
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance Evaluation of Adaptive Routing on Dragonfly-based
Production Systems
Citation for published version:
Chunduri, S, Groves, T, Harms, K, Mendygral, P, Zarins, J, Weiland, M & Ghadar, Y 2021, Performance
Evaluation of Adaptive Routing on Dragonfly-based Production Systems. in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, pp. 340-349, 35th IEEE International Parallel and
Distributed Processing Symposium, Portland, United States, 17/05/21.
https://doi.org/10.1109/IPDPS49936.2021.00042

Digital Object Identifier (DOI):
10.1109/IPDPS49936.2021.00042

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1109/IPDPS49936.2021.00042
https://doi.org/10.1109/IPDPS49936.2021.00042
https://www.research.ed.ac.uk/en/publications/fc586a17-8e68-4b9d-b4d6-b551af86ed50


Performance Evaluation of Adaptive Routing on
Dragonfly-based Production Systems

S Chunduri∗, K Harms∗, T Groves†, P Mendygral‡, J Zarins§, M Weiland§, Y Ghadar∗
∗Argonne National Laboratory, †Lawrence Berkeley Laboratory, ‡Hewlett Packard Enterprise, §EPCC

Abstract—Performance of applications in production envi-
ronments can be sensitive to network congestion. Cray Aries
supports adaptively routing each network packet independently
based on the load or congestion encountered as a packet traverses
the network. Software can dictate different routing policies,
adjusting between minimal and non-minimal bias, for each posted
message. We have extensively evaluated the sensitivity of the
routing bias selection on application performance as well as
whole system performance in both production and controlled
conditions. We show that the default routing bias used in Aries-
based systems is often sub-optimal and that using a higher bias
towards minimal routes will not only reduce the congestion
effects on the application but also will decrease the overall
congestion on the network. This routing scheme results in not
only improved mean performance (by up to 12%) of most
production applications but also reduced run-to-run variability.
Our study prompted the two supercomputing facilities (ALCF
and NERSC) to change the default routing mode on their
Aries-based systems. We present the substantial improvement
measured in the overall congestion management and interconnect
performance in production after making this change.

I. INTRODUCTION

Dragonfly networks [1] are a prominent fixture in the HPC
landscape. Four of the upcoming DoE systems (Perlmutter,
Aurora, Frontier, and El Capitan) will feature Cray Slingshot
Networks with a dragonfly topology. The dragonfly topology
provides a low-diameter network for large numbers of network
endpoints with many paths between two points on the network
which are in distinct “groups”. These network paths can
be divided into “minimal” and “non-minimal” paths. Non-
minimal routing, which redirects traffic through extra hops,
may provide a lower latency and higher throughput as a
network becomes congested. Modern networks have several
adaptive routing policies to choose from. These policies adjust
the congestion threshold for taking the minimal or non-
minimal path. We refer to these as routing biases.

Recent work by De Sensi et al. [2] has highlighted the im-
portance of adaptive routing biases to application performance
on production dragonfly systems. This work utilized a runtime
approach called application aware routing (AWR) to poll NIC
counters and tune routing policies (increasing or decreasing
minimal path bias). While their approach served as motivation
for our work, it is limited in two respects. One is the overhead
of the runtime, particularly on many-core CPU architectures.
In our experiments on Intel KNL, the overhead of querying the
performance counters on every message was too high for the
processor to manage without impacting the overall application
runtime. Secondly, De Sensi’s work showed that individual
bias policies often outperformed the adaptive runtime.

In this work we ask the question, “Are there fundamental
application and system characteristics that prefer a minimal
or non-minimal bias in Dragonfly networks?”. By identifying
these characteristics we are able to intelligently apply per-
application routing biases and provide a set of best practices
to HPC developers. As we answer this question, this study
makes the following contributions:

1) Evaluates the relationship between a set of key appli-
cations’ communication patterns, routing policies and
performance.

2) Draws distinctions between routing performance for
workloads running alongside competing congestion and
benign traffic patterns.

3) Analyzes the types of congestion at the different levels
of the network to understand the efficacy of minimal and
non-minimal routes.

4) Determines that high minimal-route bias should be the
default setting on ALCF and NERSC systems.

The rest of the paper is organized as follows. An overview
of the congestion effects and routing algorithms on Aries-
based Dragonfly, and the application and system configurations
used for evaluation, is presented in Section II. Section III
presents the experimental methodology and the metrics used
for studying the sensitivity of routing changes on application
performance. The performance effects of routing policies on
applications in production environments are elaborated in Sec-
tion IV. Section V presents system level congestion changes
using controlled experiments and global system monitoring.
Other literature related to this paper and our concluding
remarks are presented respectively in Sections VI and VII.

II. BACKGROUND

A. The Aries dragonfly network

The most common dragonfly network today is the Cray
Aries network [3]. Our study utilizes two Aries systems,
ALCF Theta and NERSC Cori. Though Aries and upcoming
dragonfly systems (e.g. Cray Slingshot) have differences (such
as group size and congestion control policies), we expect that
many of the insights provided by this paper will be applicable
to future dragonfly systems as well as current. This is because
on any dragonfly system applications will have a preference
for minimal or non-minimal routes, due to the communication
patterns inherent to the application.

Cray XC-40 systems use the Cray Aries interconnect con-
figured in a three-level dragonfly topology [3]. The first two
levels (rank-1 and rank-2) are copper-based with 10.5 GB/s

1



bidirectional bandwidth per link, and the rank-3 level is optical
with 9.38 GB/s per link. The three rank-2 links are used to
connect each pair of routers in the intra-group columns, and
each router is connected to the 15 other routers in a row with
a rank-1 link. The Rank-1 (green), Rank-2 (grey) and Rank-3
(blue) router tiles in total 40 of these are referred as network
tiles. The remaining 8 router tiles, referred as Processor tiles,
connect to the Aries NICs. Rank-1, Rank-2 and Rank-3 tiles
are utilized by all nodes of the system as traffic passes through
routers, whereas Processor tiles are only used by the 4 nodes
with NICs directly connected to an individual router.

