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Abstract 

The potential of an ultrapermeable benzotriptycene-based polymer of intrinsic microporosity 

(PIM-TMN-Trip) for the upgrading of biogas is investigated. Permeation experiments were 

performed using an in-house bespoke permeation unit for pure gases and gas mixtures, and 

included tests with model mixtures as well as real biogas from a sewage treatment plant, under 

dry and humid conditions. Permeability and CO2/CH4 selectivity for either pure gases or for 

real biogas were high and lie close to or on the recently defined 2019 Robeson upper bound 

based on ideal permselectivities. In addition, a remarkable increase in CO2/CH4 selectivity was 

observed after two weeks of continuous exposure to CO2 due to a significant decrease of CH4 

permeability. The constant CO2 permeability and increased selectivity upon ageing suggest that 

ageing in the presence of CO2 causes a rearrangement, rather than a reduction of the fractional 

free volume. The mixed gas permeability experiments were performed with high stage-cut in 

order to mimic a real separation process, and the results confirmed the potential of PIM-TMN-

Trip membranes for biogas upgrading. 
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1 Introduction 
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The need for sustainable, environmentally friendly and renewable energy is resulting in a 

gradual shift towards energy production using renewable sources, including biomass [1-6]. 

Biogas is one of the most common and readily available renewable energy sources. It is a 

product of an anaerobic digestion of organic waste and it contains 50-70 vol% of CH4 with the 

remainder mostly CO2, water vapour up to saturation and trace amounts of other organic gas 

by-products [7]. Upgrading of biogas streams focuses on obtaining a product with a higher 

calorific value to avoid the meaningless heating of the inert components and problems with 

component corrosion from moist CO2. In addition, in order to become compatible and 

competitive with natural gas, biogas must meet the specifications of grid-quality methane. 

Therefore, CO2 separation from biogas is becoming an increasingly important field, where 

membrane separations are proven as a successful technology. However, despite their success 

on an industrially relevant scale [1, 8], there is still a strong need to improve the energy 

efficiency of membranes [9], and to provide more permeable polymer materials for CO2/CH4 

separation membranes to make this technology more profitable and economically competitive 

[10, 11]. This challenge has been addressed by the development of novel materials to make 

membranes for biogas separation [12], based on novel polymers and on mixed matrix 

membranes [5, 13]. 

Polymers of Intrinsic Microporosity (PIMs) are promising membrane materials showing 

extremely high CO2 permeability and good CO2/CH4 selectivity. This class of polymer has is 

composed of a highly rigid backbone and monomeric units, composed of a site of contortion 

(e.g. spiro-centre or bridged bicyclic unit), which are responsible for generating microporosity 

leading to high gas and vapour solubility. They offer the key advantage of solubility in common 

organic solvents, hence thin film composite membranes relevant for industial use can be easily 

prepared by solution casting [14-17]. In particular, PIMs derived from exceptionally rigid 

components such as triptycene, spirobifluorene or Tröger's base possess excellent separation 

properties [18-22]. In addition, various copolymers can be made, some of which show 

promising results for gas permeability and selectivity [23]. The structural diversity of PIMs can 

be increased by the choice of the monomer [24-26] or by introducing functional groups to 

modify gas selectivity [27, 28]. Recently, ultrapermeable benzotriptycene-derived PIMs, based 

on two-dimensional chains that pack inefficiently, were used to re-define the Robeson upper 

bound for CO2/CH4 and CO2/N2 based on their single gas permeabilities [29].  

The objective of the present study was to prove the practical applicability of this new membrane 

material, not only with model mixtures but also with real, industrially relevant gas streams. 

Such studies are extremely rare for PIMs with, to our knowledge, only the CO2 capture from a 

real flue gas stream by PIM-1 [30] or by PIM-TMN-Trip [31], the polymer used in the present 

study, being reported. Here, the transport and separation properties of PIM-TMN-Trip [21], 

were studied with both pure gas streams (CH4 and CO2) and mixed gas streams based on either 

model binary mixtures or on raw biogas. Moreover, the influence of the trans-membrane 

pressure difference, and the influence of prolonged membrane exposure to CO2 was also 

determined.  



