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Abstract

Background: New breeding technologies (NBT) using CRISPR/Cas9-induced homology directed repair (HDR) has
the potential to expedite genetic improvement in aquaculture. The long generation time in Atlantic salmon makes
breeding an unattractive solution to obtain homozygous mutants and improving the rates of perfect HDR in
founder (F0) fish is thus required. Genome editing can represent small DNA changes down to single nucleotide
replacements (SNR). This enables edits such as premature stop codons or single amino acid changes and may be
used to obtain fish with traits favorable to aquaculture, e.g. disease resistance. A method for SNR has not yet been
demonstrated in salmon.

Results: Using CRISPR/Cas9 and asymmetrical ODNs, we were able to perform precise SNR and introduce a
premature stop codon in dnd in F0 salmon. Deep sequencing demonstrated up to 59.2% efficiency in single
embryos. In addition, using the same asymmetrical ODN design, we inserted a FLAG element into slc45a2 and dnd,
showing high individual perfect HDR efficiencies (up to 36.7 and 32.7%, respectively).

Conclusions: In this work, we demonstrate that precise SNR and knock-in (KI) can be performed in F0 salmon
embryos using asymmetrical oligonucleotide (ODN) donors. We suggest that HDR-induced SNR can be applied as a
powerful NBT, allowing efficient introgression of favorable alleles and bypassing challenges associated with
traditional selective breeding.
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Background
There is an increasing demand for sustainable animal
husbandry, and the fast-growing fish aquaculture indus-
try is a food production sector with great potential to
improve global food security. Fish aquaculture is also
considered to be efficient in terms of feed conversion
and protein retention compared to most terrestrial live-
stock [1, 2]. Atlantic salmon (Salmo salar L.) is farmed

in the sea at a large scale, but further growth is currently
hindered by a range of issues including genetic intro-
gression of escapees into wild populations and the
spread of disease [3, 4]. New breeding technologies
(NBT) using gene editing offer an exciting opportunity
to increase the sustainability of open sea-cage salmon
farming by allowing us to induce both sterility and dis-
ease resistance [2, 5–7].
A CRISPR/Cas9 induced double-stranded DNA break

(DSB) in the coding sequence of a gene, followed by ac-
tivation of the endogenous non-homologous end joining
(NHEJ) pathway, results in an array of unpredictable
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insertions or deletions that may result in frameshift and
gene knock-out (KO). This is a useful approach to study
KO phenotypes, and has been applied successfully in sal-
mon [5, 7, 8] and several other farmed fish species [9–
24]. To make precise genome alterations, it is a necessity
to induce homology directed repair (HDR) by supplying
a repair template homologous to the CRISPR target site,
thereby allowing to change SNPs, insert affinity tags for
protein detection and modify regulatory elements to
alter expression of target genes. An example is channel
catfish, where HDR mediated editing was used to in-
crease disease resistance [25]. A single nucleotide re-
placement (SNR) can be used to introduce favorable
wild type alleles and could be a promising and time sav-
ing solution compared to traditional breeding with back-
crossing and selection. The genetic progress in selective
breeding programs is also limited by the heritability of
the target traits, and the standing genetic variation in
the broodstock. NBT using CRISPR/Cas9-induced HDR
can offer new solutions and opportunities in these areas
[2, 26]. An important issue when it comes to gene edit-
ing in salmon, is to reduce mosaicism in individual
founder (F0) fish. The long generation time (3–4 years)
makes breeding an unattractive option to obtain homo-
zygous mutants, and most functional studies must be
performed in F0. Thus, improving the efficiency of per-
fect editing in F0 individuals is crucial.
We have previously demonstrated highly efficient

HDR in salmon using symmetrical oligonucleotides
(ODNs) with short (24/48/84 bp) homology arms to
knock-in (KI) a FLAG element in the pigmentation gene
solute carrier family 45 member 2 (slc45a2). Using high-
throughput sequencing (HTS), we showed in vivo ODN-
mediated KI in almost all the gene edited animals and
demonstrated perfect HDR integration rates of up to
27% in individual F0 embryos [27]. Short homology arms
have also been shown to induce efficient HDR in zebra-
fish [28, 29].
In this work, we aimed to perform SNR and increase

the rates of perfect HDR in individual F0 salmon. Asym-
metrical ODNs in combination with CRISPR/Cas9 have
previously been demonstrated to improve HDR rates in
cell cultures [30] and induced pluripotent stem cells
[31]. Using asymmetrical ODNs, we have successfully
performed SNR and introduced a premature stop codon
in the primordial germ cell survival factor gene dead end
(dnd). In addition, also using asymmetrical ODNs, we
have inserted FLAG elements into both slc45a2 and
dnd. SNR was more efficient than FLAG KI, suggesting
that HDR efficiency may be inversely proportional with
insert size. As previously [27], we found HDR efficiency
to be dependent on template concentration, but suggest
using the lowest possible concentration to avoid toxicity
and enable targeting multiple genes at the same time.