B. Network variability

In an isolated environment where there is a single applica-
tion running on the system, the application can have access
to a completely isolated network as there is no background
noise. However, in order to optimize the cost of the HPC
interconnect, much of the interconnect is shared by all ap-
plications running on the system. The shared nature of the
network allows any application to utilize large amounts of
network resources, which can optimize the performance of
that single application when the network is idle. However,
when applications simultaneously use the network, congestion
can result when network resources become oversubscribed.
This results in variable performance from run to run, and
certain applications will experience lower overall performance
due to the lack of available resources [4]–[7]. The Aries
interconnect provides two mechanisms for mitigating network
congestion. One mechanism is throttling the network, which
can have a broad effect and so only occurs under extreme
persistent congestion scenarios. The second mechanism is
adaptive routing covered in subsection II-D.

C. Background noise effects on application performance

Application specific features such as communication pattern
and intensity as well as system specific aspects such as
topology and routing, together determine the communication
performance of an application on a HPC system. The appli-
cation specific characteristics are detailed in Section II-E, and
the system specific aspects are discussed here.

The job placement determines the topology of the allocated
nodes and how they communicate. A compact placed job can
reduce the impact from other jobs as it minimizes rank-3 expo-
sure, however, its performance can be impacted negatively due
to low availability of rank-3 network bandwidth. A disperse
(or random) placed job (with nodes allocated from several
electrical groups) can have better availability of rank-3 band-
width but this can induce higher noise impact from other jobs.
The adaptive routing bias towards minimal or non-minimal
paths has shown to have a decision impact on application
performance in production [2], [8], [9]. Dragonfly network-
based simulation studies [10]–[12] show the combined effects
of mapping and routing on the application performance.

The background noise is determined by the placement and
routing of other running applications and also by their com-
munication characteristics. The size of the job in terms of total

nodes used is also important to understand as that implies the
influence of the above mentioned factors on the performance.
A large-sized job occupying almost the entire system can have
isolated exposure to the network without the background noise
of other applications and hence is only influenced by its own
communication characteristics and the routing scheme used.
A small-sized job that is placed compactly avoids interference
from other jobs as there are only a few possible paths between
its limited endpoints. Medium-sized jobs are more prone to be
affected by background noise irrespective of the job placement
(compact or dispersed) because of the adaptive routing where
the potential for link sharing with other jobs is high [6], [13].

Hence, in this study, we use the medium-sized jobs and
experiment with the different adaptive routing modes available.
The application experiments are repeated multiple times so as
to capture the spectrum of possible background noise and job
placement scenarios. We believe these system characteristics
are representative of many HPC systems and will translate to
other dragonfly based systems.

D. Routing on Cray Aries

The Cray Aries defines four adaptive routing modes, ADAP-
TIVE 0,1,2,3, (hereafter referred to as AD[0,1,2,3] with AD0
being the default [3]. Applications on a Cray Aries intercon-
nect may select an Aries routing control mode by setting an
environment variable (MPI) or making a GNI/DMAPP API
call. From the manual page for Cray MPI:

The definition of an adaptive routing mode can be config-
ured using bias value which is a combination of shift and
add (with values between 0 and 15) parameters. The AD0
mode just compares the load on minimal and non-minimal
paths, essential equal bias between them. The Cray MPI
library uses the AD0 routing mode for most MPI operations
except for MPI Alltoall[v] variants. The AD1 [14], [15] mode
provides increasingly minimal bias, a larger bias to selecting
a minimal path is used as the packet traverses more hops.
The MPI Alltoall[v] implementations in Cray MPI library use
AD1 mode. AD2 uses an addition of 4 to the bias to minimal
with no shift value, thus it is referred as a mode with weak bias
towards minimal. With AD3, a shift of 2 is used for minimal
bias, thus it is referred as a strong bias toward minimal. Thus
with AD3, the load on minimal paths needs to be 4X of that
on the non-minimal paths, before non-minimal paths will be
used. In general using the non-minimal paths is ideal when the
load on the network is low as it can enable more thoroughly
utilizing the available network bandwidth. Otherwise, using
the minimal paths will be beneficial.

Cray does not provide guidance on the selection of adapting
routing protocols or why Cray selected AD0, but we can
provide some speculation based on the defined behaviors. The
choice of AD0 as the default routing protocol provides a
balanced approach of giving applications the opportunity to
utilize significant portions of the network, making both mini-
mal and non-minimal paths equally available at the expense to
increasing aggregate load on the network. Selection of AD1
provides a larger potential bisection bandwidth for Alltoall

2



0.00

0.25

0.50

0.75

1.00

12
8

38
4

64
0

89
6
11
52

14
08

16
64

19
20

21
76

24
32

26
88

29
44

32
00

34
56

37
12

39
68

42
24

Nodes used

C
o
re
h
o
u
rs

Fig. 1. Theta job size distribution

operations by allowing non-minimal paths to be selected
initially but will incrementally limit the dispersion of paths the
more hops messages take. Increasing the bias toward minimal
limits the impact of applications using Alltoall on the entire
network and will reduce potential congestion.

E. Application Characteristics

Applications can be impacted by the network performance
to different extents based on their MPI usage and communica-
tion intensity. Latency-bound operations use small messages
that are bound by the delay network takes to send a message.
These operations are small (few KB of size) messages which
require minimal network resources and perform best using
a shortest path. Latency-sensitive operations can be heavily
impacted by congestion as either waiting in queue or taking
a longer route can incur more delay [16]. Logically, AD3
should provide the best performance for these applications
by selecting the minimal paths and reducing congestion from
other applications by routing messages across the non-minimal
paths. Bisection bandwidth-bound operations typically use
large messages that are bound by the aggregate throughput of
the network rather than the delay of any individual message.
Bisection bandwidth operations will favor non-minimal paths
which allows increasing the total number of messages in-
flight and achieving the highest overall bandwidth. Injection
bandwidth or message-rate-bound operations which are limited
at the NIC are less sensitive to routing mode changes because
the routing mode will not impact the ability of the NIC to
inject data. Applications which are mostly compute bound
or use overlapped communication will also be unaffected by
network behaviors.

