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Abstract

Surrogate evaluation is an important topic in clinical trials research, the use of a

surrogate in place of a primary endpoint of interest is a common occurrence but

also a contentious issue that is much debated. Statistical techniques to assess

potential surrogates are closely scrutinised by the research community given the

complexities of such an assessment. One such technique is the information the-

ory surrogate evaluation approach which is well-established, practical and theo-

retically sound. In the context of discrete outcomes, we investigated issues of

bias due to inefficiency, overfitting and separation (sparse data) that have not

been recognised or addressed previously. The most serious cause of bias is sepa-

ration in trial information. We outline the concerns surrounding this bias and

conduct a simulation study to investigate whether a penalised likelihood tech-

nique provides an appropriate solution. We found that removing trials with sep-

aration from surrogacy evaluation resulted in a large amount of discarded data.

Conversely, the penalised likelihood technique allows retention of all trial infor-

mation and enables precise and reliable surrogate estimation. The information

theory approach is a critical tool for conducting surrogate evaluation. This work

strengthens the practical application of the information theory approach, all-

owing analyses to be adapted or the results summarised with appropriate cau-

tion to mitigate the biases highlighted. This is especially true where separation

occurs. The adoption of the penalised likelihood technique into information the-

ory surrogate evaluation is a useful addition that solves an issue likely to arise

frequently in the context of categorical endpoints.

KEYWORD S

information theory, penalised likelihood, separation, surrogate endpoint, surrogate
evaluation

1 | INTRODUCTION

Surrogates are measures of treatment effect that can be evaluated early and inform on the treatment effect on the pri-
mary outcome of interest. The use of a valid surrogate in place of the primary outcome offers potentially huge cost and
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time benefits. However, the use of an invalid surrogate could be extremely detrimental to the drug development process
and to patient safety. Evaluating surrogates is as crucial as it is difficult: complexities in treatment mechanisms of action
can mask potential inadequacies in a surrogate.

One well-established practical approach to surrogate evaluation is a multi-trial approach using information the-
ory.1,2 This approach generates estimates of surrogacy at two levels. Trial-level surrogacy quantifies the association
between treatment effect estimates on the surrogate and true outcome in a trial, while individual-level surrogacy mea-
sures the correlation at the individual patient level after adjusting for treatment. The information theory approach has
been extended to the case of continuous,3 binary,4 ordinal,5 time-to-event6 and longitudinal outcomes.7 All of these set-
tings have been thoroughly investigated via case studies and simulations. These multi-trial methodologies have also
been used frequently in real applications to inform clinical trial practice8 and there are calls for their use to be a
requirement of regulatory bodies for studies investigating new drugs based on a surrogate.9–11 Finally, SAS code and an
R package help the applied researcher implement this methodology.12

We previously extended the information theory approach to the case of a binary surrogate and ordinal true outcome
(the binary-ordinal setting).5 We identified three forms of potential bias in assessing trial-level surrogacy. These were
due to inefficiency, overfitting and the impact of separation in discrete outcomes. Underestimation (of strength of surro-
gacy) occurred when there were data available from a large number of trials, due to the loss of efficiency inherent in
discrete outcomes and the two-stage nature of the modelling. Overestimation was present when only small numbers of
trials were available, due to overfitting in the first stage of modelling. The most serious of the three issues identified
was the impact of separation (e.g., a zero cell in a cross-tabulation of two binary outcomes). Discrete outcomes are very
common in medical practice but the usual logistic regression analysis of these is biased in the presence of separation.
These issues require thorough elucidation so that the analysis of discrete outcomes, and in particular the information
theory approach to surrogate evaluation, can be optimised. We investigate the causes of the biases due to inefficiency,
overfitting and separation, the form they take and the conditions and settings under which they are strongest and most
prevalent. Finally, we offer a solution to the most serious form of bias identified, that which occurs in the presence of
separation.