 

2 Experimental and methodology 

2.1 Materials and membrane preparation  

Membranes were prepared as freestanding films by casting chloroform solutions of the polymer 

PIM-TMN-Trip (Fig. 1) in a Petri dish, followed by slow evaporation of the solvent and further 

treatment of the membrane with methanol to remove residual casting solvent. The preparation 

procedure of the membrane is described in detail by Rose et al. [21]. 

 

Fig. 1. The molecular structure of PIM-TMN-Trip. 

The permeability was tested with pure gases (CO2, CH4, N2) with a nominal purity of 99.95% 

or higher. All gases were purchased from Linde Gas. The biogas used in this study was obtained 

from the Prague Central Wastewater Treatment Plant directly from the line after the pre-drying 

section to prevent condensation of humidity inside the cylinder. The biogas was collected 

before the cleaning unit containing activated carbon, so that our testing biogas mixture 

contains, besides common CO2 and CH4, also nitrogen (N2) hydrogen sulphide (H2S) and traces 

of various other compounds that may be present in biogas, such as siloxanes and volatile 

organic compounds (VOCs) [1, 11, 32]. 

 

2.2 Experimental apparatus 

The gas permeation experiments of selected gases and gas mixtures were carried out with a 

circular membrane with an effective area of 15.91 cm2, placed on a porous stainless-steel 

support, and sealed by an O-ring in the permeation cell. The permeation cell was designed and 

assembled at ICPF CAS, and the radial flow profiles at the feed side and the permeate side can 

be operated both in co-current mode or in counter-current mode (this work). A continuous flow 

system is controlled via National Instruments analogue/digital I/O boards and operated via 

routines programmed in LabVIEW. The tested membranes (Fig. 2) had an average thickness 

of 161 ± 13 m determined by a digital micrometre Micromaster® Capaμsystem IP54 

(Switzerland).  
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Fig. 2. PIM-TMN-Trip membrane after the permeation tests, showing no visible change 

compared to the original membrane. 

 

The permeation apparatus, schematically depicted in Fig. 3, allows the study of either pure gas 

(CH4 or CO2), model mixtures of CH4 with CO2, or a feed stream of real biogas, collected in a 

gas cylinder at the sewage plant in Prague. The raw biogas was already pre-dried because it is 

the easiest stream that can be collected at the sewage plant, and it was compressed into a gas 

cylinder up to 500 kPa. A set of mass flow controllers (Bronkhorst, range 3-100 ml min-1) 

control the flow rate of feed and N2 sweep stream, respectively. 

The permeation apparatus is equipped with humidifiers and sensors to control and measure the 

relative humidity of the feed and permeate streams, but in this work the experiments were 

conducted only with dry gases and gas mixtures to avoid the membrane swelling caused by the 

humidity. Only the raw biogas used in this work was slightly humid – dew point about 10 °C. 

Two backward-operating pressure regulators (Bronkhorst, El-flow P702CV) control the 

pressure in the two branches of the permeation apparatus. (feed side of the cell in the range 

100-500kPa, permeate side in the range 20-100kPa). The flow rates of both output streams 

(retentate and permeate) are analysed with mass flow gauges (Bronkhorst, range 1-30 ml 

min-1), followed by a cold trap, working at the temperature of -4 °C, reducing the water vapour 

pressure before the gas analyser to values lower than 0.45 kPa to avoid humidity in the gas 

analyser.  

The composition of the permeate and retentate streams, as well as that of the feed stream via a 

bypass, were determined with the biogas analyser (ASEKO AIR LF), using electrochemical 

sensors (for O2, H2S) and infrared sensors (for CO2 and CH4). The analyser is calibrated by 

certified laboratory and the analyse is periodically check by the model binary mixtures with 

known compositions. 

