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Smart Distributed Energy Storage Controller (smartDESC)

F. Malandra1,∗, A.C. Kizilkale2, F. Sirois3, B. Sansò3, M.F. Anjos4,3, M. Bernier3, M. Gendreau3, R.P. Malhamé3

Abstract

While the storage properties and the anticipation potential of many classes of power system loads (such as thermal
loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent
manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any
large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It
builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures),
as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization
theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on
game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the
decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture,
together with an associated simulator and simulation results.

Abbreviations

AMI Advanced Metering Infrastructure

EWH Electric Water Heater

MF Mean Field

smartDESC Smart Distributed Energy Storage Controller

s-EWH smartDESC controlled EWH

t-EWH Thermostatically controlled EWH

1. Introduction

1.1. Motivations behind this work

Increasing the share of renewable energy sources in worldwide energy production is an unanimously recognized
objective. The main challenge in integrating most renewable energy sources, such as from sun, wind, and tides, in
power systems resides in their intermittent nature, as there is no guarantee that the power required by consumption
centres can be exclusively provided by such energy sources at any given time, unless large-scale energy storage
facilities can be made available to defer the use of renewable energy in time.

It is also well known that grid-scale energy storage for electric power is difficult to justify from an economic
standpoint. One approach to circumvent this difficulty is to use the existing storage potential in customer premises,
such as electric water heaters or even the energy stored in the thermal mass of buildings (from furnitures, walls,
etc.) [1]. Nevertheless, such an approach is not easily scalable as the number of storage sites to control grows very
quickly. Therefore, in order to maximise the potential of this storage, new types of control architectures must be
developed. The challenge is even harder if the storage management is required to be completely transparent in
terms of customer comfort.

The main objective of the smartDESC concept, summarized in this paper, is precisely to fulfil this emerging
need of a distributed storage mechanism to i) increase the penetration of energy from renewable sources, and ii)
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smooth power consumption peaks that are particularly difficult to manage by the power operator. smartDESC is
based on a decentralized control scheme that can be scaled up to millions of controlled loads with minimal customer
discomfort, and without overloading the telecommunication infrastructure, as commonly happens with centralized
controllers.

1.2. Background

Since the 1970s, direct control of consumers’ load, usually called “demand response”, has been considered a
tool to shape the global electric consumption profile in power systems to achieve peak load shaving and valley
filling [2, 3]. Such measures allow deferring installation of new generation equipment and using generators near
their most efficient operating point. However, large-scale deployment of demand response strategies has only been
seriously considered with the increased penetration of intermittent renewable energy sources [4–10]. Indeed, the
generation variability and diminished predictability caused by the presence of renewables put pressure on the ability
of independent system operators to maintain grid stability and ensure reliable power delivery [11, 12].

Demand response is one of the numerous functionalities expected from the power systems of the future, commonly
referred to as “smart grids”. One of the key features of smart grids is their ability to rely on an increasingly pervasive
communication network, which is intended to allow a progressive sharing of the responsibility of balancing the
electricity demand with the power generation between the producers and the consumers. The role of consumers
is indeed gradually changing in that they can now contribute to power generation, mostly through rooftop solar
panels, electric batteries in dwellings or electric vehicles [13–17]. This rapidly changing electric grid landscape has
produced both a need to anticipate the new dynamics via adequate modeling tools, and a need to develop new
control frameworks capable of handling a very large number of heterogeneous control points and the presence of a
large number of agents or decision makers.

In this context, ideas of hierarchical control architectures are beginning to emerge, such as smartDESC, described
for the first time in this paper. On top of any hierarchical control architecture, there is a “coordinator” [18, 19]
that can either be the power system operator or a third party called “aggregator”, who enlists the commitment of
a large pool of customer loads by means of financial incentives. The loads must be coordinated so as to deliver an
aggregate load behavior which is desirable from the power system point of view.