In Section 2 we summarise the information theory surrogate evaluation approach and show how it is applied in the
binary-ordinal setting to evaluate trial-level surrogacy. In Section 3 we outline how bias has a serious effect on surrogate
evaluation in the presence of separation and present a penalised likelihood technique as a solution. In Section 4 we dis-
cuss how inefficiency and overfitting affect estimation. In Section 5 we present a simulation study to explore issues of
bias in more detail, with conclusions in Section 6.

2 | THE INFORMATION THEORY APPROACH

Since the biases identified only impact on trial-level surrogacy, this is the only information theory surrogate evaluation
measure we derive in this section.

In what follows: Y represents a discrete random variable with values kb,b� 1,…,my
� �

and probabilities of occur-
rence of each value pb. We represent a putative surrogate as S, the treatment group indicator as Z and the true ordinal
outcome as T. The categories of T are denoted by w = 1, …, W. In the multi trial context there are i = 1, 2, …, N trials,
and j = 1, 2, …, ni patients per trial.

Surrogate evaluation was previously proposed using a meta-analytical approach with a joint mixed model of the true
and surrogate outcomes regressed on treatment. However, the model was found to be computationally burdensome.13

Tibaldi et al.14 suggested that a two stage fixed effects approach13 would be preferable to the full mixed effects model as
it is more computationally feasible and has only a minor loss of statistical efficiency (for normally distributed out-
comes). This two-stage approach was found to work well in various settings (e.g., with binary, continuous or time-to-
event outcomes). However, at the individual level different measures of association in different settings meant there
was no consistent interpretation. The information theory approach1 was developed to resolve this inconsistency.

Information theory15 concerns information, choice and uncertainty in a draw from a random process. Entropy is a
key concept that quantifies the amount of information gained from such a draw. Entropy can be expressed mathemati-
cally as H Yð Þ¼�Pmy

b¼1pblog pbð Þ, where Y is a discrete random variable with values k1,k2,…,kmy and probabilities
p1,p2,…,pmy

respectively. A full list of the properties of entropy can be found in Shannon and Weaver.15 An extension
of the concept of entropy for continuous outcomes is a measure called entropy power (EP) which is used to compare
random variables.15
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Mutual information is a key concept that quantifies the amount of uncertainty in a variable expected to be reduced if infor-
mation about another variable is known. It is defined as I X ,Yð Þ¼H Yð Þ�H Y jXð Þ, where H Y jXð Þ is the conditional
entropy of YjX. In the case of surrogate outcomes, this quantity can be considered as the information in T that is
shared by S.

Alonso and Molenberghs1 proposed a trial level measure of surrogacy based on these concepts, called R2
ht:

R2
ht ¼ 1�EPðβjαÞ

EP βð Þ ð1Þ

where αi and βi are the treatment effects in trial i on the surrogate and true outcome respectively. EP β αj Þð is the entropy
power of the distribution of βi given the distribution ofαi and EP βð Þ is the entropy power of the distribution of βi. R

2
ht

can be interpreted as the proportion of uncertainty in the treatment effects on T removed by adjusting for treatment
effects on S. In the bivariate continuous setting, R2

ht can be shown to reduce to the trial level surrogacy measure pro-
posed under the meta-analytical approach. These concepts are consistent with the aims of surrogate evaluation since it
is concerned with increasing our knowledge about the treatment effect on the true outcome using the surrogate.

In order to estimate R2
ht Alonso and Molenberghs1 suggested using the likelihood reduction factor, LRF,

introduced by Alonso et al.16 This provides consistent estimation of surrogacy; ranges in the unit interval; has a
common interpretation across settings; and avoids evaluating high dimensional integrals and joint models for
X and Y which would otherwise be required when fitting the models required by the information theoretic
approach.

