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RÉSUMÉ

Cet article présente Synopsis Seriation (2021), une création
musicale générée avec l’aide de l’ordinateur. L’idée cen-
trale consiste à ré-organiser des fragments de pistes dans
une œuvre multicanal pré-existante afin de produire un flux
stéréo. Nous appelons “sériation” la recherche de la plus
grande similarité de timbre entre fragments successifs dans
chaque canal ainsi qu’entre canal gauche et canal droite.
Or, puisque le nombre de permutations d’un ensemble
est la factorielle de son cardinal, l’espace des séquences
possibles est trop vaste pour être exploré directement par
l’humain. Là contre, nous formalisons la sériation comme
un problème d’optimisation NP-complet de type “voyageur
de commerce” et présentons un algorithme évolutionniste
qui en donne une solution approximée. Dans ce cadre, nous
définissons la dissimilarité de timbre entre deux fragments
à partir d’outils issus de l’analyse en ondelettes (diffusion
temps-fréquence) ainsi que de la géométrie de l’informa-
tion (divergence de Jensen–Shannon). Pour cette œuvre,
nous avons exécuté l’algorithme de sériation sur un corpus
de quatre œuvres de Florian Hecker, comprenant notam-
ment Formulation (2015). La maison de disques Editions
Mego, Vienne, a publié Synopsis Seriation en format CD,
assorti d’un livret d’infographies sur la diffusion temps-
fréquence conçu en partenariat avec le studio de design
NORM, Zurich.

1. INTRODUCTION

In mathematics, the seriation problem seeks to arrange ele-
ments of a finite set U into a sequence u1 . . .uN in such a
way that distances d(ui,uj) are small if and only if |i− j|
is also small [12]. Seriation bears a resemblance with the
traveling salesperson problem (TSP), which aims to min-
imize the average distance d(ui,ui+1) between adjacent
elements in the sequence.

Drawing inspiration from these mathematical ideas, the
piece Synopsis Seriation (2021, see Figure 1) consists of a
sequence of musical parts whose ordering in time reflects
similarity in timbre. The set U corresponds to an unstruc-
tured collection of musical material: in our case, various
pre-existing creations gathered under the name of Seriation
Input. Seriation Input amounts to 283 minutes of audio in
total, comprising hundreds of musical parts.

Figure 1. Album cover of Synopsis Seriation, released
in March 2021 by Editions Mego, Vienna. The CD im-
print represents the time–frequency scattering transform
of the piece, which serves as a feature for the segmen-
tation and structuration of the piece. Graphical design
by NORM, Zurich. Website: https://editionsmego.com/
release/EMEGO-256

The search space of all possible sequences is too vast
to be explored manually. Indeed, the number of possible
arrangements of U is equal to N ! = N × (N − 1)× . . . 2.
This number is over one million for N > 10 and over one
billion for N > 13. Coping with such a combinatorial
explosion thus requires the help of the computer.

In this article, we describe the algorithmic workflow
which has led to the synthesis of Synopsis Seriation. On
a conceptual level, the worfklow involves a virtual agent
which “listens” to Synopsis Input, segments it into temporal
parts, and ultimately rearranges those parts to maximize
the auditory similarity between adjacent parts.

One originality of our approach is that the virtual agent
operates purely in the audio domain, without resorting to
an external notation system such as MIDI or MusicXML.
Furthermore, the agent does not assume that the input
follows a traditional structure of repeated sections, such
as verse-chorus or AABA forms. Lastly, the agent assigns
parts of Seriation Input to either a stereophonic output by
optimizing a joint objective of temporal consistency and
binaural (left-right) consistency.
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Figure 2. Flowchart of the computational stages involved
in the synthesis of Synopsis Seriation. Time–frequency
scattering is the acoustic frontend, information geometry
performs sequential changepoint detection, and evolution-
ary computing solves a variant of the traveling salesperson
problem (TSP). See paragraph below for details.

Our proposed procedure of seriation is akin to a family
of digital audio effects known as concatenative synthesis
[24]. Generally speaking, concatenative synthesis operates
by assembling short audio segments which are taken from
a large corpus so as to achieve a certain similarity objec-
tive. In this sense, our choice of audio descriptor (time–
frequency scattering) and segmentation algorithm (general-
ized likelihood ratios) could potentially apply to real-time
concatenative synthesis frameworks, such as CataRT [23].
However, we note that CataRT produces sounds according
to a local target specification that is expressed in terms
of sound descriptors or via an example sound. On the
contrary, Synopsis Seriation does not rely on a predefined
target; instead, it formulates a global problem of combina-
torial optimization (the TSP) and arranges all segments of
Synopsis Input accordingly. This formulation guarantees
a one-to-one mapping between audio material in Synopsis
Input and Synopsis Seriation.

