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Background: Shell hydrogen burning during the asymptotic giant branch (AGB) phase through the oxygen
isotopes has been indicated as a key process that is needed to understand the observed #0 / 160 relative abundance
in pre-solar grains and in stellar atmospheres. This ratio is strongly influenced by the relative strengths of the
reactions *O(p, )" N and **O(p,¥)'°F in low-mass AGB stars. While the former channel has been the focus of a
large number of measurements, the (p, ) reaction path has only recently received some attention and its stellar
reaction rate over a wide temperature range rests on only one measurement.

Purpose: The direct measurement of states in '°F as populated through the reaction *O(p,v)'F to better
determine their influence on the astrophysical reaction rate, and more generally improve the understanding of the
nuclear structure of °F.

Method: Branchings and resonance strengths were measured in the proton energy range Ei,ab = 150 — 400 keV,
using a high-purity germanium detector inside a massive lead shield. The measurement took place in the ultra-
low-background environment of the Laboratory for Underground Nuclear Astrophysics (LUNA) experiment at the
Gran Sasso National Laboratory, leading to a highly increased sensitivity.

Results: The uncertainty of the «-branchings and strengths was improved for all four resonances in the studied
energy range; many new transitions were observed in the case of the 334 keV resonance, and individual y-decays
of the 215keV resonance were measured for the first time. In addition a number of transitions to intermediate
states that decay through a-emission were identified. The strengths of the observed resonances are generally in
agreement with literature values.

Conclusions: Our measurements substantially confirm previous determinations of the relevant resonance strengths.
Therefore the "*O(p,v)'°F reaction rate does not change with respect to the reaction rate reported in the
compilations commonly adopted in the extant computations of RGB and AGB stellar models. Nevertheless, our
measurements definitely exclude a non-standard scenario for the fluorine nucleosynthesis and a nuclear physics



60 solution for the *O depletion observed in Group 2 oxygen-rich stardust grains.
61 PACS numbers: Valid PACS appear here
62 I. INTRODUCTION s the same experimental setup. The HPGe data set cov-

&2 Observations of the oxygen isotopes, in particular in
s connection with the abundances of °N, 80 and '°F in
os the atmosphere of red giant and asymptotic giant branch
s (AGB) stars can give insights into the interplay of mixing
¢z processes and nuclear burning operating in their interiors
o [1]. In addition, according to Nittler et al. [2] the 180/*¢O
s ratio measured in stardust oxide grains, those belonging
0 to the so-called Group 2, shows a substantial depletion
710f 180 compared to the solar system value. The peculiar
= oxygen composition of these grains, which may form in
7z the cool atmospheres of AGB stars, reflects the operation
72 of deep mixing processes in stellar interiors [3] [4].

»  The BO(p,7)F reaction competes with the
%180(p, )N reaction [5]. At the INFN Laboratori
7 Nazionali del Gran Sasso (LNGS), the Laboratory for
7s Underground Nuclear Astrophysics (LUNA) Collabora-
7o tion has performed direct measurements of both reactions
s [BH7]. The effective background suppression in the Gran
&1 9asso laboratory allowed for LUNA to measure the cross
22 section of these reactions to proton energies as low as
@ EI*> = 60keV (p, ) and E** = 90keV (p,7). At these
s energies, only extrapolations from high-energy measure-
ss ments were available before.

ss  The reaction *O(p,7)F (Q = 7.994MeV) has a
o strong narrow resonance at Fie® = 151keV (see Fig. 1)),
s but a very low-energy (< 100keV) resonance [§] could
s influence the reaction rate. The strength of this reso-
o nance, however, is disputed [9] [I0]. A recent publication
a by the LUNA Collaboration presents the direct measure-
> ment of the 180(p,v)!F cross section between 160 keV
ssand 90keV [7]. Based on these measurements, the direct
o« and resonant cross sections around 95 keV only have a
os minor impact on the stellar reaction rate in low-mass
s AGB stars. The measurement reported by Best et al. [7]
o took advantage of a high efficiency Bismuth Germanium
e Oxide (BGO) summing detector. The same detector was
wused to measure an excitation curve of 1¥0(p,¥)*F up
100 to 400keV, as shown in Sec. [[V] The focus of the work
w1 presented here is the rich spectroscopic data provided
102 by a High-Purity Germanium (HPGe) detector with its
103 characteristic high energy resolution. Apart from the
14 detector and the target holders, both data sets utilized
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s ers the energy range E%)ab = 150 — 400keV, including
w7 the high energy resonances up to the maximum energy
ms(E%f‘b = 400keV) afforded by the LUNA II accelerator.
100 Several measurements of environmental backgrounds were
no performed with both detector setups, and beam-induced
m background was investigated in the initial phase of the
2 experiment, in order to understand the influence of the
13 individual contaminants [I1].

