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Abstract

The new accounting standards of CECL for the US and IFRS 9 else-
where require predictions of lifetime losses for loans. The use of roll rates,
state transition and ’vintage’ models has been proposed and indeed are
used by practitioners. The first two methods are relatively more accurate
for predictions of up to one year, because they include lagged delinquency
as a predictor, whereas ’vintage’ models are more accurate for predictions
for longer periods, but not short periods because they omit delinquency as
a predictor variable. In this paper we propose the use of survival models
that include lagged delinquency as a covariate and show, using a large
sample of 30 year mortgages, that the proposed method is more accurate
than any of the other three methods for both short-term and long-term
predictions of the probability of delinquency. We experiment extensively
to find the appropriate lagging structure for the delinquency term. The
results provide a new method to make lifetime loss predictions, as required
by CECL and IFRS 9 Stage 2.

Keywords: Cox Proportional Hazards Models; Discrete-time Survival
Models; Age-Period-Cohort Models

1 Introduction

IFRS9 is an international accounting standard that requires a lender to predict
the expected cash flow and hence any loss from a loan if the risk of its default
changes. All large banks were required to implement this regulation from Jan-
uary 2018. CECL is a similar regulation applicable to lenders of all sizes in
the US. Between them they apply to all large banks globally. Whilst there is
a large literature on the the accounting principles underlying these regulations
there are few papers that address the appropriate modelling techniques to use
and lenders have found the modelling of such losses challenging. The aim of this
paper is to propose a new method to model expected losses over the lifetime of
an account which will yield more accurate predictions of losses than established
methods and that will enable the analyst to make predictions both in the short-
term, that we define as over a 12-month horizon, and over a longer-term. The
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method also gives point in time estimates, as required by IFRS 9 and useful in
CECL.

Finalised in 2014, IFRS 9 makes requirements according to whether or not
a loan experiences a significant increase in the risk of default since initial recog-
nition. For a non credit impaired loan, forecasts of expected losses over the
ensuing 12 months are required. If there has been, or is expected to be a signifi-
cant increase in credit risk after the first 12 months, then the bank must predict
the lifetime expected credit losses for each account with interest computed on
a gross basis. This is known as a Stage 2 credit loss forecast. If there is a credit
impairment then expected lifetime credit losses must be computed and interest
treated on a net basis. In each case expected losses are to be computed as the
probability of default in a month multiplied by the cash shortfalls in the event
of default. Expected losses in each month in the future are to be discounted.
CECL was implemented in the US in 2016 and required a lifetime expected loss
to be computed for all loan accounts without use of stages.

Accurate prediction of expected losses from a loan portfolio is a vitally im-
portant challenge faced by lenders. The expected losses determine the provisions
that each lender needs to charge borrowers and to retain as a form of capital to
protect depositors in the event of the lender becoming bankrupt. So accurate
prediction impacts borrowers in terms of the interest rates they are charged. It
is also important for depositors who receive some degree of protection, and it
impacts shareholders whose return on equity may be reduced if greater provi-
sions are retained as accrued profits. Clearly banks wish to compute the most
appropriate amount of provisions given the riskiness of the loans but not an
excessive amount that unnecessarily reduces the ability of the lender to make
loans.

One can consider models that may be used to predict losses for a portfolio
as a whole, by segments of a portfolio, or at the level of an individual account.
In the first case the literature discusses two methods to compute expected losses
of a loan portfolio in the event that the credit risk increases (see for example
Brunel et al 2016 [10] or Siddiqi 2006 [27]). One method is to use roll rates. A
roll rate may be computed in terms of balances in which case it is defined as
the aggregate value of balances outstanding in a state of delinquency at time
t divided by the balance in the immediately lower delinquency state in the
previous time period. It is computed for each number of months delinquent.
The lifetime loss for the portfolio is then defined as the sum of the balances
that reach a default state, such as six months delinquent, where the latter is
the balance at the end of the previous period of accounts that are 5 payments
behind times the roll rate from the state of being 5 behind to 6 behind.

Various authors have noted (Brunel et al 2016 [10] McPhail and McPhail
(2014) [23] that roll rates traditionally assume past rates remain valid into the
future, or they may be forecast using an ARIMA model, but they do not include
any explanatory factors that may allow their value in the future to be predicted
in a systematic way if such predictors change. However, best practice at financial
institutions often model the time series of the roll rates with transformations of
macroeconomic factors. That approach was followed by Breeden 2018 [7] and is
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followed here. Still roll rates do not capture fluctuations due to changes in the
credit quality of the loans originated or the maturing of loans from origination.

