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One-Pot Synthesis of Adipic Acid from Guaiacol in Escherichia coli 
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ABSTRACT: Adipic acid is one of the most important small molecules in the modern chemical industry. However, the damaging 

environmental impact of the current industrial synthesis of adipic acid has necessitated the development of greener, bio-based ap-

proaches to its manufacture. Herein we report the first one-pot synthesis of adipic acid from guaiacol, a lignin-derived feedstock, 

using genetically engineered whole-cells of Escherichia coli. The reaction is mild, efficient, requires no additional additives or rea-

gents and produces no by-products. This study demonstrates how modern synthetic biology can be used to valorize abundant feed-

stocks into industrially-relevant small molecules in living cells.

   Microorganisms can be programmed to perform chemical 

synthesis using synthetic biology. This enables the bioproduc-

tion of small molecules of industrial value directly from renew-

able feedstocks via fermentation. With a market value of $6.3 

billion and an annual production of 2.6 million tons, adipic acid 

(hexane-1,6-dioic acid) is a highly important industrial chemi-

cal.1-4 It is used, amongst other applications, as the precursor to 

the polymer nylon-6,6. Key to its industrial synthesis is the 

metal-catalyzed oxidative ring-opening of petrochemically-de-

rived cyclohexanone/cyclohexanol (“KA-oil”) using concen-

trated nitric acid (Figure 1A). Not only is this process highly 

energy-intensive, it also releases nitrous oxide (a greenhouse 

gas 300-times more potent than carbon dioxide) into the atmos-

phere. Alarmingly, in 2015 the adipic acid process was found 

to be responsible for 8-10% of anthropogenic N2O emissions 

worldwide. As a result, research into the renewable synthesis of 

adipic acid via synthetic biology has received considerable at-

tention in recent years.1-4  

Until recently, semi-synthetic approaches to the synthesis of 

adipic acid have relied on the extraction and Pd-catalyzed hy-

drogenation of the metabolite cis,cis-muconic acid (ccMA, Fig-

ure 1B).5-6 In addition to chemical hydrogenation, Balskus et al. 

recently demonstrated the reduction of ccMA using H2 gener-

ated via microbial metabolism.7 However, in 2017 Mahadevan 

et al. reported the discovery of a novel NADH-/flavin-

dependent oxidoreductase from Bacillus coagulans (BcER) ca-

pable of reducing ccMA to adipic acid.8-9 The enzyme contains 

an Fe-S cluster that facilitates C=C reduction via electron trans-

fer from NADH. Expression of BcER in a ccMA-producing 

strain of Saccharomyces cerevisiae has since been used to ac-

cess adipic acid directly from D-glucose (<1% yield, 2.6 

mg/L).5 The low yield in this strain is thought to stem from in-

activation of the enzyme’s Fe-S cluster by O2 during cofactor 

maturation. Other metabolic engineering approaches have in-

cluded reverse adipate degradation in E. coli and -/-fatty acid 

biosynthesis in Candida sp. using D-glucose and palm oil, re-

spectively.10-11 All these approaches use central amino acid bi-

osynthesis or 2C-metabolic siphons (e.g. acetyl-CoA) to build 

Figure 1. Chemical and biological approaches to adipic acid. A) Industrial 
oxidation of KA oil. B) Semi-synthesis via metabolic engineering and chem-

ical hydrogenation. C) Biotransformation of lignin-derived material using 

an engineered microorganism. 
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the 6C-backbone of adipic acid. Increased production therefore 

comes at a metabolic cost to the organism, which in-turn inhib-

its growth and subsequent product formation. This paradox of-

ten limits the yield of product available via engineered metabo-

lism. One solution is the use of whole-cell reactions, where sus-

tainable feedstocks can be directly converted into value-added 

products using heterologous biosynthetic pathways that operate 

independent to central metabolism. This includes the use of lig-

nin, a naturally-occurring polymer that is considered to be one 

of the greatest untapped carbon sources on Earth. Valorization 

of lignin monomers directly into adipic acid is therefore an im-

portant challenge in chemical and synthetic biology.2,6 Herein 

we report the synthesis of adipic acid from catechol (benzene-

1,2-diol) and guaiacol (2-methoxyphenol) using engineered 

whole-cells of E. coli (Figure 1C). The one-pot reaction pro-

ceeds under mild conditions (37 ˚C, pH 7.2, aqueous media), 

requires no additives and produces no by-products. Optimizing 

heterologous enzyme solubility was essential to achieving rapid 

product formation in this strain using molecular chaperones – 

particularly at low cell density. Together, this study demon-

strates how designer cells can be used to perform challenging 

chemical transformations and emphasizes the benefit(s) of en-

gineering the background cellular environment to optimize en-

zymatic chemistry in whole-cell catalysis.  