In this work we first describe the experimental setup,
us the target preparation, and discuss details of the tar-
16 get thickness monitoring through the yield measurement
17 (Sec. . In Sec. We present and discuss the experimen-
us tal method, the HPGe efficiency calibration, and sources
1o of background. In Sec. [[V] we elaborate on the data for
120 the measured resonances, namely at E%%b = 151, 215, 274
o1 and 334 keV, with determination of branching ratios and
12> resonance strengths. We report our conclusions in Sec. [V}

114

123 II. EXPERIMENTAL SETUP AND TARGET
124 PREPARATION
125 A. Accelerator and detectors

126 The proton beam for the present measurements was
17 delivered on target by the LUNA II 400kV electrostatic
g accelerator. It provided beam currents up to 300 pA
mowith an energy spread of 0.1keV in the energy range
wof E** =150 — 400keV [12]. The target chamber was
11 electrically isolated from the beamline and acted as a
12 Faraday cup for measuring the accumulated charge. A
133 cold finger, held at liquid nitrogen temperature, extended
13410 less than 1cm from the target surface and was biased
135 t0 —300 V for secondary electron suppression.

136 The two phases of the experimental campaign corre-
i spond to different detector configurations: a 47 BGO
138 detector surrounded the target chamber in the first phase
130 [I3], and an HPGe detector was placed at 55° with respect
110 to the beam direction in the second phase. Both detectors
11 were shielded with a 10 cm and 15 cm thick layer of lead,
12 respectively, in order to further reduce the environmental
13 background [111 14, [I5]. Details of the beamline configu-
s ration are documented in Formicola et al. [12]. Here we
s discuss the HPGe phase of the experiment that utilized
us a coaxial HPGe detector (ORTEC) with a relative effi-
17 clency of 104%. The detector was placed at an angle of
148 55° with respect to the beam axis to minimize angular
1o distribution effects [16], and in a close geometry, at a
150 distance of 20 mm from the beam spot on target. It was
151 additionally shielded by 15cm of lead (Fig. to sup-
152 press backgrounds from environmental v-rays which were
153 visible below 3 MeV.
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FIG. 1. Truncated '°F level diagram (level information from
[8]). The Q-value for **O(p,v)'F is indicated (Q = 7994 keV),
together with the states corresponding to the ¥O(p,v)'*F
resonances that are the subject of this work: at E&P = 151,
215, 274 and 334 keV.

154 B. Targets

155 The Tag O3 targets were prepared by anodization [17]
156 0f 0.3 mm thin tantalum disks of 40 mm diameter. The
157 isotopic enrichment was 99% in 0. These targets meet
158 2 number of specific requirements: uniform thickness, the
150 ability to sustain a high beam current over an extended
10 time and a known and constant stoichiometry [I8]. The
161 tantalum disks were mechanically polished first and then
12 cleaned in a citric acid solution for approximately one
s hour at a temperature of 90°C. Citric acid was chosen
164 instead of hydrofluoric acid to avoid contamination with

FIG. 2. Lead shielding in the HPGe configuration. Left: close
detector geometry (closed shielding), right: larger detector
distance (open shielding).

165 fluorine that can give rise to an intense y-ray background
16 in the energy range of the experiment (see . Volt-
67 ages of 12V and 25V were chosen for the anodization of
s the targets, corresponding to nominal thicknesses of the
100 Tag O3 layers (using Vermilyea’s relation [I8]) of about
1025 nm and 50 nm, respectively. Over the energy range of
171 the present measurement this corresponds to an energy
12 1oss of the projectile of 8keV at the lowest energy and
1736 keV at the highest energy for the thicker targets.
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FIG. 3. Thick-target yield curve of the F&P = 151 keV reso-
nance illustrating the target thickness, and change of target
profile with increasing accumulated charge. The fitted curves
are shown to guide the eye.

17 The high beam currents (up to 300 A on target) induce
175 & progressive deterioration of the effective target thickness
s and homogeneity, consequently modifying the reaction
17 yield plateau [I9]. To monitor this degradation in the
s present experiment, a resonance scan of the strong narrow
9 resonance at E%{‘b = 151keV was regularly performed
10 (typically at least every 10 C). The stability of the target
11 1s illustrated with examples of measured resonance profiles
1w in Fig. [3] Targets were replaced when changes in the back
183 edge of the target profile became clearly visible, typically
s after an accumulated charge of about 20 to 25 C.



