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DroughtED: A dataset and methodology for drought forecasting spanning
multiple climate zones
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Abstract
Climate change exacerbates the frequency, dura-
tion and extent of extreme weather events such
as drought. Previous attempts to forecast drought
conditions using machine learning have focused
on regional models which have two major limita-
tions for national drought management: (i) they
are trained on localised climate data and (ii) their
architectures prevent them from being applied
to new heterogeneous regions. In this work, we
present a new large-scale dataset for training ma-
chine learning models to forecast national drought
conditions, named DroughtED. The dataset con-
sists of globally available meteorological features
widely used for drought prediction, paired with
location meta-data which has not previously been
utilised for drought forecasting. Here we also
establish a baseline on DroughtED and present
the first research to apply deep learning models -
Long Short-Term Memory (LSTMs) and Trans-
formers - to predict county-level drought condi-
tions across the full extent of the United States.
Our results indicate that DroughtED enables deep
learning models to learn cross-region patterns
in climate data that contribute to drought condi-
tions and models trained on DroughtED compare
favourably to state-of-the-art drought prediction
models trained on individual regions.

1. Introduction
Droughts are natural events characterized by prolonged
shortages of precipitation. Unforeseen droughts cause pro-
found economic and social impacts, resulting in significant
losses to agriculture, domestic water supply and natural
wildlife (Svoboda et al., 2002). Since 1980, the United
States (US) has experienced 26 major unexpected droughts,
with an average cost of $9.6 billion incurred during each
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drought event (Smith, 2020). Under the current trajectory of
global warming, the US is anticipated to experience chronic
drought conditions with increased frequency and intensity
over the coming decades (Elsner et al., 2010; Hayhoe et al.,
2018). Effective monitoring and prediction models are there-
fore critical for informing drought management action and
can help mitigate the detrimental economic impacts on indi-
viduals, communities and nature.

To the best of our knowledge, deep learning has never been
applied to the task of nationwide drought forecasting. Pre-
vious attempts to predict future drought conditions using
deep learning have focused on small homogeneous areas
within a distinct geographic location (Agana & Homaifar,
2017; Dikshit et al., 2021; Mishra et al., 2007). Whilst
this showcases the promising opportunity to apply deep
learning for drought forecasting, these regional models and
datasets remain restricted to an isolated area, thereby lim-
iting the ability for environmental stakeholders to monitor
drought conditions at larger scales. Regional models overfit
to state-level observations in climate datasets and, by their
construction, have no opportunity to learn meteorological
patterns that are consistent across multiple heterogeneous re-
gions. Furthermore, regional models have inherently siloed
applications, therefore increasing the technical overhead for
environmental organisations to transfer these models to new
geographic areas.

The input features presented in this paper enable the pre-
diction of national drought conditions using a single deep
learning model. Forecasting drought across heterogeneous
regions using exclusively meteorological observations is a
challenging task. The distribution of climate patterns that
contribute to drought are dependent on their geographic
climate. For instance, in the US, states with vast regions
of desert such as Nevada and semi-arid mountainous states
such as Wyoming, both experience low-levels of annual rain-
fall, however, they do not share similar drought conditions
(Easterling et al., 2017). Given this complexity, previous
attempts to forecast drought in the US have focused ex-
clusively on regional models, such as predicting drought
conditions in Western US States or in the Colorado River
Basin (Agana & Homaifar, 2017; Bolen et al., 2021).

To address these key issues with regional models, this paper
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contributes a new dataset for the task of large-scale drought
forecasting, named DroughtED (Drought Earth Dataset).
The dataset combines globally consistent spatial and tempo-
ral features related to drought that enable machine learning
models to be trained for nationwide drought prediction and
monitoring. Also, we include a location-identifier feature in
the DroughtED dataset which, when used as an input feature
to a deep learning model, enables drought predictions across
diverse geographic regions. As a secondary contribution,
we establish a baseline on DroughtED and present the first
evaluation of two deep learning models - Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) models - for the task
of drought forecasting across the US. Altogether, we hope
that this work will facilitate future deep learning research in
tackling the complex challenge of large-scale drought fore-
casting and will reduce the barrier to entry for new regions
to employ machine learning systems for improved drought
monitoring.