 



 

Fig. 3. Scheme of CO2/CH4 permeation apparatus with humidity control. FC – flow 

controllers, P – pressure gauges, dP – pressure difference gauge, FG – flow gauges, rH– 

humidity gauges, PC – pressure controllers, S – electromagnetic valves. 

 

Permeation measurements were carried out at 25 °C with an upstream pressure ranging from 

100 kPa to 500 kPa and at a constant downstream pressure of 100 kPa. The total feed flow rate 

was 20.3 cm3 min-1 and the N2 sweep gas flow rate was 21.9 cm3 min-1. The permeability of 

pure gases and their mixtures was measured in the following order: pure CH4, model binary 

mixture (containing 40 vol.% CO2 and 60 vol.% CH4), raw biogas collected at the Prague 

Central Wastewater Treatment Plant (containing 33.6 vol.% CO2, 64.0 vol.% CH4, 2.4 vol.% 

N2 and 427 ppm H2S), and finally pure CO2. This specific test sequence was chosen to 

minimize the potential effect of changes in the membrane induced by sorption and desorption 

of CO2 into and from the polymer. Subsequently, the transport and separation properties were 

studied after two weeks exposure of the membrane to CO2 at 25 °C and at 500 kPa. The 

measurements of pure CO2 and pure CH4 were then repeated with smaller pressure increments 

within the whole range of upstream pressures. The order of experiments and their conditions 

are summarised in Table S1. 

 

2.3 Calculations 

The permeability was evaluated according to the following relation 

𝑃𝑖 =
𝐽𝑖 𝑙

Δ𝑝𝑚
,      Eq. 1 

where Ji is the permeation flux of a particular gas through the membrane, l is the thickness of 

the membrane and pm is the driving force. The streams in the membrane cell flow in the 

counter-current arrangement. Therefore, the logarithmic average of the partial pressure 

differences of the respective streams is used and the driving force is calculated according to the 

following formula 



∆𝑝𝑚 =
(𝑝𝑖

𝑓𝑒𝑒𝑑
− 𝑝𝑖

𝑝𝑒𝑟𝑚
) −(𝑝𝑖

𝑟𝑒𝑡−𝑝𝑖
𝑠𝑤𝑒𝑒𝑝

) 

ln(𝑝
𝑖
𝑓𝑒𝑒𝑑

− 𝑝
𝑖
𝑝𝑒𝑟𝑚

) −ln(𝑝𝑖
𝑟𝑒𝑡−𝑝

𝑖
𝑠𝑤𝑒𝑒𝑝

) 
 ,    Eq. 2 

The selectivity was calculated as the ratio of the permeabilities 

𝛼𝑖/𝑗 =
𝑃𝑖

𝑃𝑗
,       Eq. 3 

where P is expressed in the unit Barrer, recalculated from SI units, as: 1 Barrer = 3.35 ×

10−16 mol

m.s.Pa
. The ideal selectivity is calculated from the permeabilities obtained from the 

measurements with pure gases, while the real selectivity (or mixed gas selectivity) is calculated 

from the permeabilities obtained from the study of a binary model mixture or a real multi-

component mixture. 

The transport properties can be determined by the parameter of stage-cut θi which is usually 

used for high permeable membranes. The stage-cut is defined as the percentage of a particular 

component in the feed stream, which permeates through the membrane: 

𝜃i =
𝐽𝑖

𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝑥
𝑖
𝑓𝑒𝑒𝑑

 𝑄𝑓𝑒𝑒𝑑  
,      Eq. 4 

where Ji
membrane is the flux of i-th component through membrane and the quantity of this 

component in the feed stream is expressed by (xi,
feed · Qfeed), in which xi,

feed is the volume 

fraction of component i in the feed stream, and Qfeed is the total feed flow rate. The total stage-

cut is then expressed as the ration between the total permeate flow (Qperm) and the feed flow: 

𝜃total =
𝑄𝑝𝑒𝑟𝑚

𝑄𝑓𝑒𝑒𝑑 =
∑ 𝐽𝑖

𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒𝑁
𝑖=1

𝑄𝑓𝑒𝑒𝑑 ,      Eq. 5 

where permeate flow is the sum of all permeating components and N represents the number of 

the components. 

