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ABSTRACT  

 

Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure 

normal cell division. We show here that depletion of microtubule-associated protein 

ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified 

the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding 

protein. We show that ATIP3 controls metaphase spindle length by interacting with 

Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence 

of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with 

reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing 

also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not 

kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora 

A activity on the poles to control Kif2A targeting and spindle size. Collectively, these 

data emphasize the pivotal role of Aurora kinase A and its mutual regulation with 

ATIP3 in controlling spindle length. 

 
 
 
 

Keywords : ATIP3, Kif2A, Dda3, Aurora A, mitotic kinase, mitotic spindle, poleward 

microtubule flux 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 

 

 

INTRODUCTION 

 

The size of the mitotic spindle in metaphase varies among different cell types and 

species but remains constant for a given cell type, despite high dynamics of spindle 

microtubules [1–3]. The spindle in metaphase must reach an optimal size to capture 

and bi-orient all duplicated chromosomes prior to cell division, and to allow 

separation of the asters beyond a minimal distance for proper cleavage by the 

cytokinesis machinery at late stages of cell division [3]. Defects in spindle size and 

architecture can lead to mitotic defects and promote aneuploidy, which is a hallmark 

of cancer. Metaphase spindle length is controlled by intrinsic and extrinsic factors 

[3]. Poleward microtubule flux, which consists of translocation of tubulin 

heterodimers towards the poles, coupled to a balance between polymerization of 

microtubule plus ends at kinetochores and depolymerization of minus ends at the 

poles [4, 5], is a major mechanism to maintain the spindle at a constant length in 

metaphase [2, 6]. Microtubule-associated proteins and depolymerizing kinesins, 

that regulate microtubule dynamics at both ends, thus appear as important 

regulators of poleward flux and spindle length [3, 7–9].  

The Kif2A kinesin is a key regulator of poleward microtubule flux and spindle size in 

drosophila, xenopus and human cells [6, 10–13]. Kif2A belongs to the kinesin-13 

family of depolymerizing kinesins also including Kif2B and MCAK/Kif2C [14]. During 

mitosis, Kif2A localizes to spindle poles where it depolymerizes microtubule minus 

ends [10, 15, 16], thereby controlling the rate of poleward microtubule flux. Transport 

of Kif2A to spindle poles is ensured by minus-end-directed motor protein 

dynein/dynactin [10] and is increased by interaction with microtubule-associated 

Dda3 protein, whose expression and phosphorylation are markedly elevated in 

mitosis [17, 18]. Depletion of either Dda3 or Kif2A increases mitotic spindle size [10, 
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17]. The microtubule depolymerizing activity of Kif2A and its recruitment to the poles 

are inhibited by Aurora kinase A (Aurora A) [19], a major mitotic kinase that localizes 

on spindle poles. Aurora A fulfills numerous functions [20, 21] including the 

regulation of spindle size [13, 22]. However, the mechanisms by which this kinase 

controls metaphase spindle length are poorly defined. Whether maintaining correct 

spindle size in metaphase depends on Aurora A-mediated regulation of Kif2A 

recruitment to the poles remains to be investigated.  

ATIP3 is a microtubule-associated protein that decorates the centrosome and 

microtubule cytoskeleton in interphase, and the mitotic spindle and spindle poles 

during mitosis [23]. Previous studies have shown that ATIP3 is a potent microtubule 

stabilizer [24] that reduces microtubule dynamics by interacting with End-Binding 

protein EB1 in interphase [25, 26]. ATIP3 is the product of candidate tumor 

suppressor gene MTUS1 whose expression is markedly down-regulated in 

aggressive breast tumors [23, 24]. We have recently shown that ATIP3 depletion is 

associated with increased aneuploidy and mitotic defects [27]. 

In this study, we show that ATIP3 depletion leads to shortening of the metaphase 

spindle. Mass spectrometry analysis identified Kif2A as an intracellular partner of 

ATIP3. We provide evidence that ATIP3 forms a complex with Kif2A and Dda3 and 

limits their recruitment to the poles, thereby contributing to maintaining constant 

spindle size in metaphase. The interaction between ATIP3, Dda3 and Kif2A is 

increased in mitosis and requires phosphorylation by Aurora kinase A. Conversely, 

the localization of Aurora A at spindle poles is regulated by ATIP3. Overall, we show 

that reciprocal regulation of ATIP3 and Aurora kinase A during mitosis ensures the 

timely assembly of a molecular ATIP3-Dda3-Kif2A complex that controls metaphase 

spindle length.   
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MATERIALS AND METHODS 

 

Cell lines and synchronization 

Human cancer cell lines MCF-7, MCF-7 cells stably expressing moderate levels of 

GFP-ATIP3 (HC6 clone), HCC1143 and HeLa were described previously [23, 24]. 

MCF-7 cells express undetectable levels of ATIP3 whereas HCC1143 and HeLa 

cells express endogenous ATIP3 [23, 24]. MCF-7 cells were cultured in DMEM-F12 

supplemented with 5% bovine calf serum. HCC1143 cells were cultured in RMPI 

supplemented with 10% bovine calf serum and 1% sodium pyruvate. HeLa cells 

were cultured in DMEM supplemented with 10% bovine calf serum, 100 U/ml 

penicillin, and 100 U/ml streptomycin (all from Gibco) at 37°C and 5% CO2. Cells 

were routinely authenticated by morphologic observation and tested for absence of 

mycoplasma contamination using Venor® GeM Advance Kit (MB Minerva 

biolabs®). 

For synchronization in metaphase, MCF-7 and HCC1143 cells were treated with 50 

ng/ml nocodazole for 16h and released for 45 minutes. 

 

Plasmid constructs, siRNAs and transfections 

Plasmids encoding GFP-ATIP3, GFP-D1, GFP-D2, GFP-D2, GFP-D2N, GFP-D2C, 

GFP-D3, GFP-ATIP3delCN and GFP-D2delCN were described elsewhere [24, 25]. 

Deletion mutants GFP-delCN2 and GFP-D2delCN2 (lacking amino acid positions 

635 to 816 of ATIP3, accession number NP_001001924) were obtained by PCR 

amplification of the ATIP3 and D2 sequence, respectively, using the following 

oligonucleotides: 5’- GGG TCC GTT TCT GCG TTG TTT TCT GGT AAT GCC GCT 

GTC -3’ and 5’- GAC AGC GGC ATT ACC AGA AAA CAA CGC AGA AAC GGA 

CCC -3’ and QuikChange® II XL Site-Directed and Mutagenesis Kit (Agilent). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

 

 

Plasmids encoding GFP-AurA and GFP-AurA-KD were described elsewhere [28–

30]. Plasmid encoding Kif2A-GFP was provided by Jamel Chelly (Institut de 

Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France). All cDNA 

constructs were transfected (2 to 4µg) for 24h using X- treme Gene 9 (Roche) or 

Lipofectamine 2000 (Invitrogen). 