Our studies began by investigating the conversion of catechol 

to adipic acid by E. coli BL21(DE3). In this pathway, catechol 

is oxidized to ccMA by the Fe(III)- and O2-dependent dioxy-

genase, CatA, from Pseudomonas putida followed by reduction 

to adipic acid by the Fe-S cluster-containing oxidoreductase, 

BcER, from B. coagulans (Figure 2A). The catA and bcER 

genes were co-expressed in E. coli BL21(DE3) using a 

pETDuet vector (pAA) and protein expression was confirmed 

via SDS-PAGE. To our delight, incubation of these cells in the 

presence of catechol (5 mM, Na-Pi, 3% w/v D-glucose, pH 7.2, 

37 ˚C) for 24 h yielded adipic acid, which could be readily de-

tected in lyophilized cell supernatant by 1H NMR (Figure 2B). 

However, low mass recovery and overlapping signals in the 

downfield NMR region precluded the quantification of catechol 

or ccMA via this method. Pleasingly, analysis of the reaction by 

HPLC showed that adipic acid was produced in 85% yield (Fig-

ure 2C). Product formation was dependent on the presence of 

cells, catechol, glucose and IPTG.  

To further optimize this, we first focused on the potential in-

activation of BcER by O2 during the reaction. Under microaer-

ophilic conditions, we hypothesized that increasing the levels 

of BcER would mitigate any partial deactivation due to residual 

O2 and increase the yield of adipic acid. To this end, we 

knocked-out the transcriptional repressor of Fe-S cluster bio-

genesis in E. coli, iscR, using a -Red recombinase. However, 

BcER expression and the yield of adipic acid remained un-

changed in this strain (Tables S3 and S5). Moreover, visualiza-

tion of the cells via microscopy showed a distorted cell mor-

phology and the presence of inclusion bodies (Figure 3A and 

S2). Further analysis via SDS-PAGE revealed significant levels 

of insoluble BcER in both strains (68% and 71%, respectively, 

Figure 3B and S6) and therefore improper protein folding 

and/or non-functional aggregation in the cell interior was likely 

the reason for the reduced yield. To improve the solubility of 

the recombinant enzymes we focused on reducing the rate of 

protein synthesis and aiding protein folding using molecular 

chaperones. To begin, we tested E. coli Lemo21(DE3) cells. 

This BL21-derived strain contains the Lemo SystemTM, a 

pACYC184 plasmid encoding lysozyme, lysY, under the con-

trol of a rhamnose-inducible PrhaBAD promoter. LysY is the 

natural inhibitor of T7-RNA polymerase and, as such, pLemo 

allows tunable control of T7-mediated gene expression using L-

rhamnose.12 Therefore, we co-transformed this strain with our 

pAA plasmid and examined the effect of increasing rhamnose 

concentration on the solubility of CatA/BcER and the reaction 

yield. Pleasingly, the solubility of BcER was increased using 10 

µM L-rhamnose. However, this had no effect on the yield of 

adipic acid (Table S3). Increasing L-Rha to 40 and 100 µM in-

creased the proportion of soluble enzyme but reduced overall 

protein expression levels, which in-turn decreased the yield to 

56% and 32%, respectively. We therefore required a strategy to 

promote the solubility of CatA and BcER whilst also retaining 

high levels of protein expression in vivo. To achieve this, we 

moved on to test the use of molecular chaperones. Three sets of 

chaperones were chosen and co-expressed in E. coli 

BL21(DE3)_pAA using an arabinose-inducible pACYC plas-

mid. These encoded the native proteins DnaK-DnaJ-GrpE 

(pKJE7), GroEL-GroES (pGro7) and Trigger Factor (TF, 

pTf16). DnaK/J-GrpE and Tf are known to prevent aggregation 

of the unfolded polypeptide in the cytosol, whereas GroEL-

Figure 2. Initial screen in E. coli BL21(DE3). A) The adipic acid pathway. 