The flowchart in Figure 2 summarizes the technical
components of Synopsis Seriation. To begin with, Sec-
tion 2 presents the acoustic frontend of the virtual listening
agent: namely, time–frequency scattering. Time–frequency
scattering is an operator whose architecture resembles spec-
trotemporal receptive fields (STRF) in auditory neurophys-
iology and convolutional neural networks (convnets) in
deep learning. Section 3 presents the algorithm which seg-
ments the Synopsis Input audio stream into parts. This
algorithm is a numerical application of information geome-
try, a field of research at the intersection between statistical
modeling and differential geometry. Section 4 presents
the algorithm which rearranges the segments parts and
produces the Synopsis Seriation stereophonic piece. This
algorithm is massively parallel and converges by evolution-
ary optimization. Section 5 presents the CD booklet of
Synopsis Seriation, containing computer-generated visual-
izations of time–frequency scattering as well as creations
of graphical design which summarize the functioning of
the virtual listening agent. Lastly, Section 6 discusses
the link between Synopsis Seriation and prior works on
the spatiotemporal structuration of music, notably Iannis
Xenakis’s Diatope.

2. TIME–FREQUENCY SCATTERING

Time–frequency scattering comprises three stages. The
first stage is a constant-Q transform (CQT) followed by

log2 λ

t

Figure 3. Interference pattern between wavelets ψα(t)
and ψβ(log2 λ) in the time–frequency domain (t, log2 λ)
for different combinations of amplitude modulation rate α
and frequency modulation scale β. Darker shades of red
(resp. blue) indicate higher positive (resp. lower negative)
values of the real part.

pointwise complex modulus. The second stage is a convo-
lutional operator in the time–frequency domain with wave-
lets in time and log-frequency, again followed by pointwise
complex modulus. The third stage is a local averaging of
every scattering coefficient over the time dimension.

2.1. Constant-Q wavelet transform

We build a filter bank of Morlet wavelets of center fre-
quency λ > 0 and quality factor Q = 12 via the equation

ψλ(t) = λ exp

(
−λ

2t2

2Q2

)
× (exp(2πiλt)− κ), (1)

where the corrective term κ guarantees that each ψλ has
one vanishing moment, i.e., a null average. We discretize
the center frequency variable as λ = ξ2−j/Q where j is
integer and ξ is a constant. In this way, there are exactly
Q wavelets per octave in the filterbank. To make sure
that the filter bank covers the Fourier domain unitarily, the
center frequency of the first wavelet (j = 0) should lie at
the midpoint between the center frequency of the second
wavelet (j = 1) and the center frequency of the complex
conjugate of the first wavelet, hence:

ξ =
1

2

(
2−1/Qξ + (fs − ξ)

)
=

fs
3− 2−1/Q

(2)

where fs denotes the sampling frequency. The CD standard
fs = 44.1 kHz yields ξ = 21 448 Hz. We set the number
of wavelets to J = 96, hence a range of J/Q = 8 octaves
below ξ. The minimum frequency is 2−8ξ = 84 Hz.

Let the asterisk symbol (∗) denote the convolution prod-
uct. Given a signal x(t) of finite energy, we define its CQT
as the following time–frequency representation:

U1x(t, λ) = |x ∗ψλ| (t)

=

∣∣∣∣∫
R
x(τ)ψλ(t− τ) dτ

∣∣∣∣ , (3)

indexed by time t and wavelet center frequency λ.



2.2. Spectrotemporal receptive field

For the second layer of the joint time–frequency scattering
transform, we define two wavelet filterbanks: one over the
time dimension and one over the log-frequency dimension.
In both cases, we set the wavelet profile to Morlet (see
Equation 1) and the quality factor to Q = 1. With a slight
abuse of notation, we denote these wavelets by ψα(t) and
ψβ(log λ) even though they do not have the same shape as
the wavelets ψλ(t) of the first layer, whose quality factor
is equal to Q = 12.

Frequencies α, hereafter called amplitude modulation
rates, are measured in Hertz (Hz) and discretized as 2−n 2

5ξ
with integer n. Frequencies β, hereafter called frequency
modulation scales, are measured in cycles per octave (c/o)
and discretized as ±2−n 2

5Q
−1 with integer n. The edge

case β = 0 corresponds to ψβ(log λ) being a Gaussian
low-pass filter φF (log λ) of bandwidth F−1.