Specific and control scrambled siRNAs were from Dharmacon (ThermoFisher 

Scientific). The following sequences were used: ATIP3#1, 5’- 

UGGCAGAGGUUUAAG GUUA-3’; ATIP3#2, 5’-GCAAAUAGCUGCUCCAAAA-3’; 

Kif2A, 5’-GGCAAAGAGAUUG ACCUGG-3’; Aurora A, 5’- 

AUGCCCUGUCUUACUGUCA-3’; Dda3, 5’-AAGCAAGACU UCAGUAGCAUU-3’. 

For rescue experiments of ATIP3 knock-down, HeLa cells were transfected with 

ATIP3#1 siRNA that targets the 5’ untranslated sequence of ATIP3 and allows 

ectopic expression of the ATIP3 coding sequence [25]. 

All siRNAs (50 nM) were transfected for 48h to 72h using Lipofectamine 2000 

(Invitrogen) and silencing efficiency was evaluated by immunoblotting. Antibodies 

used for immunoblotting were rabbit anti-ATIP3 (anti-MTUS1; ARP44419-P050; 

Aviva Systems, 1/1000e), rabbit anti-Kif2A (ab37005; Abcam,1/5000e), mouse anti-

Aurora A (ab13824; Abcam, 1/1000e), rabbit anti-Dda3 (GTX128047; GeneTex, 

1/1000e), rabbit anti-GFP (6556; Abcam, 1/1000e), mouse anti-GFP (ab1218; 

Abcam, 1/1000e), mouse anti-alpha-tubulin (T9026; Abcam, 1/5000e), anti-

phospho-histone H3 (06-570; Millipore, 1/1000e), mouse anti-gamma-actin 

(ab123034; Abcam, 1/5000e), mouse anti-vinculin (V9264; Sigma, 1/5000e). 

 

Immunoprecipitations 

HeLa or MCF-7 cells were transfected as described above and lysed in lysis buffer 

containing 50mM Tris-HCl pH 7.4, 150mM NaCl, 1mM EDTA, 2.5mM MgCl2, 0.2M 
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PMSF, 1mM Aprotinin, 5mg/ml Leupeptin, 2mg/ml Pepstatin, 0.2M orthovanadate, 

1M sodium fluoride, and 10µM okadaic acid. Lysates were centrifuged, incubated 

with uncoupled magnetic agarose beads at 4°C for 15 minutes, and then incubated 

with anti-GFP VHH coupled to magnetic agarose beads (GFP-trap_MA; Chromotek) 

at 4°C overnight. Antibody beads were recovered with a bar magnet, washed once 

with the lysis buffer in the presence of anti-proteases and then twice with the lysis 

buffer, and analyzed by Western blotting with appropriate antibodies as described 

above. Results shown are representative of 3 to 5 independent experiments.  

 

Proteomics and Mass spectrometry 

MCF-7 cells were transfected with GFP-ATIP3 or GFP for 24h then lysed as 

described above. For immuno-isolated samples, 1 mg extract was incubated with 

25 μl magnetic beads (GFP-trap_MA; Chromotek) for 2 hours at 4°C. 

Proteins on magnetic beads were washed twice with 100 μl of 25 mM NH4HCO3 

and on-beads digestion were performed with 0.2 μg of trypsine/LysC (Promega) for 

1 hour in 100 µl of 25 mM NH4HCO3. Sample were then loaded onto a homemade 

C18 StageTips for desalting (principle by stacking one 3M Empore SPE Extraction 

Disk Octadecyl (C18) and beads from SepPak C18 CartridgeWaters into a 200 μl 

micropipette tip). Peptides were eluted using 40/60 MeCN/H2O + 0.1% formic acid 

and vacuum concentrated to dryness. 

Online chromatography was performed with an RSLCnano system (Ultimate 3000, 

Thermo Scientific) coupled online to an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific). Peptides were trapped on a C18 column (75 μm inner diameter 

× 2 cm; nanoViper Acclaim PepMapTM 100, Thermo Scientific) with buffer A (2/98 

MeCN/H2O in 0.1% formic acid) at a flow rate of 4.0 µl/min over 4 min. Separation 

was performed on a 50 cm x 75 μm C18 column (nanoViper Acclaim PepMapTM 
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RSLC, 2 μm, 100Å, Thermo Scientific) regulated to a temperature of 55°C with a 

linear gradient of 2% to 30% buffer B (100% MeCN in 0.1% formic acid) at a flow 

rate of 350 nl/min over 160 min. Full-scan MS was acquired in the Orbitrap analyzer 

with a resolution set to 120,000 and ions from each full scan were HCD fragmented 

and analyzed in the linear ion trap. 

For identification the data were searched against the SwissProt Homo Sapiens 

(February 2017, no isoforms) database using Sequest HF through proteome 

discoverer (version 2.1). Enzyme specificity was set to trypsin and a maximum of 

two missed cleavage site were allowed. Oxidized methionine, N-terminal 

acetylation, and carbamidomethyl cysteine were set as variable modifications. 

Maximum allowed mass deviation was set to 10 ppm for monoisotopic precursor 

ions and 0.6 Da for MS/MS peaks. 

The resulting files were further processed using myProMS [31] v3.6 (work in 

progress). FDR calculation used Percolator and was set to 1% at the peptide level 

for the whole study. The label free quantification was performed by peptide 

Extracted Ion Chromatograms (XICs) computed with MassChroQ version 2.2.2 [32]. 

For protein quantification, XICs from proteotypic peptides shared between 

compared conditions (TopN matching) with no missed cleavages were used. 

Median and scale normalization was applied on the total signal to correct the XICs 

for each biological replicate. To estimate the significance of the change in protein 

abundance, a linear model (adjusted on peptides and biological replicates) was 

performed and p-values were adjusted with a Benjamini–Hochberg FDR procedure 

with a control threshold set to 0.05. Fold change-based GO enrichment analysis 

was performed as described [33]. 

The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE [34] partner repository with the 
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dataset identifier PXD009182 (username: reviewer03478@ebi.ac.uk, password: 

UFFpYuYZ). 