III. EXPERIMENTAL METHOD AND

PROCEDURES

185

186

187 A. Efficiency determination

For large detection efficiencies (i. e. especially at small
190 distances between detector and source), the effect of true
100 coincidence summing on the detection efficiency has to be
101 accounted for when measuring events emitting more than
12 0ne y-ray in coincidence, e. g. as part of a a cascade [20].
13 The complexity of the necessary summing corrections
104 increases with the number of the transitions in the decay
10s scheme of the measured radionuclide. An easy case is
106 137Cs: the dominant decay branch emits a single v-ray,
107 consequently measurements of 137Cs are not affected by
1ws summing effects. In contrast, the decay of %°Co and the
100 MN(p, 7)1 0 reaction produce y-ray cascades, and are
200 thus affected by summing. The 7-decays of °Co and of
201150 through cascades involve at most one intermediate
202 state, so that only the case of summing two coincident
203 photons has to be considered. The corrections in this case
2o are calculated as follows [21], 22]:

188

NFEP(E’Yl) = AtBWlnFEP(E’Yl)B“Vz(l - nTOT(E’Yz)) ’
NFEP<E’Yz) = AtB"/anEP(E’Yz)B’Yl (1 - nTOT(E’Yl)) ’
NSum(E’Yl + E’Yz) = AtB’YlB’anFEP(E’Yl)nFEP(E‘Yz)

205

(1)
206 where are the number of counts in the full-energy
. peaks, nFEF and 7TOT are the full energy peak and to-
200 tal efficiencies, A is the y-ray emission rate, B, is the
200 branching ratio and ¢ is the live time of the measurement.
Thus, as in the example above, in a given detector-
211 source-geometry for each y-ray with energy E., two effi-
212 ciencies have to be considered: the total efficiency nTO7T,
aisthat is the probability that the y-ray will deposit any
suamount of energy in the detector, and the full-energy
25 peak efficiency n*FF | that is the probability that all of
asenergy ., is deposited in the detector. Typically, nFEP is
217 significantly smaller than nT°T. Empirical parametriza-
25 tions [16], 23] can be used to model n¥EF and nTOT as
210 functions of y-ray energy and detector distance, whose
20 parameters are to be determined by fitting the model
21to a set of calibration measurements. In this work, the
22 efficiencies were parameterized as [24]:

NFEP

210

n P (d, E,) = f(d,Ey) -exp (a +bIn(E,) +cln (E7)2) ,
(2)

223

224 and
77FEP(d7 E’Y)
exp <k1 + ko In(E,) + ks In (E,,)°

225 nTOT(dv E’Y) = ) , (3)

»s where the function

_ d+dg
1 —exp (a0+b0 ﬁEV)

f(d7E’Y): (d+d0)2

s models the change of efficiency with distance and a, b, c,
290 k1, ko, k3, do, by, ag are the fitting parameters. Their val-
250 ues were obtained through y? minimization with respect
211 to experimental data.

Experimental determinations of the HPGe detection
2 efficiency were performed with '37Cs and %°Co calibration
ou sources with known activities (relative uncertainty 1.5%
s at 95% confidence level) and extended to higher ener-
236 gles using the well known Eﬁ*b = 278keV resonance in
257 theN(p, v) 150 reaction (Q = 7.297 MeV). The calibra-
238 tion measurements were performed at different distances,
23 moving the detector on rails along the 55° axis. The clos-
210 €St geometry corresponds to an effective distance to the
241 target surface (radioactive source or beam spot) of about
222 cm, but is referred to as detector position d = O cm in
23 the following. Relative to this position, the additional
2s distances used for calibration runs were d = 5, 10 and
x5 15cm. The experimental data and the fit results are
s shown in Fig. [4] Correlations between the model param-
27 eters in the fit were not considered when propagating
s the systematic error of the efficiency curve. Instead, a
210 Systematic uncertainty of 4% was conservatively assumed
250 over the vy-energy range covered by the parametrization
21 (1. €., not including 110 and 197keV) for the efficiency in
250 close geometry.

For the £, = 110 and 197 keV ~-rays, the efficiency
»s¢ changes rapidly as a function of energy, hindering a reli-
2ss able extrapolation from higher energy data. Therefore, at
256 these two energies a Monte Carlo simulation of the setup,
257 based on Geant4 [25], was used to obtain values for the
2ss detection efficiencies. From the simulation we obtained
2o full-energy peak efficiencies of 4.51-1072 / 4.51-1072 and
20 total efficiencies of 5.75-1072 / 7.45-1072, for the 110 keV
261/ 197keV lines, respectively. Both energies correspond to
22 secondary y-rays that contribute to summing effects, the
263 systematic uncertainty of summing effects is discussed in

26: subsection [V E]