 

3 Results and discussion 

3.1 Pure versus mixed gas permeation 

Firstly, the PIM-TMN-Trip membrane was tested for the permeability of pure CH4. Secondly, 

a binary model mixture (40/60 Vol.% CO2/CH4), and then real biogas were tested. The binary 

mixture contained 40 vol.% CO2 and 60 vol.% CH4, and real biogas, collected from Prague 

Central Wastewater Treatment Plant, contained 33.6 vol.% CO2, 64.0 vol.% CH4, 2.4 vol.% N2 

and 427 ppm H2S. Finally, the permeability of pure CO2 was measured. The membrane showed 

excellent separation performance for the CO2/CH4 mixture and high ideal selectivity for the 

pure gas measurements (Tab. S1 and Tab. S2 in the Supplementary information). The 

combination of separation and transport parameters for biogas and for CO2/CH4 (40:60) gas 

mixture lie above Robeson’s upper bound for ideal selectivity from 2008 [33] and close to or 

on the proposed 2019 upper bounds for pure [29] and mixed gases [24] at low pressure (Fig. 

4), although the selectivity reduces as the pressure is increased (Tab. S3 in the SI). For the same 

reason, the mixed gas permeation of the membrane is higher than the mixed gas upper bound 

for experiments at 20 bar proposed by Wang et al. [24], drawn also in Fig.4. The differences 

are caused partially due to the higher gas pressure, relevant to natural gas processing, for which 

this upper bound was determined [24]. Decrease of selectivity with increasing pressure for 



mixed gas and biogas can be attributed to CO2-induced alteration of the selective diffusion 

domains as was reported for other PIMs [34]. This is typical for all glassy polymers, in 

particular those with high free volume, and is also related to the dual mode sorption behaviour. 

Increasing pressure causes a gradually higher occupation of the Langmuir sorption sites, and 

thus a decrease in solubility [35]. 

 

Fig. 4. Robeson diagram for CO2/CH4 with results for the PIM-TMN-Trip membrane for pure 

gases and for gas mixtures. Lines are upper bounds for separation of CO2/CH4 from literature 

for ideal selectivity: blue dashed line – Robeson et al. [33] green dash-dotted line – Comesaña-

Gándara et al. [29]; and for mixed gas selectivity at high pressure (20 bar): red dotted line – 

Wang et al. [24]. Gases measured in the order 1) pure CH4, 2) binary mixture, 3) real biogas, 

4) pure CO2, 5) pure CO2, aged after CO2 exposure, 6) pure CH4 (all experimental conditions 

are summarised in Table S1). Green squares: control measurements on a different instrument 

(see Supporting Information) 

 

The permeability and mixed gas selectivity for CO2/CH4 mixtures and real biogas as a function 

of pressure difference across the PIM-TMN-Trip membrane is shown in Fig. 5. There is almost 

negligible difference between the results from the mixture of 40 vol% CO2 with 60 vol% CH4 

and those from real biogas (Tab. S3 and Tab. S4 in the SI). Despite the concentration of H2S 

in the biogas being ~430 ppm, no H2S-induced swelling was observed, even though some 

common membranes are susceptible to this effect at comparable H2S concentration, and no 

reduction of permeability of other gases in the mixture was observed due to competitive 



sorption at low partial pressures of H2S [36-38]. This can be attributed to the high free volume 

and the resulting high sorption capacity of the membrane. [21] In addition, the lower 

concentration of H2S, by two orders of magnitude as compared to that of CO2, means that if 

most of the H2S is adsorbed on the membranes there is still enough space for CO2, reducing 

the effect of potential competition. The increase of CH4 permeability at higher trans-membrane 

pressure, accompanied by a decrease of CO2 permeability can be attributed to a coupling effect 

due to sorption nonideality [39] and, in part it could also be a result of concentration 

polarization phenomena. 