A second portfolio method is the so called ’vintage’ or ’Age-Period Cohort’
model [31, 22]. In this approach aggregate default rates are decomposed into
the influence of the time a group of loans was started (originated), the time
since the loan has been opened (age or duration time) and factors that influence
the probability of default and that vary over time like macroeconomic factors
(see Glenn 2005 [15], Breeden 2010 [6], and McPhail 2014 [23].

Turning to account level models one may consider a state transition model.
Here the probability that an account transits from one state of delinquency to
another is predicted. The expected lifetime loss can be computed as the prob-
ability of default weighted by possible loss over the expected or defined life of
a loan. There are several methodologies for making these predictions. In one,
the probability that an account will transit from being in one specific state, j,
to another, k, between time t and t + 1 is estimated using a cumulative pos-
terior probability model in terms of the value of the state the account is in
in previous periods, lagged macroeconomic variables and the lagged age of the
loan. In this approach the regression coefficients are specific to the state of the
account at t and assumed to be the same no matter which destination state the
account transits to (see for example Malik and Thomas 2012 [21]). Published
studies (Malik and Thomas [21]) using this approach use a behavioural score
as the state indicator, which has been estimated from some other model. This
may be problematic if what the analyst is after is a state in terms of days past
due because the behavioural scoring model may not be accurate and because
a behavioural score does not translate directly into a delinquency state. The
model of Malik and Thomas also omits covariates presumably because in some
way they are included in the behavioural model, but it means one cannot pre-
dict transition probabilities for new cases without having the behavioural model
score in previous periods. There may also be estimation issues. The model im-
plicitly relates the transition probabilities to a set of covariates in a behavioural
model, but the final model is estimated in two stage models with errors at both
stages, yet the error distribution of the implicit model has not been specified.

A second method is to estimate a multistate intensity model where the prob-
ability of transiting between state j and k is specified as a hazard model where
the set of regression parameters is specific to the transition rather than to the
initial state. This approach is followed by Lando and Skodaberg 2002 [18] for
corporates and by Leow and Crook (2014) [20] and Djeundje and Crook (2018)
[13]. The latter included a frailty parameterisation and macroeconomic variables
as well application and behavioural variables. These models enable probabilities
of cure as well as advanced delinquency. Published applications of this method-
ology to credit risk have defined states in terms of days past due and estimated
the coefficients in one step.

A multistate intensity model would enable an analyst to predict losses arising
from each transition into each sate, for example when a payment is missed but
the account does not default. But from a practitioner pint of view such models
are relatively complex and a simpler method that still enables the prediction
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of losses in each month in the life of a loan may suffice. Hazard models of
the probability that an account will move into the default state in the next
month, given that it has not done so before is an example of such a method.
There is a rapidly growing literature on the application of survival models to the
probability of credit default. Again there are several approaches. One is to use
application,and lagged bahavioural and macroeconomic variables as predictors.
Recent literature for retail credit default includes Banasik et al (1999) [1] and
Stepanova and Thomas (2002) [28] (both omit macroeconomic variables) and
Bellotti and Crook (2009, 2012, 2013) [5] [4] [3] and Djeundje and Crook (2018)
[13] that include macroeconomic variables.

Empirical evidence and practitioner experience of using the roll rate and
transition probabilities approaches is that they are relatively accurate when
predicting over 12 months but less accurate when predicting over longer time
horizons (see for example FDIC 2007 and McPhail and McPhail 2014). Vintage
models such as age-period-cohort models are accurate for aggregate forecasting
over long horizons, but can be quite inaccurate in the beginning as they do not
consider account-level details such as delinquency. When predicting losses for
IFRS9 and CECL, some accounts will have only a short remaining duration
while others require a long forecast horizon. Therefore, we need model accuracy
over both short and long forecast horizons.

In this paper we propose a variant of the hazard model approach that is
more accurate than either roll-rates or transition models over both the short
term and as good as vintage models for long term forecasts. Such predictions
are necessary across all loan types. We parameterise the model using a combined
Fannie Mae and Freddie Mac conforming mortgage portfolio and demonstrate
its relative accuracy in comparison to roll rate, vintage, and state transition
models. Thirty-year term, fixed interest rate mortgages were selected for the
test, because they are an important asset class and a worst-case for loss reserves
under CECL. The data provides loan-level performance detail with commonly
considered origination and behavioural factors.

