose to
use linear segments and calculate the distance as proposed in
[35]. This allows us to approximate the distance matrix of a set
of trajectories with relatively few time steps which decreases

the size of the distance matrix to (N(T − 1))× (N(T − 1)).
While this change does not immediately reduce the size of the
distance matrix significantly, it allows us to adaptively replace
several data points that are approximately linear with a single
line segment (i.e., adaptive numbers of T ).

After we obtain a full distance matrix, we post-process it
by incorporating explicit connectivity information from the
trajectories: We explicitly set the distance for subsequent time
steps to zero as suggested by [22]. We can do the same for
connected start and end states. This further ensures that all
samples are connected into one H0 group and works similarly
to the common start and end points proposed by [22]. As
a result, we always get a single H0 component in all our
persistence plots. We then apply filtration to the post-processed
distance matrix to extract the persistent homology groups.

To illustrate, we apply this process to a toy problem, see
Figure 2. We generated two pairs of trajectories using sine
waves. Each trajectory is a sequence of 2D positions and
corresponding 2D velocities, resulting in a trajectory in R4.
Figure 2a shows the position trajectory. The first pair of
trajectories are touching in the middle, where both the position
and velocity equal to zero. The second pair is crossing in the
middle with the position being zero but the velocities being
large. We have designed the trajectory such that the velocity
along the x-axis is constant. This allows us to visualize the 4D
phase-space plot by dropping the velocity along the x-axis and
plotting the velocity along the y-axis as the z-coordinate in
the 3D plot in Figure 2b. This plot shows how the trajectories
that are touching create two loops, while the trajectories that
are crossing create only one loop in the phase-space. The
persistent homology plot in Figure 2c shows this topology. On
the left, we see two H1 groups (orange dots), and on the right,
one H1 group that corresponds to the number of loops in the
phase-space of each pair of trajectories. There are also several
short-lived H1 groups close to the bottom of the graph. These
are small holes that correspond to the aliasing artifacts. They
depend on the resolution at which we sampled the sine waves
and can be considered as noise. In both cases, there is one H0

group (blue dot) that captures the single connected component
created by connecting the ends of the two trajectories.

We are interested in H1 groups with early birth (furthest to
the left on the diagram) and long lifespan (higher up). These
translate into persistent features in the data that we want to
preserve. We can additionally extract the separating distance
as > 0.3 (above where the short-lived groups disappear but
below the long-lived groups appear).

Note, however, that the proposed process considers distance
matrices in their dense form, which can very quickly exhaust
memory during computation.2 In practice, we frequently reduce
the sampling frequency along the time dimension to make the
problems tractable. The toy example trajectory can be sampled
at as few as T = 5 time steps without changing the topology
of the dataset.

An alternative approach would be to use dimensionality
reduction tools or alternate representation with embeddings

2We have explored the use of filtration using sparse distance matrices [26],
however, the temporal structure of time-series data is not compatible with this
technique.
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Figure 2. Toy example comparing topology of a pair of trajectories (blue and orange) that touch each other at zero velocity (top) with a pair that crosses
(bottom). Figure 2b shows the phase-space plot where the trajectories show a double loop and a single loop respectively. These loops are detected as two and
one H1 groups in the top left corner of the persistent homology plot in Figure 2c.

before filtration. Appropriate alternate representations are
crucial as they can significantly change the topology of the
space. This is especially crucial when dealing with time-
series data that includes state derivatives and dimensions with
various units. This is common with robot joint position and
velocities having different scales, and with linear joints, angular
joints, and the floating base being measured in different units.
We manually set the relative scaling and use the persistent
homology to analyze the topology of the resulting space. In the
toy problem, this corresponds to scaling the z-axis in Figure 2b.
Once we have selected the scaling, we proceed to use the same
tools for clustering the dataset. We explore this concept further
using alternate space representations in Section V-D.

B. Extraction of number of clusters from persistence of
cohomology groups

The lifetime (persistency) of simplicial complexes is com-
monly visualized in a persistence diagram as in Figure 2c.
To automatically extract the number of significant separating
radii, we propose to use a heuristic based on half-life between
subsequent lifetimes in an ordered list. We show this procedure
in Algorithm 1. Two parameters are the cut-off ratio between
subsequent lifetimes (we use 0.8) and the minimum lifetime
(distance) to filter out short-lived simplicial complexes (we use
0.1).