232

253

265 B. Beam-induced backgrounds

»%s  Beam-induced backgrounds can have a significant im-
27 pact on the measurement of a reaction of interest. They
ss are caused by reactions on impurities in or near the
sotarget and may influence or even dominate parts of
oo the experimental spectra. Resonances in the cross sec-
on tions of the background reactions in the energy range of
2 our ¥O(p, ) PF measurements may cause a particularly
o3 strong background contribution. The radiative direct cap-
2 ture 12C(p, ) 12N reaction (Q = 1.943 MeV) has been ob-
s served in the HPGe spectra due to its non-resonant cross
s section. The 19F(p, ay)®0 reaction (Q = 8.113MeV)
o718 characterized by two resonances at proton energies of
218224 and 340.5keV, which result in the emission of three
o distinet y-rays at 6.13, 6.92 and 7.12MeV [26, 27] (the
220 6.13 MeV being dominant in the studied energy range).
- The background contribution from YF(p, ay)!%0 is par-
2 ticularly critical for the 80(p, v)!°F resonance measure-
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FIG. 4. Results of the efficiency calibration. Top panel: full-energy peak efficiency for a single y-ray as a function of energy and
detector distance, with the lines for d = 0, 5, 10, 15 cm, plotted in order from top to bottom. The lines through the data points
are the results from a fit. Open markers are efficiencies without corrections for summing effects, full markers include these
corrections. Bottom panel: residuals at the detector distance of “0cm”, the relative uncertainty of the efficiency of 4.0% is

indicated (one- and two-o bands).

sz ments performed at 215 and 334keV. A strong reso-
xanance in the 22Na(p, v)?*Mg reaction (Q = 11.693 MeV)
285 at E};fb = 309keV sits close to the 334keV resonance
286 0f the studied reaction. Lastly, a resonance at 278 keV
2 in 4N(p,v)1°0 (Q = 7.556 MeV) is very close in energy
25 to the 274keV resonance of *O(p,v)!°F. Backgrounds
280 from these reactions were identified in the spectra, and
s subtracted for our final analysis.

IV. DATA ANALYSIS AND RESULTS

201

22 The data taking focused on scans and measurements of
203 the resonances at E{{*b = 151, 215, 274 and 334 keV, as
20 discussed in the following subsections [IV Al [IVB| [V C],
s and [[VD] respectively. The calculation of branching
206 ratios for the individual resonances is presented in sub-
2or section [VE] and the resulting resonance strengths are
20 discussed in subsection [[VE] The astrophysical reaction
200 Tate resulting from our measured resonance properties is
w0 discussed in subsection [[VG] Additional data points were
;o1 acquired between these resonances, covering the energy
300 range of E%,ab = 150 — 400 keV, to study for beam-induced
s03 backgrounds. The excitation function from BGO mea-
s surements is shown in Fig. [} A detailed analysis of the
s0s low-energy region below 100keV, that is not shown here,
w0 is given in Best et al. [7]. All measurements were per-
s0r formed with the detector in close geometry to the target.
208 We began the data analysis by identifying all transitions
300 between states in the compound nucleus and assigning
si0 them to cascades. Peak areas were determined, account-

suing for possible sources of background. Then we derived
;12 branching ratios and the resonance strengths.

313 A. 151 keV resonance

The resonance at E%{‘b = 151keV, being the strongest

2 and best known resonance of the ¥O(p,v)!'F reaction,
s16 was regularly scanned for each target to check and monitor
siv the target degradation during the long beam irradiation.
sie Spectra from several runs (152.4keV < E, < 168.1keV)
sio were summed to enhance weak primary transitions from
220 the resonant state at F, = 8138keV. We could identify
21 all transitions known from the literature [28], plus a tran-
s sition to the 5337keV state which has not been observed
s23 previously. The yield of the newly-observed transition,
s2¢ compared to the yield of the well-established transition to
325 By = 3908 keV is shown for a scan of the E%%b = 151keV
s resonance in Fig. [6]

27 The eight primary transitions are indicated in the spec-
2 trum in Fig. [7]] Escape and double escape peaks of the
moreaction of interest were also identified. The primary
so peak at By = 2200keV overlaps with an environmental
s background line from 2'“Bi, which had to be subtracted
s»2 based on the measured environmental background rate.
For the three primary transitions to states at Ef = 6255,
3145938 and 5337 keV, no secondary ~y-rays are visible in the
ss spectra. For the Er = 5938 and 6255keV we have to
s take into account [29] that the y-decay competes with
s a-particle emission (leaving 1°N as a residual). According
s to [30, B3], the a-channel is dominant in the decay of the

314

333
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FIG. 5. Excitation function from the BGO measurements. The measurements include direct capture range and the high energy

resonances at 151, 215, 274 and 334 keV.
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FIG. 6. Yields of the well-known transition to Er = 3908 keV
and the newly observed transition to Ef = 5337keV when
scanning over the Fi#? = 151 keV resonance. Yields have been

scaled relative to each other for this visualization.