F. System Characteristics

The experimental evaluation was performed on Cray XC-40
systems Theta and Cori for this study. Theta has 4392 compute
nodes based on the Intel Xeon Phi (KNL) 7230 processors.
Theta is configured with 12 dragonfly groups using 12 active
optical cables (3 lanes each) [3] between each group. Cori has
9668 KNL compute nodes using similar topology as Theta,
but with the distinction that only 4 cables span each group-to-
group connection, resulting in a reduced bisection-to-injection
ratio. Unless otherwise noted, the results presented are from
experiments run on Theta.

The user base of these systems consists of a wide variety
of users performing simulations and analysis from a wide
variety of scientific domains [17], [18]. The selection of
the applications used is a result of the INCITE and ALCC
allocation award programs which select proposals submitted

by scientists and that are reviewed and awarded on a merit
basis. The resulting diverse workloads require that Theta
perform well under many different application characteristics,
indicating that the results presented here are widely applicable
to the usage of other dragonfly-based systems.

Figure 1 is the complementary cumulative distribution func-
tion (CCDF) of job sizes (by number of nodes) on Theta.
The figure shows that approximately 40% of all core-hours on
Theta are from jobs allocated with between 128 and 512 nodes.
Based on the discussion in II-C, we noted that intermediate
sizes job are likely the most susceptible to network congestion.

This results in 70% of core-hours being used by jobs in the
128-512 node size range allocated with nodes from 5 or more
dragonfly groups. Given the dominance of 128-512 node size
range, we use this range to study routing behavior.

While the number of groups from which a job are allocated
has an impact on application performance our findings suggest
that it does not appear to impact the ranking or preference of
a particular routing bias, that is they are largely independent.

III. EXPERIMENTAL METHODOLOGY AND SETUP

A. Experimental Methodology

In order to evaluate the effects of routing mode changes
on network performance and overall perceived application
performance, we examine applications running in a production
environment (on Cori and Theta) as well as under con-
trolled conditions using Theta. Along with the application
study, benchmark analysis was done to analyze MPI be-
haviors under controlled conditions. The applications were
configured using best practices presented in [6], [19] for
reducing the effects of runtime noise from other compo-
nents such as the CPU and OS; specifically, flat memory
mode was used on Theta and OS services are moved to
the last hardware thread using core-specialization. On Cori,
only cache mode is available. These applications were then
run in sets executing the same application several times and
selecting one of the four adaptive routing modes by setting
the environment variables MPICH GNI ROUTING MODE
and MPICH GNI A2A ROUTING MODE. The production
experiments were run over the course of a four month period
on different days and times to cover a wide range of pro-
duction network congestion scenarios. When the production
experiments were executing, all other jobs on the system were
using the system default AD0 setting. This was confirmed by
verifying the job logs for the environment variable usage of
all jobs on Theta during the test period. Applications were
instrumented with AutoPerf [20] to collect metrics on the MPI
interfaces used and to collect the Cray network performance
counters from the Aries router tiles.

The controlled experiments were performed during a system
reservation where all nodes of the system were reserved. These
experiments were performed to assess different combinations
of routing modes when running in isolation and under con-
gestion scenarios. For the controlled experiments, we also
examined the effect of node placement on the routing mode.
Applications were run with a compact and dispersed placement

3



using 128, 256 and 512 nodes. The controlled experiments
establish the bounds of the system behaviors.

All experiments were performed using sufficient number
of samples (greater than 30) such that runtime measurements
were statistically significant. Accounting for extreme conges-
tion events such as incast and transient errors, which can
disrupt the applications globally, we have removed the outliers
from these samples that are above +/- 3 standard deviation of
normalized runtimes. The removed samples amounts to less
than 0.6% of the total run samples. The default routing mode
on both Theta and Cori has been changed recently to AD3, we
present the impact of this change on the overall system-level
congestion on both the systems.

B. Metrics Collection

As part of the evaluation, metrics were collected using
two main tools. AutoPerf is a lightweight intercept library
that leverages PMPI wrapping to intercept MPI calls from
the application as well as collect Cray network performance
counters. AutoPerf has minimal impact on the application with
less than 0.05% overhead [20]. AutoPerf reports the number
of calls for each MPI interface used, the average number of
bytes passed into the call and the total wallclock time used by
the calls. The AutoPerf data informs the key MPI interfaces
used by each application and how much data the application
transfers via MPI. The counters are captured by each MPI
process reading the Cray Aries router tiles connected to the
node. The result is that the counter values are read for the
same router many times. The values are averaged into a single
result for each router tile. Collection of the counters at the
application results in a local view of data as the application
collects data from only routers which it is directly connected.

The other tool used is LDMS [21]. LDMS is a lightweight
metric collection service that runs on the compute node and
collects the Cray network counters on a (configurable) periodic
rate of 1 minute. LDMS collects network counter data from ev-
ery node on the entire system which provides a system (global)
level view of the network congestion. By combining these two
tools, we will see that network performance counter data is
correlated between the two. We use the application specific
coarse-grain counter data to understand network effects on a
specific application while we can use the application agnostic
fine-grain LDMS data to understand how the overall network
behavior is effecting individual applications.

The Aries network counters can be used to approximate the
congestion of the network and are an effective measure for the
performance of the network and the network congestion [2],
[5], [7].

C. Applications and their characterization

The five applications, MILC, Nek5000, Qbox, HACC and
Rayleigh, selected for this study based are representative of
applications running on Theta and Cori. These applications
regularly run on these systems using significant CPU hours. At
NERSC Lattice QCD codes such as MILC represent more than
12% of total core-hours. Both MILC and HACC are two of the

top 10 codes run at NERSC by core-hours [18]. The applica-
tions also have a set of diverse communication characteristics
that are representative of various classes of applications.
Table I lists the applications and their MPI/communication
characteristics when run using 256 nodes. These applications
run in either strong or weak scaling mode. Hence, the commu-
nication characteristics could change with the scale they are
run at, however the table provides a reasonable approximation.