Our results show that CRISPR/Cas9 in combination with
asymmetrical ODNs enables rapid and precise changes
to the genome in individual F0 animals and present a
promising tool for fish breeders in the future.

Results
FLAG KI targeting slc45a2 and dnd
Targeting slc45a2 [5] and dnd [7], we have here per-
formed KI of a FLAG element in F0 salmon using CRIS
PR/Cas9 and asymmetrical ODNs (Fig. 1a and Fig. S1).
Analyzing the rate of perfect HDR in individual animals
by HTS of amplicons, we detected an average of 13.6%
(std 10.9%) for slc45a2 and 7.6% (std 10.1%) for dnd
(Fig. 1b). Interestingly, individuals in both groups dis-
played a very high efficiency with up to 36.7% perfect
HDR in slc45a2, and 32.7% in dnd (Table S1). This is
higher than our previously reported results, using sym-
metrical ODNs at 1.5 μM [27]. When comparing the ef-
ficiency of FLAG KI (targeting slc45a2) using
asymmetrical ODNs described herein, to symmetrical
ODNs described before [27], a significant difference (P <
0.0001) was detected for average perfect HDR between
symmetrical (5.1%) and asymmetrical ODNs (13.6%). No
significant difference was detected when comparing the
average rates of erroneous HDR between symmetrical
(3.1%) and asymmetrical ODNs (2.0%) (Fig. S2).

Oligonucleotide concentration affects HDR efficiency
We and others [27, 32] have shown that increasing the
concentration of the DNA donor improves HDR effi-
ciency. However, DNA can be toxic to cells and we
wanted to elucidate if there is a trade-off between high
integration efficiency and toxicity by testing the slc45a2
FLAG KI ODN at three different concentrations: 0.5, 1.5
and 4.0 μM (Fig. 2). In accordance with our previous re-
sults, a template concentration of 1.5 μM resulted in the
most efficient KI. We detected the approximately same
average efficiency when using 0.5 and 4 μM. However,
the highest concentration resulted in fewer pure albinos
and a higher degree of mosaicism compared to individ-
uals injected with lower concentrations of template (Fig.
S3). As expected, the HTS results from the animals who
had received the highest dose revealed a much higher
percentage of wild type reads (Table S1).

Asymmetrical ODNs induce highly efficient single
nucleotide replacement
Targeting dnd, we performed a SNR using an asymmet-
rical ODN while at the same time continuing to refine
the ODN concentration. Using 0.15, 1.5 and 4 μM ODN
concentrations, we obtained an average perfect HDR of
7.4% (std 14.8), 12.5% (std 14.3) and 7.4% (std 9.4), re-
spectively (Fig. 3). However, when analyzing individual
fish, the most striking result was obtained using 1.5 μM,
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in which perfect repair efficiency of up to 59.2% was de-
tected. To our knowledge, this level of perfect HDR in
F0 has not been reported in any other fish. Even at the
lowest concentration (0.15 μM), two individuals dis-
played 49.1 and 47.4% perfect HDR.

ODN polarity affects indel locations
In addition to reads displaying perfect HDR, we detected
reads displaying erroneous repair, meaning reads with a
correct FLAG-insert/SNR but also indels on the 5′- and/
or 3′-side of the insert/SNR (Figs. 1, 2 and 3b).
In our previous work using symmetrical ODNs, we re-

vealed a strong correlation between ODN polarity and
the location of these indels on either the 5′- or 3′-side
of the inserted sequence. According to this, when using
a repair template with sense orientation relative to the
target strand, most of the indels will end up on the 5′-
side of the insert [27]. In the current study the asymmet-
rical ODNs were sense relative to the target strand (Fig.

S1a and b), and we observed that most of the indels
were located on the 5′-side of the insert (fewer reads
with perfect 5′-reads than 3′-reads), supporting our pre-
vious findings. A significant difference was detected for
dnd KI (P = 0.034) and SNR (P < 0.029) and non-
significant for slc45a2 KI (Fig. 4).