This paper makes the following contributions to the literature. First we
present a new variant of a hazard model to predict the probability of default in
each month of the life of an account. Our innovation is to include a thorough
investigation of the role of past delinquency of various degrees as a predictor.
Second our proposed model is tested on a large sample of 30 year conforming
mortgage accounts. Third our tests show that our proposed model makes more
accurate predictions than either roll rate methods or a state transition method
using scoring and macroeconomic factors. Fourth we show that this is because
of the enhancement of predictive power of lagged delinquency terms and we
show that the marginal effects of lagged delinquency varies systematically with
the lag, in the same way, for each type of delinquency.

Our paper is structured as follows. Following this Introduction we explain
the model. Section three describes the application date and the fourth section
presents the results of this application. In sections five and six we compare
the predictive accuracy of the model to roll rate, vintage and state transition
models. the final section concludes.
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2 Model Description

The model development begins with concepts from Age-Period-Cohort (APC)
models [25, 22, 15], where loan performance can be described as a combination
of three functions. This is a panel model with time varying variables. One
function is loan repayment performance as a function of age of the loan, F (ai)
where a denotes age of a loan. This represents a lifecycle pattern of performance
over the life of a loan. A second function represents performance as a function
of origination date, G(vi) where vi is the origination date for account i. Loans
originating around a similar date, would be expected to have been of a similar
maximum level of risk and a pool of such loans to be of similar risk composition.
This relationship is often referred to as a ’vintage’ effect. The third function
represents performance as a function of calendar date, H(ti) where ti denotes
calendar time for account i . This relationship relates performance to exogenous
factors such as macroeconomic conditions. The functions can be parameterised
in many ways, but the most general form is to use a set of dummy variables, one
for each value of the relevant time variable. Each dummy variable is represented
as δ(u) where

δ(u) =

{
1, if ui = age ai or vintage vi or ti
0, otherwise

(1)

and i denotes case i.

F (a) =
∑
a

αaδ(a) (2)

G(v) =
∑
v

βvδ(v) (3)

H(t) =
∑
t

γtδ(t) (4)

The complete model can then be written as

Def(i, a, v, t) ∼ F (ai) +H(ti) +G(vi) (5)

where Def(i, a, v, t) = 1 if account i defaults and 0 if it does not.
The coefficients αa, βv, and γt need to be estimated. Because only one

overall intercept term may be estimated, the estimates are constrained so that∑
v

βvδ(v) =
∑
t

γtδ(t) = 0. (6)

Because of the relationship t = v+a, an assumption must be made about how to
remove the linear specification error. Consistent with earlier work (see Appendix
in Breeden and Canals-Cerdá [8]), this is accomplished using an orthogonal
projection onto the space of functions that are orthogonal to all linear functions.
The coefficients obtained are then transformed back to the original specification.
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Traditional APC or Bayesian APC estimators [26] process vintage aggregate
data. But in the current work we are interested in a loan-level estimator.

Default is modelled conditioned on the account not having previously closed.
Any account closure that is not a default is called attrition or prepayment. To
capture this effect, a parallel equation for modeling atttrition is employed.

Att(i, a, v, t) ∼ F att(ai) +Hatt(ti) +Gatt(vi) (7)

Although the structure is the same as for the default model, the functions
F att(a), Gatt(v), and Hatt(a) will be different, because the drivers of attrition
performance will be different from those for default.

By using dummy variables for vintage in the APC formulation, the model
can measure credit risk but not explain it. Therefore, to enhance the usefulness
of the model and to better predict default, information collected at the time of
application is added to the formulation.

Def(i, a, v, t) ∼ F (a) +H(t) +
∑
j

cjsij +
∑
v

βv
′δ(v) (8)

where sij are the available attributes at origination for account i. Such at-
tributes include origination FICO score and origination loan-to-value (LTV),
for example. The cj are the coefficients to be estimated. Vintage dummies are
still included, but with new coefficients βv

′ such that for a given v,

G(vi) =
∑
v

βviδ(vi) =
∑
j,i∈v

cjsij +
∑
v

βv
′δ(vi) (9)

This approach was used to study root causes of the 2009 US Mortgage Crisis
[8]

We know from the work by Holford [16] that once the constant and linear
terms are appropriately incorporated, the nonlinear structure for F , G, and H
is uniquely estimable. The treatment of the constant and linear terms described
above satisfy this condition, meaning that the vintage aggregate structure G(v)
must be equivalent to the aggregate credit risk for the accounts i in that vintage,
as shown in Eq. 9. Said differently, the estimates of F (a) and H(t) do not change
with the loan-level attribution of credit risk in Eq. 8. Of course, Eq. 8 will be
more accurate at the account level than Eq. 5 that only has a vintage level credit
risk measure.

Note that this loan-level version of an APC model is identical to a discrete
time survival model where a dummy variable is used for each value of age and
time. Therefore, the same parameter estimator is used here as for a discrete
time survival model. Notice also that this discrete time survival model is just
a panel model with age and time factors added beside the usual explanatory
factors.