IV. APPLICATION PERFORMANCE SENSITIVITY TO
ROUTING IN PRODUCTION

We first analyze the sensitivity of the routing bias on
applications that were run under normal production conditions.
We use two routing modes, AD0 (the default routing mode)
and AD3 (strong bias towards minimal) for experimentation.
To start with, the performance of MILC, which is known
to be communication intensive, is analyzed in detail. The
communication pattern in MILC is a 4D stencil with fre-
quent small message MPI Allreduce operations. The nearest
neighbor communication overlaps communication with com-
putation, sending message sizes in the KB range that leverage
throughput characteristics of the network. At the end of each
neighbor exchange the application is latency bound by small
message Allreduces.

A. Performance Analysis of MILC in production

MILC MILCREORDER

400 500 600 400 500 600
0.000

0.005

0.010

0.015

Runtime (seconds)

P
ro
b
a
b
ili
ty
D
e
n
s
it
y

AD0 AD3 95percentile Mean

Fig. 2. MILC and MILCREORDER runtimes using 256 nodes on Theta

The runtimes for MILC application using AD0 and AD3
routing modes across several different runs using 256 nodes
on Theta is presented in Figure 2. The mean runtime (482
seconds) using AD3 routing mode is 11% lower than the mean
runtime (542 seconds) using AD0 routing mode. Similarly, the
long tails (95 percentile of the runtimes) are lower using the
AD3 routing mode, indicating that the range of variability is
lower. Even for the MILCREORDER, both the mean runtime
and the range of variability are lower using the AD3 routing
mode.

As detailed in Section II-C, job placement, background
application traffic and the routing are potential factors in-
fluencing the communication portions of the applications. In
order to potentially cover the varying range of background
noise scenarios, the application was run repeatedly over several
months. Thus, these runs were allocated with different sets of
nodes spreading across the different parts of the system. Runs
organized based on the number of dragonfly groups spanned
are shown in Figure 3. The jobs range from a single group up
to 12 (maximum on Theta). The figure shows the runtimes of a
specific job size normalized using the Z-score normalization.

4



App Point-to-point Collectives % of MPI in total time MPI Call1 MPI Call2 MPI Call3

MILC heavy (KB) allreduce (8B) 52% MPI Allreduce MPI Wait MPI Isend
MILC REORDER heavy (KB) allreduce (8B) 50% MPI Wait MPI Allreduce MPI Isend
Nek5000 medium (KB) light (16B) 48% MPI Allreduce MPI Waitall MPI Recv
HACC light (>1MB) light allreduce (1KB) 22% MPI Wait MPI Waitall MPI Allreduce
Qbox medium (50KB) medium (128KB) 66% MPI Alltoallv MPI Recv MPI Wait
Rayleigh none heavy (23MB) 28% MPI Alltoallv MPI Send MPI Barrier

TABLE I. COMMUNICATION PROPERTIES OF EACH APPLICATION (BASED ON 256-NODE RUNS). MPI CALLS 1,2 & 3 ORDERED BY % TIME.

The normalized runtime value of zero represents the mean
absolute runtime; therefore the positive values, on the y-axis
indicate higher than mean runtime (slower) and negative values
indicate smaller than mean runtime (faster). As the figure
shows, MILC shows variability across the runs irrespective of
whether the placement is localized (2 groups) or wide-spread
(12 groups).

Figure 3 shows the normalized runtimes for jobs using 128
and 512 nodes as well. The MILC application is run in a
strong scaling mode; thus, the absolute communication time
per process decreased effectively as the number of nodes used
are scaled. The performance of AD3 is consistently better
than AD0 irrespective of the placement for 128 and 256 node
sizes. However, MILC running using 512 nodes on Theta
shows a mean performance decrease of 3% using AD3, and
the performance decrease is especially seen when placement
is more dispersed. In Section V, we will further discuss the
MILC performance on 512 nodes on Theta. However, running
on 512 nodes of Cori as shown in Figure 4, MILC shows a
mean performance improvement of 6% application time with
AD3. The 256-node MILC jobs on Cori showed an average
13.5% improvement in performance with preferring minimal
routes. Considering the difference between Theta and Cori
in terms of system scale, production workload set and job
scheduler policies, the performance improvements noted are
reproducible on different systems.

To confirm where in the application the performance im-
provement is coming from, the MPI profile data for all runs
is analyzed. The stacked bar plot (one bar per run) shown
in Figure 5 depicts how the runtime for MILC is distributed
among MPI and non-MPI (referred as Compute in the plot)
operations. The MPI time is further shown as the 3 dominant
(in terms of time) MPI operations (MPI Allreduce, MPI Wait
and MPI Isend) and the rest of MPI operations. As shown
in the figure, the time for these MPI operations is reduced
using AD3 routing mode as the latency-bound operations are
benefited by the minimal routes.

Next, to verify how the runtime in MPI operations im-
proved, we examine the Aries network performance counters.
Figure 6 shows the ratio of stalls to flits on the Aries router
tiles broken down by the different link types. An average
improvement using a routing that has strong minimal bias is
seen across the network tiles. The absolute stalls (not shown
here) have reduced significantly, thus reducing the ratio of
stalls to flits on all the network tiles. The request and response
traffic transmitted on the router tiles make use of separate
virtual channels (VC) [3]. The stalls on the request traffic
(data moved with Puts than Gets) on the processor tiles have
increased with AD3, indicating that potential congestion on the
network endpoints. The routing does not affect the response
traffic. However, the overall stalls are reduced significantly
with AD3.

B. Performance of all Applications in Production

Following the detailed analysis of MILC, we perform the
same analysis for the remaining applications. Table II shows
mean and standard deviation of the total runtimes for all
the applications. The number of samples recorded for each
application is also shown testifying the statistical significance.
The performance improvement is up to 11.9% on Theta
(13.5% on Cori) for production application mean runtime,
which is a significant improvement considering that no change
to the application is made. The only application which suffered
a negative effect from AD3 was HACC, which is discussed in
IV-C. The specific improvements in the mean MPI times of the
application are also provided, showing a significant increase
of up to 19% on Theta and 34% on Cori.