2. Related Work
Previous attempts to classify future drought conditions com-
monly forecast precipitation indices. For instance, SPI
(Standardized Precipitation Index) (Guttman, 1999) and
SPEI (Standardized Precipitation Evapotranspiration Index)
(Serrano et al., 2010) values are frequently used (Agana
& Homaifar, 2017; Dikshit et al., 2021; Fung et al., 2019;
Khan et al., 2020; Poornima & Pushpalatha, 2019; Rhee
et al., 2016). SPI/SPEI are derived from prior distribu-
tions of precipitation and temperature related to drought
(see Appendix C). These indicators measure meteorological
drought, which is defined as a lack of precipitation com-
pared to a normal amount of precipitation estimated from
previous data (Mishra & Singh, 2010). Prior research has
argued that SPI and SPEI indicators do not capture the full
extent of droughts because droughts in surface and ground
waters are influenced by factors other than precipitation
deficit (Agnew, 2000; Kubicz, 2018). For this reason, we
have chosen not to include SPI/SPEI values in the proposed
DroughtED dataset.

The leading data source of national drought monitoring and
classification in the US is the US Drought Monitor (USDM).
The USDM collates weekly meteorological and hydrolog-
ical parameters and on-the-ground observations, prepared
and interpreted by climate experts, to categorise current
drought conditions across all 3,108 continental US coun-
ties. The USDM is used by environmental institutions to
influence drought management protocols, from triggering
disaster declarations to advising agricultural planning pro-
cedures (Svoboda et al., 2002). Importantly, the USDM
is “not a statistical model” (National Drought Mitigation
Center, 2021) and it does not forecast future drought con-

ditions. In contrast to the aforementioned SPI/SPEI, the
USDM categories measures a combination of meteorologi-
cal, hydrological and agricultural drought (Mishra & Singh,
2010), making it a more holistic measure (Svoboda et al.,
2002). To the best of our knowledge, deep learning has
never been applied to predicting future USDM categories.
As the USDM is curated by climate experts, these labels are
of high quality, and are therefore well-suited to evaluate the
usefulness of the input features in DroughtED.

To the best of our knowledge, all prior attempts to forecast
droughts using machine learning, even when applied on a na-
tional scale, train individual models for each climate region
(Adede et al., 2019; Agana & Homaifar, 2017; Jalili et al.,
2013). These approaches include nationwide studies train-
ing individual models for multiple distinct climate regions
within a country (Jalili et al., 2013), or exclusively cover a
single homogeneous region (Adede et al., 2019; Agana &
Homaifar, 2017). In domains other than drought forecasting,
location-specific and location-agnostic methods have been
compared: Pylianidis et al. (2021) predict pasture nitrogen
response rate using a location-specific and -agnostic model,
and conclude using a model spanning several locations aids
model generalization.

Figure 1. The final dataset consists of previous drought observa-
tions and meteorological observations, each with observations
leading up to the current time and 1 year prior. To improve gener-
alization across regions, a location identifier includes parameters
specific to each location.

3. Dataset
In this work, we introduce a drought dataset which com-
bines 180 daily meteorological observations with geospatial
location meta-data for all 3,108 counties across the con-
tinental US to allow building a location-agnostic drought
forecasting model. All input features are sourced from
globally and publicly available datasets, ensuring that our
dataset can be extended to new geographical locations such
as countries outside of the US. These inputs are paired with
USDM drought categories (Svoboda et al., 2002) which are
delayed between 1- to 6 week time-frames. We do this by
using the following data features outlined in Figure 1. We
use USDM categories rather than SPI/SPEI as the USDM
captures expert opinion on drought conditions rather than
meterological deviations from the norm alone, making it
more than a precipitation/temperature forecasting model.