We ignore the H0 group since all trajectories always belong
to a single connected component due to how we treat the time-
series data. We count the number of H1 groups and compute
the number of clusters as H1 + 1. We use this number as an
input to the clustering algorithm.

C. Clustering

Knowing the number of classes in the dataset, we now
need to apply labels to each trajectory sample. To achieve

Algorithm 1 Algorithm for extracting the number of clusters
based on the first homology group.
Input: H1 groups; cutoff ratio; min lifetime
Output: num classes

1: num classes = 1
2: lifetimes = SortDescending(Deaths− Births)
3: previous lifetime = infinity
4: for lifetime ∈ lifetimes do
5: if (lifetime < min lifetime or

lifetime < cutoff ratio ∗ previous lifetime) then
6: return num classes
7: else
8: num classes+ = 1
9: previous lifetime = lifetime

10: end if
11: end for
12: return num classes

this, we create a trajectory-wise distance matrix of size
Dpairwise-trajectories ∈ RN×N . To create it, we apply the process
using the trajectory segment distance and post-processing
for time-series data described in Section III-A for each
pair of trajectories i, j to obtain a pairwise post-processed
distance matrix Dij . This is the same distance matrix we
use for computing the persistent homology. We then extract
the maximum of the minimum distances across trajectory
segments Dij and store it as the representative distance between
trajectories i and j in Dpairwise-trajectories. This metric has a
topological meaning. Since we already enforce the distance
between subsequent time steps and the start and end segments
to be zero, the lifetime of a H1 group is proportional to the
furthest distance between two trajectories computed using our
proxy metric. The trajectory-wise distance matrix, therefore,
serves as an approximation of a metric based on the persistent



homology of a pair of trajectories. As a result, it encodes how
close the two trajectories are to being in the same homotopy
class.

Finally, using the number of clusters from Algorithm 1 and
with the precomputed distance matrix Dpairwise-trajectories, we use
agglomerative clustering with the single linkage method to
assign class labels to the original dataset.

IV. MIXTURE OF EXPERTS

Whether, and how quickly, the optimization solver converges
from a given initial condition and parameterized goal setting
depends significantly on the quality of the initial guess. If we
can provide a good initial guess to the optimization solver,
considerable speed-up for the convergence can be achieved [8].
Having separated the data into clusters with continuous input-
output relationships, we now propose a Mixture-of-Experts
approach to predict the state and control trajectories given new
initial conditions.3 We propose to use k experts, where k is
the number of clusters identified in Section III-B, and a gating
network to decide which expert to query. Note, that multiple
experts can also be explored independently and simultaneously,
similar to ensemble methods. Here, we use simple Multi-
Layer Perceptron (MLP) models with ReLu activation for each
expert and train using Adam [36]. We did not tune the hyper-
parameters apart from ensuring that the cumulative capacity
of each of the compared methods matches.

V. EVALUATION

We test our methodology on optimal control tasks using the
cartpole and quadrotor dynamic models. We implement the
optimal control problem, system dynamics, and BoxFDDP
solver in the Extensible Optimization Toolset (EXOTica)
[37]. For topological analysis, we compute the persistence
cohomology of the dataset using the efficient Ripser library
[38], [39]. All evaluations were carried out on a laptop using
a single core of an Intel Core i7-9850H CPU at 4.2 GHz and
64 GB 2933 MHz memory.

We provide our implementation, datasets, and notebooks as
open-source for reproducing our results.4

A. Scalability

First, we look at the scalability of our proposed method
to identify the number of clusters (Section III-A) with i) the
number of samples in the dataset (N ), ii) the length of the
trajectories (T ), and iii) the dimension of the state space. The
size of the distance matrix used for filtration scales with N
and T . Hence, we expect the computational complexity to
scale with O((N (T − 1))2). We use the cartpole dataset from
Section V-B and cubic interpolation for time re-sampling to
evaluate scalability with N and T . The results are presented in
Figure 3 and show filtration time scaling as expected. Note, the
use of line segment distances enables us to achieve scalability

3Traditionally, shooting methods can only be initialized using control
trajectories. Using FDDP-derived solvers, we can provide both state and
control trajectories as an initial guess.