2.1 | Likelihood reduction factor: binary-ordinal setting

Here we estimate the likelihood reduction factor using the two stage approach outlined by Alonso and Molenberghs1

but applied to the binary-ordinal setting described in Ensor and Weir.5

At the trial level, we focus on the treatment effects on the surrogate in relation to the treatment effects on the
true outcome. At the first stage interest is in the intercept and treatment effects for each trial on the binary surro-
gate and ordinal true outcome, μSi , μTi

, αi and βi respectively. These are found by regressing the surrogate and true
outcome on treatment using the logistic regression and proportional odds models (2) and (3) respectively.

logit P Sij ¼ 1
� �� �¼ μSi þαiZij ð2Þ

logit P Tij ≤w
� �� �¼ μTwi

þβiZij ð3Þ

At the second stage the parameter effect estimates from stage one are used in two further models. These are: the
intercept-only model (4) of treatment effects on the true outcome for each trial; and the treatment effects on the true
outcome regressed on the intercept and treatment effect of the surrogate for each trial, see model (5).

bβi ¼ γ3þ εi ð4Þ

bβi ¼ γ0þ γ1bμSi þ γ2bαiþ εi, ð5Þ

where, γ3 and γ0 are the intercept parameters with and without adjustment for the surrogate; γ1 and γ2 are the parame-
ters for the surrogate intercept and treatment effects. Now we calculate the difference in �2*log-likelihood, denoted as
G2, between these two models to determine the LRF.

LRF¼ cR2
ht ¼ 1�exp �G2

N

� �
ð6Þ

ENSOR AND WEIR 3



Here N is the total number of trials. In this case, the difference in the �2*log-likelihood summarises the amount of
information on the treatment effect estimates on the true outcome,bβi, explained by the addition to the model of treat-
ment effect estimates on the surrogate, bαi. Therefore, the LRF conceptually links to R2

ht which is defined in Equation (1)
as the ‘proportion of uncertainty in the treatment effects on T removed by adjusting for treatment effects on S’.

Confidence intervals can be calculated using an approach by Kent,17 the construction of these is detailed in Ensor
and Weir.5

3 | SEPARATION

Where separation or quasi-complete separation of categorical variables occurs, there is no unique maximum likeli-
hood.18 Let us consider the case of two binary variables where one is regressed on the other as in Equation (2). Com-
plete and quasi-complete separation relate to the existence of empty cells in the cross-tabulation of S and Z. In
Table 1A–C respectively we present the case of: no separation—with no empty cells; complete separation—where the
binary variable Z perfectly predicts S; and quasi-complete separation—where one cell is empty. The maximum
likelihood estimate for two binary variables is:

bφ¼ log
A�D
B�C

 !
ð7Þ

If a zero occurs in the denominator or numerator of 7 the function is undefined (i.e., bφ = ∞ in the case of the denomi-
nator and bφ = log(0) for the numerator). Therefore, there is no maximum likelihood in the presence of separation.18

Quasi-complete separation can occur in the case of an ordinal variable regressed on a binary one, in a similar manner
and with similar consequences as in the binary case. In the case of the information theory approach for the binary
surrogate in model (2) bφ¼bαi.
3.1 | Impact of separation on information theory surrogate evaluation

When complete or quasi-complete separation occurs this typically causes problems with maximum likelihood estima-
tion for generalised linear models. In the typical scenario, the model iterates several times trying to converge.18 The
affected parameter estimate increases on each iteration, continuing to do so until a fixed iteration limit. Generally by
this point, the parameter estimate will be large and its standard error very large.