 

Immunofluorescence 

Cells were fixed on cover glasses with ice-cold methanol for 5 minutes and washed 

with PBS. Coverslips were subsequently incubated at room temperature for 1 hour 

in primary antibodies and for 1 hour in Alexa Fluor 488-, Alexa Fluor 549- and Alexa 

Fluor 647-coupled secondary antibodies diluted in PBS/Triton 0.1%, BSA 0.2%. The 

following primary antibodies were used: rabbit anti- Kif2A (ab37005; Abcam, 

1/250e), rabbit anti-pericentrin (ab4448; Abcam, 1/500e), rabbit anti-Dda3 

(GTX128047; GeneTex, 1/500e), mouse anti-Aurora A (ab13824; Abcam, 1/200e), 

rabbit Phospho-Aurora A (Thr288) (3079S; Cell Signaling, 1/200e), mouse anti-GFP 

(ab1218; Abcam, 1/250e), rat anti-alpha-tubulin (ab6160; Abcam, 1/500e), mouse 

anti-gamma-tubulin (T5326; Sigma, 1/500e) and mouse anti-alpha- tubulin (T9026; 

Sigma, 1/100e). Coverslips were fixed with Glycergel Mouting Medium (Dako) 

coupled with DAPI. Images were acquired with a confocal laser scanning 

microscope Dmi8- SP8 with an HC PL APO CS2 40x-1.3 Oil (Leica). Linescan 

analyses of pole-to-pole distance and fluorescence intensities were done with Image 

J. At least 30 cells in 4 to 10 fields per condition were analyzed. 

Results shown are representative of 3 to 5 independent experiments.  

 

Fluorescence Recovery After Photobleaching (FRAP) 

HeLa cells were transfected with control or ATIP3 siRNA and co-transfected with 

Kif2A-GFP. For the experiment, cells were seeded in 35 mm glass-bottomed dishes 

(14mm, No. 1.5, MatTek Corporation). The siRNA transfection was done 72 hours 

prior to filming using Lipofectamine 2000 (Invitrogen). Kif2A-GFP was co-
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transfected 48 hours after siRNA transfection. 10nM SiR-DNA (Spirochrome) was 

added to the cell culture medium 30 minutes before starting the live-cell imaging. 

Time-lapse imaging was performed at 37ºC using a Plan-Apochromat 63x/1.4NA 

with differential interference contrast oil objective mounted on an inverted Zeiss Axio 

Observer Z1 microscope (Marianas Imaging Workstation from Intelligent Imaging 

and Innovations Inc. (3i), Denver, CO, USA), equipped with a CSU-X1 spinning-disk 

confocal head (Yokogawa Corporation of America). Images were acquired using an 

iXon Ultra 888 EM-CCD camera (Andor Technology). After identification of spindle 

poles in metaphase cells, one of the two poles was photobleached with a 5ms laser 

pulse using 100% power of the 488nm solid state laser, and the fluorescence 

recovery was recorded for 90 seconds at 500 ms intervals. For FRAP calculations, 

the fluorescence intensity of the bleached area was normalized using the intensity 

of the whole cell, after background correction. Then a full-scale normalization was 

performed and the mean values were plotted and used for exponential curve fitting 

using GraphPad Prism 7.01 to determine the half-life and efficiency of the recovery. 

 

 

Poleward microtubule flux rate measurement 

Photo-conversion of alpha-tubulin was performed using a stable U2OS-mEOS- 

tubulin cell line [35] cultivated on 35 mm glass-bottomed dishes (14mm, No. 1.5, 

MatTek Corporation). Transfection of control or ATIP3 siRNA was done 48h hours 

prior to filming using Lipofectamine 2000 (Invitrogen). Time-lapse imaging was 

performed at 37ºC using a Plan-Apochromat 63x/1.4NA oil objective with differential 

interference contrast mounted on an inverted Zeiss Axio Observer Z1 microscope 

(Marianas Imaging Workstation from Intelligent Imaging and Innovations Inc. (3i), 

Denver, CO, USA), equipped with a CSU-X1 spinning-disk confocal head 
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(Yokogawa Corporation of America) and a photo-activation system with 405 nm 

laser line. Images were acquired using an iXon Ultra 888 EM-CCD camera (Andor 

Technology). Late prometaphase/metaphase cells were identified upon green 

fluorescent tubulin signals and two line-shaped regions of interest were placed 

perpendicular to the main spindle axis on both sides of the metaphase plate in order 

to be photo-activated. Photo-conversion was performed by a 5-ms 405-nm laser 

pulse. Photo-converted red signals were then followed over time together with green 

fluorescence signal using 561- and 488-nm lasers and images were acquired every 

5 s for 3 min. Microtubule flux was quantified by tracking photo- converted mEos-

tubulin over time using sum-projected kymographs generated by a MATLAB-based 

algorithm [36]. 

 

Statistical analysis 

Statistical analyses were done using GraphPad Prism 6.0 software. Data in bar 

graphs (mean +/- SD) and dot plots were analyzed using two-tail unpaired t-test and 

ANOVA test. p<0.05 was considered statistically significant. 
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RESULTS 

 

ATIP3 depletion reduces metaphase spindle length  

To evaluate the consequences of ATIP3 depletion in mitosis, HeLa cells were 

transfected with two independent ATIP3 siRNAs (siA#1 and siA#2) (Fig. 1A) and 

mitotic cells were analyzed by immunofluorescence. By measuring pole-to-pole 

distance in metaphase cells using pericentrin as a marker, we observed that ATIP3 

depletion with each siRNA reduces spindle length (Fig. 1B). Similar results were 

obtained using both ATIP3 siRNAs in HCC1143 breast cancer cells (Fig. S1A). 

Conversely, moderate expression of GFP-ATIP3 in ATIP3-negative MCF-7 cells led 

to an increase in spindle size compared to control cells expressing GFP (Fig. S1B).  

Other mitotic defects such as multipolar spindles (Fig. S1C) and spindle 

mispositioning (Fig. S1D) were observed in ATIP3-depleted cells but spindle 

orientation, symmetry and cell size remained unchanged (Fig. S1E). 