330 state at 5938 keV. For the 6255 keV state, a-particle emis-
s sion is the only observed decay [§], as also confirmed by
sa the lack of yy-coincidences when the level is fed from the
228138 keV — 6255 keV primary transition [32]. Similarly,
203 for the 5337keV level is reported [31] to predominantly
e -decay. The y-decay channel of this level is present [§],
us but its branching ratio is too small to be detected in our
us experiment. The five other observed primary transitions
s (final states Er < 4 MeV) have a clear signature with all
. secondary y-rays [8] visible in the spectrum.

349 B. 215 keV resonance

The strength of the resonance at EEP = 215keV was
51 known from previous works [28] B3] [34]. In the present
s2work we analyzed two spectra taken at E}, = 223.8keV

350

s3and determined the branching ratios of the associated
34 primary transitions for the first time. Seven primary
355 transitions and the corresponding secondary transitions
s were seen; the primary transitions are marked in the
ss7spectrum in Fig. [8] Besides the peaks from the reaction
5 0f interest, background peaks from the PF(p, )50
ss0 reaction are present, but the energies of contaminant and
w0 environmental background peaks do not overlap with the
s energies of the primaries. As in the case of the 151 keV
w2 resonance, a primary y-ray for the transition to Ff =
363 553D keV was observed, without detecting any secondary
64 y-rays associated with the decay of this level. All other
s states (Er < 4MeV) observed in primary transitions are
366 also visible through the secondary 7-rays [§] present in
367 the spectrum.

368 C. 274 keV resonance

%0 The resonance at EX&P = 274 keV was studied analyzing

soa spectrum taken at E, = 279.5keV (shown in Fig. E[)
snSeven primary transitions were identified in this spec-
s trum, starting from the resonant state at F, = 8254keV.
a3 All excited states involved have Er < 4 MeV, with the ~
s channel dominant over the a channel [§], so that the sec-
ss ondary transitions are visible in the spectrum. Compared
s to previous works [28], three new primary transitions
s7were detected. In this energy range, we observed con-
s taminant peaks coming from the 4N(p,~)!°O reaction,
s with its nearby resonance at EEP = 278keV [24]. In
s particular, a primary at E, = 6795keV overlaps with
s the MN(p, )50 peak at 6797keV. This background
s peak was subtracted, using the spectrum acquired with
55 14N (p, 7) %0 on-resonance during the efficiency calibra-
s34 tion.
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D. 334 keV resonance

385

s The highest 180(p,v)!°F resonance accessible at the
se7 LUNA IT accelerator was studied by analyzing a spectrum
s acquired at E, = 340.0keV (Fig. . Eighteen primary
30 transitions from the resonant state at E, = 8310keV
s were identified in this spectrum. Two weak peaks with
so1 energies that could hint at previously unobserved primary
s02 transitions to levels at 6838 keV and 5107 keV but were
s3not included in the calculation of resonance strength and
30 branching ratio, due to their large statistical uncertainties.
s Among the sixteen primary transitions detected, thirteen
s are new, compared to Wiescher et al. [28]. The states
so7 below Ey = 5 MeV were all observed to decay through -
sos ray cascades [§]. For the remaining states (Ef > 5MeV),
300 N0 secondary ~-ray cascades were observed and the same

00 considerations discussed previously regarding the open
s alpha-channels [311, [35] [36] apply.

w»  Contaminant peaks coming from the °F(p, ay)¢O,
w03 23Na(p,v)?*Mg, and 12C(p,7)!3N reactions were identi-
ws fied in the spectrum. Owing to a resonance at Eﬁ*b =
105 340.5keV, the F(p, ay)%0 reaction creates a strong
ws background in this spectrum. Background from the
wr B8P = 309 keV resonance in 2*Na(p,v)?*Mg is also visi-
w8 ble [37], but its peaks do not overlap those of the studied
w0 reaction. Peaks of the strongest E};ﬁ‘b = 151keV resonance
a0 are seen in the spectrum, due to weak contribution from
a1 0xygen contaminants deep in the target (at a projectile
sz energy of 151keV). These primary peaks do not overlap
sz with the peaks of the resonance at 334 keV.
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414 E. Branching ratios calculation and results

w5 For each studied resonance, we determined the num-
a6 ber of counts for the v-ray lines corresponding to the
27 primary transitions for all experimental spectra. Starting
ss from these experimental quantities, we determined the
210 branching ratios, using the energy-dependent efficiency as
w20 described in Sec. [[TI] To account for summing corrections,
1 we used the calibrated efficiencies n**F and 97T to cal-
> culate the probabilities of each possible primary transition
»3t0 either contribute to the full-energy peak correspond-
24 1ng to its own energy, or to contribute to the full energy
w5 peak of other primary transitions with larger energies (via
w6 summing-in). Branching ratios for secondary transitions
w7 for the calculation were taken from Tilley et al. [g].