Discussion
This study demonstrated that asymmetrical ODNs in-
duce efficient and precise HDR in salmon. Importantly,
they appear to be more efficient than symmetrical
ODNs, as compared to our previous results [27] (Fig.
S2). No significant difference was detected when
comparing the efficiency of FLAGKI in slc45a2 and dnd
(Fig. 1). This finding suggests that HDR may be applied
successfully to any gene of interest.
For the first time in salmon, we performed a successful

SNR by introducing a premature stop codon to the dnd
gene. Compared to FLAGKI we found SNR to be the

Fig. 1 slc45a2 and dnd FLAG knock-in (1.5 μM ODN). a. Asymmetrical ODNs were designed by copying 90 + 36 nucleotides on each side of the
CRISPR cut site flanking the insert (indicated with a dotted line) containing the FLAG element followed by a STOP codon (TAA). b. Relative read
counts per individual for slc45a2 (red dots, n = 30) and dnd (blue dots, n = 24). Reads with a perfect match to the entire target sequence are
referred to as perfect HDR. Reads with a correct insert flanked by mismatches/indels on the 5′ and/or 3′-side are referred to as erroneous HDR.
Error bars indicate SEM/group
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most efficient approach. We speculate that the high indi-
vidual HDR efficiency obtained for SNR is due to the
lack of insert, as editing efficiency has been shown to be
sensitive to insert size [33]. For some genes and applica-
tions, it may not be relevant to use HDR to insert DNA,
but rather to obtain SNR which can translate into for ex-
ample single amino acid changes, or like here, premature
stop codon formation. One such example is the vgll3
gene which contains two missense SNPs, resulting in ei-
ther early or late maturity in Atlantic salmon [3]. Devel-
oping precise gene editing technology to make such
small edits may therefore be a useful tool in NBT, enab-
ling introgression of natural beneficial variants into
aquaculture strains. When CRISPR/Cas9 is used to make
a traditional KO through NHEJ, one of the challenges is
that the mutation can be in-frame and therefore poten-
tially silent. SNR could solve this by insertion of a novel
stop codon, and as such increase the levels of functional
KO mutations by decreasing the chance of in-frame
indels.
Although we found HDR efficiency to be dependent

on template concentration, several parameters may con-
tribute to this, such as fluctuation in temperature and
variable presence of parasites (mostly Saprolegnia para-
sitica) between tanks. This often results in variable le-
thality, unrelated to injections as this is observed also in
non-injected groups. Also, during the microinjection
procedure there will be inevitable variation in the vol-
ume injected into each fertilized egg. Performing precise
microinjections by hand can be challenging due to the
opaque salmon eggs, and personal skills will influence

the outcome. Technical aspects will also matter, such as
variation in the diameter of the needle opening and the
egg quality. When sampling the best phenotypic albino
individuals there were visible difference in mosaicism
between the groups injected with low (0.15 / 0.5 μM)
and high (4 μM) template concentration (Fig. S3). This
was true for both the slc45a2 and dnd experiments. It is
therefore conceivable that the mosaicism observed for
the high dose group (4 μM ODN) is due to toxicity of
the injection mix when the injected volume is high. We
hypothesize that the surviving eggs received a lower vol-
ume of the injection mix, and therefore also a lower dose
of the cas9 and guide RNA resulting in a more mosaic
phenotype. Taking this into account, it could be an ad-
vantage to use the lowest possible ODN concentration
to avoid unnecessary DNA induced toxicity, which
would also allow editing multiple genes at the same
time.

Conclusion
We show that it is possible to use CRISPR/Cas9-induced
HDR in NBT to obtain desirable traits. SNR is a promis-
ing tool to insert favorable alleles in farmed salmon and,
considering the long generation time, more convenient
than crossing in traits through conventional breeding.
Moreover, this could also be an advantage for aquacul-
ture species in general (e.g trout, sea bass, tilapia). This
technology offers an exciting opportunity to insert traits
of interest into the recently demonstrated fertile but
genetically sterile salmon [26]. This fish will produce
sterile offspring and may therefore represent the future

Fig. 2 slc45a2 FLAG knock-in. The asymmetrical ODN targeting slc45a2 was tested using three different concentrations: 0.5 (n = 23), 1.5 (n = 30)
and 4.0 (n = 23) μM. Sequence reads with a perfect match to the entire target sequence are referred to as perfect HDR and reads with a correct
insert but mismatches/indels in the homology arms are referred to as erroneous HDR. Read counts for each sample are given in % of the total
number of reads. The error bars indicate SEM/group. Different lowercase letters indicate significant differences (P < 0.05), ns = non-significant
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salmon aquaculture by combining sterility and other fa-
vorable traits induced by HDR, such as disease
resistance.