 

ATIP3 interacts with Kif2A  

In a first step to elucidate the molecular mechanisms by which ATIP3 controls 

spindle size, we undertook a proteomic approach to identify novel intracellular 

ATIP3 binding partners. Anti-GFP antibodies were used to immunoprecipitate 

molecular complexes from MCF-7 breast cancer cells expressing either GFP or 

GFP-ATIP3 fusion protein. Mass spectrometry analysis allowed us to identify 145 

proteins that selectively interact with ATIP3 (Table S1), nine of which were related 

to the microtubule cytoskeleton and/or mitosis (Fig. 1C, Table 1). These include 3 

tubulin chains (beta6, alpha4 and beta3), 2 centromere/kinetochore associated 

proteins (CENPB, CHAMP1) and 4 centrosomal/spindle pole proteins (SDCCAG8, 

TBBCD1, PCM1 and Kif2A). The Kif2A kinesin was among the best candidate 
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ATIP3 partners in terms of fold change (4.86) and p value (8.14e-22). This 

depolymerizing kinesin is also a well-known regulator of mitotic spindle length [10] 

and was therefore selected for further studies. 

The interaction between ATIP3 and Kif2A was confirmed by co-immunoprecipitation 

analyses. GFP-ATIP3 fusion protein expressed in MCF-7 cells was 

immunoprecipitated using anti-GFP antibodies and found to bind endogenous Kif2A 

(Fig. 1D). Kinesin Kif2B was not retained in GFP-ATIP3 immunocomplexes, 

indicating specificity. Conversely, endogenous ATIP3 was found to interact with 

Kif2A-GFP in HeLa cells (Fig. 1E), confirming the existence of ATIP3-Kif2A 

molecular complexes. As shown in Fig. S1F, ATIP3 not only interacts, but also co-

localizes with Kif2A at the spindle poles in metaphase. 

To better characterize the interaction, full-length ATIP3 was cleaved into three 

regions designated D1, D2 and D3 (Fig. 1F) that were fused to GFP. After transient 

transfection of GFP-tagged constructs followed by co-immunoprecipitation, results 

showed that a central region of 410 amino-acids (D2 region) interacts with Kif2A 

(Fig. 1F, right panel). Deletion mutants of the D2 region were then analyzed. A 

sequence (D2C) encompassing amino acid residues 705-874 of ATIP3 was 

sufficient to bind Kif2A (Fig. 1G, left panel). Deletion of amino acids 705-816 (GFP-

delCN) and 635-816 (GFP-delCN2) in the ATIP3 sequence led to a marked 

decrease in Kif2A interaction (Fig. 1G, right panel). Deleting the same sequences 

from the D2 polypeptide also impaired the interaction (Fig. S2A), therefore indicating 

that a minimal sequence of 112 amino acids (CN sequence) is required for ATIP3 

interaction with Kif2A. 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 

 

 

ATIP3-Kif2A complex controls metaphase spindle length 

To investigate the functional impact of ATIP3-Kif2A complex in the control of mitotic 

spindle length, we investigated whether GFP-ATIP3 construct and deletion mutants 

were able to rescue the ATIP3 depletion phenotype. RNAi-resistant GFP-ATIP3 

expressed at moderate levels in ATIP3-depleted cells indeed restored a spindle size 

similar to that observed in control cells (Fig. 2A). In contrast, deletion mutants GFP-

DelCN and GFP-DelCN2 - that are unable to interact with Kif2A - failed to rescue 

the phenotype (Fig. 2A, S2B). Furthermore, expressing the Kif2A-interacting region 

D2 was sufficient to restore a correct spindle length in ATIP3-depleted cells whereas 

Kif2A-binding defective mutants D2delCN and D2delCN2 were not (Fig. S2C). 

Together these data strongly suggest that ATIP3 may control metaphase spindle 

size by interacting with Kif2A. 

 

ATIP3 depletion increases Kif2A targeting to the spindle poles 

Immunofluorescence studies revealed that ATIP3 depletion markedly increases 

Kif2A fluorescence intensity at spindle poles (Fig. 2B) with no effect on the cytosolic 

pool of Kif2A (Fig. S2D). In contrast, ATIP3 depletion did not significantly modify 

fluorescence intensity of pericentrin, a major spindle pole protein (Fig. S2E). 

Expression of RNAi-resistant GFP-ATIP3 in ATIP3-depleted cells rescued the 

phenotype and decreased Kif2A intensity at the poles (Fig. 2C). Of note, ATIP3 

silencing had no effect on total Kif2A protein levels detected by western blotting (Fig. 

2B, left panel), suggesting that increased fluorescence intensity of Kif2A may reflect 

increased recruitment to the poles rather than increased expression of the protein.  

We then evaluated whether increased Kif2A accumulation at spindle poles may 

contribute to the phenotype of ATIP3 deficiency. Silencing of Kif2A in ATIP3-

depleted cells (Fig. S2F) indeed rescued the phenotype and restored a correct 
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spindle size (Fig. 2D), indicating that increased Kif2A recruitment to the poles is 

responsible for spindle length shortening in ATIP3-depleted cells.  

It has been previously shown that Kif2A regulates metaphase spindle length by 

controlling poleward microtubule flux via its microtubule depolymerizing activity at 

the spindle poles [6, 10, 11]. We reasoned that by increasing Kif2A depolymerizing 

activity at the poles, ATIP3 deficiency may disrupt the balance of microtubule 

dynamics in the spindle, resulting in decreased poleward flux and shorter spindle 

length. To address that question, microtubule flux rates were analyzed following 

ATIP3 silencing in metaphase U2OS cells stably expressing alpha-tubulin fused to 

the photo-convertible fluorescent protein mEos2 [35]. Results indicate that poleward 

microtubule flux is significantly decreased in ATIP3-depleted cells (0.53±0.13 

µm/min) compared to control cells (0.67±0.08 µm/min, p<0.0001) (Fig. 2E), 

supporting the notion that ATIP3 may control spindle size by regulating the 

recruitment - and thus, depolymerizing activity - of Kif2A to the poles. Collectively, 

these data indicate that ATIP3 controls metaphase spindle length by interacting with 

the Kif2A kinesin and reducing its recruitment to the poles. 

