

Edinburgh Research Explorer

TraNCE: Transforming Nested Collections Efficiently

Citation for published version:
Smith, J, Benedikt, M, Moore, B & Nikolic, M 2021, 'TraNCE: Transforming Nested Collections Efficiently',
Proceedings of the VLDB Endowment (PVLDB), vol. 14, no. 12, pp. 2727-2730.
https://doi.org/10.14778/3476311.3476330

Digital Object Identifier (DOI):
10.14778/3476311.3476330

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the VLDB Endowment (PVLDB)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/475141568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14778/3476311.3476330
https://doi.org/10.14778/3476311.3476330
https://www.research.ed.ac.uk/en/publications/6ff43325-0962-45f9-a3a7-34a01b84d9d8

TraNCE: Transforming Nested Collections Efficiently
Jaclyn Smith

Michael Benedikt
Brandon Moore
University of Oxford
first.last@cs.ox.ac.uk

Milos Nikolic
University of Edinburgh
milos.nikolic@ed.ac.uk

ABSTRACT

Nested relational query languages have long been seen as an attrac-
tive tool for scenarios involving large hierarchical datasets. There
has been a resurgence of interest in nested relational languages.
One driver has been the affinity of these languages for large-scale
processing platforms such as Spark and Flink.

This demonstration gives a tour of TraNCE, a new system for
processing nested data on top of distributed processing systems.
The core innovation of the system is a compiler that processes
nested relational queries in a series of transformations; these in-
clude variants of two prior techniques, shredding and unnesting,
as well as amaterialization transformation that customizes the way
levels of the nested output are generated. The TraNCE platform
builds on these techniques by adding components for users to cre-
ate and visualize queries, as well as data exploration and notebook
execution targets to facilitate the construction of large-scale data
science applications. The demonstration will both showcase the sys-
tem from the viewpoint of usability by data scientists and illustrate
the data management techniques employed.

PVLDB Reference Format:

Jaclyn Smith, Michael Benedikt, Brandon Moore, and Milos Nikolic.
TraNCE: Transforming Nested Collections Efficiently. PVLDB, 14(12): 2727
- 2730, 2021.
doi:10.14778/3476311.3476330

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
github.com/jacmarjorie/trance.

1 INTRODUCTION

The nested relational model and the associated query language
Nested Relational Calculus (NRC) have been developed since the
late 1980’s. Recently there has been renewed attention to NRC due
to its synergy with the collection APIs of distributed processing
platforms, such as Spark and Flink. TraNCE is a recently-developed
platform for evaluating nested data queries [9, 10]. The core of
TraNCE is a compiler that processes NRC queries in a series of
transformations, including variants of the two major prior tech-
niques, shredding [3] and unnesting [4], as well as amaterialization

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476330

transformation that controls the manner in which nested outputs
are generated.

Nested data is common across many domains; one important
application area is biomedical analysis. Modern biomedical analyses
operate on and produce datasets in a variety of complex, domain-
specific formats. Advances in genomic sequencing, image process-
ing, and standardization of medical data have generated new oppor-
tunities for complex, multimodal data integration tasks that identify
targeted treatments for both clinical and research applications. We
now review two biomedical use cases that deal with complex, large-
scale datasets and highlight many challenges common to all data
science applications.

Example 1.1. [Clinical exploration] Consider a scenario where a
clinician would like to generate a report that supports exploration
of mutations identified in each sample with associated gene-based
likelihood scores. The scores provide a predictive measurement
of a gene being a driver in a specific disease, such as cancer. This
report is produced by performing aggregate analysis on genomic
data sources along side clinical attributes, such as diagnosis and
treatment history.

A simplified view of the clinical data source, Samples, is a flat
relation with type:

{⟨ sid : string, tumorsite : string, toutcome : string ⟩}
The first genomic data source, CopyNumber, contains copy num-

ber information for each sample and each gene, and is also a flat
relation with type:

{⟨ sid : string, gene : string, cnum : int ⟩}
The third data source, Occurrences, contains a collection of

sample-based mutations with nested annotation information and
has type:

{⟨ sid : string, mutId : string, candidates :
{⟨ gene : string, impact : string, sift : real, poly : real,

consequences : {⟨ conseq : string ⟩}⟩}⟩}
The candidates attribute identifies a collection of predicted effects
a mutation has on a gene, such as impact.