TABLE 1 Examples of complete and quasi-complete separation in the binary and ordinal setting

A: No separation

Treatment Placebo

Surrogate Y A ≠ 0 B ≠ 0

Surrogate N C ≠ 0 D ≠ 0

B: Complete separation

Treatment Placebo

Surrogate Y A ≠ 0 0

Surrogate N 0 D ≠ 0

C: Quasi-complete separation

Treatment Placebo

Surrogate Y A ≠ 0 B ≠ 0

Surrogate N C ≠ 0 0

4 ENSOR AND WEIR



At the first stage of surrogacy estimation, S and Z (both binary) and T and Z (one ordinal, one binary) are regressed on one
another for each trial in models (2) and (3). This returns treatment effect estimates on the binary surrogate and ordinal true
outcome. However, in the presence of separation these will be biased and since these estimates are used in modelling at stage
two they tend to cause outlying points in the stage two regression. The LRF, Equation (6), is then based on models with poten-
tially highly influential outliers. This leads to unreliable estimation of R2

ht, with a tendency to underestimate the true value.
For a visual representation of the impact of separation see the results of a surrogacy assessment in Figure 1. The

randomised trial Clots in Legs Or sTockings after Stroke (CLOTs3)20 aimed to determine whether compression aids reduced
the occurrence of deep vein thrombosis in immobile patients who had suffered stroke. We assessed if binary measures of
deep vein thrombosis taken within 30 days of a stroke could be used as a surrogate in place of an ordinal measure of death
and disability at 6 months post stroke. If centres (which can be used in place of trials in surrogacy evaluation21) with separa-
tion are retained in the usual information theory surrogacy assessment various outlying points can be seen at the left and
right ends of the x-axis in the second stage of modelling. These are due to separation and potentially could strongly influence
the regression parameter estimates. This issue occurs in several centres in this real life example. In the presence of separation
R2

ht = 0.145, 95% CI (0.027, 0.325), and using the penalised likelihood approach R2
ht = 0.077, 95% CI (0.003, 0.231).

3.2 | Penalised likelihood solution to separation issues

Various possible solutions to the issue of separation18 include deleting problematic variables; combining categories
(in our case trials); reporting only the likelihood ratio statistics; using exact logistic regression, penalised maximum like-
lihood or Bayesian estimation.

Given the variables of interest, a desire to retain trial-specific information and the parameter estimation required in
surrogacy evaluation only the latter three options are available to us. Allison18 found that a Bayesian approach with
uninformative priors led to convergence problems. Furthermore, parameter estimation is purportedly better for the pen-
alised maximum likelihood than exact logistic regression.22

The penalised likelihood technique of Firth19 was originally introduced to reduce bias in maximum likelihood esti-
mates in logistic regression. In particular, it applies to small samples where bias increases away from zero and infinite
parameter estimates in the case of separation can be thought of as an extreme example.22

If we have a scalar parameter θ of an exponential family model l θð Þ¼ tθ�K θð Þ, the score function
U θð Þ¼ l0 θð Þ¼ t�K 0 θð Þ, that is, the sufficient statistic t affects the location but not the shape of U θð Þ. At the true value
of θ we have E U θð Þð Þ¼ 0 therefore the score function is unbiased. It is also true that if the score function is linear in θ
then E bθ� 	¼ θ. However, when the score function is curved in θ, as is the case under separation, Firth states that the
unbiasedness of the score function and this curvature imposes a bias in bθ so that E bθ� 	≠ θ.

Firth19 favoured a systematic modification to the score function (adding a bias term) to prevent bias in bθ rather than
correcting an already biased estimate of θ.

FIGURE 1 Illustration of the impact of separation based on the CLOTS3 trial20 with a binary surrogate based on deep vein thrombosis and

ordinal true outcome of the Oxford Handicap Scale. The left hand plot demonstrates the regression in the presence of separation (R2
ht = 0.145 95%

CI (0.027, 0.325) and the right gives the case where the penalised likelihood approach of Firth19 is used (R2ht = 0.077 95% CI (0.003, 0.231)

ENSOR AND WEIR 5



Specifically, Firth employed the following notation for the vector of parameters θr , where r = 1, …, p, whose maxi-

mum likelihood estimates are usually determined from the score function equation δLogl
δθ �U θrð Þ¼ 0. For the exponen-

tial family, Firth suggested a modified score equation: U� θrð Þ�U θrð Þþ δ
δθr

1
2 log i θð Þj j
 �

, where i θð Þ is the information

matrix of θ. This equates to a penalised likelihood equation of L� θð Þ¼L θð Þ i θð Þj j1=2 where the bias term i θð Þj j1=2 is the
Jeffreys invariant prior.23 The influence of this bias term is asymptotically negligible. Firth19 showed that this technique
removed the overall bias in parameter estimation.