The NASA Prediction Of Worldwide Energy Resources
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(POWER) project (Sparks, 2018) offers meteorlogical real-
time and historical data as a combination of the MERRA-2
(Gelaro et al., 2017) and GEOS (Keller et al., 2021) datasets.
The data contains measurements on precipitation, surface
pressure, relative humidity dew/frost point, wind speed, and
temperature with daily resolution. We include observations
preceding the other observations by one year. We do this to
make it possible for a model to learn from deviations from
the previous year.

Previous drought observations are also included in the
dataset. The USDM drought level belongs to one of six cat-
egories; no drought (None), abnormally dry (D0), moderate
(D1), severe (D2), extreme (D3) and exceptional (D4). We
convert these categories to a numeric feature by assigning 0
to no drought and 5 to D4 (exceptional drought). As with
the meteorological data, we provide the model with 180 ob-
servations leading up to the desired drought prediction and
the measurements from the year prior. This variable could
be replaced with SPI/SPEI for regions in which manually
created drought labels are not available. We additionally in-
clude the season, which is the day of the year using sine and
cosine. As drought is a seasonal phenomenon (Van Loon
et al., 2014), this input aids generalization across seasons.

As our dataset encompasses all of the US, which contains
different climates zones, we include a location indicator
which summarises each location as a combinations of param-
eters derived from the Harmonized World Soil Database
(Fischer et al., 2008). This data includes the slope, aspect
and elevation of terrain at each location, as well as the land
use of each location (e.g. rain-fed cultivated land or wood-
land), and the soil quality in terms of, for example, toxicity
or nutrient availability. We hypothesise that this location
information, in terms of soil properties, can enable models
to generalise across large areas, with training data from one
area possibly improving predictions in another area.

The DroughtED dataset contains drought, meteorological,
season and location vectors (Figure 1). The drought vec-
tor with USDM categories can be replaced with SPI/SPEI
and the meteorological vector can be extended to include
further temporal data. The location vector can be ex-
tended by adding binned latitude/longitude values indicat-
ing the approximate geographical area of each location.
Given that DroughtED contains data derived from sources
available globally, our work can enable drought predic-
tion research to be applied to new countries. Additionally,
DroughtED is open source and we have published scripts to
support the collection of DroughtED data features which we
hope will aid future research: [kaggle.com/cdminix
/us-drought-meteorological-data] .

4. Models
Both a LSTM and Transformer model were used to create
baseline predictions of drought levels given the drought,
meteorological, season and location vectors. LSTMs have
been successfully used in related time series tasks such
as predicting short and mid-term sea surface tempera-
tures (Xiao et al., 2019), precipitation forecasting (Tong
& de Witt, 2021) and in previous drought forecasting work
(Dikshit et al., 2021). Transformers have been successfully
applied to time series forecasting in different domains (Li
et al., 2019; Wu et al., 2020). To encode the inputs using
the Transformer, we project the input features using a linear
layer and also add a special [REG] token in this space to
obtain an embedding which can be used for regression, sim-
ilar to the [CLS] token used for pre-training BERT (Devlin
et al., 2018) (Appendix D). We perform hyper-parameter
tuning on both architectures given a compute budget of
30min of training time on a GeForce GTX 1080 Ti graphics
card per run, using the AdamW optimizer (Loshchilov &
Hutter, 2017) and 1-cycle learning rate schedule (Smith,
2018) and arrive at a set of hyperparameters (see Appendix
B).

Figure 2. True labels and predictions for December 2017 using the
best Transformer model and a 4-week future forecasting period.

Figure 3. The difference between true labels and predictions for
the best Transformer model for June & December 2017.