For each rate–scale pair (α, β), we define the spec-
trotemporal receptive field (STRF) of x as the following
time–frequency representation:

U2x(t, λ, α, β) =
∣∣U1x

t∗ψα
log2 λ∗ ψβ

∣∣(t, λ)

=

∣∣∣∣∣
∫∫

U1x(τ, s)ψα(t− τ)ψβ(log2 λ− s) dτ ds

∣∣∣∣∣,
(4)

that is, stacked convolutions in time and log-frequency with
all wavelets ψα(t) and ψβ(log2 λ) followed by complex
modulus [1]. Thus, U2x is a four-way tensor.

Figure 3 shows the interference pattern of the product
ψα(t − τ)ψβ(log2 λ − s) for different combinations of
time t, frequency λ, rate α, and scale β. We denote the
multiindices (λ, α, β) resulting from such combinations as
scattering paths [17].

2.3. Temporal averaging

Lastly, we define a Gaussian low-pass filter φT of width
equal to T = 372 ms, i.e., 214 samples at a sampling
frequency of fs = 44.1 kHz. We apply this low-pass
filter separately on each scattering path of the CQT of x,
yielding

S1x(t, λ) =
(
U1x

t∗ φT
)
(t, λ). (5)

Likewise, we apply φT separately on each second-order
path of the spectrotemporal receptive field of x, yielding

S2x(t, λ, α, β) =
(
U2x

t∗ φT
)
(t, λ, α, β). (6)

3. INFORMATION GEOMETRY

3.1. Energy conservation

We restrict the set of modulation rates α in U2x to values
above T−1, so that the power spectra of the low-pass filter

φT (t) and all wavelets ψα(t) cover unitarily the Fourier
domain: at every frequency ω, we have∣∣φ̂T (ω)

∣∣2 +
1

2

∑
α>T−1

(∣∣ψ̂α(ω)
∣∣2 +

∣∣ψ̂α(−ω)
∣∣2) / 1,

(7)
where the notation A / B indicates that there exists some
ε� B such thatB−ε < A < B. Likewise, in the Fourier
domain associated to log2 λ, one has

∑
β |ψ̂β(ω)|2 / 1

for all ω. Therefore, applying Parseval’s theorem on all
three wavelet filterbanks (respectively indexed by λ, α, and
β) yields the inequality:

‖S1x‖22 + ‖U2x‖22 / ‖U1x‖22, (8)

where the squared `2 norm of a scattering representation is
the sum of squared `2 norms of its coefficients.

Furthermore, we neglect the DC component of x, which
is inaudible and thus can be calibrated to zero without
affecting auditory perception. Therefore, because wavelets
ψλ cover the audible range unitarily, the operator U1x
preserves the energy in x: ‖U1x‖22 / ‖x‖22.

Lastly, we consider that, for T not too large (below 500
milliseconds), the averaging operation in Equation 6 in-
volves a negligible loss of energy: ‖S2x‖2 / ‖U2x‖2.
This is a consequence of Waldspurger’s theorem of expo-
nential decay of scattering coefficients [26]. We conclude
with a property of approximate energy conservation of joint
time–frequency scattering:

‖S1x‖22 + ‖S2x‖22 / ‖S1x‖22 + ‖U2x‖22
/ ‖U1x‖22
/ ‖x‖22. (9)

Let us now shift perspective from continuous time to
discrete time. We denote by Sx[t, k] the concatenation
of first- and second- order scattering coefficients, where
the multiindex k encapsulates singletons (λ) in S1x(t, λ)
and triplets (λ, α, β) in S2x(t, λ, α, β), and ranges from
1 to K. The energy conservation property described in
Equation 9 implies that, for every t, the sum of squared co-
efficients Sx[t, k]2 roughly correspond local energy E[t]2

of x[t] within a Gaussian temporal window of duration T .

3.2. Sequential changepoint detection

Dividing Sx[t, k]2 by its row-wise `1 norm yields renor-
malized scattering coefficients S̃x[t, k] which are nonneg-
ative and sum to one, and can thus be interpreted as the
source parameters of a categorical probability density func-
tion on the discrete set {1 . . .K}:

S̃x[t, k]2 =
Sx[t, k]2∑K
κ=1 Sx[t, κ]2

(10)

By virtue of the one-to-one correspondence between
density functions in the exponential family and Bregman
divergences [3], we deduce a sequential changepoint detec-
tion algorithm in which parameters both before and after
change are unknown [6].