The generation of such a report requires a restructuring that
associates the sid and gene attributes above. Since gene is a nested
attribute of Occurrences, the construction of this analysis is not
straightforward and clearly far from the expertise of a clinician. In
addition to correctly formulating a query, either as code or in some
DBMS language, the analysis could require evaluating datasets at
petabyte scale.

The above analysis focuses on data restructuring and aggrega-
tion tasks. Research-based pipelines bring more complexities, such

2727

https://doi.org/10.14778/3476311.3476330
github.com/jacmarjorie/trance
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476330

as interfacing with a variety of external software and statistical
libraries in an interactive environment.

Example 1.2. [Interactive analysis with external libraries] The
clinician from the prior example has explored the outcome of the re-
port and suspects a possible correlation of the likelihood scores with
treatment outcome. A request is sent to the medical research de-
partment for further exploration. The researcher further aggregates
the results of the analysis from Example 1.1 to calculate likelihood
scores for each gene and produce feature vectors for each sample.
To iterate more quickly, the feature vectors are materialized into
an interactive notebook environment, such as Zeppelin. The re-
searcher passes a subset of the data to train a multi-class neural
network using the keras learning framework. The model is tested,
features are filtered using chi-square tests, and additional modeling
strategies are explored interactively within the notebook. After a
series of iterative improvements, a high-confidence model is sent
to production to use as a new clinical report. The infrastructure
described here goes far beyond nested data management.

TraNCE aims at increasing the level of abstraction for data sci-
entists working with nested data. In this demonstration we will:
1) show the system in action on end-to-end data science work-
flows while showcasing its benefits; 2) illustrate the transforma-
tions within the processing pipeline and the impact of different
“levers” provided by the system on runtime performance; 3) show
how the system can interface with external data science tools.

2 RELATEDWORK

The advent of big data frameworks have motivated a number of
systems that provide higher-level language support compiling to
Spark or Flink. Rumble [7] supports the less structured JSON model
rather than nested relations, implementing a subset of the proposed
JSONiq standard. Diablo [5] focuses on a data model with support
for arrays. The compilation pipelines of Rumble and Diablo are
quite different from ours, avoiding the use of shredding. Lara and
Emma [2, 6] support comprehension-style operations such as those
found in NRC, with the aim of assisting the building of machine
learning pipelines. But in these approaches the bulk operations
are embedded in a host programming language rather than as a
standalone declarative dialect. Casper [1] also looks at compiling
higher-level code fragments into distributed processing platforms,
but aims at general-purpose programming languages. The core
algorithms of TraNCE are introduced in [9], and applications to
biology are explored in [10]. Shredding and a technique related to
unnesting, lifting, have been explored in [11, 12], although in those
works the target is not a distributed processing platform.

3 TRANCE ARCHITECTURE

The TraNCE architecture is designed to execute NRC queries on
top of a distributed processing framework. Figure 1 displays the
system architecture, including both frontend and query execution
targets. A user can construct NRC queries using a graphical user
interface or submit their own NRC queries directly.

When a TraNCE program is submitted to the framework, the
source NRC can follow a standard or shredded compilation route.
The standard compilation route uses unnesting techniques, which
translates NRC into a query plan that uses bulk operators. The plan

Dash

Query

Report

Input 3

For x in R union
{(a := x.c, b :=

For y in x.a union
if (y.c < 2)
then {(c := y.d)})}

Query Dashboard

Results

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Distributed Execution

Compilation

Shredding

Code Generation Skew Resilience

Standard
Shredded

Unnesting NRC λ+lblNRC

Plan

$> spark-submit --class generatedApp
--master ”spark://ipaddress:7077"
--executor-cores 1
--num-executors 2
--executor-memory 1G
--driver-memory 2G exec.jar