Figure 7 shows the normalized runtime for each application
using the two routing modes. A routing mode with strong
bias towards minimal shows improvement in the mean runtime
as well as variability for all applications other than HACC.
Corresponding improvement in the network counter metrics
are also measured.

Overall, bias towards minimal shows a positive performance
improvement for most production applications. These results

128 256 512

M
IL
C

M
IL
C
R
E
O
R
D
E
R

1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 2 4 5 6 7 8 9 11 12

-1

0

1

2

3

-1

0

1

2

3

N
o
rm
a
liz
e
d
ru
n
tim

e

AD0

AD3

Fig. 3. MILC and MILCREORDER on three different job sizes ordered by the number of groups spanned with AD0 and AD3 routing modes.

5



128 256 512

M
ILC

(C
ori)

2 3 5 6 7 8 9 10 11 12 13 14 16 17 18 19 21 23 24 5 7 10 11 12 13 14 15 16 17 18 19 20 21 22 25 6 9 10 12 15 16 18 20 23 24 25 26 27
-2

-1

0

1

2

3

N
or
m
al
iz
ed

ru
nt
im
e

AD0

AD3

Fig. 4. Cori - MILC runtimes on three different job sizes ordered by the number of groups spanned with AD0 and AD3 routing modes

AD0 AD3

M
IL
C

0

200

400

600

R
u
n
tim

e

Compute MPI_Allreduce MPI_Wait MPI_Isend Other_MPI

Fig. 5. MILC runtimes shown (MPI and non-MPI times) for different runs

0

3

6

9

Rank3 Rank2 Rank1 Proc_req Proc_rsp

S
ta
lls
-t
o-
F
lit
s
R
at
io

AD0

AD3

Fig. 6. Performance counters for MILC with AD0 and AD3 routing modes

emphasize that the default routing mode (AD0) employed on
Theta is not always ideal for all the applications and in fact
changing the routing mode showing a significant (up to 11.9%)
performance improvement in the total application runtime.

C. Performance Analysis of HACC in Production

As shown earlier, HACC is the only application among
those we have tested that saw a reduction in performance with
strong bias towards minimal. While the decrease in runtime is
small (2.7%), we wish to understand the reasons behind this
so as to identify scenarios where AD0 routing is preferred.

The communication in HACC is composed of two com-
munication patterns: 3D FFT-type communication pattern and
neighbor-wise particle exchange. The 3D FFT is the dominant
of the two, with communication going over random rank-
pair mappings stressing the global bisection bandwidth. It
uses asynchronous send/recv operations of large (1.2MB)
messages; these are shown as the MPI Wait in Figure 8. This
communication stressing the global bisection of the network
prefers non-minimal routes to avoid the congestion on the
rank-3 optical links. Figure 12 highlights this, demonstrating

-2

-1

0

1

2

3

HACC MILC MILCREORDER NEK5000 QBOX RAYLEIGH

N
o
rm
a
liz
e
d
ru
n
ti
m
e

AD0 AD3

Fig. 7. Normalized runtimes for Applications with AD0 and AD3

AD0 AD3

H
A
C
C

0

100

200

300

400

500

R
u
n
tim

e

Compute MPI_Wait MPI_Waitall MPI_Allreduce Other_MPI

Fig. 8. HACC runtimes shown (MPI and non-MPI times) for different runs

high peak stalls under AD3 on a subset of the rank-3 router
tiles due to the limited paths used by minimal routing. Thus,
AD0 routing, which has equal bias to minimal and non-
minimal, is preferred over a routing with strong minimal bias
for this type of workload.

The previous analysis demonstrates the value of a high min-
imal bias for most applications on the system and highlights
where applications should choose an equal bias for minimal
and non-minimal routing. However, this production analysis
was done with only the target application running with a
modified routing protocol while the rest of the system was
using AD0 routing. Hence, it is imperative to analyze how a
different routing bias influences the overall system congestion
and network performance when used by all applications. The
next section discusses this along with addressing the question
“Is using strong minimal bias routing for all the jobs running
on the system good or not?”.

V. SYSTEM LEVEL NETWORK NOISE EVALUATION

In this section, we analyze the performance impact of
routing biases on the overall network performance. We use the

App AD0 AD3 % of improvement in time % of improvement in MPI number
µ ± σ µ ± σ AD3 over AD0 AD3 over AD0 of runs

MILC 542.6 ± 46.5 482.5 ± 35.0 11 16.7 190
CORI MILC 668.6 ± 130.2 589.8 ± 102.2 11.7 NA 81
MILCREORDER 509.6 ± 40.0 448.9 ± 33.3 11.9 18.8 189
Nek5000 467.1 ± 21.1 456.7 ± 16.0 2.2 5.5 69
HACC 442.9 ± 8.1 454.9 ± 10.5 -2.7 -34 100
Qbox 677.3 ± 54.5 644.7 ± 37.5 4.8 5.7 108
Rayleigh 653.1 ± 16.6 651.7 ± 12.8 0.2 0 29

TABLE II. MEAN (µ), STANDARD DEVIATION (σ) RUNTIME (SECONDS) AND THE PERCENTAGE OF IMPROVEMENT IN MEAN RUNTIME WITH AD3 OVER
AD0 FOR APPLICATIONS RUNNING ON 256 NODES.

6



Aries network performance counters recorded by LDMS as a
measure of the global congestion experienced on the network.
LDMS on Theta was configured to record the counters globally
at a periodic interval of one minute across all the routers on
the system. We run multiple instances of the same application
in a controlled manner on Theta, where all the instances are
of same job size and are run with using the same adaptive
routing mode. As an example, an ensemble of sixteen 256-
node MILC runs starting them all simultaneously are executed.
The ensemble is repeated four times with each time using one
of the four adaptive routing modes. Given that the applications
and their communication patterns are known, this helps in
better interpreting the LDMS data, especially when we need to
compare the performance effects of different routing modes on
the same workload ensemble. We also have run ensembles of
128-node and 512-node jobs. In addition, job ensemble with
jobs using compact placement and job ensemble with jobs
using dispersed placement are used.