B) Analysis of lyophilized culture supernatant by 1H NMR. C) Control ex-

periments examining the effect of the reaction components on product 
yield. Reactions were performed at 37 ˚C in sealed tubes under an atmos-

phere of air for 24 h. After inducing protein expression (0.4 mM IPTG in 
Terrific Broth at 18 ˚C), cells were suspended in Na-Pi buffer (pH 7.2) 

containing 5 mM catechol to OD600=122. Product concentrations were de-

termined by reverse-phase HPLC relative to an internal standard of caf-
feine. All data shown is an average of three independent experiments to 

one standard deviation. pAA refers to pETDuet-catA/bcER. 
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GroES aids during protein folding.13-14 In our parental strain, co-

expression of GroEL-GroES and TF increased levels of soluble 

CatA by 30-40% and TF also increased soluble BcER levels by 

75% (Table S5 and S6). In addition, GroEL-GroES or TF had 

no effect on the yield, whereas expression of DnaK/J-GrpE re-

duced the yield to 70% (Table S3). 

   Having increased the solubility of CatA and BcER we next 

moved on to examine product formation over time and at low 

cell density. We hypothesized that improved enzyme solubility 

in these modified strains would increase the rate of product for-

mation relative to a cell containing predominantly insoluble ag-

gregates. To test this, we compared the formation of adipic acid 

in the parent strain E. coli BL21(DE3)_pAA, E. coli 

BL21(DE3)_pAA_pGro7 and E. coli BL21(DE3)_pAA_pTf16 

at various cell densities over time. Pleasingly, adipic acid was 

formed quantitatively in <2 h in all three strains (Figure 3D). 

This is encouraging as the production of adipic acid via engi-

neered metabolism in E. coli requires 144 h via fed-batch fer-

mentation.5 Product formation reached 24% after 1 h in the par-

ent strain, whereas co-expression of GroEL-GroES or Tf in-

creased the conversion >2.5-fold after this time (66% and 62% 

yield, respectively, Figure 3D and S5). Increasing the solubility 

of recombinant CatA and BcER therefore accelerates product 

formation via this pathway. Reducing cell density ten-fold re-

duced the yield to 0% in all strains (Figure 3E and Table S3). 

Formation of adipic acid could not be restored by increasing the 

concertation of D-glucose, lowering the reaction temperature or 

by increasing the reaction time. However, to our surprise, re-

suspending cells in M9 media at OD600=12 increased the yield 

to 59% and co-expression of Tf or GroEL-GroES increased this 

further to 77% and 89% yield, respectively (Table 1 and Table 

S4). Chaperone co-expression therefore enhances whole-cell 

reactivity at low cell density in this system. In addition, cells 

isolated from spent reactions run at OD600=12 could re-grow 

when inoculated into LB media whereas cells from reactions 

run at OD600=122 could not, indicating increased metabolic ac-

tivity under these conditions (Figure S9). Furthermore, this low 

cell density can be achieved in stirred-tank bioreactors and 

therefore suggests this system could be amenable to large-scale 

bioproduction. 