40

8000
E, (keV)

00 5000 6000 7000

with primary transitions (black) and hints for possible primary

Following the notation in [21I), 22], the probability Pg
»othat a decay of a given nucleus registers as a count in
20 the full energy peak at the energy F may be written as

431

428

MC NC
Pe=> |II Bum™) JI Bn(1-n1°7)],
C Lm=1 n=Mc+1

(5)
sswhich includes the sum over all cascades C, with N¢ as
22 the number of level transitions in the cascade C. Mc is
s the number of photons contributing to the full energy
43 peak (Zn]‘fil E,, = E), and N¢ — M¢ are the photons
.7 that are not detected. B; denotes the branching ratio of
s transition 4. nEEY and nTOT are the full energy and the
.0 total efficiencies at F,, and E,, respectively.

432



w0 In our calculation, all probability values are then ar-
s ranged in a matrix {P;;}, with their elements representing
w2 the probability that the primary transition with index j
w3 contributes to the full energy peak of primary transition i,
wie. Pyjis calculated as Pg, in Eq. (5), but with the sum
ws limited to cascades C' that include the primary transition
ws j. Finally, the number N;/Ng of counts per number of
wrreactions in each primary peak is used to complete a sys-
ws tem of linear equations, with the branching ratios B; of
w0 the primary transition as unknown quantities:

Ny Py - Py B,
Ny Py - Py By
150 ) = Np e . , (6)

s with the normalization condition on branching ratios:

> B; =100%. (7)

Equation does not account for anisotropic emis-
sasion of the y-rays. Whilst the detector position at 55°
55 minimizes susceptibility to angular distributions of the
w6 primary «y-rays, angular correlations between y-rays in
ws7a cascade may affect the probabilities for summing to
ssoccur. For the case of 1*N(p,7)'®O we conducted two
150 Monte Carlo simulations: one for isotropic emission of
w0 all secondary v-rays, and one with angular correlations
w1 following [38]. Differences in all lines but the direct cap-
w2 ture to the ground state were smaller than 0.5% (relative)
ss3 between the two simulations. The ground state transition
wein 14N(p,7)1%0 is a special case, as the ground state is
ws weak and dominated by summing-in for large detection
w0 efficiencies. The correction owing to angular correlations
w7 amounts to 4% for this line. For *¥O(p,v)!F, summing
s corrections were generally small, and as such angular cor-
60 relations were not considered in the summing corrections.
Regarding the two low-energy gamma lines for which
«n the efficiency was determined through the Monte Carlo
sz simulation, the summing-out contribution from the
«3110keV line is practically negligible (due to the small
s total efficiency). Summing out caused by the 197keV line
w5 can be appreciable, however. This is particularly true
a6 for the primary transition to the Fy = 197keV state, for
s7which the summing-out correction directly depends on
2snTOT (197 keV). We conservatively assume a systematic
o uncertainty of 50% on the summing correction to include
0 the neglected angular correlations, uncertainties of the
s branching ratios for the secondary transitions, and the
s> uncertainty in detection efficiency for the 110keV and
123197 keV 7-rays taken from a Monte Carlo simulation.

The resulting primary branching ratios and their uncer-
.5 tainties for each of the four resonances are reported and
w5 compared to literature values in Tables [[JTV] Table [[] lists
w7 the primary branching ratios obtained for the 151 keV
ss Tesonance. Since the newly detected primary at 2800 keV
0 has a branching ratio of less than 1%, all other branching

453

470

484

woratios are in fair agreement with the literature values.
101 Table [[T shows the primary branching ratios obtained
a2 for the 215keV resonance, which were measured here for
s the first time. Table [[T]] presents the primary branch-
00 ing ratios obtained for the 274 keV resonance. There are
ws three new primary transitions compared to the litera-
a6 ture values. The primary branching ratio regarding the
207 8254 keV — 1459 keV transition is significantly smaller
w3 than the value reported in literature. The literature
w0 value might be affected by a background contribution
w0 from N (p,7)'°O (see discussion in subsection [[V C]). Ta-
s ble [[V] shows the primary branching ratios obtained for
soo the 334 keV resonance. There are thirteen new primary
s03 branching ratios compared to the literature values. The
sos intensity of these thirteen primary transitions is low, in
sos fact the majority are characterized by branching ratios
s lower than 1%. The three primary branching ratios that
sor are in common with the literature values are consequently
s0s lower, because of the strength fragmentation detected in
so0 the present high resolution measurement.

510 F. Resonance strengths

The experimental observable to calculate the resonance
sio strength is the yield Y on the resonance plateau. In this
si3 analysis we already determined the resonance yield and
s14its statistical uncertainty as part of the branching ratio
515 calculation (Ng in Eq. (6)). The value of the strength is
s then calculated as wy = 2z (ER) Y/, where o (ER)
s171s the effective stopping power at the resonance energy, A2
s18 1S equal to 23}5’15 , v is the reduced mass of the two-particle
510 system and 7 is the reduced Planck constant.