 

ATIP3-Kif2A interaction involves Dda3 

How does ATIP3 silencing increase Kif2A targeting at the spindle poles? We 

hypothesized that ATIP3 may sequester Kif2A in the cytosol and slower the 

exchange rate between spindle pole-associated Kif2A and a diffuse cytosolic pool 

of the protein. We thus explored the dynamic behavior of Kif2A turnover on spindle 

poles in the presence or absence of ATIP3. Fluorescence recovery after 

photobleaching (FRAP) experiments were performed on metaphase HeLa cells 

expressing endogenous ATIP3 and transfected with Kif2A-GFP. Bleaching was 

done on one of the two spindle poles. We found that in control cells, Kif2A-GFP 
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association with spindle poles is dynamic. Ninety percent of the signal was 

recovered after photobleaching, with a half-recovery time of 11.6 sec (Fig. 3A) which 

is faster than that (30.7 sec) reported for NuMA, another major spindle pole-

associated protein [37]. In ATIP3-depleted cells, Kif2A-GFP fluorescence recovery 

parameters remained unchanged (half-recovery time of 11.62 sec), ruling out the 

hypothesis that ATIP3 depletion may regulate Kif2A turnover at the spindle poles. 

We then investigated whether ATIP3 may regulate Kif2A localization by a 

mechanism involving Dda3, a microtubule-associated protein known to interact with 

and increase Kif2A targeting to spindle poles [17]. As shown in Fig. 3B, Dda3 

silencing in ATIP3-depleted cells rescued Kif2A fluorescence intensity at spindle 

poles, indicating that Dda3 contributes to the regulatory effects of ATIP3 on Kif2A 

recruitment. Accordingly, Dda3 silencing also restored a correct spindle length in 

ATIP3-depleted cells (Fig. 3B), indicating that Dda3 is essential to the ATIP3 

phenotype. Immunofluorescence analyses revealed that, as for Kif2A, Dda3 fluorescence 

intensity at the poles is increased upon ATIP3 depletion (Fig. 3C). Conversely, expression 

of GFP-ATIP3 led a decrease of Dda3 recruitment to the poles compared with GFP (Fig. 

3D). Of note, silencing of either Kif2A or Dda3 had no significant effect on ATIP3 

fluorescence intensity (Fig. S3), pointing to ATIP3 as an upstream regulator of Kif2A and 

Dda3 targeting to the poles. 

Dda3 is a known partner of Kif2A, raising the possibility that it may be part of the 

ATIP3-Kif2A complex. Immunoprecipitation studies revealed that Dda3 indeed 

interacts with ATIP3 (Fig. 3E). To evaluate whether Dda3 may compete with, or 

contribute to, ATIP3-Kif2A interaction, Dda3 was silenced using siRNA prior to 

immunoprecipitation with GFP-ATIP3. Results showed that Dda3 depletion impaired 

Kif2A binding to GFP-ATIP3 immunocomplexes (Fig. 3F) indicating that Dda3 is 

required for ATIP3-Kif2A interaction.  
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The interaction between ATIP3, Kif2A and Dda3 is regulated in mitosis 

Dda3 levels have been shown to be elevated in mitosis [17] leading us to investigate 

whether ATIP3-Dda3 interaction may also be regulated in mitosis. Co- 

immunoprecipitation studies performed in synchronized MCF-7 cells expressing 

GFP-ATIP3 indeed revealed that the interaction between ATIP3 and Dda3 is 

increased in mitosis (Fig. 3G). Importantly, Kif2A binding to GFP-ATIP3 was also 

markedly increased in synchronized cells although Kif2A levels remained 

unchanged (Fig. 3G), which further supports the notion that Dda3 is essential to the 

ATIP3-Kif2A complex. Data showing Dda3 hyperphosphorylation in mitosis [38] 

prompted us to examine whether the interaction between ATIP3, Dda3 and Kif2A 

may be regulated by phosphorylation. Treatment with lambda phosphatase prior to 

immunoprecipitation with GFP-ATIP3 totally abrogated both Dda3- and Kif2A-

binding to GFP-ATIP3 (Fig. S4A), indicating that protein phosphorylation is required 

for ATIP3-Dda3-Kif2A interaction. 

 

Aurora kinase A plays a pivotal role in the ATIP3 phenotype 

Mitosis is tightly regulated by mitotic kinases among which Aurora kinase A (Aurora 

A), that is localized to the poles of the spindle and whose expression is markedly 

increased in G2/M. Aurora A has been shown to phosphorylate both Dda3 [18, 38] 

and Kif2A [19] and to decrease the recruitment and microtubule-depolymerizing 

activity of Kif2A at the spindle poles [19]. We thus investigated whether Aurora A 

may be a master kinase regulating ATIP3-Dda3-Kif2A interaction. 

Treatment with Aurora A kinase inhibitor MLN8054 impaired both ATIP3-Kif2A and 

ATIP3-Dda3 interactions (Fig. 4A), indicating that Aurora A kinase activity is 

required for ATIP3 interaction with Kif2a and Dda3. Aurora A depletion by siRNA 

also markedly decreased ATIP3-Kif2A interaction (Fig. S4B). Co-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 

 

 

immunoprecipitation studies revealed that Aurora A binds to GFP-ATIP3 (Fig. S4C). 

Of note, ATIP3/Aurora A complexes were not always clearly detectable, suggesting 

that this interaction may be weak and/or transient.  

In addition to disrupting the interaction of ATIP3 with Kif2A and Dda3, Aurora A 

inactivation by silencing or pharmacological inhibition mimics the phenotype of 

ATIP3 depletion regarding Kif2A recruitment to the pole and regulation of spindle 

size (Fig. S4D, S4E). This led us to investigate whether Aurora A itself may be 

regulated by ATIP3. Immunofluorescence analyses revealed that ATIP3 silencing 

decreases Aurora A fluorescence intensity at spindle microtubules and poles (Fig. 

4B, S4F), with no significant change in total protein levels detected by western blot 

(Fig. 4B). Fluorescence intensity of the phosphorylated (Thr288) active form of the 

kinase was also reduced upon ATIP3 depletion (Fig. 4B), suggesting that ATIP3 

contributes to maintaining an active pool of Aurora A at the poles of the mitotic 

spindle. We thus examined the possibility that Aurora kinase A activity may be 

involved in the ATIP3 phenotype. To investigate whether the short spindle 

phenotype induced by ATIP3 depletion may be due to decreased Aurora A kinase 

activity at the poles, we ectopically expressed a GFP-Aurora A construct (GFP-

AurA), or kinase-dead mutant (GFP-AurA-KD) in ATIP3-silenced cells and analyzed 

mitotic cells. As shown in Fig. 4C, active GFP-AurA expressed at moderate levels 

in ATIP3 deficient cells was able to restore a correct mitotic spindle size whereas 

the kinase dead GFP-AurA-KD mutant remained inefficient. Expression of GFP-

AurA construct, but not the kinase dead GFP-AurA-KD mutant, also reverted the 

effects of ATIP3 silencing on Kif2A fluorescence intensities at the poles (Fig. 4D). 