To achieve the short term accuracy of roll rate and state transition models,
we need to incorporate delinquency in the model. This creates complications in
any APC or survival model structure, because delinquency is also a function of
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the age of the account and the economic and portfolio management environment
and therefore correlated to F and H that appear in Eqs. 5 & 8. Eq. 10 provides
the general structure including delinquency.

Def(i, a, v, t) ∼ F (ai)+H(ti)+
∑
j

cjsij +
∑
k

dkD
k
i (t− L) +

∑
v

βv
′′δ(v) (10)

where Dk
i (t−L) are again indicator variables, one for each possible delinquency

state leading up to default.
If all parameters in Eq. 10 are estimated simultaneously, F and H will likely

change from the values in Equation 8 because of the multicolinearity with the
dkD

k
i (t − L). An alternative that will be explored here is to constrain the

estimation of the dk such that F and H are retained from the estimate in Eq. 5.
The result would be that

G(vi) =
∑
v

βvδ(vi) =
∑
j,i∈v

cjsij +
∑
k

dkD
k
i (t− L) +

∑
v

βv
′′δ(vi) (11)

Whenever time-varying predictive factors are used, referred to in the lending
industry as behavioral factors, one faces the question of how to extrapolate those
factors. The question becomes acute in lifetime loss forecasting where long range
extrapolations would be required. However, forecasting the delinquency factors
above is comparable in difficulty to forecasting default. Since the primary drivers
of future delinquency would again be some measure of age and time effects, little
new information is gained beyond that already available in the default equation.

Therefore, the current approach is to create a set of models using the struc-
ture of Eq. 10, each with different lags on the behavioral factors. If a model
uses only behavioral factors with lags as small as L, then that model can be
used to forecast L steps into the future without the need to forecast the input
factors. Thus, if we have a set of N models, one each for L ≤ l for l ∈ [1, N ],
then a full set of forecasts out to N periods into the future can be created with-
out forecasting the input factors. The hope is that as N becomes large, the
coefficients cj and dk approach limiting values such that forecasts can continue
to be generated for forecast horizons greater than N , again without forecasting
the input factors.

If we define the model by the minimum allowed lag for the behavioral factors,

DefL(i, a, v, t) = F (ai)+H(ti)+
∑
j

cjsij+
∑
v

βv
′δ(vi)+

∑
k

dkD
k
i (t− L), (12)

then forecasts are generated from age a0 and time t0 as

Def(i, a0 + L, v, t0 + L) = ML(i, a0, v, t0). (13)

DefL is a kind of discrete time survival model [11, 3, 30], one such model for
each forecast horizon (value of L).
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A parallel approach is used for modeling account attrition / pay-off. To
get to charge-off balance, additional models of exposure at default (EAD) and
loss given default (LGD) would be required. Those are not considered here,
since they are independent questions potentially requiring different modeling
techniques.

3 Data

3.1 Mortgage Data

Data was obtained from Fannie Mae and Freddie Mac for 30-year, fixed-rate,
conforming mortgages. The data contained de-identified, account-level infor-
mation on balance, delinquency status, payments, pay-off, origination (vintage)
date, origination score, postal code, loan to value, debt to income, number of
borrowers, property type, and loan purpose. Risk grade segmentation was de-
fined such that Subprime is less than 660 FICO, Prime is 660 to less than 780,
and Superprime is 780 and above.

The data in this study represents more than $2 trillion of conforming mort-
gages. The data made available by Fannie Mae and Freddie Mac is a large share
of their respective portfolios, but not the entirety. Figure 1 shows the historic
default rate aggregated by annual vintage.

3.2 Macroeconomic Data

As part of the government’s implementation of the Dodd-Frank Stress Test
Act (DFAST), the Federal Reserve Board regularly releases Base, Adverse, and
Severe scenarios for a set of macroeconomic factors. Since these factors and
scenarios have become industry standards, this study has focused on the use of
these factors for incorporating macroeconomic sensitivity. For mortgage model-
ing, the most interesting are real gross domestic product (GDP), real disposable
income growth, unemployment rate, CPI, mortgage interest rate, house price
index, and the Dow Jones stock market index (DJIA).