4https://github.com/wxmerkt/topological memory clustering

Figure 3. Left: Expected computation time (s) scaling with O((N (T −1))2).
Right: Computation times from filtration of datasets with varying N and T .
We use the cartpole dataset from Section V-B and cubic interpolation for time
re-sampling.

to larger datasets by replacing densely sampled trajectory sub-
segments with a single segment-wise distance (e.g., a piecewise
linear approximation).

B. Cartpole swing-up

The cartpole is a dynamic system where a pole is mounted
with an unactuated hinge joint on a cart that travels on a rail.
It uses horizontal forces as controls u. Due to control limits
and as an under-actuated system, the cartpole is a canonical
task for nonlinear optimal control as the cart needs to gather
energy in order to be able to swing up. We model the system
following [40] with the slider position denoted as x, the angle
of the pole as θ, and the state as [x, θ, ẋ, θ̇]T. We limit the
control input to u ∈ [−10, 10] N. The aim is to swing up
the pole to the upright position with the cart at the origin
and zero final velocity (i.e., xgoal = [0,±π, 0, 0]T). Note, that
we do not require the pole to reach the final value of π, but
any configuration that is upright: It is irrelevant from which
side the pole swings up—or whether it completes more than

(a) Visualization of the two modes for the swing-up task.
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Timesteps

−3π

−π

π

3π

(x
,θ

)

(b) State trajectories for swing-up policies from random initial states.

Figure 4. The cartpole swing-up task: We illustrate the two modes (Figure 4a)
and show 500 policies for a cartpole swing-up task from random initial states
(Figure 4b). Note, depending on the initial velocity the pole may complete
several rotations before stabilizing.

https://github.com/wxmerkt/topological_memory_clustering
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(a) Persistent homology filtration for the cart-pole swing-up dataset: Distance
matrix and persistent homology diagram.
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(b) Cart-pole state trajectories labeled using persistent homology: Random start
states are shown with red circles and the swing-up goal in green.
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(c) Control trajectories for random start states with class labels assigned from the
output of the persistent homology filtration.
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(d) Mean and standard deviation of the control trajectories for each of the
classes (orange, blue) and the dataset (black).

Figure 5. Results on the cart-pole swing-up task: (a) Persistent homology diagram computed from the pre-processed distance matrix showing one hole
(two classes) as indicated by a single H1 group group (orange dot in the left top corner). (b) State trajectories labeled using persistent homology. (c)
Control trajectories labeled using persistent homology. (d) Mean and standard deviation of control trajectories conditioned by class highlighting that without
class-sensitivity, the information cancels out.

one full rotation prior to coming to rest. Therefore, we model
the continuous hinge joint using the special orthogonal group
SO(2) and represent the state as [x, cos θ, sin θ, ẋ, θ̇]T.

We now consider a swing-up task on the cartpole. From
intuition, we can postulate that there are two modes: swinging
up from the left side and swinging up from the right side.
Indeed, these two solutions can be seen in Figure 4a.

To build the dataset, we randomly sample start states
in the range ±(1 m, π rad, 1 m s−1, 0.5π rad s−1) and control
policies uniformly from [−1, 1] N. We solve the optimal control
problem using BoxFDDP until we have N = 10 solutions per
random start state. The state trajectories in Figure 4b show that
the pole may complete several full rotations prior to reaching
a zero velocity and getting into the upright pose.

We now aim to extract (a) the number of topological classes
contained in the dataset and (b) assign the corresponding class
labels. From the obtained persistent homology diagram in
Figure 5a, we see that (a) there is one connected set and (b)
that there is one hole, i.e., that there are two classes. We can
further read off a separating distance of ≈ 1.5.

Using this information, it is now possible to cluster the raw
state and control trajectory data, cf. Figures 5b and 5c.