Figure 4. Installation view of Florian Hecker’s exhibition Synopsis at Tramway Glasgow, 6 May – 30 July 2017.
Photography © Keith Hunter, reproduced with permission.

The algorithm begins by setting t0 = 0 and t1 = 1, and
n = 0. At every clock tick, it increments tn+1 and tests
for the presence of a changepoint t for every t between
(tn + 1) and tn+1, by comparing the binary logarithms
of generalized likelihood ratios GLR(x, tn, tn + 1)[t] to
some fixed threshold. Let

H(X) : t 7−→ −
K∑
k=1

X[t, k] log2 X[t, k] (11)

be the Shannon entropy of a stream of histograms X[T, k].
The binary logarithm of the GLR is defined as

log2 GLR(x, tn, tn+1)[t] =

(tn+1 − tn)×H(XP∪F(tn, tn+1))

− (t− tn)×H(XP(tn, tn+1))[t]

− (tn+1 − t)×H(XF(tn, tn+1))[t],

where the sufficient statistics before change (XP where P
stands for “past”) and after change (XF where F stands for
“future”) are respectively equal to

XP(tn, tn+1) : (t, k) 7−→ 1

t− tn + 1

t∑
τ=tn

S̃x[τ, k]2,

XF(tn, tn+1) : (t, k) 7−→ 1

tn+1 − T

tn+1∑
τ=t+1

S̃x[t, k]2, and

XP∪F(tn, tn+1) =
XP(tn, tn+1) + XF(tn, tn+1)

tn+1 − tn + 1
.

(12)
If log2 GLR(x, tn, tn+1)[t] exceeds some threshold ∆H‡,
then n is incremented, tn+1 is set to tn, and tn is set to t.
By analogy between information theory and thermodynam-
ics, we propose to name the constant ∆H‡ the activation
entropy of the changepoint. We refer the reader to [14,
Chapter 2] for a detailed explanation of the algorithm.

3.3. Application to Synopsis Seriation

Synopsis Input, the raw audio material of Synopsis Seri-
ation, proceeds from the exhibition Synopsis, which was

Ch. Title Year
1
2 Formulation 2015
3
4
5 Formulation DBM Self 2015–2017
6
7
8 Formulation As Texture [hcross] 2017
9
10
11 Formulation Chim 111 [hcross] 2017
12

Table 1. Audio contents of Synopsis Input. Channels 1
through 12 correspond to the loudspeakers in the Synop-
sis exhibition. These loudspeakers are grouped into four
different auditory environments, each playing a different
three-channel piece.

presented at the Tramway Arts Center in Glasgow, Scot-
land, UK [19]. Figure 4 presents two photographs of the
installation in the exhibition space (gallery “Tramway 2”),
which has an approximate area of 1011 square metres 1 .
Synopsis is an immersive installation: over the duration of
25 minutes and 20 seconds, visitors may navigate freely
inside Tramway 2 and experience changes in auditory spa-
tialization, depending on their chosen position.

The installation comprises twelve loudspeakers which
are suspended at ear’s height and arranged at different loca-
tions of Tramway 2, thus forming an irregular 2-D pattern.
Eight vertical panels with sound-absorbing surfaces are
also in suspension between pillars of the building. These
panels divide the total area of Tramway 2 into four audi-
tory environments, creating distinct but overlapping spatial
layouts for the audience to experience.

Table 1 summarizes the audio contents of the Synopsis
installation, which is reused as input to Synopsis Seriation.
Each the four auditory environments in the exhibition space

1 Official website of Tramway Arts Center: www.tramway.org



play a different three-channel piece. These four pieces
comprise a source material, named Formulation (2015), as
well as three variants which were obtained by computer
analysis and resynthesis.

Formulation is rich in dynamics and abrupt changes of
heterogeneous sonic content stemming from diverse syn-
thesis processes. Amongst others, Formulation features
material generated with the “Sound Texture Synthesis Tool-
box” 2 of Josh McDermott and Eero Simoncelli [20]. For-
mulation DBM Self (2015–2017) employs a “Deep Boltz-
mann Machine Sparse Decomposition” algorithm provided
by Bob Sturm [25]. Formulation Chim 111 [hcross] (2017)
features an “Auditory Chimera” algorithm by Bertrand
Delgutte and Jayaganesh Swaminathan [22]; and together
with Formulation As Texture [hcross] (2017), also a texture
synthesis algorithm developed by Axel Röbel and Hugo
Caracalla [4].