4 Model Estimation

Model estimation occurs in three stages. The first step is to apply an APC
decomposition to estimate the lifecycle, environment, and vintage quality func-
tions. During that stage, methods such as described in Breeden & Thomas [9]
may be applied to achieve linear trend stability. The second step is to include
those lifecycle and environment functions into Equation 12, and estimate Equa-
tion 12 as a logistic regression, one estimation for each forecast horizon, L. The
third step is to estimate a time series model of the environment function using
macroeconomic factors.
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Figure 1: A plot of probability of default (PD) for the training data by annual
vintage.
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4.1 APC Decomposition

A Bayesian APC algorithm was used to estimate the functions in equation 5.
The estimated PD lifecycle versus age of the account, F (a), is shown in Figure 2.
The estimated relationship between PD and vintage is shown in Figure 3. The
estimated relationship between PD and calendar date, H(t) is shown in Figure 4.
In all three figures the functions are segmented by credit quality: subprime,
prime or superprime.
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Figure 2: The estimated lifecycle PD function versus age of the account esti-
mated for Equation 5 segmented by origination score.

The lifecycles include the overall constant term for the analysis and are
transformed to probability of default per month so that they may be under-
stood more intuitively than on a log-odds scale. They show that the PD of
the subprime segment rises faster relative to account age and to a higher level
compared to the PD of the superprime segment that rises gradually and always
at a much lower level.

The PD vintage functions in Figure 3 are mean-zero and on a log-odds scale.
They show that the credit cycle was most severe for the superprime segment.
Proportionally, the 2006 - 2008 vintages were worst for superprime even though
loss amounts were smaller than for subprime. After 2010 the estimates for each
vintage are much more volatile, because those vintages have far fewer cases.

The PD calendar time functions in Figure 4, also on a log-odds scale, show
that the macroeconomic impacts were nearly equivalent across all risk bands on
a proportional basis. Since these risk bands are all for conforming mortgages,
they do not include the most extreme non-conforming loans. Differences may
arise when taken to those extremes.



11

−1

0

1

2

2000 2005 2010 2015

Vintage

Vi
nt

ag
e 

Fu
nc

tio
ns

, C
ha

ng
e 

in
 L

og
−o

dd
s

Subprime Prime Superprime

Figure 3: The credit quality function versus vintage estimated for Equation 5
segmented by origination score.
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Figure 4: The environment function versus calendar date estimated for Equa-
tion 5 segmented by origination score.
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4.2 Loan-level Coefficients

The discrete time survival model represented by equation 12 was estimated
separately for each credit risk segment and each forecast horizon. Through
testing, the model coefficients were found to stabilize by horizon 12, so no further
coefficients were estimated. The coefficients for horizon 12 were applied to all
horizons greater than 12.

A separate model was created to predict at the time of origination that
did not include any behavioral factors such as delinquency since no values of
behavioural factors exist in the first few months after account opening. The
origination model was applied to all accounts less than 6 months on book at the
start of the forecast.

The estimation of equation 12 takes the estimated parameters for the life-
cycle function, F (a), and the environment function, H(t), as fixed , so the
coefficients cj , dk, and β′′v are estimated to replace the vintage effects in the
PD model. The result is a set of estimations, one for each value of L and risk
segment. Vintage dummies, β′′v , are included as possible explanatory factors in
order to capture adverse selection or consumer risk appetite as was observed by
Breeden & Canals-Cerda [8].

Figures 5 and 6 graph the coefficients dk and cj respectively, one for each
lag and credit quality. Although estimated independently, Figures 5 by risk
grade show nearly identical structure. Each line is the probability of default
with forecast horizon for accounts in a certain delinquency state at the start of
the forecast. Default is either contractual default at 6 months delinquency or
caused by non-contractual reasons such as bankruptcy, fraud, or deceased.

Because the coefficients are functions of the forecast horizon, the importance
to the forecast depends upon how far into the future one is trying predict.
Figure 5 is a good example of this.

When trying to predict one month forward, severe delinquency is the strongest
predictor of default. An account that is 2 months delinquent at the start of the
forecast has the greatest risk of default at horizon 4. For all delinquency states,
the predicted value declines dramatically beyond 6 months into the future, be-
cause delinquent accounts will most likely have either cured or defaulted by
then. In fact, the most severely delinquent accounts (5 months delinquent in
this analysis) are less likely to default at horizon 6 than a less delinquent ac-
count. Presumably, this is because any 5-month delinquent accounts that are
still active by 6 months into the future must have cured and therefore are not
such a severe default risk.

All of the delinquency coefficients are measured relative to non-delinquent
accounts, which are thus assigned a coefficient of 0. This means that any delin-
quent account is more risky than a non-delinquent account, but the relationship
for delinquent accounts is highly nonlinear. If only contractual default were con-
sidered, then the coefficients for all delinquency states would be 0 until enough
months had elapsed for the account to move from the current state to default,
defined as 6 months delinquent.