We investigate how separating the solutions into unimodal
clusters impacts the warm-start strategies based on simplistic
interpolation, and strategies relying on training generative
models from the raw control trajectory samples. We now
look at the overall mean and standard deviation of the control

trajectories and compare this to the mean of each of the two
identified and labeled classes (cf. Figure 5d). As shown in the
figure, if the multi-modality of the solutions is not taken into
account, the information in the data effectively cancels out
producing a mean trajectory (black) that encodes little useful
structure and has a large standard deviation. This is due to the
symmetry in the control trajectories—by summing them all
terms vanish.

C. Quadrotor navigation in a maze

In the previous experiment, we tested our methodology on a
low-dimensional problem using a cartpole without considering
environments with obstacles, where collision avoidance is
needed. We now consider a set of experiments to investigate
both the scalability in terms of problem dimensionality as well
as to include multi-modality in the solutions introduced by
collision avoidance. Additionally, we show the impact of the
data separation on successfully learning initial seeds for the
optimal control problem.

Quadrotors are agile multi-rotor drones that have become
very popular in the past decade due to increased battery energy
densities, more powerful motors, and reduced component prices.
To model the quadrotor dynamics, we follow [41] with minor
modifications: We do not consider the effects of air drag (or
near ground effects) and control the rotor forces directly. Hence,
the control inputs are u ∈ R4 (limited between 0 N to 5 N)



Figure 6. Filtration of the quadrotor dataset using different state spaces: translation only, translation and rotation, and full state space including velocities: The
identified underlying topology and computation times are the same.

and the state is x ∈ R12 using Euler representation for the
angular component of the floating base.

We sample a dataset of trajectories for a quadrotor flying
from a start state uniformly sampled from [−3.25,−0.25]
for each x, y, and z to a goal position ((x, y, z) =
(1.75, 1.75, 1.75)) while avoiding collision in an environment
using the formulation described in [8], see Figure 1. The
environment consists of three intersecting cylinders centered at
the origin. We use T = 50 knot points with ∆t = 0.05s. We
initialize the optimal control solver with a state trajectory
obtained from RRT-Connect [42] and a control trajectory
for hovering with noise sampled from the standard normal
distribution (N (0, 0.01)) and solve until convergence.

Our dataset consists of 5535 valid state and control trajec-
tories. We depict the persistent homology graphs in Figure 6
and automatically extract the number of clusters as six (five
holes). Filtration on 3D (base position), 6D (base position and
orientation), and 12D (base position, orientation, and spatial ve-
locities) state spaces took 18.9 s, 18.5 s, and 22.0 s, respectively.
Analogously to the cartpole example, we perform clustering
using persistent homology. The labeled state trajectories are
shown in Figure 1.

We now use the labeled samples to learn state and control
predictors to generate initial seeds for our optimal control solver
following Section IV. To benchmark, we randomly sample start
states from the same range as in the dataset and predict state
and control trajectories using the four comparison methods:

1) Cold-start: Controls initialized to achieve hovering and
states initialized with the initial state for entire horizon.

2) MLP: Prediction from a single MLP each for both state
and control trajectories (1-hidden layer, 200 neurons,
245, 596 trainable parameters).

3) KNN-Regressor: Prediction from a KNN-Regressor
method which averages over k neighbors. k ∈ [1, 10] has
been brute-forced for best performance using a held-out
validation set.

4) Our method: A Mixture-of-Experts setup trained on the
separated data. Smaller MLP where trained for each of the
continuous subsets and a gating network (with softmax
activation) trained to select the most suitable expert (1-
hidden layer, 50 neurons). The total trainable parameters
across all experts and gating network are 252, 472. Note,

this is the only class-aware prediction method in the test
field.

We perform this benchmark for 500 random start states and
show the mean and standard deviation of the convergence (cost
evolution versus wall-clock time) in Figure 8. It is evident
that the modality-aware method has a lower initial cost and
faster convergence than other initialization methods. Note
that the cold-start (no initial guess) performs better than a
non-mode-aware learning method (MLP, KNN-Regressor). A
likely explanation for this is that a roll-out of the predicted
control trajectories has large dynamic defects compared with
the predicted state trajectories. This can be seen by comparing
the learned state initialization, the roll-out of the learned
control initialization, and the final optimized trajectory in the
accompanying video.5 We have also evaluated the number
of major iterations, final cost, and success rate as shown in
Figure 7. The number of major iterations show the same trend
as the convergence time in Figure 8, which is expected. The
success rates for the four methods (cold-start, MLP, KNN
regressor, and proposed) were 2.4%, 17.2%, 26.4%, and 99.8%,
respectively.