 

 

Fig. 5. Mixed gas permeability and selectivity for binary mixture of 40 vol% CO2 and 60 vol% 

CH4 (indicated as ‘bin’), and for real biogas.  

 

To verify whether concentration polarization may indeed be relevant, a simple calculation was 

performed for our permeation cell [40-44]. The circular membrane was placed in the cell with 

feed inflow above its centre and retentate outflows on the peripheral membrane edges. The 

sweep flow was set in the opposite direction, with the permeate flowing out from the cell centre, 

thus in counter-current mode. The space above the membrane, h, is 1 mm and the radial flow 



in the cell can be described using Reynolds number Re changing with membrane radius. For 

the feed and sweep flow rate, calculations reveal that Re ranges from 7 down to 0.2. Therefore, 

a laminar flow profile exists in the cell on both sides. The thickness of the boundary layer 

across the cell increases up to a maximum of 6.5% of the cell height above membrane, 

according to the boundary layer theory [45]. The limitation of the driving force can be 

characterized by concentration polarization modulus M: 

𝑀 =
exp (𝑃𝑒)

𝑅𝑖+(1−𝑅𝑖)exp (𝑃𝑒)
     Eq.5 

evaluated from rejection factor R  

𝑅𝑖 = 1 −
𝑝𝑖

𝑝𝑒𝑟𝑚

𝑝𝑖
𝑟𝑒𝑡        Eq.6 

and Peclet number Pe  

𝑃𝑒 =
𝐽𝑖

𝑘𝑖
      Eq.7 

which is the ratio of the flux of a particular component i of the mixture to the mass transfer 

coefficient ki. The mass transfer coefficient for a narrow gap configuration with only one 

permeable side is given as [46] 

𝑘𝑖 = 0.589 (
2𝑣𝐷𝑖

2

ℎ𝐿
)

1
3⁄

      Eq.8 

where Di is the diffusion coefficient of the component i in the mixture, calculated according 

Lüdtke et al. [40], v is velocity in the cell and L is the cell radius . The rejection factor for CH4 

and CO2 is 0.99 and 0.78, respectively. The calculated Peclet numbers for both gases have a 

value in the range of 0.5·10-3 - 7·10-3, hence the concentration polarization modulus equals M= 

1 for all tested trans-membrane pressures. Therefore, we may safely conclude that 

concentration polarization is not significant for the conditions used for our measurements.  

Another important consideration to make is that the N2 sweeping gas is slightly less permeable 

than CH4. Since the stage-cut of CH4 is only 1.3-2% in our experiments at a pressure difference 

of 100 kPa (Table S4 and Table S5 ), the amount of N2 diffusing in the opposite direction will 

be similar or lower. Therefore,  the N2 sweep gas will not affect the gas concentrations at either 

side of the membrane significantly, and thus perturb the overall mass balance and the 

permeability calculations. 

 

3.2 Effect of aging and membrane conditioning 

At the end of the entire measurement cycle using different mixtures, the effect of long-term 

exposure of the membrane to CO2 was studied by permeation tests of both pure gases (CO2 and 

CH4). For this study, the membrane was exposed to pure CO2 at 25 °C and 500 kPa inside the 

closed permeation cell for two weeks. This is the approximately the same pressure as the CO2 

partial pressure in a CO2/CH4 mixture with 35% CO2 at a pressure of 1500 kPa, in the typical 



range for industrial biogas separation and may be indicative for the performance of the 

membrane under constant long-term operation. The results of these measurements, in 

comparison with those of the fresh membrane, are plotted in Fig. 6 and are also shown in the 

Robeson plot in Fig 4. Remarkably, the repeated pure gas permeation measurement showed a 

substantially higher ideal selectivity, mainly due to a decrease in the methane permeability at 

nearly constant CO2 permeability.  