Together, these results demonstrate that Aurora A kinase activity rescues mitotic 

spindle defects induced by ATIP3 deficiency, and highlight the central role of Aurora 

A in the control of metaphase spindle length by ATIP3.  
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DISCUSSION 

Tight control of mitotic spindle length during metaphase is essential to ensure 

correct cell division. Results presented here indicate that microtubule-associated 

protein ATIP3 controls metaphase spindle length by interacting with the microtubule 

depolymerizing kinesin Kif2A to negatively regulate its association with spindle 

poles. ATIP3 depletion causes increased Kif2A targeting to the poles, reduced 

poleward microtubule flux and shorter spindle size. Increased accumulation of Kif2A 

on spindle poles, and subsequent excessive depolymerization of spindle 

microtubule minus ends, may disrupt the balance between microtubule 

polymerization at kinetochores and depolymerization at spindle poles in metaphase. 

Imbalanced dynamics of spindle microtubules may account for reduced poleward 

microtubule flux and short spindle observed upon ATIP3 depletion. 

We show here by fluorescence recovery after photobleaching (FRAP) analyses that 

the binding of Kif2A on spindle poles is dynamic. Cytosolic pools of GFP-Kif2A were 

found to exchange in and out of spindle poles with half-recovery time around ten 

seconds, which is a little faster than for other spindle pole-associated proteins such 

as NuMA [37]. Of note, ATIP3 silencing has no significant effect on Kif2A turnover 

at the poles, making unlikely the possibility that ATIP3 may sequester Kif2A in the 

cytosol as a mechanism to limit its targeting to spindle poles. The effect of ATIP3 

rather involves Dda3, a microtubule-associated protein that binds Kif2A and 

facilitates its recruitment to the poles [17]. As for Kif2A, ATIP3 depletion increases 

Dda3 accumulation on the poles. Dda3 silencing in ATIP3-deficient cells rescues 

the phenotype and restores basal levels of Kif2A fluorescence intensity on the poles 

as well as correct size of the spindle. These findings strongly suggest that Dda3 

contributes to ATIP3 effects on spindle length by regulating Kif2A recruitment to the 

poles. While ATIP3 regulates both Kif2a and Dda3 targeting to the poles, silencing 
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of either Kif2A or Dda3 has no effect on ATIP3 localization, suggesting that ATIP3 

is upstream of Kif2A/Dda3 and orchestrates the targeting of both proteins to the 

poles to control spindle length. 

ATIP3 interacts with Kif2A and Dda3 in a molecular complex that is increased in 

mitosis and requires phosphorylation by the mitotic kinase Aurora A. In return, 

ATIP3 is necessary to maintain an active pool of Aurora A at spindle poles, indicating 

a positive regulatory loop between Aurora A and ATIP3.  

In the absence of ATIP3, Aurora A levels at spindle poles are decreased whereas 

those of Kif2A and Dda3 are increased. Expression of GFP-Aurora A kinase - but 

not a kinase-dead mutant - in ATIP3-depleted cells restored basal levels of Kif2A 

localized at the poles as well as a correct spindle size, confirming the requirement 

of Aurora kinase activity in the mitotic effects of ATIP3. Together these studies favor 

a model by which ATIP3 regulates the localization of active Aurora kinase A during 

mitosis to limit Kif2A recruitment to the poles and control spindle length. 

The negative regulation of Kif2A accumulation at spindle poles during metaphase is 

essential to prevent excessive depolymerization of microtubule minus ends that may 

lead to mitotic abnormalities. Besides ATIP3, other negative regulators of the 

Dda3/Kif2A complex have been reported. Mdp3 (microtubule-associated protein 7 

domain-containing 3) forms a complex with Dda3 and Kif2A in mitosis and 

counteracts Dda3-mediated Kif2A recruitment to the pole [39]. Another Dda3 

partner, the E3 ubiquitin ligase ASB7 (Cullin 5–interacting suppressor of cytokine 

signaling box 7) was shown to degrade Dda3 through the ubiquitin-proteasome 

degradation pathway, thereby reducing Kif2A recruitment to the pole [40]. Our data 

reveal a novel mechanism for negative regulation of Kif2A/Dda3 complex 

recruitment to the poles, which involves Aurora kinase A and its reciprocal regulation 

with ATIP3. Of note, ATIP3 weakly interacts with Aurora A and its amino acid 
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sequence presents several potential Aurora A phosphorylation sites, raising the 

possibility that ATIP3 may also be a substrate of Aurora A. TPX2, a well-known 

substrate and regulator of Aurora A, also interacts with Kif2A [13] and TPX2 

phosphorylation by Aurora A contributes to the regulation of poleward microtubule 

flux and spindle size [13, 22]. Future studies should investigate potential 

involvement of TPX2 in the ATIP3 phenotype. 

In conclusion, results presented here provide the first evidence for the role of Aurora 

kinase A in the formation of a molecular complex comprising ATIP3, Kif2A and 

Dda3, highlighting the pivotal role of ATIP3 and Aurora A kinase cross-regulation on 

spindle length. This study extends our knowledge on the control of the mitotic 

spindle size in metaphase.  
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Legend to Figure 1: ATIP3 interacts with Kif2A 

A. Immunoblotting with anti-ATIP3 (MTUS1) antibodies shows silencing efficiency 

of two different ATIP3-specific siRNAs (siA#1 and siA#2) transfected in HeLa cells. 

Blots were reprobed with anti-vinculin antibodies for internal control. 

B. Immunofluorescence imaging of HeLa cells transfected with control (siC), and 

two different ATIP3-specific siRNAs (siA#1 and siA#2) as indicated. Cells were 

stained with anti-pericentrin (red), anti-alpha-tubulin (gray) antibodies and DAPI 

(blue). Scale bar, 10 µm. Pole-to pole distance (white arrow) was measured by 

drawing a line with ImageJ software between the two poles stained with pericentrin. 

Right panel shows quantification of spindle length in metaphase. Number of cells 

analyzed is under brackets. ***p<0.001. 

C. Volcano plot showing distribution of the 9 proteins related to the microtubule 

cytoskeleton and/or mitosis present in GFP-ATIP3 compared with GFP and 

identified by mass spectrometry. x axis = log2(fold-change), y axis = - log10(p-

value). Position of the ATIP3 partner Kif2A is indicated in red. 