D. Humanoid Reaching: Filtration in alternate state spaces

In addition to clustering initial seeds for dynamical optimal
control, persistent homology can also be used as a tool to
choose an alternate task space in which to represent the
trajectory. We have illustrated this problem using the toy
example in Section III-A where we talked about scaling of
the velocity component, which is a trivial way of defining an
alternate space. In more general scenarios, we look for spaces
where the motion would produce simpler and more persistent
topology. This is particularly relevant when we intend to track
a kinematic trajectory using a Proportional-Derivative (PD)
controller. A PD controller minimizes error in joint space. It
is however very common to implement an operational space
controller which is a PD controller minimizing error in task
space. To ensure the controller can keep tracking the task, we
want to choose a space in which the PD controller can track
a kinematic reference trajectory by minimizing a Euclidean

5https://youtu.be/lUULTWCFxY8

https://youtu.be/lUULTWCFxY8
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Figure 7. Warm-start comparison results on the quadrotor: Number of major iterations, final cost, and convergence success rate when initializing the optimal
control problem using different initialization methods. We compute the number of iterations and final cost based on successful trials only.

Figure 8. Cost evolution (mean, standard deviation) for solving the quadrotor
task using BoxFDDP and state and control trajectory initializations predicted
by different learning methods.

error. A space with a simpler topology would therefore be
more suitable for tracking a reference trajectory.

Figure 9. Valkyrie robot reaching scenario, showing two distinct reaching
poses creating the bifurcation in the solution space.

We have generated a dataset of kinematic reference trajec-
tories for the torso and arm of the Valkyrie humanoid robot
(see Figure 9). We have planned 100 trajectories sampled at
200 knot points per trajectory. We have defined a reaching
task with the reaching target in front of the robot but behind a
horizontal bar. The task has two solutions: reaching above and
below the bar. We have solved the problem using RRT-Connect
to ensure that the trajectories are collision-free.

Figure 10 shows the results of filtration in joint space and an
alternate, topological state space representation: the interaction
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Figure 10. Persistence intervals for the interaction mesh space (left) and the
joint space (right).

mesh [43]. The interaction mesh is hereby defined as the edges
between points on the robot and key points in the environment
capturing the relationship between the movement of the robot
within its surroundings by computing the Laplace coordinates of
these points. The coordinates in the interaction mesh space also
have a much more uniform relative scale along each dimension
which means that the persistent topology features are a lot
more likely to emerge at the same scale across the whole space.
The results show that the interaction mesh space representation
has a much more clearly defined topology than the joint space.
In the persistence diagram, this is visible as one H1 group
far away from a cluster of short-lived noise. As a result, the
topology of the trajectory data is more clearly represented in
interaction mesh space, highlighting an interesting avenue for
further work exploring the topology of other task spaces.

VI. CONCLUSIONS

In this paper, we introduced a method to automatically iden-
tify the number of classes and cluster a dataset of trajectories
using persistent homology. We then trained a generative model
to compress and generalize the dataset for use as an initial seed
in future optimizations. Our experiments explored this concept
on optimal control problems involving dynamics as well as
high-dimensional kinematic tasks and focused on establishing
whether relevant topological information can be extracted to
assist the encoding and learning stages of storing a memory-
of-motion.



Our results confirm that considering the underlying topolog-
ical features of the dataset is important and that tools from
algebraic homology can be used to guide clustering. Indeed,
exploring multiple modes can be important for warm-starting
(cf. Figure 8) and further allows the development of ensemble
methods that explore multiple warm-start guesses in parallel
[10]. While these simultaneously explore multiple warm-starts,
an alternative approach would be to test ranked warm-start
modes/hypotheses akin to sequence prediction [6].