Heinze and Schemper22 applied the technique of Firth19 to deal with instances of separation in the logistic regres-
sion context. Under assessment Heinze and Schemper22 showed that it was ‘an ideal solution to separation’ as it pro-
duces finite parameter estimates that are superior overall to those from alternative methods. Therefore, we apply the
penalised likelihood technique of Firth19 to resolve surrogacy estimation issues which result from separation.

Penalised likelihood techniques may be implemented for generalised linear models using the logistf command
in the logistf package and pordlogist in package OrdinalLogisticBioplot24 in R.

4 | OVERFITTING AND INEFFICIENCY IN THE INFORMATION THEORY
APPROACH

Besides separation, we also identified issues of underestimation and overestimation previously.5 Underestimation wors-
ened as the number of trials increased, presumably due to inefficiency of the two-stage approach compounded by the
presence of discrete outcomes. We found that the general literature supported this assessment: Molenberghs et al.25

investigated the partitioning of a large dataset by applying a logistic regression to each partition to gain multiple esti-
mates of the parameter of interest. The mean of these parameters was then compared to the estimate gained from the
model using all the data. They showed that inefficiency occurred when the number of partitions (in our case trials) was
large compared to the size of the partitions. On top of this, parameter estimation is less efficient if binary or ordinal
outcomes are used in place of continuous outcomes.26,27

Overestimation occurred in the presence of weak surrogacy and a small number of trials. This overestimation was
due to overfitting of the regression at the second stage of modelling to a small number of data points (one for each trial).
Since the second stage models affected by overfitting are normal linear models, irrespective of the type of outcome
being studied, such overfitting would be expected to be present in all settings. The classical R2 measure of the coefficient
of determination is known to be biased and inflated particularly in the case of small sample sizes and/or too many pre-
dictors. The information theory approach was introduced to address issues with a unified interpretation at the individ-
ual level. At the trial level the calculation of R2

ht has been shown to be consistent with the classical R2 measure.28

Therefore the R2
ht also suffers this bias.

The classical R2 can be adjusted through the calculation of the required shrinkage to provide an unbiased estimator
of the population R2, which we denoteR2

adjC. Unbiased estimation of the population surrogacy strength is the primary
focus of surrogacy evaluation. In order to assess overfitting of R2

ht we will also present R2
adjC in simulations.

Methodologists have previously discussed a full and reduced model at the second stage of analysis. The full model is
shown in Equation (5), and has two explanatory variables. The reduced model is the same equation without the trial
specific intercept estimates, bμSi . The calculation of R2

ht for the reduced model proceeds in the same manner as for the
full model but based on the reduced regression. Tibaldi et al.14explored simplified means of surrogacy assessment. This
paper concluded that in general the full model confers a small benefit and should be used in practice, and this has since
been the convention. Previous simulations have only focused on strong surrogacy, predominantly R2

ht = 0.9, which
explains why the issue of overestimation was not identified previously. A model based on fewer explanatory variables is
likely to suffer less inflation of R2

ht, therefore, we revisit this convention by presenting results of a reduced R2, namely
R2
ht:R. For completeness we will also include the adjusted estimate of the reduced model R2

adjC:R in our simulations.