3.4. Segment-wise summarization

Let us denote by c ∈ {1, . . . , 12} the channel variable in
Synopsis Input and S̃x[c, t, k] the renormalized scattering
coefficients at channel index c, time index t, and path index
k. We apply the algorithm of sequential changepoint detec-
tion, as described in the previous subsection, independently
on each channel c. After a process of trial and error, we
adjust the activation entropy ∆H‡ equal to 11 bits for all
12 channels.

For every channel c, we store the list of timestamps
t0, t1, etc. as a vector T(c)[n] where n denotes the times-
tamp index. Note that the number of timestamps Nc, i.e.,
the dimension of T(c), varies from one c to another. Then,
we average coefficients S̃x[c, n, k] on a per-channel and
per-segment basis, thus yielding the three-way tensor

Y(c, n)[k] =
1

T(c)[n+ 1]−T(c)[n] + 1

×
T(c)[n+1]−1∑
τ=T(c)[n]

S̃x[c, τ, k]2, (13)

in which each entry contains the right-sided Bregman cen-
troid of the segment (T(c)[n],T(c)[n + 1]) for channel
c.

4. EVOLUTIONARY ALGORITHM

4.1. Jensen-Shannon divergence

The Kullback-Leibler divergence between two discrete
probability distributions with K categories is defined as:

KL
(
P‖Q

)
=

K∑
k=1

P[k] log

(
P[k]

Q[k]

)
(14)

Note that the KL divergence is asymmetric: in the gen-
eral case, KL

(
P‖Q

)
6= KL

(
Q‖P

)
. To circumvent this

2 Source code of the MATLAB Sound Texture Synthesis Toolbox:
https://mcdermottlab.mit.edu/downloads.html

problem, we adopt a symmetrized version of the KL diver-
gence, known as the Jensen-Shannon (JS) divergence. The
definition of the JS divergence is as follows:

JS
(
P‖Q

)
=

K∑
k=1

P[k]

2
log

(
2P[k]

P[k] + Q[k]

)

+

K∑
k=1

P[k] + Q[k]

4
log

(
P[k] + Q[k]

2Q[k]

)
(15)

Adopting M as a shorthand for the midpoint distribution
1
2 (P + Q), the JS divergence rewrites as:

JS
(
P‖Q

)
=

1

2
KL
(
P‖M

)
+

1

2

(
M‖Q

)
, (16)

which confirms that the JS divergence is symmetric. We
use a MATLAB implementation of the JS divergence by
Boris Schauerte 3 . We refer the reader to [21] for more
details on JS and KL divergences.

4.2. Temporal consistency loss

Following the multichannel assignment of Table 1, we map
channels 1 through 6 (resp. 7 through 12) of Synopsis Input
to the left (resp. right) channel of Synopsis Seriation. In
doing so, we rearrange segments to follow a joint objective
of temporal consistency and binaural (left-right) similarity.

We encode the seriation of segments via four sequences
of indices: γL, ηL, γR, and ηR. The sequence γL (resp.
γL) contains the channel indices in Synopsis Input of the
segments of the left (resp. right) channel in Synopsis Seri-
ation. Furthermore, the sequence ηL (resp. γR) contains
the segment indices in Synopsis Input of the segments of
the left (resp. right) channel in Synopsis Seriation.

Recalling Equation 13, the Bregman centroid that is
associated to the ith segment in the left channel of Synopsis
Seriation is Y

(
γL(i), ηL(i)

)
. Let us denote by IL the

number of such indices i, i.e., the total number of segments
in channels 1 through 6 of Synopsis Input. We formulate
the loss of temporal consistency of the seriation in the
left channel as the cumulated Jensen-Shannon divergence
between adjacent segments:

Ltemporal,L(γL, ηL) =

IL−1∑
i=1

JS
(

Y
(
γL(i), ηL(i)

)∥∥Y(γL(i+ 1), ηL(i+ 1)
))
. (17)

Likewise, we define a loss function Lseq,L(γL, ηR) for
temporal consistency in the right channel, expressed in
terms of index sequences γR and ηR:

Ltemporal,R(γR, ηR) =

IR−1∑
i=1

JS
(

Y
(
γR(i), ηR(i)

)∥∥Y(γR(i+ 1), ηR(i+ 1)
))
, (18)

3 Source code of the MATLAB “Histogram Distances” Toolbox:
http://schauerte.me/code.html



where IR s the total number of segments in channels 7
through 12 of Synopsis Input.