For protons in solid TayO5 with an isotopic enrichment
s21in 180 of 99%, the effective stopping power in the center-

52> of-mass system is [19]:
Mso  No Nra
= — . 8

M, + Miso Nuso (5180 o) @

511

520

523 Eeff

s2 In the particular case:

B .
T 19099 \"OT 5T ) o

s26 with the masses in amu, €1sg, e, as the laboratory stop-
57 ping powers of protons in units of eV cm?/atom, calcu-
526 lated with the software SRIM-2013 [40], and V; are num-
s20 ber densities (No = Nisg + Nirg + Nisg).

In addition to the previously discussed systematic un-
s31 certainties of efficiency and summing corrections, further
s»2 systematic uncertainties contributed to the calculation
s33 of the resonance strengths. These contributions included
su the beam current reading (2.5%), resonance energies (be-
s low 1% except for E{gb = 274keV) and effective stop-
s3 ping power. The uncertainty of the stopping power was
s evaluated from the mean stopping power errors in the
533 89 — 400 keV energy range for tantalum and oxygen equal
s t0 5.8% and 2.9%, respectively [40]. An uncertainty of 5%

(9)

Eeff

530



TABLE I. Primary branching ratios of the 151 keV resonance,

states in bold font were not observed to «-decay to the ground

10

corresponding to the E, = 8138keV state. The intermediate
state.

Branchings (%)

This work Wiescher Dermigny et al. [32]

E, (keV) E; (keV) (stat.) (syst.) et al. [28] singles ~7-coinc.
1883 6255 1.49 £+ 0.34 + 0.12 3 £1 1.4 £0.2
2200 5938 0.76 £ 0.28 + 0.07 1.0 £ 0.5 0.9 +£ 0.2 <13
2800 5337 0.73 + 0.28 £ 0.06
4230 3908 554 +£23 +£39 54 £2 574+£05 58.0 £ 0.6
6583 1554 21 +£08 £0.2 2 £1 1.2+ 0.2 1.0 £ 0.2
7941 197 63 £06 =£05 8§ =£1 7.1£0.5 79 £09
8028 110 241 £0.3 *£2.0 24 +2 235+£06 24.7 £ 1.0
8138 0 91 £03 =£0.8 8 £2 8.5 £0.5 6.8 £ 0.8

TABLE II. Primary branching ratios of the 215keV resonance,
corresponding to the E, = 8199 keV state. The intermediate
state in bold font was not observed to -decay to the ground
state.

Branchings (%)

E,(keV) Ef (keV) This work + (stat.) & (syst.)

2664 5535 1.46 =+ 0.32 + 0.11
4291 3908 318 £23 +£21
6740 1459 10.7 £07 £04
6853 1346 201 £05 £09
8002 197 84 £19 £05
8089 110 144 +£02 £1.0
8199 0 131 £02 +£1.0

soo was considered for the stoichiometry of the targets [17].
s Combining these uncertainties in quadrature according
si2to Eq. @ we arrive at a systematic uncertainty of the
s«3 effective stopping power of 4.5%.

s The resonance strengths determined in the present
s:s experiment are reported in Table [V] The results from the
s.5s HPGe measurements are generally in agreement with the
sa7 literature values.

548

G. Astrophysical Reaction Rate

s.0  In view of the reaction rate we confirm the current
sso scenario [10, 28] 4I]. For 0.02 < Ty < 0.06, the rate is
ss1 dominated by the direct capture component and by the
ss2 long tail of the 151 keV resonance. A very weak contribu-
ss3 tion, peaked at Ty ~ 0.05, is due to the 95keV resonance.
s Note that, according to our direct measurements [7], the
sss strength of this resonance is in agreement with the upper
ss limit determined in Ref. [32] and orders of magnitude
ss7 smaller than the value obtained by [I0] on the basis of
sss an indirect search. Above Ty = 0.06, the reaction rate is
sso dominated by the 151 keV resonance, for which we obtain
so0 @ strength in substantial agreement with previous findings
se [T, 28, B2H34] [39]. The other resonances studied in the
se2 present paper are too narrow to contribute to the rate

sssat the relevant astrophysical temperature. In addition
se» we confirm the literature strength of the F, = 334keV
ss resonance, which is used as standard for the strengths
ss00f 14 other higher-energy resonances between 664 keV
s and 2MeV [28]. As a result, in the temperature range
568 0.02 < Ty < 0.15, our new rate is in good agreement with
se0 those reported in the NACRE database [41] and in the
so STARLIB repository [34], except for Ty ~ 0.05, where
snoour rate is about a factor of 4 smaller that the one by
s» NACRE. This discrepancy is probably due to the higher
ssvalue assumed by [41] for the 95 keV resonance strength.
s As a whole, our finding does not affect the stellar nucle-
55 osynthesis predictions for the 180/*°0 ratio measured in
si stardust oxide grains and in the photosphere of red giant
s7and AGB stars. In particular, based on the present study
ssand [6], we can exclude a nuclear physic solution for the
s observed 80 depletion shown by Group 2 stardust grains.
ss0 Similarly, our new reaction rate marginally affects the
se: predictions of fluorine production by AGB stars [42].