D. MCF-7 cells were transfected with GFP-ATIP3 or GFP and immunoprecipitation 

was performed using anti-GFP antibodies. Western blots were probed with anti-

Kif2A, anti-Kif2B and anti-GFP antibodies to reveal Kif2A, Kif2B, GFP-ATIP3 and 

GFP. A red asterisk indicates a non-specific band. 

E. HeLa cells were transfected with Kif2A-GFP or GFP and immunoprecipitation 

was performed using anti-GFP antibodies. Western blots were probed with anti-

ATIP3 (MTUS1) and anti-GFP antibodies to reveal ATIP3, Kif2A-GFP and GFP. 

F. Schematic representation of the ATIP3 protein sequence illustrating the position 

of D1, D2 and D3 regions and ATIP3 deletion mutants, and their ability (+) or not (-

) to bind Kif2A. Kif2A-binding regions are in red. CC: coiled coil region. Amino acid 

numbering is from accession number NP_001001924. Right panel: 
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immunoprecipitation assay of MCF-7 cell lysates expressing GFP, GFP-ATIP3 or 

GFP-fused D1, D2, D3 regions. Blots were probed with anti-Kif2A and anti-GFP 

antibodies. A red asterisk indicates non-specific band corresponding to cleavage 

product of GFP-D2. A black asterisk indicates the position of GFP-D1 at the same 

size as endogenous Kif2A revealed in previous blotting. 

G. MCF-7 cells were transfected with GFP-D2 fragments (left panel) or GFP-ATIP3 

deletion mutants (right panel) and immunoprecipitation was performed using anti-

GFP antibodies. Blots were probed as in F. Red asterisk indicates a non-specific 

band.  
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Legend to Figure 2: ATIP3 regulates Kif2A recruitment to spindle poles 

A. Immunofluorescence imaging of HeLa cells transfected for 48h with control (siC) 

or ATIP3-specific (siA) siRNA as indicated, then for 24h with GFP, GFP-ATIP3, or 

ATIP3 deletion mutants (GFP-delCN and GFP-delCN2) as indicated. Cells were 

stained with anti-GFP (green) and anti-pericentrin (red) antibodies and DAPI (blue). 

Scale bar, 10µm. Spindle length was measured as in Figure 1B. Right panel shows 

quantification of spindle length in metaphase HeLa cells. Number of cells analyzed 

is under brackets.  ***p<0.001, ns: not significant. 

B. Left panel: Immunoblotting of HeLa cell lysates following transfection with control 

(siC) or ATIP3-specific (siA) siRNA as indicated. Blots were probed with anti-MTUS1 

(ATIP3), anti-Kif2A and anti-tubulin antibodies. Middle panel: Immunofluorescence 

imaging of HeLa cells transfected with control (siC) or ATIP3- specific (siA) siRNA 

as indicated. Cells were fixed and stained with anti-Kif2A (green) antibodies and 

DAPI (blue). Scale bar, 10µm. Kif2A fluorescence intensity was measured by 

drawing a line with ImageJ software between the two poles and the maximum 

intensity values at the poles were collected and normalized to the intensity of 

gamma-tubulin. Right panel: Quantification of Kif2A intensity in metaphase HeLa 

cells. Number of poles analyzed is under brackets. ***p<0.001. 

C. Immunofluorescence imaging of Hela cells transfected with control or ATIP3-

specific siRNA for 48h, then were transfected for 24h with GFP or GFP-ATIP3, fixed 

and stained with anti-Kif2A (red) and anti-GFP (green) antibodies and DAPI (blue). 

Scale bar, 10 µm. Right panel shows quantifications of Kif2A intensity at poles in 

metaphase HeLa cells. Number of poles analyzed is under brackets. ***p<0.001. 

D. Immunofluorescence imaging of HeLa cells transfected with control (siC), ATIP3-

specific (siA) and/or Kif2A-specific (siK) siRNA as indicated, and stained as in (B). 

Scale bar, 10µm. Middle panel: Spindle length (pole-to-pole distance) was 
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measured as in Figure 1B. Number of metaphase cells analyzed is under brackets. 

Right panel: Quantification of Kif2A intensity in metaphase HeLa cells as in 2B. 

Number of poles analyzed is under brackets. *p<0.05, **p<0.01, ***p<0.001. 

E. Upper left panel: Representative fluorescence images of U2OS-mEOS-tubulin 

cells in late prometaphase/metaphase transfected with control (siC) and ATIP3 (siA) 

siRNAs. Images were captured before (pre) and after photo-conversion of mEOS-

tubulin. Microtubule flux was measured by photoconversion of line-like regions from 

both half-spindles in mEos-tubulin cells and tracking of photoconverted mEOS-

tubulin over a time interval of 3 min. Scale bar, 10 μm; time, min:sec. Lower left 

panel: Representative sum-projected kymographs of photoactivated regions used 

for quantification of flux rates in control (siC) and ATIP3-depleted (siA) cells. Red 

dashed line indicates the slope of mEOS tubulin translocation over time. Scale bar, 

30 sec. Upper right panel: Quantification of microtubule flux in control versus ATIP3-

depleted cells. Number of cells analyzed is under brackets. ***p<0.001. Lower right 

panel: Immunoblotting-based validation of ATIP3 siRNA efficiency. 
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Legend to Figure 3: ATIP3-Kif2A interaction involves Dda3 

A. Left panel: Representative spinning-disk confocal live-cell images of HeLa cells 

in metaphase, expressing Kif2A-GFP and co-stained with SiR-DNA. Red circle 

indicates the bleaching area used for fluorescence recovery after photobleaching 

(FRAP). Scale bar, 5 µm. Time shown in seconds. Right panel: FRAP data points 

represent means obtained from 28 control cells (siC) and 21 siATIP3-transfected 

cells (siA), collected from 3 independent experiments. The mean values of double 

normalized pixel intensities were plotted as a function of time and single exponential 

curves were fitted (R2>0.99). Kif2A-GFP fluorescence was recovered to 89% in 

control cells and to 86% in siATIP3-transfected cells. The half-lives of Kif2A-GFP 

fluorescence recovery were calculated for control (11.62 s) and siATIP3-transfected 

cells (11.6 s). Error bars represent standard deviation. Representative 

immunoblotting data obtained from the indicated total cell extracts used in FRAP 

experiment is shown below the curves. 

B. Left panel: HeLa cells were transfected with control (siC), ATIP3-specific (siA) 

and/or Dda3-specific (siD) siRNA as indicated and analyzed by immunoblotting with 

anti-MTUS1 (ATIP3), anti-Kif2A and anti-Dda3 antibodies. Middle panel: 

Immunofluorescence imaging of HeLa cells transfected as in left panel, then fixed 

and stained with anti-Kif2A (green) antibodies and DAPI (blue). Scale bar, 10µm. 