The key to scalability in hierarchical control architectures is that the coordinator must work with a collection of
low-order macro models of the various homogeneous load subclasses in order to identify optimal feasible aggregate
load behaviors at a reasonable computational cost. These global requirements must subsequently translate into
microscopic individual load control actions. In [18, 19], the microscopic control actions are centrally dictated. By
contrast, in [20], the devices switch on or off probabilistically, according to a coordinator signal strength, and
convergence to aggregate objectives is achieved via both control and reliance on the law of large numbers. The
approach used in smartDESC is closer to [20], except that in producing the microscopic device-wise actions to attain
the global objectives, the recent theory of Mean Field (MF) control theory [21] is applied. Devices are attributed
an individual cost function which encapsulates conflicting objectives: local customer comfort and safety, but with
compulsory global objectives enforced on the mean behavior of the population of devices [22, 23].

1.3. Contributions and paper organization

The main contribution of smartDESC is to provide an original scalable hierarchal controller architecture based
on the state-of-the-art mean-field control theory. smartDESC’s architecture also includes a computation and com-
munication framework that allows turning a large pool of consumers’ energy-storing loads into a virtual battery
under the control of a single aggregator. While in our presentation, the aggregator is considered to be the power
system operator, the proposed architecture could work equally well for a third-party entity offering load dispatch
services on the energy market. The focus of the analysis is on Electric Water Heater (EWH) loads, but other types
of loads can be easily integrated.

The architecture of the smartDESC controller is shown in Figure 1. At the top left sits a coordinator : its
function is to produce piecewise-constant “optimal” targets for the mean energy content per device in the aggregate,
or equivalently, mean water temperature, over successive 30-minute periods. At the top right, a node represents
the renewable generation forecast. At the bottom of the figure, we can find the collection of controlled devices
(here the EWHs). In the smartDESC architecture, EWHs must collectively meet the dictated aggregate mean
energy targets (i) with minimal information exchange with the coordinator (decentralization), (ii) with no impact
on users’ comfort, and (iii) while keeping the devices in their safe zone of operation. In the middle, we can observe
the communication module, which permits the required data exchange at a low but sufficient rate to ensure proper
operation.
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The paper describes in details the main features of each smartDESC module, namely the coordinator module, the
communication module and the controller module. Then, a dedicated section presents the smartDESC “simulator”,
which has been an essential tool to develop and test the concepts behind the project, and which was used to generate
proof-of-concept results, which are presented in the last part of the paper.
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Figure 1: Architecture of the smartDESC concept.

2. The coordinator module

In order to enable the desired optimization function of the coordinator, i.e., that of coordinating devices to
help mitigate the generation variability due to intermittency of the renewable energy sources, two conditions must
be met: the coordinator must have a reasonably reliable, yet sufficiently simple model of the aggregate storage
potential of the EWHs; (ii) the coordinator must be fed with forecasts of the renewable energy to be expected over
the next 24 hours.

To comply with the first condition, a large EWH with water mass equal to the total water mass in the aggregated
devices is used for each homogeneous sub-population of devices. In addition, while the heating element power in
the aggregated device is bounded above by the sum of maximal heating powers, and below by zero, in practice,
only a subset of that range can be achieved by the aggregate. This range will depend on the current temperature
distribution within the devices. An algorithm going back and forth between aggregate modeling, optimization,
the coordinator module, and simulation of impact on devices is developed to correctly estimate the maximal and
minimal heating rate bounds [24]; finally, the physical parameters of the aggregated smartDESC, including inlet
water temperature, heat loss rates, and overall water extraction statistics in the controlled pool of devices must be
periodically updated.

All the above functions must be performed by a data analysis sub-module within the coordinator module, as
shown in Figure 2. Based on the above information, the coordinator module calls the optimization sub-module,
which performs a deterministic or stochastic optimization over an adequately chosen time horizon. The optimization
sub-module also generates the optimal feasible mean target temperature profile for each homogeneous subgroup of
EWHs. The optimization module can perform deterministic or stochastic optimization. In the former, classical
peak shaving objectives are employed whereas, in the latter, forecasts on the renewable generation are considered.
The optimization problem must be solved quickly enough to react, at least in part, to unpredicted changes relative
to any of the forecast quantities (the spinning reserves being the ultimate line of defense against the thoroughly
intractable components of this variability). Additional details on the optimization sub-module can be found in
[25, 26]. Ultimately, the 24-hour mean temperature profile targets for each homogeneous sub-group of controlled
EWHs, together with the associated initial mean water temperatures, are transmitted to the communication module
to be broadcast to the corresponding sub-groups of devices.
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Figure 2: Schematic of the coordinator module.