V. CONCLUSIONS

582

ss3 We presented new measurements aimed at a more ac-
ssa curate characterization of the low-energy resonances in
55 180(p, 7)F. The very low-background environment of
sss the LNGS allowed a detailed investigation of the low-
se7 energy excitation function [7]. In total we studied four
ses Tesonances at E%f‘b = 151, 215, 274, and 334keV.

s20  Due to the excellent energy resolution of the HPGe de-
so0 tector and the low-background environment, an accurate
so1 treatment of the complex coincidence summing corrections
soo was possible. This allowed us to measure the branching
so3 ratios of the 215 keV resonance, not previously available in
soa literature, and provide an improved determination of the
s0s branching ratios for the resonances at E¥P = 151, 274 and
s06 334 ke V. For the 274 keV resonance we observed 7-rays of
so7 three new primary transitions, which were not reported
ss in literature, and one branching ratio that deviates from
soo the literature value, after subtraction of a background
s from 4N(p,)'®O. Thirteen new ~-ray primaries were
s0r observed for the 334 keV resonance. Branching ratios of



TABLE III. Primary branching ratios of the 274 keV resonance, corresponding to the F, = 8254keV state.

E.(keV) E; (keV)

Branchings (%)

This work + (stat.) & (syst.) Wiescher et al. [28]

4257
4346
6795
6910
8057
8144
8254

3999
3908
1459
1346
197
110
0

2.9
14.4
5.6

+0.9
+ 28
+ 0.2
350 £24
141 +04
3.77 £ 0.07
242 +£1.6

+ 0.3
£+ 2.0
+ 0.2
+ 1.6
+1.1
+ 0.34
+1.9

25+ 8
24 £ 8
33 £ 10
18+ 7

11

TABLE IV. Primary branching ratios of the 334 keV resonance, corresponding to the F, = 8310keV state. The intermediate
states in bold font were not observed to ~y-decay to the ground state.

E, (keV) Er (keV)

Branchings (%)

This work + (stat.) £ (syst.) Wiescher et al. [28]

1782
1810
1980
2689
2775
2846
2892
3754
3760
3932
4402
6756
6851
8113
8200
8310

6528
6500
6330
5621
5535
5464
5418
4556
4550
4378
3908
1554
1459
197
110
0

0.69 £ 0.09
0.58 + 0.12
0.95 £ 0.12
0.41 + 0.11
0.99 £ 0.10
1.50 + 0.10
3.58 £ 0.04
0.96 + 0.30
1.16 £ 0.22
34.05 + 0.85
1.13 £ 0.15
40.73 £ 0.98
2.60 £ 0.22
3.13 £0.14
0.76 £ 0.12
6.78 £ 0.05

+ 0.08
+ 0.06
+ 0.10
+ 0.04
+ 0.11
+ 0.16
+ 0.39
£ 0.05
+ 0.05
+ 1.70
+ 0.08
+ 1.99
+ 0.11
+ 0.38
+ 0.10
+ 0.74

40 £ 2

48 £ 2

12+1

TABLE V. Resonance strengths obtained in this work, compared to literature values.

wy
ERP (keV) This work Best Wiescher Vogelaar  Iliadis Dermigny Becker
(stat.) (syst.) etal [7] etal [28] etal [33] et al. [34] et al. [32] et al. [39)
151 1.05 £ 0.03 £ 0.09 0.884+0.07 1.0+0.1 0.92+0.06 1.05£0.08 1.1+0.1 meV
215 80 + 03 £ 0.7 > 8 5+1 5+1 neV
274 31 £+ 1 £ 3 37+5 2445 neV
334 0.95 + 0.01 £ 0.10 0.954+0.08 meV
02 the stronger transitions are generally in agreement with e ACKNOWLEDGMENTS

e03 literature values.

o4 In summary, we have improved the experimental knowl-
«s edge of the reaction 30(p,v)!F, in particular of the
o0s primary branching ratios and strengths for resonances o

sor below 400keV. We observed a number of new transi-
s0s tions for states in the F compound nucleus, populated
s0 in 180(p, 7)°F, in particular for the previously poorly-
s known decay of the resonance at 215keV. Our findings
su confirm the current scenario for the astrophysical reaction

sz rate for this reaction.
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