   Having optimized the production of adipic acid from catechol 

to near-quantitative levels, we moved on to extend this pathway 

to encompass the use of a renewable substrate. Guaiacol is the 

major component of softwood lignin, a renewable natural re-

source of considerable interest to the field of industrial biotech-

nology. Recent studies have demonstrated the conversion of 

guaiacol to ccMA in engineered Amycolatopsis sp. ATCC 

39116.15-16 However, the direct production of adipic acid from 

guaiacol via engineered metabolism has yet to be achieved. To-

wards this goal, we constructed an expression vector harboring 

the catA and bcER genes in addition to gcoAB from Amycola-

topsis sp. ATCC 39116. GcoA is a hemin-dependent cyto-

chrome P450 and GcoB is its associated 2Fe-2S cluster-contain-

ing, NADH- and FAD-dependent reductase. We codon-opti-

mized and assembled the four genes in a pQLinkN backbone 

using iterative rounds of ligation-independent cloning (Figure 

4A). Pleasingly, incubation of the cells with guaiacol (5 mM, 

PBS, pH 7.2, 37 ˚C) for 24 h resulted in a 14% yield of adipic 

acid (Figure 4C and Table S7). This was accompanied by a sig-

nificant amount of unreacted substrate, suggesting that the ac-

tivity of CatA and BcER had been retained in this strain and that 

the demethylation of guaiacol was rate-limiting. This was con-

firmed by adding equimolar volumes of catechol and formalde-

hyde to the cells and observing a 98% yield of adipic acid (Ta-

ble S8). In addition, negligible formaldehyde was detected in 

spent reactions using a Fluoral-P colorimetric assay, confirming 

Entry E. coli Bl21(DE3) Reaction 

Media 

OD600 

(a.u) 

Yield of 1 

(%±S.D) 

1 _pAA Na-Pi 122 85 ± 5 

2 _pAA Na-Pi 12 0 

3 _pAA Na-Pi + 
10% glu 

12 0 

4 _pAA + pTf16 Na-Pi 12 0 

5 _pAA + pGro7 Na-Pi 12 0 

6 _pAA M9 12 59 ± 21[c] 

7 _pAA + pTf16 M9 12 77 ± 1 

8 _pAA + pGro7 M9 12 89 ± 1 Figure 3. Effects of an ∆iscR knock-out and examining product formation 

over time at high and low cell density. A) Microscopy images showing the 
presence of inclusion bodies (indicated by a white arrow). B) Relative pro-

tein levels in in soluble and insoluble cell fractions. C) Whole-cell trans-

formation of catechol to adipic acid. D) Time-course analysis showing the 
effect of chaperone co-expression. E) Product formation at high and low 

cell density. Data shown is an average of three independent experiments 

to one standard deviation. 

 

[a] Reactions were performed as outlined in Figure 1. All data shown is an 
average of three independent experiments to one standard deviation. [b] 

reactions were run for 24 h. [c] n=9. 

 

 

 

 

The reaction B) Analysis of lyophilized culture supernatant by 1H NMR C) 
Control experiments examining the effect of the reaction components and 

the growth environment on product yield. In all experiments, catechol was 
added at 5 mM concentration. Reactions were performed at 18 ˚C in sealed 

Hungate tubes under an atmosphere of air for 48 h. After induced protein 

expression (xx mM IPTG in LB), cells were re-suspended in NaPi buffer 

(pH 7.4) to an OD600 of 120 before the addition substrate. Product concen-

trations in lyophilized supernatant were determined by 1H NMR spectros-
copy relative to an internal standard of 1,3,5-trimethoxybenzene. All data 

shown is an average of three independent experimental to one standard de-

viation. pAA refers to pETDuet-catA/bcER 

Table 1. Reaction optimization at low cell density[a,b] 
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that E. coli also consumes the by-product of the demethylation 

reaction via an endogenous process (Figure 4D and S8). Inter-

estingly, replacing the AaGcoAB enzymes with GcoA and 

GcoB from Rhodococcus rhodochrous (pAA’-Rr) reduced the 

yield of adipic acid to 1%, despite having activity in P. putida 

EM42.17 However, to our delight, when we expressed all four 

enzymes in E. coli BL21(DE3)_pAA’ in M9 or LB media and 

reduced the cell density of the subsequent reaction to OD600=20 

the yield of adipic acid increased to 61% (Figure 4C and Table 

S7). To best of our knowledge, this is the first synthesis of 

adipic acid from guaiacol in an engineered microorganism.5-6,18 

Although the precise reason(s) for this latter increase in yield 

are currently unclear, the accumulation of ccMA and guaiacol 

in low- and high-OD reactions, respectively, indicates that a 

fine balance exists between GcoAB and BcER expression and 

activity in this pathway (Table S7).  

   To conclude, we have demonstrated the first synthesis of 

adipic acid from guaiacol in the bacterium Escherichia coli. 

This pathway uses the remarkable chemistry of biogenic 

Fe2+/Fe3+ in heme, non-heme and Fe-S cluster-containing 

metalloenzymes to achieve the overall linearization of an aro-

matic ring. Co-expression of molecular chaperones was used to 

accelerate product formation and the addition of M9 media was 

found to be essential to maintain high yields at low cell density. 

Overall, this study demonstrates how synthetic biology can be 

used to program living cells as biological reagents for sustaina-

ble chemical synthesis. 
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