$> 21/03/03 10:27:20 WARN NativeCodeLoader:
Unable to load native-hadoop library for your
platform... using builtin-java classes where
applicable
Using Spark's default log4j profile:
org/apache/spark/log4j-defaults.properties…

TraNCE Program
(NRC)

Plan

Executable
Interactive

(External Library
Support)

Notebook

%spark
val x = spark.sql(“””
select a, c from R where x.a < 2”””)

%python
import keras
train = df.toPandas

Materialized
Results

Interactive
Query Builder

Figure 1: TraNCE architecture diagram. User submits queries

from a graphical interface or an NRC query. The query is

compiled using the standard or shredded compilation route

to produce executable Spark/Flink applications, interactive

notebooks, or return the results to the graphical interface

for further exploration.

is passed to the code generation module to produce an executable
Spark or Flink application.

The standard compilation route works on the native, top-level
distribution strategy of the processing platform; this strategy can
lead to poor data distribution, especially with few top-level tuples
or large inner collections. The shredded compilation route opti-
mizes the standard route by operating over a more succinct data
representation that admits better distribution of inner collections.

The shredded compilation route adds on additional source-to-
source transformations, such as query shredding [3]. The structure
of the shredded querymimics the structure of the query output, with
subqueries for each level. Query shredding in TraNCE is guided by a
number of policies, including how to provide the relevant collection
identifiers from one level to the next level – a process handled by a
transformation called materialization. TraNCE supports a “domain-
based” materialization policy that gathers identifiers from the prior
level via a separate query, and another “input-based” policy that,
when applicable, gathers the relevant identifiers from the input
dictionaries. The output of materialization is sent to the unnesting
module and the compilation proceeds as in the standard route.

Skew is a consequence of the key-based partitioning strategy
used in distributed processing platforms; this strategy sends all
values with the same key to the same partition. The skew-handling
component uses an on-the-fly sampling procedure to identify skew-
related bottlenecks and automatically handle distribution of those
values at runtime. Given that the shredded representation ensures
distribution of inner collections, the shredded compilation method
is better suited to handle skew-related issues. While nesting further

2728

complicates skew-related issues, skew is a prevalent issue regardless
of nesting; thus, both pipelines leverage the skew-handling module
to maintain proper distribution of values associated to heavy keys
via broadcasting techniques.

Query execution targets are determined by the user. Queries can
be compiled and executed within the web interface, returning the
materialized result to the front-end data explorer. Alternatively, the
user can choose to return the materialized result into a notebook to
interact with the data and develop analyses further with external
packages. Advanced statistical operations can also be leveraged
via user-defined functions that can be applied directly within the
TraNCE program; these will be translated into the relevant Scala
code in the generated application.

The details of the algorithms are described in [9]. In the demon-
stration, we aim to show the stages of the compilation pipeline and
allow users to explore compilation variants.

4 SCENARIOS

We explain how the high-level scenarios of Section 1 are addressed
in our framework.

Clinical exploration. The clinical use case presented in Exam-
ple 1.1 described returning likelihood scores for each mutation and
sample using genomic and clinical information. The user would
construct the TraNCE program within the user-interface, first se-
lecting the Occurrences, CopyNumber, and Samples inputs along
with the desired projected attributes. The user adds a filter to the
data to explore specific tumor origin sites. They build the query
with three levels, samples at the top-level with nested mutation in-
formation. An aggregate is specified at the lowest level, to produce
gene-based likelihood scores for each mutation. At this point, the
user has constructed the following source NRC query:
ClinicalReport ⇐

for 𝑠 in Samples if 𝑠.tumorsite ∈ {’Breast’, ’Lung’} union
{ ⟨ sid := 𝑠.sid, toutcome := 𝑠.toutcome, mutations :=

for 𝑜 in Occurrences if 𝑠.sid == 𝑜.sid union

{ ⟨ mutId := 𝑜.mutId, scores :=
sumByscoregene (

for 𝑡 in 𝑜.candidates union

for 𝑔 in CopyNumber union

if 𝑔.gene == 𝑡 .gene && 𝑔.sid == 𝑜.sid then

{ ⟨ gene := 𝑡 .gene, score1 := 𝑡 .sift ∗ 𝑡 .poly,
score2 := 𝑡 .impact ∗ (𝑔.cnum + 0.01) ⟩ }) ⟩ } ⟩ }