5 | SIMULATION

We investigated the practical worth of the penalised likelihood technique via a simulation study using R, based on the
approach of Tilahun et al.4 Various scenarios were simulated to study the R2

ht surrogacy measure estimation. Trial sizes
were set to 10, 20, 60, 100, and 300 patients. There were 5, 10, 20 or 30 trials in each simulated data set and 250 datasets
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simulated for each scenario. (Note that surrogacy data from multiple individual trials with the same design and treat-
ment classes are not commonly available, therefore researchers tend to use centres within trial in place of trials, and
evaluate surrogacy using data from multiple centres instead.5 Centres within trials can have various different sizes from
small to large; hence the above simulation trial size scenarios are representative of realistic settings that occur in prac-
tice). We present the mean point estimates and the variance. The joint mixed model in eight forms the basis for the data
generation:

Sij ¼ μSþmSi þαZijþaiZijþ εSij ð9Þ

Tij ¼ μT þmTi þβZijþbiZijþ εTij

D¼ 3

1 075 0 0

0:75 1 0 0

0 0 1 ρ

0 0 ρ 1

0BBB@
1CCCA,henceR2

ht ¼ ρ2,
X

¼ 3
1 ψ

ψ 1

� �
,henceR2

h ¼ψ2:

where μsð , μT) and (α, β) are fixed intercepts and treatment effects respectively. (mSi ,mTiÞ and ai,bið ) are random inter-
cepts and treatment effects for the ith trial respectively. Error terms are jointly distributed, εSij ,εTij

� � � N 0,
Pð Þ and ran-

dom effects, mSi ,mTi ,ai,bið ÞT � N 0,Dð Þ. Intercept and treatment effect parameters for S and T were set to μs = 0.50, μT
= 0.45, α = 0.05, and β = 0.03. Surrogacy was simulated to be: strong at both trial level (R2

ht ¼ ρ2 ¼ 0:90) and individual
level surrogacy (R2

h ¼ψ2 ¼ 0:64Þ; or weak on both measures, with R2
ht ¼ ρ2 ¼ 0:30 and R2

h ¼ψ2 ¼ 0:30. After simulating
continuous S and T these were then dichotomised or categorised to represent a binary S and a seven category ordinal T.
In order to create a binary surrogate outcome, a simulated continuous surrogate was dichotomised at the mean. This
was in keeping with previous publications in this field.4,29,30 To create ordinal outcomes the continuous variables were
categorised using six evenly spaced cut off points, determined according to the quantiles of the true outcome variable.

Two techniques to deal with separation were investigated. The first was to apply a penalised likelihood technique
that allowed trials in which separation occurred to be retained in analysis. The second was to remove trials where sepa-
ration occurred. If fewer than three trials remained following trial removal the simulation was set to return a null value.
For the removal technique the simulation was run until 250 datasets were simulated with three or more trials available.

In order to investigate the other underestimation and overestimation biases discussed in Section 4, results for the
binary-ordinal setting are compared to the information rich continuous-continuous setting. To further investigate
whether the underestimation seen for large trial sizes is due to inefficiency a much larger trial size of 3000 patients per
trial was also simulated.

5.1 | Results

For both strong and weak surrogacy settings, the penalised likelihood technique was compared to the removal of trials
technique. The penalised likelihood technique was based on the full dataset in each case, whereas the trial removal
technique was often based on a much reduced dataset due to the removal of data from trials in which separation
occurred. For small numbers of patients per trial, often fewer than half of the trials were retained in analysis; see
Tables 2 and 3. Furthermore, sometimes where there were fewer than three trials available for analysis under the trial
removal technique the second stage of modelling could not proceed: in some scenarios this occurred up to 90% of the
time. Even where there were large numbers of patients per trial (e.g., 300 patients) the median number of trials retained
in the removal technique was generally lower than the number simulated, see Tables 2 and 3. This represents a fre-
quent loss of information when the trial removal technique is implemented and shows how often separation can occur.
The penalised likelihood technique by comparison allows the retention of all trials in the analysis.