Figure 6 shows the coefficients for some of the other variables in the scores.
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(a) Subprime

(b) Prime

(c) Superprime

Figure 5: Coefficients predicting default probability by forecast horizon for each
delinquency state.
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Note that in the first few months of the forecast, the other candidate variables
make almost no contribution to the forecast – delinquency is everything. As the
predictive value of delinquency diminishes around horizon 6, the other factors
take over. By horizon 12, the coefficients have almost converged to the values
that appear in the origination score, meaning that for long-range forecasting,
origination information still dominates behavioral information. This is probably
not true for credit cards, for example, where the transactor / revolver distinction
is critical for the entire forecast.

The model is already segmented by FICO, so it does not appear directly in
the explanatory factors. Although tested, it was no longer significant beyond
the initial segmentation.

The importance of current delinquency decays rapidly with time. However,
as delinquency loses value, other measures such as loan to value ratio (LTV),
debt to income ratio (DTI), and number of borrowers take over. These coef-
ficients are shown in Figure 6. Unlike delinquency, the information content of
these three origination variables is stable for long horizons. The coefficients do
not return to the origination model values, because behavioral variables like
delinquency provide some information. The ability to adapt to the information
decay rate of each variable is what provides the combination of short-term and
long-term forecast accuracy.

In addition to the factors shown here, the PD models for subprime and
superprime also included origination balance. The model for prime included
origination balance, loan purpose, and occupancy status.

Figure 7 shows the coefficients for annual vintage dummy variables. Note
that the Superprime line is the most volatile, because the fewest number of de-
faults were available for the modeling. Overall, these agree with the results of a
previous study on consumer risk appetite [8], showing that the 2005-2008 vin-
tages had significant residual credit risk that was not captured by the available
scoring factors.

4.2.1 Model fit tests

Because the multihorizon model uses 12 separate regressions for the behavioral
model plus one for the origination model, the model fits and discrimination
tests of each model were measured separately. Figure 8 shows the coefficients
for pseudo-R2, defined as 1−Residual Deviance/Null Deviance. For short fore-
cast horizons, the pseudo-R2 is very high. It falls dramatically as delinquency
information decays and approaches the pseudo-R2 for the origination model as
the forecast horizon becomes large.

Discrimination ability was measured by the Gini coefficient, which was again
computed separately for each forecast horizon and the origination model, Fig-
ure 9. This shows that discrimination ability is strong through the first 6 months
of the forecast and then again descreases toward the origination values.
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(a) Subprime

(b) Prime

(c) Superprime

Figure 6: Coefficients predicting default probability by forecast horizon or orig-
ination score for some key predictive factors.
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Figure 7: Coefficients for the vintage dummies in the discrete time survival
model. The same coefficients were used for all forecast horizons.

Figure 8: Pseudo-R2 by forecast horizon.
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Figure 9: Gini discrimination tests for PD by forecast horizon and the origina-
tion model.

4.3 Macroeconomic modeling

The macroeconomic model was created as a time series model of the environment
functions in Figure 4 using transforms and lags of macroeconomic factors [9].
The macroeconomic model is used only to translate macroeconomic scenarios
into scenarios of the environment function. In the current context, the primary
purpose is to provide a fair comparison to alternative methods where all models
can be given the same input macroeconomic factors.

The transformations were optimized individually via an exhaustive search of
the lags and transform widths. The optimized transforms were then combined
in all possible combinations up to a maximum of five factors to find the one that
had the best adjusted R2 while still having the intuitively correct sign for the
factor and significant p-values using a Newey-West robust estimator [24]. Five
was considered to be a stopping point, since no five-factor models survived the
above constraints due to loss of significance.

The macroeconomic modeling was done concurrently with estimating sea-
sonal effects. The seasonality coefficients are shown in Figure 10 along with
confidence intervals. All of the other coefficients in the loan-level and macroe-
conomic analysis were tested to ensure that the p-values were significant. How-
ever for seasonality, the zero level was arbitrarily set to January, so the monthly
coefficients should not be tested separately for significance. Instead, it must be
viewed as a function to determine if the range of variation is significant relative
to the confidence intervals, which it is.

The macroeconomic models are summarized in Table 1. The factors are
listed along with the transformation used, lags applied, and the width of the
transformation. For example, House.Price.Index.LogRatio.L12.W24 in the sub-
prime model refers to the transformation in Equation 14
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Figure 10: Seasonality coefficients measured for each segment including the
standard errors.