The query can be compiled, allowing users to view the in-
termediate results of compilation. In this example, the standard
compilation route would be prohibitively expensive to execute
due to burdensome flattening operations; the shredded compila-
tion route exhibits better performance, operating on each level
and avoiding expensive flattening procedures. The three levels
are translated into three queries; the first two queries are sim-
ple operations over Samples and the top-level shredded input of
Occurrences. The third query associates the first-level shredded
input of Occurrences with CopyNumber and applies the sumBy;
this occurs only on the succinct representation used in shredding,
leading to a more lightweight execution than the standard pipeline,
which requires flattening, regrouping, and carrying around extra
parent attributes during execution. Alternatively, the query can be

executed and the results can be navigated within a data explorer.
A plot is returned that displays the size of the nested mutations
attribute for each top-level sid. After exploring the data, the user
sees that samples with positive response to treatment often have
higher likelihood scores than samples with neutral or negative re-
sponse to treatment. The results of this exploratory analysis can be
reported to the research department for further exploration.

Interactive analysis. The researcher doing the analysis aims to
build feature sets for each sample to use in a classifier. They use the
materialized output of ClinicalReport to further aggregate the
likelihood scores at the first level and rename the nested attribute
to features; this produces the following NRC query:

Features ⇐
for 𝑠 in ClinicalReport union

{ ⟨sid := 𝑠.sid, toutcome := 𝑠.toutcome, features :=
sumByscoregene (
for 𝑚 in 𝑠.mutations union

for 𝑔 in 𝑚.scores union

{ ⟨gene := 𝑔.gene, score := 𝑔.score1 ∗ 𝑔.score2⟩ }) ⟩ }

Upon viewing the compiled plans, the user can see that the
ClinicalReport query was run using the shredded compilation
route, producing a succinct shredded output. They can further trans-
form the output as a nested object without being concerned with
the storage format. Results can also be materialized in a notebook,
loaded as a Spark DataFrame with the following type:

{ ⟨ sid : string, toutcome : string, { ⟨gene : string, score : real ⟩ }⟩ }

At this point, the user interacts with the output of the TraNCE
program in the notebook environment. The user first pivots
Features by gene to produce a dataset with columns for sid,
toutcome, and every value of gene; the gene attributes are the
features with the associated score as the value. They then em-
ploy context switching provided by Zeppelin to represent this
Spark DataFrame in Python (Features.toPandas()). The data is
randomly split into training (70%) and testing (30%) sets using
scikit-learn and a neural network is constructed with keras. This
is a fully-connected feed-forward multi-class neural network for
treatment outcome using all genes. The user can utilize a softmax
output, which can be interpreted as a probability distribution over
four treatment outcomes: remission, partial, stable, and progressive.
The testing phase does not return a high-confidence model, so the
user uses scikit-learn to find important features with SelectKBest
and chi2. The top 1600 genes are selected for use in the same model.
The results show an overall accuracy of about 45%.

The researcher can then perform a one-vs-rest approach to train
binary classifiers for each treatment outcome using the chi-square
selected features. The binary models have a sigmoid output that can
be interpreted as the probability of a certain treatment outcome cor-
responding to this model. After training each model, predictions are
made using the entire dataset and the computed results are merged.
Samples are then classified based on the highest likelihood. The
performance of this model is 80%, which is high enough confidence
to send the model off to production.

2729

5 DEMONSTRATIONWALK-THROUGH

The demonstration showcases TraNCE from several perspectives,
including query builder, compilation, and results views.