Comparing the R2
ht between the penalised likelihood and the trial removal techniques is not straightforward given

the conflicting issues of bias and the inclusion of different numbers of trials under each method. For instance, in
Table 2 where R2

ht is set to 0.90, the number of trials to 30 and the size of the trials to 10, the mean R2
ht values are com-

parable which seems unlikely. The penalised likelihood and trial removal technique mean estimates are respectively
R2
ht = 0.517 and R2

ht = 0.514. The median number of trials contributing to the trial removal technique in this setting is
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10 and one might expect overfitting to have an influence. Similarly there are 30 trials contributing to the penalised like-
lihood approach, here one might expect the dominant issues to be inefficiency and underestimation. When we look
instead at the mean R2

adjC, which at least removes the issue of overfitting and inflation of R2, we see that in fact the pen-
alised likelihood technique,R2

adjC = 0.481, is out performing the trial removal technique, R2
adjC = 0.367. To obtain a

clearer comparison of the techniques, we turn our attention instead to the R2
adjC results.

In the case of strong surrogacy as presented in Table 2 the R2
adjC for the penalised likelihood approach shows less

bias and more precision of estimates in all settings that have 60 participants per trial or fewer. The benefits of the pen-
alised likelihood approach increase as the number and size of the trials reduces.

In the case of weak surrogacy, presented in Table 3, the R2
adjC for the penalised likelihood approach displays less bias

and more precision in all settings. As in the strong surrogacy setting, the benefit of the penalised likelihood approach
increases as the number and size of the trials decreases.

In Table 4 the results in the binary-ordinal case underestimate trial level surrogacy in comparison to the
continuous-continuous case and show less precision in all settings. This underestimation worsens as the number of tri-
als increases and although particularly bad for small numbers of patients per trial it can even be seen in the case of
300 patients per trial. If we look at the additional simulation for 3000 patients per trial, we see that the results are much
closer to the true value of 0.90, and more in line with that seen for the continuous case with 300 patients per trial. This
is evidence that inefficiency is the cause of the bias.

To investigate the overestimation seen predominately for weak surrogacy and small numbers of trials we focus first
on where R2

ht = 0.30. See that R2
ht is inflated even when the size of the trials is large. The inflation of the results is partic-

ularly bad when the number of trials is small, such that the surrogate might erroneously appear to be moderately good.
The reduced model, R2

ht:R, removes some but not all of the inflation of the R2
ht. For instance, for 5 trials and 300 partici-

pants the mean R2
ht = 0.600, R2

adjC = 0.198, R2
ht:R = 0.407 and R2

adjC:R = 0.207. The estimate based on the reduced model,
R2
ht:R, is still large compared to the true value of 0.30 although not as poor as the full model R2

ht estimate. Under both
the full and reduced models the R2

adjC appears to remove all the overestimation in results.
When surrogacy is strong, see Table 4, the inflation of R2

ht is noticeable in comparison to the R2
adjC (mostly where the

number of trials is small) but not as severe as in the weak surrogacy setting. Again the R2
ht:R gives less biased estimation

than the R2
ht but not as good as the R2

adjC in regard to overfitting in the smaller trial sizes and trial numbers.
We also compared weak surrogacy for the binary-ordinal to the continuous-continuous setting, see Table 5. Over-

estimation was seen to behave similarly in both settings in respect to the values of R2
ht and the comparative advantages

of R2
ht, R

2
adjC and R2

ht:R described above.
Since the adjusted models remove issues of bias due to overfitting we can compare R2

adjC versus R2
adjC:R to see clearly

the benefits of the full versus reduced models. In all the continuous-continuous settings and the discrete setting where
the strength of surrogacy is weak the full model shows little benefit. However in the case of strong surrogacy, see
Table 4, R2

adjC is very marginally but consistently less biased than the R2
adjC:R. Presumably this is due to the trial intercept

variable including a small amount of information that helps counteract some of the inefficiency present in the discrete
setting. However, conversely, in all settings continuous or discrete the precision of the R2

adjC:R is slightly better than the
R2
adjC , increasingly so as the number of trials decreases.
Table S1 outlines the percentage of separation in the various settings: as might be expected the rates were similar

regardless of the number of trials. Quasi-complete separation in the binary case was �60% for 10 participants per trial
falling to �5% for 300 participants per trial. Complete separation only occurred in 2% of trials where there were
10 participants per trial and 0% in all other settings. Separation in ordinal outcomes is always defined as semi-com-
plete31 and this occurred in �20% of trials for 10 participants per trial down to �1% for 60 participants per trial and
0% otherwise.