-2

0

2

4

AD0 AD1 AD2 AD3

Routing (MPI)

N
o
rm
a
liz
e
d
R
u
n
tim

e

Fig. 9. All applications (256 nodes) varying adaptive routing bias

Figure 9 shows the runtimes of all the tested application
jobs using 256 nodes (includes jobs with compact and random
placements) in the controlled experiments. The runtimes are Z-
score normalized per application using the mean and standard
deviations of runtimes of that application. The AD3 routing
performs the best in terms of lowest mean runtime and smallest
range of run-to-run variability. AD3 which routes packets
adaptively with very large bias to minimal paths limits the
spread of network congestion, thus showing overall perfor-
mance benefits. AD2 also routes packets with minimal bias but
with a smaller bias value (as stated in Section II-D), and fares
next in terms of mean runtime performance but causes few
extreme outliers. Interestingly, the AD1 routing which is set
as default for MPI Alltoallv performs slightly better than AD0
for this workload set and job size combination. Overall, both
the production and controlled experiments prove the benefit of
strong minimal bias routing.

A. Controlled experiments using MILC

In order to understand how the performance improvements
with strong minimal bias occur and analyze how the global
network congestion changes, we run an ensemble of eight 512-
node MILC jobs first with AD0 and then with AD3. Figure 10
shows the performance counters on the 48 router tiles on all
1024 Aries routers. A total of 49152 tiles inclusive of the rank-
1 (green), rank-2 (grey), rank-3 (blue) and processor (red) tiles
are colored accordingly in the figure showing cumulative stalls
and flits on all router tiles for the duration of the ensemble.
The stalls-to-flits ratio for all different tiles is also shown.

Comparing the rank-1, rank-2 and processor values for stalls,
we see a clear reduction in the absolute stall counts when
running under AD3. This indicates an overall reduction in
congestion on the network. Correspondingly, the stall-to-flit
ratio is reduced almost 2x. The overall reduction in total flits
on rank-1, rank-2, and rank-3 indicates fewer overall packet
transmissions throughout the network, which expected when
using minimal paths.

The performance improvement of 512-node MILC job with
strong minimal bias is in contrast to what we observed with
the same in production for Theta. Previously, we speculated
that MILC at 512 nodes performed better under AD0 in
production because the application was able to use more
network resources if and when the system was underutilized.
We validate this by demonstrating that under high network
load, MILC benefits from AD3 routing.

In order to prove the validity and relevance of the above
controlled experiments, it is important to analyze how repre-
sentative they are with respect to the congestion seen during
the production experiments.

1) Production vs. Isolated vs. Controlled experiments using
MILC: We compare the congestion as represented by the
stalls-to-flits ratio on the network tiles between the production,
the isolated and the controlled experiments for the 256-node
MILC jobs. The controlled experiments comprise of two
different test cases, compact placed (nodes from 1-2 groups),
and disperse placed (nodes from 11-12 groups) jobs. Figure 11
(left) shows the ratio using AD0. As per the figure, congestion
experienced by isolated and production runs lies within that of
the controlled (compact and disperse placed) runs. Thus, the
controlled runs serve as a good proxy for the production runs.
Figure 11 (right) shows the ratio using AD3. The production
runs with AD3 currently lie outside the two compact and
one dispersed controlled runs. While these production runs
themselves are using AD3, the rest of jobs on the system are

Fig. 10. Eight 512-node MILC jobs running on 4K nodes on Theta (scatter
plot showing smoothed trend lines)

7



0 2 4 6 8 10
Ratio of Stalls and Flits

0.0

0.5

PD
F

ADAPTIVE_0

Production
Isolated
Controlled Runs

0 2 4 6 8 10
Ratio of Stalls and Flits

0.0

0.5

PD
F

ADAPTIVE_3

Production
Isolated
Controlled Runs

Fig. 11. Stalls-to-flits ratio on 40 Network tiles for MILC 256 node jobs in production, isolated and controlled runs

using the default (AD0) mode. We argue that by enabling AD3
for all jobs on the system, the production runs will shift to the
left (higher probability of lower stalls-to-flits ratio) and thus
improving the overall network performance.

B. Controlled experiments using HACC

Fig. 12. 16 256-node HACC jobs running on 4K nodes on Theta (scatter plot
showing smoothed trend lines)

We next analyze the controlled experiments for HACC using
sixteen 256-node runs. The runtimes for HACC increase with
shifting more bias towards minimal; this matches with the
performance seen for HACC in the production experiments.
As shown in Figure 12, with AD3 routing; the flits on
all the 4 types of tiles increased. This is an indication of
the backpressure seen from the rank-3 (global link) links
percolating onto the other links in the network. Owing to
the bisection bandwidth requirements of HACC, the more
bias towards minimal is potentially leading to more packet
retransmissions because of the backpressure, and thus more
flit transmissions are observed (this behavior is also shown
in [14]). This can be seen in the stalls counters where there
are localized peaks on the rank-3 tiles due to concentration
on a subset of links resulting from minimal path selections.
Because of the localization of the congestion due to strong
minimal bias, the stalls on the processor tiles are higher. One
other insight from the figure is that analysis of the stalls-to-
flits ratio in isolation can be misleading, which is why we have
analyzed all the three metrics (stalls, flits and ratio).

C. System-wide congestion in production before and after
changing the default routing mode

Motivated by our findings with the controlled experiments,
both the sites, ALCF and NERSC have now changed the
default routing mode in production on Theta and Cori re-
spectively to use AD3. We present here the effects on the
system-wide congestion due to this change. Figure 13 shows
the system-wide counter metrics for a week of LDMS data
from before and after the change to the default routing mode.
Around 100 uniformly spaced samples in a one week time
window each before and after the change were considered for
the analysis. The FLITs communicated in the time windows
are roughly in line indicating that the it is reasonable to
compared these two specific time windows. There is a marked
improvement in the STALLs and correspondingly the stalls-
to-flits ratio after changing the default routing mode to AD3.
This improvement in the system-level congestion translated
into overall application performance improvement as well,
which we verified by checking the performance of MILC
which showed on an average around 11.8% improvement in
performance after the change.