House.Price.Index.LogRatio.L12.W24 ≡ log

(
HPI(t− 12)

HPI(t− 12− 24)

)
(14)

Although all the consumer-related factors in the DFAST scenarios were con-
sidered, the ones chosen through this automated process were intuitively obvi-
ous: unemployment rate (UR), house price index (HPI), and disposable personal
income (DPI). DPI and HPI were only considered with the log-ratio transforma-
tion demonstrated in Equation 14 in order to ensure stationarity. The proper
transformation of UR is not clear, because past studies have shown that both
levels and changes in UR can be predictive. In this case, both were tested but
moving averages were found to be optimal.

5 Alternate Approaches

To provide a means of comparison, several other standard models were estimated
on the same data set. For brevity, the full estimations for those models are
not shown, but a summary description is provided for each and the results
are included in the forecast comparisons. We wish to compare the predictive
accuracy of the multihorizon model with alternative methodologies.

5.1 Vintage models

The multihorizon survival model developed here can be viewed as an extension
of age-period-cohort (vintage) models. Therefore it is reasonable to ask what
would happen if the analysis stopped with aggregate vintage modeling instead
of going to loan level modeling.
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Subprime Coefficients Estimate Std. Error t value Pr(> |t|)
(Intercept) -0.90 0.17 -5.2 1.15E-06
Real.DPI.LogRatio.L1.W24 -0.67 0.40 -1.7 9.43E-02
UR.MovingAvg.L0.W1 0.16 0.03 5.8 5.90E-08
HPI.LogRatio.L12.W24 -0.39 0.11 -3.6 5.71E-04
Adj-R2 0.91

Prime Coefficients Estimate Std. Error t value Pr(> |t|)
(Intercept) -1.77 0.15 -11.8 ¡ 2.2e-16
UR.MovingAvg.L0.W2 0.27 0.02 12.4 ¡ 2.2e-16
Adj-R2 0.93

Superprime Coefficients Estimate Std. Error t value Pr(> |t|)
(Intercept) -1.94 0.38 -5.2 1.00E-06
UR.MovingAvg.L3.W2 0.28 0.05 6.0 2.17E-08
Adj-R2 0.90

Table 1: The macroeconomic models created for each segment.

The vintage models for probability of default and probability of attrition /
pay-off were used to predict the expected number of defaults each month for
each vintage. Balances were not modeled, since different models are often used
to model exposure at default and loss given default. The test here is only of the
probability of default and probability of attrition models.

The vintage model results shown below use the lifecycle and environment
from Figures 2-4, but re-estimate the vintage coefficients at the beginning of each
test period. This is only a partial out-of-sample test, because the training data
would be too short to create a stable estimate of the lifecycle and macroeconomic
model without at least one full economic cycle.

5.2 Roll Rate Models

Roll rate models are another aggregate modeling approach [14], and one that
has been in use in lending since at least the 1960s. Balance roll rates are the
most commonly used, because they are the most simple. However, to create a
fair comparison to the default account forecasts for the other models, account
roll rates are used here, defined as

Rk(t) =
Accountsk(t)

Accountsk−1(t− 1)
(15)

where k ∈ [1, 6] is the months delinquent, Accountsk(t) is the number of ac-
counts in delinquency k at calendar month t, and Rk(t) is the net roll rate.
R6 ≡ RD, which is the roll to default.



20

To capture account pay-offs, an additional payoff rate, Rp, is required.

Rp(t) =
PayoffAccounts(t)

Accounts0(t− 1)
(16)

These roll rates are modeled historically with macroeconomic factors using
the same kind of process described in Section 4.3, wherein the roll rate time se-
ries are modeled with transformations of the same macroeconomic factors listed
previously. Again, a grid search over possible lags and windows for the trans-
formations was used, and all models must satisfy criteria related to significance
and the sign of the relationship.

To create forecasts, the following equations were used.

Accounts0(t) = Accounts0(t− 1) ∗ (1−Rp(t) (17)

Accountsk(t) = Accountsk−1(t− 1) ∗Rk(t) (18)

The final lifetime loss is calculated by summing the default accounts until all
Accountsk reach 0. Note that in these formulas, no new accounts are included,
so Accounts0 should decrease with time.

5.3 State Transition models

State transition models [17, 2, 29, 19, 12] are the loan-level equivalent of roll
rate models. Rather than modeling aggregate movements between delinquency
states, the probability of transition is computed for each account. The states
considered are current (not delinquent), delinquent up to a maximum of five
months delinquent, default, and pay-off. Account transition probabilities are
modeled. For an account i in state j at time t, the transition probability to
state k ∈ [0...5, D, P ] is given as

pj→k(i, t) ∼ c0 +

n∑
l=1

clxl(i, t) (19)

Each transition with sufficient data was modeled with a separate logistic
regression to estimate coefficients cl for predictive factors xl(i, t). This includes
all state transitions pj→k for which k − j ∈ [2, 1, 0,−1], meaning two forward
transitions and one backward transition. Transitions to other states that were
too rare for modeling (k− j 6∈ [2, 1, 0,−1]) were included as constant probabili-
ties. Also modeled were all transitions pi→0, sj→D, and sj→P , where D and P
refer to default and prepayment. As noted before, default can occur from any
delinquency state because of bankruptcy, fraud, deceased, or abandonment.