 

Fig. 6. Pure gas permeability and ideal selectivity for a freshly prepared membrane and for an 

aged membrane after exposure of the membrane to pure CO2 for two weeks inside the 

permeation cell. 

 

In contrast to what was seen for the gas mixtures, the permeability of pure gases remains almost 

constant with increasing partial pressure difference (Fig. 6, grey squares and grey circles) and 

also the selectivity remains constant (grey triangles). This suggests that the pressure-

dependence of the mixed gas separation performance must be ascribed to a coupling effect. 

While the CO2 permeability remains nearly the same (Fig. 6, open squares), the ideal selectivity 

in the repeated measurement (open triangles) increases more than twofold because of a strongly 



decreased permeability of CH4 (open circles). The data are close to the 2019 upper bound for 

single dry gases with a similar selectivity but a much higher permeability as compared to PIM-

2, recently reported by Fuoco et al. [47] The latter, presumably due to its hydrophobic nature, 

proved insensitive to the presence of humidity in the gas stream, contrary to what was observed 

for instance with PIM-1 when used for flue gas treatment [30]. 

We attribute the unusual increase in selectivity of PIM-TMN-Trip to simultaneous aging and 

dilation, which facilitates rearrangement of the polymer chains due to the high concentration 

of CO2. This affects mainly the permeability of CH4, probably by the formation of tighter 

bottle-necks between adjacent free volume elements but without a significant decrease of the 

total free volume, occupied by CO2, and thus without a significant reduction of the permeability 

of CO2. Such bottle-necks cannot be measured experimentally, because experimental 

techniques for analysis of the free volume all measure some kind of average, based on 

assumptions on the void shape and polymer-probe interactions [48] but they can be visualized 

by molecular modelling of the polymer structure. We have previously hypothesized, based on 

a model of PIM-MP-TB, [49] that such bottle-necks are responsible for the size-selectivity of 

PIMs.[50] The higher selectivity and constant CO2 permeability differs from the previously 

observed physical ageing of PIM-TMN-Trip under ambient conditions, where both CO2 and 

CH4 permeability decrease [29], mainly as a result of reduced diffusivity and accompanied by 

increased size-selectivity [50]. The difference results from the fact that the membrane was left 

in a pressurized CO2 environment, and thus in a swollen state, in contrast with the previous 

work where common physical ageing took place under mostly ambient conditions between 

subsequent measurements. This conditioning also differs from conventional CO2-induced 

swelling and/or plasticisation at high CO2 partial pressure, which results in an increase in the 

CH4 permeation through the membrane, hence a decrease in selectivity [51]. A control 

experiment on a similar experimental setup (Fig S1, Ref. [S1-S3] under conditions of low stage 

cut and high feed flow rates shows that in an experimental run with a step-wise increase and 

decrease of the feed pressure some hysteresis occurs (Fig. 4, Fig. S2-S3). After a total run of 7 

hours in the pressure range of 1-6 bar (CO2 partial pressure 312 kPa), the permeability is 

slightly higher and the selectivity slightly lower than at the beginning of the experiment. This 

confirms that on a relatively short time scale the exposure to CO2 only leads to dilation of the 

polymer. The latter is also typical for polymers with lower free volume, where CO2 exposure 

always leads to relatively strong dilation, and a consequently lower selectivity [52], unless the 

polymer is cross-linked and strong dilation is inhibited [53]. Instead, in PIMs a much larger 

fraction of the gas is absorbed inside the already available free volume and the effect of 

competitive sorption might be as important as that of dilation or plasticization. The unusual 

increase in selectivity upon aging with CO2 is remarkably similar that found in by work of 

Yampolskii et al., where the membrane was aged (without CO2 exposure) inside the permeation 

cell under strained conditions [54]. Polyetherimide membranes with a small amount of residual 

solvent were found to increase their selectivity significantly if aged under strained conditions 

due to a combination of aging and loss of residual solvent, resulting also in an increase in the 

density of the samples. The effect of the strain was that the polymer could not relax equally in 



all dimensions, and this led to a relatively large decrease in permeability of for instance N2 with 

respect to O2. 