The drought, meteorological and season vectors are
combined and passed as sequential inputs to the
LSTM/Transformer. An encoding of said inputs is then
passed to a single-layer feed-forward neural network
(FFNN), which also takes in the Location vector and outputs
6 weeks of drought predictions. Predictions and errors on
validation data are shown in Figure 2 and 3, respectively.
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WEEK 1 WEEK 2 WEEK 3 WEEK 4 WEEK 5 WEEK 6

MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

LSTM 0.178 81.1 0.237 72.3 0.265 63.9 0.328 56.8 0.395 50.5 0.433 47.5

Transformer 0.159 67.0 0.215 62.9 0.267 60.3 0.335 56.4 0.398 50.6 0.435 46.7

model average ensemble 0.135 83.6 0.198 72.7 0.254 65.1 0.321 58.2 0.388 51.6 0.427 48.0

Table 1. Results on the test set for the Transformer and LSTM with additional features. Combining LSTM and Transformer averaging
predictions consistently yields better MAE and F1 scores.

5. Experiments and Results
Given the aforementioned setup, we seek to explore a)
how much the different types of input features contribute
to model performance, b) if location-agnostic models can
be trained and perform similarly to regional state-of-the-
art drought prediction models and c) how location-specific
models compare to the location-agnostic one. We measure
model performance using macro F1 scores over drought cat-
egories, and average the scores for each weeks’ prediction.

For a) we first train and evaluate both LSTM and Trans-
former on drought and meteorological observations alone,
in line with previous work (Dikshit et al., 2021). We then
assess the impact of individual features by retraining the
model with said features (Appendix A). For all features,
we find no significant improvements when using the LSTM
model but find relative improvements of 2.5% for seasonal
information, 7.6% for location information, 9.5% for binned
latitude/longitude values and 16.7% for including drought
and meteorological observations from the year prior on the
Transformer model. In combination, the features improve
the model by 16.6%. We conclude that the features included
in the dataset can improve attention-based model perfor-
mance, with future work needed to explain the differences
between LSTM and Transformer model. The single best
model performance is achieved when combining LSTM
and Transformer with the listed input features in a model
average ensemble (see Table 1).

To put our model’s results in context we compare to a sim-
ilar drought forecasting effort in a sub-region of Australia
conducted by Dikshit et al. (2021). This work is one of
the most recent and largest area forecasting approaches
which reports the multi-class weighted ROC-AUC score of
SPEI values, which can be compared to USDM predictions,
which are also categorical. Our best single model achieves a
multi-class weighted ROC-AUC score of 78.1, while theirs
achieves 83.0. We see this as comparing favourably, espe-
cially since the USDM is a more holistic measure of drought
and possibly harder to predict than SPEI. Additionally, we
compute the root mean squared error (RMSE) of our model
by converting USDM drought categories to numerical val-
ues and scaling values to the same range as the SPI values

forecast by Tan & Perkowski (2018). For 1-month lead
times, the resulting RMSE of 0.19 is in line with RMSE
values of 0.29 and 0.13 obtained by Tan & Perkowski (2018)
for SPI12 and SPI24, respectively.

For c) we randomly select three US states (which are Iowa,
Montana and Oklahoma) and train the LSTM model on i)
the training data in the state alone ii) all training data. We
find that for each state, the model trained on all training
data outperforms the state-specific model, by 4.6% (relative)
on average (Appendix E). This shows that given our setup,
location-agnostic models outperform location-specific ones.

6. Conclusion
We present DroughtED, a novel dataset for data-driven
drought forecasting. We also establish a baseline on
DroughtED and showcase the first research to apply a single
deep learning model to forecast national drought conditions.
We demonstrate that models trained on nationwide data ben-
efit from learning climate patterns that are applicable across
heterogeneous regions. With the release of DroughtED,
our primary aim is to enable future research on large-scale
drought prediction and lower the barrier to entry to apply
drought forecasting models to new geographical regions.