Fig. 13. System-wide counter metrics before (AD0) and after (AD3) changing
the default routing on Theta

D. System-wide packet latency sampling in production

In order to obtain a comprehensive system-wide measure-
ment of changes to routing bias, we utilized LDMS counters
to measure average latency in a production environment.

8



0

25

50

75

100

P05 P25 P50 P75 P90 P95 P99 P99.9 P99.99
Percentile Sampled

%
 c

ha
ng

e 
in

 L
at

en
cy

Route

AD0

AD3

Fig. 14. System-wide packet-pair latencies measured using the NIC counters

Specifically, on Cori we utilize two Aries NIC counters1, that
can provide latency measurement for the observed request-
response packet-pairs. The first counter accumulates the la-
tency observed for every packet and the second accumulates
the number of packets observed. Together, they allow us to
calculate average latency at 1Hz. We then collect samples
from two periods of time before and after making changes
to routing bias. We sampled each of the more than 12,000
NICs on the system at 100 random points in time within a
one week window before making the change to routing policy
and then another one week window after the routing changes
have propagated. This results in approximately 3 million total
samples of average latency. This covers tens of thousands of
jobs in the Cori production workload. To summarize the data
we then compare the 5, 25, 50, 75, 90, 95, 99, 99.9 and
99.99 percentile of mean latency observed before and after
the routing changes. The 99.99 percentile is still a common
occurrence given the high overall flit rate, on the order of 1M
flits per second, of these systems. This is because many jobs
are limited by collective operations like Allreduce, where the
collective is limited by the slowest process. Across the board,
we see large improvements in mean latency, with tail latencies
reduced by 20-30% (918us to 663us for P99.99). Given the
latency sensitivity of the majority of the workloads on the
production systems, this suggests a significant performance
benefit by the switch to the minimal bias routing.

VI. RELATED WORK

There is significant work modeling adaptive routing impact
in dragonfly networks. The vast majority of it is evaluated
through simulation. Though valuable, simulation does not
always capture the scale and variety of workloads needed to
make an informed decision regarding production systems.

a) Adaptive routing on simulated dragonfly networks:
Some of the earliest simulations to evaluate different routing
algorithms (e.g. Valiantand UGAL variants [22]) on dragonfly
topologies were simulated by Kim et al. [1], where credit
round-trip latencies were used to determine the adaptive
routing threshold. Work by Bhatele et al. [23] showed that
non-minimal routing on contiguous allocations could provide
similar performance benefits to minimal routing with random
placement on two-level direct networks – with the caveat

1AR NIC ORB PRF NET RSP TRACK2:SUM RSP TIME COUNT
and AR NIC NETMON ORB EVENT CNTR RSP NET TRACK

that it created additional traffic. Garcia et al. [24] worked
to improve adaptive routing by incorporating measures of
congestion along intermediate hops in potential non-minimal
paths. Roweth et al. [14] found low utilization of optical links
in simulations of DOE workloads on dragonfly networks. They
saw performance improvements with adaptive routing. Earlier
work by Jain et al. [11] examined the relationship between
routing, job size, and job placement through simulation. In
this study Jain found that non-minimal paths were able to
improve performance by distributing traffic more evenly across
the network. Yang et al. [13] simulated combinations of place-
ment and routing on dragonfly topologies. They found that
system-level performance was significantly improved through
the combination of random placement and adaptive routing.
Finally, Rahman et al. [25] looked at customizing UGAL
for individual dragonfly topologies. While interesting, real
production systems are limited by a small set of vendor defined
presets. A distinction of our work is that our analysis suggests
minimal biased adaptive routing often outperforms routing
with no bias, irrespective of whether the job placement is
compact or scattered.

b) Adaptive routing on production dragonfly networks:
The work that is most similar to ours is that of De Sensi et
al. [2], where they use an adaptive runtime to poll Aries NIC
counters, capture average latency statistics of packets and ad-
just the policy if latency increases beyond a threshold. Though
we found this approach too expensive to effectively deploy
on many-core systems (De Sensi utilized higher-frequency
Haswell cores), our work complements theirs by performing
a detailed evaluation of the attributes that lead to applica-
tions’ preference for minimal or non-minimal paths. With this
understanding, facilities are able to intelligently deploy the
routing policies that best fit their workloads. Furthermore, our
work differs from [2], since we focus on real applications that
utilize all available cores, as would be expected in production.
The UK Met office improved the performance of Weather
Forecasting application by tuning the adaptive routing bias
towards minimal for both MPI and IO traffic [8]. Smith et
al. [26] explored deficiencies in routing algorithms on current
production systems (both dragonfly and fat-tree). Using global
flow information they observed a performance benefit using
AFAR routing, but only evaluated on a fat-tree topology.

To the best of our knowledge, our work represents the
only comprehensive study examining the role of adaptive
routing bias on production dragonfly systems and the first to
study system-wide performance using multiple applications.
Furthermore, our study uses network hardware counters to
examine how the location of congestion in the system relates
to best practices in routing.

VII. CONCLUSIONS

The network performance of the dragonfly-based Aries
systems is determined by the efficient operation of the adaptive
routing. The congestion management approaches on networks
such as Aries are not necessarily effective because the non-
minimal routing can end up spreading the congestion. How-

9



ever, the use of non-minimal paths by the adaptive routing
exploits the path diversity and load-balances the network
channels. The key is in finding the right balance in the usage of
minimal and non-minimal paths, and hence setting the routing
bias parameter is performance-critical for networks that use
adaptive routing.

We have shown through a detailed evaluation, using real
applications on two production systems, the deficiencies in the
performance of the default routing. Tuning the routing to be
strongly biased towards minimal has proven to be consistently
better and showed appreciable performance improvements in
the total application time without making any application
modifications. The benefits of minimal bias routing were
observed for both compact and scattered process placement.
Also, we showed that minimal biased routing resulted in
reduced performance variability of applications.