A. Limitations and Future work
One limitation of our approach is that the tools for filtration

are very sensitive to the amount of data. Empirically, for a
current laptop computer, distance matrices up to a few thousand
rows/columns take tens of seconds to compute the persistent
homology. However, it is important to note that, in practice,
the time dimension can often be sub-sampled while preserving
the salient features in the data. A key consideration here is that
the cohomology computation can only capture features that
are present in the data: If a topological hole is not captured
in the discretized (or subsampled) data, a clustering method
will not be able to extract it. A common example is thin
obstacles for which trajectories may be collision-free at the
discretized knot points but would require traversing through
the obstacle to connect subsequent trajectory points. We have
previously studied and proposed a solution to this challenge
in [44]. Since our method proposes the use of a segment-to-
segment distance, it permits the evaluation of distances in either
discrete- or continuous-time allowing for these considerations
to be incorporated. Additionally, the underlying structure of the
dataset (i.e., number of classes) can be explored using subsets
of the data without affecting the scalability of the clustering
step—a feature we have explored and applied to scale to larger
datasets. In this work, we did not explore homology groups
in dimensions greater than 1. The H2 groups, in particular,
can be used to cluster trajectories enclosing volumes of space,
such as a sphere. We did not explore such motion here as it
would require a large number of trajectories to produce a dense
enough coverage for the H2 persistence to be reliably detected.
This is an interesting future research direction, especially for
systems and tasks with redundancy and periodicity.

The algorithms we used in this work for computing the
homology groups did not take advantage of parallelism and
available implementations are memory-intensive. Recent ad-
vances in computational homology have focused on leveraging
massively parallel architectures to reduce the computation time
by one to two orders of magnitude [45], [46]. We plan to
evaluate and leverage these in future work.

One way to address dataset size could be to apply curve
fitting techniques to reduce the dimension of the distance matrix
prior to filtration. Curve fitting techniques and embeddings
(e.g., splines or Bezier curves) can be used to represent longer
time-series segments in place of the linear segments we have
used in Section III-A. Alternatively, [47] previously applied
sliding windows to discover periodicity in time-series data
using persistent homology. It is worthwhile to explore whether
a similar approach can be applied in our case instead of the
dense filtration of the full dataset.

If the trajectories cover the solution space sparsely, the
topology of the data may depend more on the random seed
of the trajectory generator rather than the underlying solution
space. This means that in some cases, a relatively small obstacle
may be mistaken for a non-persistent H1 group and result in
clustering the data incorrectly. This could lead to a warm-start
trajectory passing through an obstacle. We could remedy this
by either increasing the number of trajectories in the dataset,
by utilizing a collision avoidance technique, or by artificially
inflating the distance between a pair of trajectories passing
around the obstacle. However, the former comes with increased
computational cost while the latter is only possible if we know
that the obstacle is present. Enforcing topology around known
obstacles would be an interesting extension of this work.

State spaces including derived quantities such as velocities
or accelerations pose a further challenge. To normalize/trade-
off spaces with different units (i.e., scaling velocity down
w.r.t. configuration), we apply intuition and manually scale
each dimension. Latest work on multi-parameter persistent
homology [48] offers new tools to compute the persistence of
the trajectories with different amounts of scaling in a principled
way. This problem could then be further expanded to analyzing
the topology of arbitrary parameterized task spaces to discover
spaces with a simpler topology that is favorable for simple
operational space controllers.

Another challenge, also identified by others, is that we did
not consider changing environments. Some authors [7], [9]
outlined the possibility to enhance the problem parameterization
with information on the size and location of geometric primitive
shaped objects. We consider this inflexible, as fixed-size, basic
representations always limit expressiveness and require vast
numbers of samples to explore the increased dimensionality
of the problem space. Instead, [5] investigated and compared
learned situation descriptors. More recent work focused on
learning latent space representations directly from sensor data
such as point clouds [49]. Along with large, labeled datasets
on 3D objects and shapes, these are promising avenues for
further investigation.

Finally, we explored systems with continuous dynamics
and straight-forward start and goal situations. It would be
interesting to explore the use of tools from algebraic topology
on tasks with discontinuous dynamics and periodicity, for
instance, locomotion on legged platforms.
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