Methods
Preparation of Cas9 RNA, gRNAs and ODNs
The CRISPR target sequences for slc45a2 and dnd are
described in Edvardsen et al. [5], and Wargelius et al.
[7], respectively. Preparation of gRNAs and cas9 mRNA
was performed as previously described [5, 27]. The
RNeasy MiniKit spin column (Qiagen) was used to pur-
ify the gRNA. The ODNs were ordered from Integrated

DNA Technologies (Leuven, Belgium). The ODN design
is based on Richardson et al. [30]

Microinjection
Salmon eggs and sperm were delivered by Mowi (Hau-
glandshella, Askøy, Norway). Fertilization and microin-
jections were carried out as described previously [5]
using 50 ng/μl gRNA and 150 ng/μl cas9 mRNA in nu-
clease free water and a FemtoJet®4i (Eppendorf) microin-
jector. The ODNs were added to the injection mix with
a final concentration of 0.15, 0.5, 1.5 or 4 μM. The selec-
tion of ODN concentrations were based on Straume

Fig. 3 Single nucleotide replacement in dnd. a. An asymmetrical ODN targeting dnd was designed with 90 + 36 nucleotides on each side of the
CRISPR cut site and three nucleotides were changed. PAM site is shown with brown letters, and novel nucleotides with red letters. b. HDR rates
for three different ODN concentrations; 0.15 (n = 24), 1.5 (n = 26) and 4.0 μM (n = 12). Sequence reads with a perfect match to the entire target
sequence are referred to as perfect HDR (blue) and reads with a correct SNR but mismatches/indels in the homology arms are referred to as
erroneous HDR (gray). Read counts for each sample are given in % of the total number of reads. Error bars indicate SEM/group. Different
lowercase letters indicate significant differences (P < 0.05)
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et al. [27] and Boel et al. [28] Non-injected embryos
were used as controls for all experiments.

Analysis of mutants
As described previously [27] slc45a2 mutants were se-
lected based on visual inspection of newly hatched larvae
(~ 680 day degrees). When editing dnd, we also added
the slc45a2 gRNA to the injection mix to obtain a visual
phenotype, and thus make it easier to select the mutants.
DNA was extracted from caudal fins using DNeasy
Blood & Tissue kit (Qiagen). DNA extracted from the
fin has previously been shown to be broadly representa-
tive for the whole fish [5, 26]. A fragment covering the
entire CRISPR target sites for slc45a2 and dnd was
amplified with a two-step fusion PCR (as described in
Gagnon et.al 2014) to prepare for Illumina MiSeq. The
following primers (gene specific sequence indicated in
capital letters) were used in the first PCR-step for
slc45a2:
5′-tctttccctacacgacgctcttccgatctCAGATGTCCA-

GAGGCTGCTGCT and.
5′-tggagttcagacgtgtgctcttccgatctTGCCACAGCCTCA-

GAATGTACA. The following primers (gene specific se-
quence indicated in capital letters) were used in the first
PCR-step for dnd:
5′-tctttccctacacgacgctcttccgatctGGGGAAAGGC-

TAGGGAGAGA and.
5′-tggagttcagacgtgtgctcttccgatct CGGTTCTGTC

CGCTGAAGTT.

Analysis of MiSeq data
Read counts were reported for variants containing the
inserted or edited sequence, separating those with a per-
fect match to the entire target sequence (referred to as
perfect HDR), and those with a correct insert sequence/
SE, but mismatches in the rest of the target sequence
(referred to as erroneous HDR). In addition, read counts
were reported for wild type sequences.
The settings applied for filtering, trimming and variant

calling of the MiSeq reads are illustrated in Fig. S4, and
described below:
Fastq files were filtered and trimmed with the follow-

ing specifications; primer sequences were used to demul-
tiplex reads from different amplicons on the same
sequencing run, minimum read length was set to 100 bp,
and forward and reverse reads were assembled to correct
sequencing errors (minimum overlap between forward
and reverse reads was set to 150 bp for slc45a2 and 200
bp for dnd, and allowing maximum 20% mismatches be-
tween forward and reverse reads in the overlap region).
Assembled reads were combined with forward reads that
did not pass the assembly thresholds. Variants were then
called using positions 20–200 for slc45a2 and positions
60–230 for dnd. All bases with base quality < 20 were
converted to N’s, and maximum 5N’s were allowed per
read. Identical reads were then grouped (referred to as
variants), and variants that only differed by up to 5 N’s
were grouped if none of the variants differed by any nu-
cleotides. For each group, the variant with the least N’s