The query builder view of TraNCE (Figure 2a) enables users to
build queries without in-depth knowledge ofNRC. The builder uses
blockly [8] to provideNRC expression “blocks”, which can be pieced
together to form a TraNCE program. Inputs are selected within
relevant blocks providing the scope for subexpressions. Queries
can be imported or deleted using the top right-hand corner menu.
An additional dashboard view provides a comprehensive list of all
queries; the user can edit, execute, or delete queries from this list.

The compilation view shows the TraNCE compilation process.
When compilation is triggered, the compilation window shows
the shredded NRC query and the plan produced by the shredded
compilation route; the user can also see the standard plan produced
without shredding. Mousing over the syntax trees allows the user
to see the links between the NRC source and the artifacts produced
by compilation. Figure 2b shows the shredded query and plan for
Example 1.1. The compilation view also allows the user to see the
impact of changes in the materialization and shredding strategy. Af-
ter compilation, the interface gives options for execution, including
moving to a notebook, which would enable the interactive analysis
described in Example 1.2.

The results view (Figure 2c) displays the raw output of an ex-
ecution. The user can browse through the data to drill down to a
new level, and a bar graph provides an overview of a given inner
collection within the output. Runtime metrics can also be explored
through the interface. The distribution of partition sizes is provided,
and we utilize it to give insight into skew and its management
within the TraNCE architecture. This view also has links to statis-
tics produced by the target parallel processing framework, be it
Spark or Flink.

The demo offers predefined schemas and queries matching the
scenarios in Section 4. Conference attendees will also be able to cre-
ate schemas and queries using graphical frontends and alternative
textual formats, such as SQL and JSONiq.

REFERENCES

[1] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging
MapReduce Frameworks for Data-Intensive Applications. In SIGMOD.

[2] Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, and Volker Markl.
2016. Implicit Parallelism through Deep Language Embedding. SIGMOD Rec. 45,
1 (2016), 51–58.

[3] James Cheney, Sam Lindley, and Philip Wadler. 2014. Query Shredding: Efficient
Relational Evaluation of Queries over Nested Multisets. In SIGMOD.

[4] Leonidas Fegaras and David Maier. 2000. Optimizing Object Queries Using an
Effective Calculus. TODS 25, 4 (2000).

[5] Leonidas Fegaras and Md Hasanuzzaman Noor. 2020. Translation of Array-Based
Loops to Distributed Data-Parallel Programs. In VLDB.

[6] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,
Tilmann Rabl, and Volker Markl. 2019. An Intermediate Representation for
Optimizing Machine Learning Pipelines. In VLDB.

[7] Ingo Müller, Ghislain Fourny, Stefan Irimescu, Can Berker Cikis, and Gustavo
Alonso. 2021. Rumble: Data Independence for Large Messy Data Sets. In VLDB.

[8] Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. 2017. Tips for creating
a block language with blockly. In 2017 IEEE Blocks and Beyond Workshop (B B).
21–24. https://doi.org/10.1109/BLOCKS.2017.8120404

[9] Jaclyn Smith, Michael Benedikt, Milos Nikolic, and Amir Shaikhha. 2021. Scalable
Querying of Nested Data. In VLDB.

[10] Jaclyn Smith, Michael Benedikt, Milos Nikolic, and Yao Shi. 2020. Scalable
Analysis of Multi-Modal Biomedical Data. bioarxiv.org.

[11] Alexander Ulrich. 2019. Query Flattening and the Nested Data Parallelism
Paradigm. Ph.D. Dissertation. University of Tübingen, Germany. https:

(a) Query builder view

(b) Compilation view

(c) Results view

Figure 2: Some views provided by the TraNCE interface

//publikationen.uni-tuebingen.de/xmlui/handle/10900/87698/
[12] Alexander Ulrich and Torsten Grust. 2015. The Flatter, the Better: Query Compi-

lation Based on the Flattening Transformation. In SIGMOD.

2730

https://doi.org/10.1109/BLOCKS.2017.8120404
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/87698/
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/87698/