6 | DISCUSSION

Surrogacy assessment is a complex issue and many statistical approaches have been suggested. An accessible, practically
sound and well-developed approach is based on information theory. This approach assesses surrogacy at both the indi-
vidual patient and trial levels. At the trial level and in the context of discrete outcomes we have identified three issues
concerning the information theory approach that have not previously been recognised or investigated.

The first of these is underestimation, which counter-intuitively increases as the number of trials increases and is
worse where there are few patients compared to the number of trials. We demonstrated through simulation and

12 ENSOR AND WEIR



investigation of the wider literature that this was due to inefficiency of the two-stage nature of the approach and the
use of uninformative discrete outcomes. Continuous outcomes by comparison were minimally affected.

The second issue of bias is that of overestimation. This was worse for small numbers of trials and a weak level of
surrogacy. The overestimation was because of overfitting in the second stage of modelling, due to having too few data
points available (one per trial) where the number of trials is small. The simulated results for five trials and a weak sur-
rogate are such that a poor surrogate under investigation may erroneously appear to be moderately good. We showed
that overfitting of weak level surrogacy was also present for continuous outcomes, supporting our hypothesis that this
issue applies across all types of outcome.

Previously, researchers have suggested that a ‘full’ model should be used instead of a ‘reduced’ model with fewer
explanatory variables. Our simulations show that in fact the reduced models give less biased estimation. This is cer-
tainly true in the presence of overfitting and in general it is hard to see much if any benefit of the full model. We also
showed that an adjusted R2 based on the classic coefficient of determination removed issues of overfitting in estimation.
A comparison of the adjusted versus unadjusted R2 shows the large impact overfitting is having on the results and
allows us to clearly attribute this bias to overfitting. Based on these simulations, we would advise that surrogacy assess-
ments are based on reduced models, alongside a check of the adjusted R2 for the reduced model to make sure that the
results are not overly optimistic (especially where the number of participants or numbers of trials are small).

Finally, we outlined how poor estimation of treatment effects in the presence of separation at the first stage of trial level
surrogacy evaluation leads to biased estimation of the level of surrogacy. We proposed the penalised likelihood technique of
Firth19 as a solution to this. Under simulation investigation, we found an alternative method—removal of trials containing
separation from the evaluation—resulted in a large amount of discarded data. This demonstrated how frequently separation
can impact on the information available from a trial; given the value of this information, identifying a solution to this issue
was critically important. The penalised likelihood technique provides improved estimation and precision without the loss of
precious trial information. While this benefit was greater where the number and size of trials is small, these are realistic set-
tings for surrogacy assessments. This technique provides a practical and effective solution to the pervasive issue of separation
when assessing surrogacy using the information theory approach for discrete outcomes, and can be easily adopted for any
combination of binary or ordinal surrogate and true outcomes. Furthermore, our work indicates that this technique could
improve analysis of discrete outcomes in clinical trials research more generally where sparse data is an issue. We developed
the command FixedDiscrDiscrIT in the R package Surrogate32 using the above methodology, allowing practical application
of information theoretic surrogacy evaluations in the presence of sparse data.

The use of unvalidated surrogates is an issue that is much debated in clinical trials research. Efforts to encourage
researchers to adopt statistical approaches to surrogacy evaluation continue and are only strengthened through refine-
ment of the approaches available. The information theory approach has been centre stage during this undertaking. Our
work will further underpin this approach through better understanding of its application in practice and resolution of
the issues caused by separation in discrete outcomes.
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