4.3. Binaural consistency loss

The terms Ltemporal,L and Ltemporal,R ensure that the
stereo channels (left and right) of Synopsis Seriation are
temporally coherent, in the sense that they formulate a trav-
eling salesperson problem (TSP) for the Jensen-Shannon
divergence. Conversely, we also encourage Synopsis Se-
riation to have binaural consistency, in the sense that, at
every time t, the simultaneous audio contents of the left and
right channel should have a low mutual Jensen-Shannon
divergence. To formulate the binaural consistency loss,
we consider the concatenation of renormalized scattering
coefficients in the left channel according to the channel se-
quence γL and to the segment sequence ηL. Recalling the
notations of Section 3.3, we obtain the following sequence
of K-dimensional vectors:

ZL(t)[k] =

(
IL⊗
i=1

S̃x
[
γ(i),

T(γL(i))[ηL(i)] : T(γL(i))[ηL(i) + 1], k
])

(t)[k], (19)

where the symbol ⊗ here denotes sequence concatenation
and the colon notation X[a : b] represents range indexing
inside the array X with a included and b excluded.

Like in the equation above, the sequences γR and ηR
define the list of renormalized scattering coefficients that
correspond to the right channel ZR. To alleviate notation,
we leave the dependency of ZL in γR and ηR as implicit,
as well as the dependency of ZR in γR and ηR.

We define the binaural consistency loss as tbe cumulated
simultaneous Jensen-Shannon divergence between the left
and right channels, in the feature space of renormalized
joint time–frequency scattering coefficients:

Lbinaural(γL, ηL, γR, ηR) =

T∑
t=1

JS(ZL(t),ZR(t)) (20)

where the constant T here denotes the number of the piece,
expressed in scattering transform frames.

4.4. Parallelized evolutionary optimization

We formulate the arrangement of segments in Synopsis Se-
riation as the minimization of the following loss function:

L = Ltemporal,L + Ltemporal,R + νLbinaural. (21)

In practice, we set the hyperparameter ν equal to 100 after
a process of trial and error. Note that L is not a differ-
entiable function of the parameter Θ =

(
γL, ηL, γR, ηR

)
.

Therefore, the resort to deep learning techniques on top of
the scattering transform, as was recently proposed by [8]
for drum sound synthesis, is inapplicable in this case.

Instead, we seek a quasi-optimal arrangement of seg-
ments via an evolutionary algorithm. We use a MATLAB

implementation of the genetic algorithm by Joe Kirk 4 . We
initialize the parameter Θ at random, while guaranteeing
that the tuples (γL, ηL) and (γR, ηR) form two bijections.
Then, we perform random mutations of the seriation se-
quences by swapping segments, either within the left chan-
nel or within the right channel. We retain mutations if and
only if they improve the joint objective L.

To speed up convergence, we parallelize computation
over 100 CPU cores with different random seeds. Every
105 permutations, we mutualize results across cores and
re-launch seriation with the best of the 100 seriations as
the new initialization. We repeat this process for a duration
of 96 hours, i.e., 400 CPU-days in total.

5. GRAPHICAL DESIGN

5.1. Printed booklet and extended digital booklet

Editions Mego have published Synopsis Seriation as a dou-
ble CD as well as a digital download. The compact disc set
includes a 16-page printed booklet and the digital down-
load a 29-page booklet in PDF format. In academic com-
puter music, the booklet is often used as a space featuring
liner notes and commentary on the production. Yet, such
functions tend to shift in fields of experimental, under-
ground, non-academic computer music significantly. In-
deed, the content of the booklet may extend visual concepts
developed for the cover of a release or offering space for
related paraphernalia that does not necessarily comment
on the music as explicitly as written liner notes.

Over the past decades, we have experimented with dif-
ferent types of content accompanying CD releases. The
CD release Sun Pandämonium [9] (2003) includes a 12-
page booklet with monochrome coloured paper without any
additional textual elements. The booklet accompanying
the CD release Speculative Solution [10] (2011) contains
essays by the philosophers Elie Ayache, Robin Mackay
and Quentin Meillassoux. That booklet is distributed over
160 pages, taking the notion of accompanying text to an
extreme.

The booklet of Synopsis Seriation suggests yet another
detour, acknowledging the underlying scientific method-
ology as much as a design concept flirting with cyphers,
symbols and signs. In this section, we discuss the contents
of the extended digital version of the Synopsis Seriation
booklet.

5.2. Computer-generated visualizations

After the first page, displaying the record’s cover image,
the booklet contains a collection of computer-generated
visualisations of sample segments of Seriation Input. As
reproduced in Figure 5 (left), this collection begins with a
scattering representation (“scattergram”) of a segment cov-
ering the duration from 1 minute 28 seconds to 1 minute
33 seconds from channel 1 of the input piece Formulation.