This improvement in the mean runtime, as well as reduced
run-to-run variability, allowed us to vouch for advocating the
use of this policy as the default for Aries dragonfly-based
systems. Or rather, our study motivates facilities to evaluate
the adaptive routing defaults based on their workload set.
Also, we have analyzed the overall system-level congestion,
providing insights on the operating of the routing algorithms
to understand and validate the empirical results obtained. The
results of our experiments and the evaluation methodology
will guide how we operate large system interconnects in
the future. Dragonfly-based networks will be critical to the
performance of the upcoming Exascale class supercomputing
systems. Understanding how to optimize the routing policies
is crucial for unlocking the full potential of these machines,
and we have provided a solid basis for this understanding.

REFERENCES

[1] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proceedings - International Symposium
on Computer Architecture, 2008, pp. 77–88.

[2] D. De Sensi, S. Di Girolamo, and T. Hoefler, “Mitigating network
noise on dragonfly networks through application-aware routing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New York,
NY, USA: ACM, 2019, pp. 16:1–16:32.

[3] B. Alverson, E. Froese, and D. Roweth, “Cray XC Series network,”
Cray, pp. 1–28, 2012. [Online]. Available: www.cray.com

[4] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P. T. Bremer, “Analyzing
network health and congestion in dragonfly-based supercomputers,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 93–102.

[5] T. Groves, Y. Gu, and N. J. Wright, “Understanding performance
variability on the Aries dragonfly network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2017, pp. 809–813.

[6] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on Xeon Phi based Cray
XC systems,” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis - SC ’17,
pp. 1–13, 2017.

[7] A. Bhatele, J. Thiagarajan, T. Groves, R. Anirudh, S. Smith, B. Cook,
and D. Lowenthal, “The case of performance variability on dragonfly
networks,” in 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), May 2020.

[8] P. Selwood, How the Met Office Solved a Weather
Forecasting Runtime Scare, 2018 (accessed Oct 19, 2020).
[Online]. Available: https://www.cray.com/blog/met-office-solved-
weather-forecasting-runtime-scare

[9] A. C. Gentile, J. M. Brandt, A. M. Agelastos, J. M. Lamb,
K. P. Ruggirello, and J. O. Stevenson, “Contention and congestion:
Challenges and approaches to understanding application impact.” in
SIAM Conference on Computational Science and Engineering, 3 2017.
[Online]. Available: https://www.osti.gov/servlets/purl/1425315

[10] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,
and T. Hoefler, “Efficient task placement and routing of nearest neigh-
bor exchanges in dragonfly networks,” in Proceedings of the 23rd
international symposium on High-performance parallel and distributed
computing, 2014, pp. 129–140.

[11] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2014, pp. 336–347.

[12] A. Bhatele, W. D. Gropp, N. Jain, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–11.

[13] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
out for the bully!: Job interference study on dragonfly network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 64:1–64:11.

[14] D. Roweth, R. Barrett, and S. Hemmert, “Early results from the aces
interconnection network project,” in CUG 12: Proceedings of Cray
User’s Group (CUG) Meeting, 2012.

[15] A. Bataineh, T. Court, and D. Roweth, Increasingly minimal bias
routing, 2 2017. [Online]. Available: http://patft.uspto.gov/netacgi/nph-
Parser?patentnumber=9577918

[16] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[17] M. E. Papka, J. Collins, B. Cerny, and N. Heinonen, “2018 Annual
Report - Argonne Leadership Computing Facility,” Annual Report, 1
2018.

[18] B. Austin, “NERSC-10 Workload Analysis,” Report, 4 2020. [Online].
Available: https://portal.nersc.gov/project/m888/nersc10/workload/N10
Workload Analysis.latest.pdf

[19] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging
the cray linux environment core specialization feature to realize mpi
asynchronous progress on cray xe systems,” Proceedings of the Cray
User Group Conference, vol. 79, p. 130, 2012.

[20] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char-
acterization of mpi usage on a production supercomputer,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2018, pp. 386–400.

[21] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The Lightweight Distributed
Metric Service: a scalable infrastructure for continuous monitoring
of large scale computing systems and applications,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, vol. 2015-Janua, no. January, 2014, pp. 154–165.

[22] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D.
dissertation, Stanford University, 2005.

[23] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-
spots on two-level direct networks,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for, 2011, pp. 1–11.

[24] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, J. Labarta, C. Minkenberg et al., “On-the-fly adaptive
routing in high-radix hierarchical networks,” in 2012 41st International
Conference on Parallel Processing. IEEE, 2012, pp. 279–288.

[25] M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan, and M. Lang,
“Topology-custom ugal routing on dragonfly,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–15.

[26] S. A. Smith, C. E. Cromey, D. K. Lowenthal, J. Domke, N. Jain,
J. J. Thiagarajan, and A. Bhatele, “Mitigating inter-job interference
using adaptive flow-aware routing,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 346–360.

10

www.cray.com
https://www.cray.com/blog/met-office-solved-weather-forecasting-runtime-scare
https://www.cray.com/blog/met-office-solved-weather-forecasting-runtime-scare
https://www.osti.gov/servlets/purl/1425315
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=9577918
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=9577918
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

	Introduction
	Background
	The Aries dragonfly network
	Network variability
	Background noise effects on application performance
	Routing on Cray Aries
	Application Characteristics
	System Characteristics

	Experimental Methodology and Setup
	Experimental Methodology
	Metrics Collection
	Applications and their characterization

	Application Performance Sensitivity to Routing in Production
	Performance Analysis of MILC in production
	Performance of all Applications in Production
	Performance Analysis of HACC in Production

	System Level Network Noise Evaluation
	Controlled experiments using MILC
	Production vs. Isolated vs. Controlled experiments using MILC

	Controlled experiments using HACC
	System-wide congestion in production before and after changing the default routing mode
	System-wide packet latency sampling in production

	Related Work
	Conclusions
	References