Right panel: Quantification of Kif2A fluorescence intensity at the poles as in Figure 

2B and quantification of spindle length as in Figure 1B. Number of poles (for Kif2A 

staining) and cells (for spindle measurement) analyzed is under brackets. **p<0.01, 

***p<0.001. 

C. Immunofluorescence imaging of HeLa cells transfected with control (siC) or 

ATIP3-specific (siA) siRNA, then fixed and stained with anti-Dda3 antibodies 

(magenta) and DAPI (blue). Scale bar, 10µm. Dda3 fluorescence intensity at the 
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poles was measured using ImageJ software. Lower panel: Quantification of maximal 

Dda3 intensity in metaphase HeLa cells. Number of poles analyzed is under 

brackets. ***p<0.001. 

D. Immunofluorescence imaging of MCF-7 cells stably expressing GFP or GFP-

ATIP3 as indicated. Cells were fixed and stained with anti-GFP (green), anti-Dda3 

(magenta) antibodies and DAPI (blue). Scale bar, 10µm. Lower panel: Dda3 

fluorescence intensity at the poles was analyzed and quantified as in (C). Number 

of poles analyzed is under brackets. *p<0.05.  

E. MCF-7 cells were transfected with GFP-ATIP3 or GFP and immunoprecipitation 

was performed using anti-GFP magnetic beads. Western blots were probed with 

anti-Dda3 and anti-GFP antibodies 

F. MCF-7 cells were transfected for 24h with GFP-ATIP3 or GFP after transfection 

for 48h with control (siC), Kif2A-specific (siK) or Dda3-specific (siD) siRNA, and 

immunoprecipitation was performed using anti-GFP magnetic beads. Western blots 

were probed with anti-Kif2A, anti-Dda3 and anti-GFP antibodies. A red asterisk 

indicates a non-specific band. 

G. MCF-7 cells were transfected with GFP-ATIP3 or GFP and left asynchronous 

(AS) or synchronized in mitosis (M). Immunoprecipitation was performed using anti-

GFP antibodies. Blots were probed with anti-Dda3, anti-Kif2A, anti-GFP and anti-

PhosphoH3 antibodies. Red asterisks indicate cleavage products of GFP-ATIP3. 
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Legend to Figure 4: Aurora kinase A plays a pivotal role in the ATIP3 phenotype 

A. MCF-7 cells were transfected with GFP-ATIP3 or GFP, then treated with 500nM 

MLN8054 (MLN) (s1100, Selleckchem) or vehicle (NT) for 30 minutes at 37°C, and 

immunoprecipitation was performed using anti-GFP antibodies. Blots were probed 

with anti-GFP antibodies and anti-Kif2A (left panel) or anti-Dda3 (right panel) 

antibodies. A red asterisk indicates a non-specific band. 

B. Left panel: HeLa cells were transfected with control (siC) or ATIP3-specific (siA) 

siRNA as indicated. Immunoblotting was performed using anti-MTUS1 (ATIP3), anti-

Aurora kinase A (AurA) and anti-tubulin antibodies, and indicates that ATIP3-

silencing does not modify total expression levels of Aurora A. Middle panel: cells 

were fixed and stained with anti-Aurora A (AurA, red), anti-phospho-Aurora A (P-

AurA, green) antibodies and DAPI (blue). Scale bar, 10µm. Right panels: 

Quantification of the area occupied by total Aurora A fluorescence on spindles and 

poles, measured with ImageJ software. Phospho-Aurora A maximal fluorescence 

intensity at the poles was measured and quantified as in 2B. Number of poles 

analyzed is under brackets. ***p<0.001. 

C. Immunofluorescence imaging of HeLa cells transfected with control (siC) or 

ATIP3- specific (siA) siRNA for 48h and then with GFP, GFP-AurA or GFP-AurA-KD 

constructs for 24h as indicated. Cells were fixed and stained with anti-GFP (green), 

anti-pericentrin (red) antibodies and DAPI (blue). Note that all GFP-fusion constructs 

are expressed at similar levels. Right panel: Quantification of pole-to-pole distance. 

Number of cells analyzed is under brackets. *p<0.05, ***p<0.001. 

D. Immunofluorescence imaging of HeLa cells transfected as in 4C, then fixed and 

stained with anti-Kif2A (red) antibody and DAPI (blue). Right panel: Quantification 

of Kif2A intensity at poles. Number of poles analyzed is under brackets. **p<0.01, 

***p<0.001, ns: not significant. 
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Table 1: ATIP3 interacting partners related to microtubule cytoskeleton and/or mitosis 

MCF-7 cells were transfected with GFP or GFP-ATIP3 and cell lysates were precipitated using GFP-trap 

magnetic agarose beads. Proteins retained in immunocomplexes were analyzed by quantitative label-free 

mass spectrometry analysis performed on four replicates. Shown are the fold changes of 9 proteins 

related to microtubules and/or mitosis that were selected among 145 proteins quantified by label-free 

quantitative analysis of GFP-ATIP3 versus GFP according to absolute fold change ≥ 2, adjusted p-value 

of ratio significance ≤ 0.05 and more than 3 peptides. Proteins are listed by ratio order. 

 

Ratio Log2 p-value

MTUS1 400,563902 8,6458886 4,2716E-51 Microtubule-associated tumor suppressor 1

SDCCAG8 37,6347222 5,23399242 4,7636E-05 Serologically defined colon cancer antigen 8

TBCCD1 13,6959029 3,77567248 3,2558E-21 TBCC domain-containing protein 1

PCM1 4,92790341 2,30097398 6,9899E-19 Pericentriolar material 1 protein

KIF2A 4,86820741 2,28339063 8,1438E-22 Kinesin-like protein KIF2A

CENPB 3,58061441 1,84020717 1,35E-05 Major centromere autoantigen B

TUBB6 3,45212501 1,78748471 6,9563E-24 Tubulin beta-6 chain

TUBA4A 2,78607967 1,47823652 0,00032993 Tubulin alpha-4A chain

TUBB3 2,53211069 1,34034047 2,8227E-14 Tubulin beta-3 chain

CHAMP1 2,12271217 1,08590876 1,0626E-06 Chromosome alignment-maintaining phosphoprotein 1

Gene & Synonyms
ATIP3/GFP
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