The transition matrix is close to diagonal because monthly transitions are
being modeled. Transitions over longer periods, like quarters or years, would
cause a greater spread in the transition matrix.

The regression factors xl(i, t) in Equation 19 include macroeconomic fac-
tors such as for the roll rate models, measures of age of the account such as
(age, age2, sqrt(age), log(age)), and scoring factors such as FICO, LTV, etc.
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Factors with insignificant coefficients were removed following the same process
as in Section 4.2.

Although tested, measures of previous delinquency states were not predictive
for a given transition. Therefore, these models satisfied the Markov criterion
and forecasting was done via efficient matrix multiplies. When summed over
all accounts, expectation values in each state were produced. The forecasts are
run iteratively until all accounts either payoff or default.

6 Model Accuracy

The goal of the multihorizon survival model is to provide both near-term and
long-term accuracy. Therefore, instead of reporting a single cumulative error
over a forecast horizon, the accuracy was measured monthly for each forecast
horizon. Starting periods for the tests were scattered non-uniformly across the
data range to avoid synchronizing with seasonal effects. The test periods were
36 months each; 36 months was chosen as a maximum in order to maximize the
number of test periods.

Even through the performance data was available back to 2005, this time
period represents only one economic cycle. To properly test a model using
macroeconomic factors, an out-of-sample recession would be needed. Instead,
we acknowledged that we only have enough data to estimate the macroeconomic
models and lifecycles in-sample. The out-of-sample testing kept those macroe-
conomic correlations and lifecycles from the full time history, but re-estimated
all scoring coefficients using data only up to the start of each test period.

Figure 11 shows the median average absolute error across tests by forecast
horizon. Figure 12 shows the cumulative forecast error with forecast horizon.

For the first three months of the forecast, the roll rate, state transition, and
multihorizon DTS models outperform the vintage model. This is consistent
with industry observations. Since roll rate and state transition models focus on
delinquency and the results above show the importance of delinquency, this is
to be expected. The vintage model does not consider any current performance
information, so it is prone to near-term discontinuities.

However, in the long-term, the vintage model largely maintains its level of
accuracy due to its emphasis on the lifecycle effect. The roll rate and state tran-
sition models deteriorate substantially over the long-term, because delinquency
loses its predictive value. Since both models are one step ahead predictors, their
coefficients are optimized for the near-term use of delinquency and largely lose
sensitivity to other possible effects that would be useful in long-term forecasting.

The multihorizon survival model outperforms all models in the early months
and attains a long-run accuracy just above that of the vintage model. When the
cumulative errors are considered, the early advantages of including delinquency
give the multihorizon survival model an advantage over the vintage model.
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Figure 11: The average absolute forecast error is shown versus forecast horizon
for each model, averaged over all test periods.
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Figure 12: The absolute cumulative forecast error is shown versus forecast hori-
zon for each model, averaged over all test periods.
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7 Conclusions

The multihorizon survival model achieves it’s intended goal of being more ac-
curate than other models for short term forecasting and comparable to vintage
models for long term forecasting. Many organizations currently use two separate
models for short-term and long-term forecasting, so this provides a best-of-both-
worlds approach in a single modeling framework. This is particularly beneficial
in the context of IFRS 9 and CECL so that accurate loss reserves are created
that capture the best current information about the loans and the lifetime ex-
pectations.

In the process of estimating the multihorizon survival model, reviewing the
coefficients versus forecast horizon appears to explain this performance advan-
tage. For short horizons, the coefficients capture the extreme nonlinearity of
delinquency. For longer horizons, these coefficients capture the rate of decay of
information content across explanatory variables, generally replacing short term
predictors (delinquency) with long term predictors (LTV, DTI, etc.)]

Although originally designed to solve the lifetime loss forecasting problem
for IFRS 9 and CECL, this modeling technique provides advantages in many
other contexts. As a behavior score for account management or collections,
the forecasts can be aggregated over any desired horizon. Given an economic
scenario, the ”score” is immediately calibrated to a probability. Moving from
rank-order scores to probability estimates has immediate advantages across a
range of applications, such as loan pricing and cash flow estimates for existing
loans.
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