4 Source code of MATLAB Traveling Salesman Problem Genetic
Algorithm Toolbox: https://github.com/rubikscubeguy/matlab-tsp-ga
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Figure 5. Synopsis Seriation, digital booklet, pages 2-3. On the left, page 2 of the digital booklet: scattergram covering the
duration from 1 minute 28 seconds to 1 minute 33 seconds from channel 1 of the input piece Formulation. On the right,
page 3 of the digital booklet: correlation matrix covering the same segment.
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In doing so, we have ordered coefficients in S2x by de-
creasing λ, then decreasing temporal rate α, and finally
decreasing frequential scale β. For reasons of legibility,
we only display ticks that correspond to values of λ on the
y-axis, and omit the display of α as well as β.

To retrieve the physical quantities that are associated
to each scattering path p = (λ, α.β), we build upont im-
plementation that was presented in the project “Scattering
to Text” for the book Florian Hecker: Halluzination, Per-
spektive, Synthese (2019) 5 [15].

Alongside the scattergram of the audio segment at hand,
we visualize the spectral correlation matrix that corre-
sponds to the same segment (Figure 5, right). This vi-
sualisation stems from the texture synthesis algorithm [4]
that has been employed in the input pieces Formulation
As Texture [hcross] and Formulation Chim 111 [hcross].
This alternating mode of depicting visualisations of short
segments continues throughout the booklet with the excep-
tions of pages 14 and 15 – the equivalent to the centrefold
of the printed booklet. These show scattergrams of the
entirely seriated output that makes up the sonic content
Synopsis Seriation. Pages 14 and 15 display the entire left
and right channel respectively (see Figure 6).

The scattergrams and correlation matrices are repro-
duced in pink and green, colours rich in contrast, selected
for aesthetic reasons and to print the visualizations with two
complementary colours, valid in all three print channels
(C, M and Y) of the CMYK colour model. This ensures
the most reliable efficiency of colour representation in the
additive and overlapping process applied in print. The visu-
alizations were generated using the Matplotlib colourmaps
‘cool’ and ‘inferno’ initially. Whereas the ‘cool’ colourmap
is defined via two colour channels (R and G) of the RGB
colour model, and is, therefore, easier to extract these into
separate layers which can be assigned with a colour such
as pink or green in the print process. Yet, a direct trans-
formation from the RGB to CMYK tends to be more chal-
lenging without significant colour changes. Colourmap
‘inferno’ poses the opposite scenario: it is defined via all
three colour channels of the RGB colour model; however,
a direct transformation to CMYK is more straightforward.
To circumnavigate this difference, the designers worked
with the ‘cool’ colourmap, extracting its colour channels,
representing pink via the M channel and green via the C
and Y channels of CMYK. The resulting combination of
pink and green ultimately resembles in contrast and inten-
sity that of the ‘inferno’ colourmap, yet employs the more
elegant approach of two colours only, as featured in the
‘cool’ colourmap.

5.3. Diagrams

Page 28 corresponds to the last page of the printed booklet
and contains four diagrams featuring an abstraction of
the computational processes applied in Synopsis Seriation
(see Figure 7). Diagrams, that “[. . . ] are in a degree the

5 Samples of the “Scattering to Text” project are available at:
www.sternberg-press.com/product/halluzination-perspektive-synthese/

(1) Time-frequency scattering extracts
spectrotemporal modulations according
to a multiresolution pyramid scheme.
Symbols N, H, and � denote high-pass,
low-pass, and band-pass filters
respectively.

A

B

(2) The relative entropy (dashed line)
between models A and B is equal to the
difference between the log-likelihood
of observing B under prior A and the
entropy of B.

T

(3) Top: null hypothesis. Bottom:
alternative hypothesis, denoting a
changepoint at time T.

(4) Evolutionary algorithms update
a random Hamiltonian cycle (left)
iteratively to find the shortest route
(right).

Figure 7. Synopsis Seriation, digital booklet, page 28.



accomplices of poetic metaphor” [5] inhabit a central role
at the intersection of mathematics and philosophy [5] and
equally interface music and mathematics [18].

The top diagram of Figure 7 represents the computa-
tional graph of time–frequency scattering. It is a redux of
[1, Figure 7] while being devoid of any textual denotation
of mathematical objects. For example, the low-pass filter,
usually denoted by h in the wavelet theory literature, is
here rendered as a downward triangle: H. Likewise, we
render high-pass and band-pass filtering by means of the
upward triangle (N) and lozenge (�) symbols respectively.
Lastly, we adopt the notations | · | for complex modulus
and

⊕
for concatenation.