Future work could explore the impact of the individual
components of the meteorological and location data in our
dataset on forecasting performance. Additionally, we have
laid the groundwork for extending DroughtED beyond the
US by utilising globally available data, it could be investi-
gated which globally available drought indicators could be
used in combination with our dataset. With rising environ-
mental challenges resulting from climate change, our hope
is that the dataset and deep learning models presented in this
report can be integrated into existing drought management
systems to help mitigate the adverse impacts of drought.
We have initiated discussions with a global environmental
organisation to discuss potential applications for improved
drought monitoring. Our hope is to support data-driven in-
vestigations for drought forecasting and, ultimately, to help
contribute to the advance of drought prediction research.
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A. Hyperparameter Experiments - Results

WEEK 1 WEEK 2 WEEK 3 WEEK 4 WEEK 5 WEEK 6

MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

LSTM 0.137 81.4 0.211 72.0 0.272 64.7 0.329 58.5 0.381 52.8 0.426 48.4
+ seasonal encoding 0.140 81.2 0.212 72.1 0.273 64.2 0.329 58.2 0.381 53.5 0.426 48.6
+ location identifier 0.137 81.1 0.212 71.1 0.274 65.0 0.331 57.2 0.382 52.3 0.426 48.2
+ lat/lon (binned) 0.141 81.5 0.213 71.5 0.272 65.2 0.329 57.5 0.380 53.1 0.425 48.7
+ previous year 0.147 77.9 0.209 66.2 0.261 56.8 0.312 52.4 0.357 54.4 0.399 48.8
combination 0.138 81.8 0.211 72.2 0.272 63.6 0.328 57.6 0.379 52.9 0.423 48.0

Transformer 0.142 74.4 0.215 61.6 0.272 56.1 0.332 47.5 0.380 42.2 0.424 39.4
+ seasonal encoding 0.157 75.0 0.232 64.4 0.289 57.0 0.346 46.7 0.396 47.2 0.438 39.2
+ location identifier 0.142 77.6 0.218 66.3 0.282 60.2 0.342 51.9 0.384 46.4 0.429 43.5
+ lat/lon (binned) 0.139 78.3 0.218 68.8 0.284 61.0 0.346 53.3 0.398 48.1 0.444 42.5
+ previous year 0.148 76.1 0.215 67.8 0.267 64.5 0.320 60.7 0.370 56.4 0.403 49.6
combination 0.136 79.7 0.205 69.6 0.259 63.7 0.314 57.9 0.357 54.5 0.399 49.4

Table 2. Mean Absolute Error (MAE) and macro F1 score on the evaluation set for the LSTM and Transformer. Best results are in bold
and the underlined data represents the best result for that model.

B. Hyperparameter Experiments - Model Setup

Hyperparam LSTM Transformer

Number of Layers 2 4
Hidden Size 512 512
Batch Size 128 128
Dropout Probability 0.1 0.1
Weight Decay 0.01 0.01
Learning Rate 7e-5 7e-5
Number of Epochs 7 7
FFNN inner hidden size N/A 4096
Attention Heads N/A 2
Initial Projection Size N/A 256

Table 3. Hyperparameters used for LSTM and Transformer models

C. Comparing SPI to USDM Drought Categories
The U.S. Drought Monitor (USDM) website published a table corresponding to the mapping between SPI values and USDM
drought categories, which are shown in the table below (National Drought Mitigation Center, 2021).

USDM Category Description SPI
D0 Abnormally Dry -0.5 to -0.7
D1 Moderate Drought -0.8 to -1.2
D2 Severe Drought -1.3 to -1.5
D3 Extreme Drought -1.6 to -1.9
D4 Exceptional Drought -2.0 or less
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D. Model Architectures and Overview
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Figure 4. Figure (a) illustrates how we pass the encoded input sequence x1, ...xn (combined drought, meteorological and season vectors)
and the location vector to a feed-forward neural network (FFNN). Figure (b) illustrates the architecture of the Transformer model used in
this paper with the [REG] token.

E. Experiment (c) Results - Comparing Model Performance on Local vs National Training Data

Training Data Evaluation Data WEEK 1

MAE F1

Iowa Iowa 0.102 88.4
Montana Montana 0.344 53.1
Oklahoma Oklahoma 0.212 70.9

All
Iowa 0.093 90.1
Montana 0.323 55.8
Oklahoma 0.183 75.8

Table 4. Performance of the LSTM on specific states after training on all available data compared to just the data from those states.