After the complete measurement cycle, the membrane was soaked in methanol for 24h and then 

dried in a stream of nitrogen for over 24 hours to test if the structural changes could be either 

reversed or improved. Bernardo et al. showed for PIM-1 that soaking in alcohol restores almost 

completely the original permeability of a membrane before ageing [55]Unfortunately, it was 

found that the used membrane had crazed under the pressure of the O-ring, which led to the 

formation of pinhole defects. We attribute the crazing to swelling of the membrane in MeOH 

and the subsequent shrinkage upon drying but also to stresses accumulated in the membrane 

during the various pressurizing and depressurizing steps. Therefore, this control experiment 

could not be performed. It must be noted that this procedure is not only fundamentally different 

from the time lag method in terms of the measurement principle, but it is also different in terms 

of the membrane conditioning because it does not require an evacuation step. We have shown 

previously that the initial vacuum on a PIM membrane may cause irreversible changes in the 

permeability (Fig. 5 in [56]). Besides the instantaneous change, the first vacuum on a freshly 

prepared membrane also seems to ‘trigger’ a faster aging process [57] probably because of a 

slight collapse of the free volume when the last traces of adsorbed species are removed. This 

may in part explain the different ageing behaviour. 

 

3.3 Comparison with the state of the art 

A comparison of our membrane with the results of other PIM membranes from the literature is 

shown in Fig. 7, including the data of PIM-TMN-Trip membrane measured by Rose et al. [21]. 

It may be concluded that our experiments yielded a lower permeability and selectivity for the 

freshly MeOH-soaked membrane than the reported values (likely due to the different method 

of permeability measurement and to the different boundary conditions) but it follows the trend 

of other PIMs. As for the CO2 treated membrane, the increased selectivity moved the 

membrane performance above the Robeson upper bound, which defines the limit of what could 

be expected for PIM membranes. This behaviour deserves further attention to confirm that CO2 

can be used to tailor the permeability and to stabilize membrane aging, analogous to the 

technique described by Scholes et al. [58]. Alternatively, this treatment could be used for a 

rejuvenation process, which Yi et al. [28] attribute to the removal of a highly sorbing feed 

component. 



 

Fig. 7. Trade-off diagram between selectivity and permeability diagram for CO2/CH4 with 

compilation of result for polymers with intrinsic microporosity from the literature [29] for ideal 

selectivity. Blue line indicate  2019 upper bound by Comesaña-Gándara et al. [29]  

 

4 Conclusions 

PIM-TMN-Trip membranes show excellent separation properties for model mixtures of 

CO2/CH4 and for real biogas at small pressure difference, with performance lying between the 

2008 and the recently defined 2019 CO2/CH4 upper bounds for pure gases. With increasing 

upstream pressure, the permeability of CO2 decreased, as well as the mixed gas selectivity, 

whereas the ideal selectivity remained constant. For CO2 permeability of pure gas, pristine 

membranes had a permeability of around 10∙103 Barrer with an ideal selectivity of about 15. 

Interestingly, CO2 treatment at 5 bar strongly enhances the ideal selectivity to values in the 

range of 34-39 without reducing the CO2 permeability due to ageing in a swollen state. This 

condition may be representative for long-term operation of the membrane (e.g. 15 bar with 

35% CO2 in the feed gas), and the data show that even a 10 µm thick film has a high enough 

CO2 permeability (>1000 GPU) to have potential as a commercial membrane. The presence of 

over 400 ppm of H2S in the raw biogas does not affect the membrane transport and separation 



properties significantly, opening interesting perspectives for the use of this membrane in raw 

biogas separation without the need of thorough pre-treatment. 
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