3. The communication module

Telecommunications play a key role in every smart grid application: the bidirectional flow of information is
a key component for intelligence in smart grids. It is therefore important to accurately model data flow in the
smartDESC network. The implementation of the communication module is depicted in Figure 3. In the top left,
there is a simplified architecture of the proposed smartDESC simulator with one coordinator and 3 EWHs. As can
be seen, each EWH is composed of a local state observer, a local MF controller and a smart meter, which is used
to wirelessly transmit/receive the smartDESC packets.

Two types of communication are required: (i) downlink, from the coordinator to all the local MF controllers of
the collection of devices; (ii) uplink, in the opposite direction (see Figure 3). The communication module handles
the transmission of 2-way information between the coordinator module and the collection of devices in a timely
manner. The uplink direction is represented in Figure 3 by dashed blue arrows, while the downlink direction is
represented in the same figure by solid yellow arrows.

The coordinator needs to periodically send the target mean temperatures to all local MF controllers as segre-
gated into homogeneous sub-groups. Also, it must provide to each sub-group updated information on the mean
temperature of the subgroup at the beginning of each control period. Based on this information, the MF optimal
state feedback policy for the particular sub-group to which an EWH belongs is locally calculated and locally ap-
plied to each device as long as it does not violate predefined comfort and safety constraints. In addition, in order
to generate an anonymized temperature distribution estimation of the whole EWH population, each MF controller
sends back to the coordinator, at low frequency and randomly distributed times, its current mean temperature with
a time stamp; a monthly update of the EWH local water draw statistical model is also sent back to the coordinator.
The overall data is consolidated at the level of the data analysis sub-module of the coordinator to maintain updated
versions of aggregated models.

The overall exchange rate of information is very low (on average below 10 messages per day per EWH) and the
packet size is very small (in the order of a few hundred bytes). Among the available communication architectures,
it was proposed to use a particular type of Advanced Metering Infrastructure (AMI) that uses unlicensed radio
frequencies to create a mesh topology between the smart meters and the power utility Metering Data Management
System. This architecture is called RF-mesh and was originally deployed to remotely read residential and commercial
power meters, but it is also suitable for applications without high communication requirements, such as those
of smartDESC. The RF-mesh system is a middle layer that allows the communication between the local MF
controllers and the coordinator. It is important to remark that the proposed mesh topology provides reliable
and redundant communication paths for the bidirectional flow of smartDESC packets. Smart meters are densely
present in urban environments and they actively contribute to the dissemination of packets [27]. Furthermore, in
rural areas, where the smart meters are less densely deployed, wireless routers are installed to increase coverage
and enhance connectivity. The chosen configuration is robust and densely connected (especially in urban areas),
thanks to the large number of alternative paths available among data collectors and smart meters. Therefore, this
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topology permits to resist to temporary node and link failures.
To prove the concept before suggesting a field deployment, a dedicated communication module was implemented

and integrated into a smartDESC simulator. The role of the communication module is to model the network delay
introduced by the RF-mesh system. Further details can be found in [27–30].

In the lower part of Figure 3, a representation of the RF-Mesh network is depicted. As shown in this figure, the
smart meters included in the smartDESC architecture represent only a fraction of all the smart meters simulated in
the RF-Mesh communication module: this is due to the fact that the number of smart meters in a typical RF-Mesh
system exceeds the number of EWHs analyzed in smartDESC. Even though a large number of smart meters included
in the communication module are not used to carry smartDESC data, they are important to accurately model a
realistic RF-Mesh system and to obtain meaningful results on network performance (e.g., collision probability,
resource utilization, and delay).

Figure 3: Schematic of the communication module.