The second diagram in Figure 7 is a pedagogical expla-
nation of Bregman divergences, adapted from [11]. The
explanation goes as follows: given two people A and B
standing on a concave hill H , how high should B jump
upward to appear in the line of sight of A? In the case of
Synopsis Seriation, A and B are musical segments (left
and right, for example), and the hill H corresponds to the
Shannon entropy in dimension K, with K the number of
time–frequency scattering coefficients.

The third diagram of Figure 7 represents the generalized
likelihood ratio associated to the decision rule of sequential
changepoint detection. Slash (/) and backslash (\) sym-
bols correspond to past (XP) and future (XF) observations
respectively. In the null hypothesis, XP and XF are in-
dependent and identically distributed. In the alternative
hypothesis, XP and XF are independent but not identically
distributed.

Lastly, the fourth diagram of Figure 7 presents a ran-
domly chosen Hamiltonian cycle on an hexagon (left) next
to the shortest Hamiltonian cycle (right). This presentation
illustrates the traveling salesperson problem, i.e., to seek
the shortest route while traversing every node once.

In the CD booklet of Synopsis Seriation, we choose
the diagrammatic form for conceptual and aesthetic rea-
sons: how to display featured processes in a universal yet
stylistically reduced way? By representing these diagram-
matically — with one accompanying caption per diagram
— such spores of information might trigger the listener’s
curiosity to investigate deeper despite their enigmatic ap-
pearance. What are these terminologies used, what are
these techniques mentioned here? To initiate an inquisi-
tiveness in the audience ultimately is also the function of
booklets and liner notes.

6. RELATED WORK

While we are not familiar with any similar endeavors trans-
forming the entire audio content of an installation artwork
into the 2-channel format of a music publication employ-
ing information geometry, the formatting of compositions
at the core of immersive installations into a music release
format has a range of precursors.

Iannis Xenakis’s composition La Légende d’Eer [13]
(1978), originally conceived to be experienced as an auto-
mated diffusion in the Diatope pavilion structure erected

in front of the Centre Georges Pompidou between 28 June
and 21 December 1978, subsequently has been published
in CD format [28]. The process of this CD production
and other succeeding publications of La Légende d’Eer
have been described in great detail [7]. The original 7-
channel source material of La Légende d’Eer has been
mixed to a stereo format by blending and superimposing
the multi-channel material into the 2-channel requirement
of the audio CD. This approach keeps the overall expe-
rience and the timing structure of the original piece, as
experienced in the Diatope, intact; however, very details
of the multi-channel source material might get obscured
and veiled through such down-mixing. Xenakis himself
worked on producing several stereo versions — of which
one is featured on the Auvidis Montaigne CD release —
at WDR Cologne’s Hörspielstudio in 1981. Here he “[. . . ]
only applied slight stereo panning to the mix and did not
try to approximate a translation of the eight-channel spa-
tialisations into stereo” [7]. More recent publications of La
Légende d’Eer acknowledge sound spatialisation patterns
derived from the spatial layout in the Diatope [29, 30].

Such historic examples pose a set of questions about
how an immersive piece can circulate as a standard music
release and via this route, reaching new audiences which
have not experienced the original presentation. Neverthe-
less, Synopsis Seriation differs from such representational
endeavors, insinuating a medium (the CD format) and me-
dia (the sound material) specific strategy with an internal
logic, where decisions stem from the interaction of the
virtual listening agent with the analyzed sound material.
Synopsis Seriation transforms an immersive spatial experi-
ence into a new arrangement and ultimately into a different
spatial experience, where the entire sonic content of the Se-
riation Input is revealed to the listener in synoptical clarity
and directness.

7. CONCLUSION

Joint time–frequency scattering finds a growing number
of musical applications, from timbre similarity retrieval
[16] to the classification of playing techniques [27]. In this
paper, we have shown that it may also serve as an acoustic
frontend for music segmentation and structuration. We
have introduced a new problem in computer music named
multichannel seriation and have addressed it by means
of combinatorial optimization techniques. This research
has resulted in a computer music piece named “Synopsis
Seriation”, which has recently been released in CD format.
The accompanying booklet presents computer-generated
visualizations of the piece as well as scientific diagrams
describing its mathematical underpinnings.

In future works, we hope to make new creations with
time–frequency scattering by bringing insights psychoa-
coustics and artificial intelligence closer together. We note
that the recent release of the Kymatio library for scatter-
ing transforms in PyTorch and TensorFlow paves the way
towards such a goal [2].
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