Fig. 4 Variation in indel locations. Here, we distinguished between reads with a perfect match to the 5′- or 3′-side of the FLAG insert/SNR. The
asymmetrical ODNs were compared at 1.5 μM. Green dots represent perfect 5′ reads and squares represent perfect 3′ reads. Read counts for each
sample are given in % of the total number of reads. Error bars indicate SEM/group. The groups slc45a2 FLAG KI (n = 30), dnd FLAG KI (n = 19) and
dnd SNR (n = 24) were analyzed separately. Different lowercase letters indicate significant differences (P < 0.05)
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was chosen as representative. We only retained variants
supported by a minimum of 100 reads and variants were
grouped if they differed by up to 5 N’s if none of the var-
iants differed by any nucleotides.

Statistical analyses
D’Agostino Person normality test (column statistics)
were used to assess normal distribution of the data.
None of the groups displayed normal distribution, and
we carried on with non-parametric analyses. When ana-
lyzing more than two groups, non-parametric statistical
analyses were performed using a Kruskall-Wallis test,
followed by Dunn’s multiple comparison test. When
analyzing two groups, a Mann-Whitney rank test, or a
Wilcoxon paired test was performed. The tests were car-
ried out using GraphPad Prism 8.0.1.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07823-8.

Additional file 1: Table S1. Individual HDR efficiency.

Additional file 2: Figure S1. a Asymmetrical ODN design slc45a2. Fig.
S1b Asymmetrical ODN design dnd.

Additional file 3: Figure S2. Comparison of symmetrical and
asymmetrical ODNs for slc45a2 FLAG knock-in. All the ODNs compared
here were designed for slc45a2 to KI a FLAG element. The ODN concen-
tration was 1.5 μM. The symmetrical ODNs are a pool of S 24, AS 24, ds
24, S 48 and S 84 (described in Straume et.al 2020). The asymmetrical
ODN design is illustrated in Suplemmentary Fig. 1 A. Green dots repre-
sent perfect HDR, black squares represent erroneous HDR. Mutant fish
were analysed using Illumina MiSeq. Read counts for each sample are
given in % of the total number of reads with at least 100 identical reads.
The error bars indicate the SEM of the mean for each group. A Mann-
Whitney test was used to compare the mean rank of symmetrical vs.
asymmetrical ODNs, analyzing the groups perfect and erroneous HDR
separately. Different lower-case letters indicate significant differences (P <
0.05).

Additional file 4: Figure S3. Example of fry sampling based on visual
inspection of pigmentation. Fig. S3 a slc45a2 FLAG KI (0.5 μM). Fig. S3 b
slc45a2 FLAG KI (4 μM). Fig. S3 c dnd SNR (0.15 μM). Fig. S3 d dnd SNR
(4 μM). *: wild type.

Additional file 5: Figure S4. Illustration of the settings applied for
filtering, trimming and variant calling of the MiSeq reads. Fastq files were
filtered and trimmed with the following specifications; primer sequences
were used to demultiplex reads from different amplicons on the same
sequencing run, minimum read length was set to 100 bp, and forward
and reverse reads were assembled to correct sequencing errors
(minimum overlap between forward and reverse reads was set to 150 bp
for slc45a2 and 200 bp for dnd and allowing at most 20% mismatches
between forward and reverse reads in the overlap region). Assembled
reads were combined with forward reads that did not pass the assembly
thresholds. Variants were then called using positions 20–200 for slc45a2
and positions 60–230 for dnd. All bases with base quality < 20 were
converted to N’s, and maximum 5 N’s were allowed per read. Identical
reads were then grouped (referred to as variants)→ variants that were
only differing by up to 5 N’s were grouped if none of the variants
differed by any nucleotides → for each group the variant with the least
N’s was chosen as representative → only retained variants supported by
a minimum of 100 reads → variants were grouped if they differed by up
to 5 N’s if none of the variants differed by any nucleotides. Finally, read
counts were reported for the variants containing the inserted or edited
sequence, separating those with a perfect match to the entire target

sequence, and those with a correct insert sequence, but mismatches in
the rest of the target sequence. In addition, read counts were reported
wild type sequences.
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