4. The local controller

Upon receiving a mean target temperature signal from the coordinator module, which is specific to its particular
homogeneous subgroup, the local MF controller must synthesize a local state feedback heating control law consistent
with that signal. While the control law is common to the whole sub-group, it is locally computed so as to minimize
the overall communications requirements of the architecture. This computation is enabled by a sequence of building
blocks, as shown in the schematic in Figure 4: (i) an EWH stochastic state space model: it characterizes the internal
dynamics of the EWH when subjected to random hot water extraction processes; (ii) a local state observer : it is
needed because the EWH energy state, including in particular the binary hot water demand component of the state
vector, cannot be directly measured, but must rather be inferred from a reduced set of measurements performed on
the device; (iii) a local MF controller : it is the heart of the computation leading to an EWH control law which, while
applied based on local information only, leads to a collective behavior of the homogeneous sub-group consistent with
the targets dictated by the coordinator. We now provide further details on these building blocks.

4.1. EWH stochastic state space model

There is a trade-off between the modeling accuracy of EWHs and the simplicity of calculating aggregate dynamics
for a large population. First of all, it is not surprising that the actual temperature dynamics in an EWH tank,
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Figure 4: Schematic of the local controller of an EWH.

which is subject to thermal stratification, is nonlinear. However, aggregation of nonlinear dynamics poses further
complexity on the optimization module as well as for local control synthesis; therefore, a linear model is adopted.
After some adjustments to reflect the nonlinear convection effects , the linear model has been observed to provide
acceptable accuracy in comparison with simulations performed with TRNSYS5, a widely accepted thermal system
simulation program. Linearity in dynamics is a key component for this work. The linear model is depicted in Figure
4. In this specific case, there are 10 water stratification layers, one local MF controller connected to two heating
elements, and one local observer module, which receives the temperature from two sensors. Cold water flows from
the bottom layer to the top layer when water draw events occur. Furthermore, the statistics of hot water extraction
events are modeled as a binary state Markov chain with switching rates that vary depending on the hour of the day
[31].

4.2. Local state observer

As seen in Figure 4, the thermal dynamics of an EWH are represented through a 10-dimensional state vector,
portraying the average temperature of different water stratification layers in the EWH. In this particular case,
the heating elements and the temperature sensors are located on the fourth and the ninth layers, respectively. As
previously mentioned, the local MF controller uses a local vector state feedback law, which needs two pieces of
information: (i) the mean temperature of all EWH model strata Ti,∀i = 0, . . . , 9, and (ii) the boolean value θ,
which indicates whether there is water drawn from the tank at a particular instant or not. The objective of the
observer module is to estimate these values through the readings of two temperature sensors placed near existing
heating elements of water heaters (see Figure 4).

Note that a master’s thesis [32] was entirely dedicated to the subject of state estimation in EWHs. In this paper,
we can only provide a rough idea of the steps involved in the estimation scheme. Let us denote the temperature
estimates as T̂i, and the binary hot water demand state estimate as θ̂. We first assume that the statistics of the
Markov chain binary state hot water energy extraction process have been identified through an independent process.
Then, we describe the estimation algorithm for that discrete state. At the time a new set of measurements becomes
available, the two dimensional stream of temperature observations gathered over the past 15 minutes is collapsed
into a single mean stream of temperatures considered as a proxy for the EWH mean temperature evolution over
that period of time. Subsequently, all candidate ON-OFF sequences of water demand exhibiting no more than
three switchings over the past 15 minutes are considered, and we only retain those that can account, through the

5TRNSYS, “The Transient Energy System Simulation Tool”, [Online]. Available: http://www.trnsys.com/.
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available mathematical model, for the observed sequence of mean temperatures, up to a prespecified maximum level
of total square error. This forms a set of binary demand state sequences considered consistent with the observations.
Within that set of plausible sequences, the one finally retained as our best estimate is the one associated with the
highest probability of realization. This permits an estimation of the binary demand process over the past 15 minutes.
Given that estimated energy demand process and the sequence of known heating inputs over the past 15 minutes,
the temperatures in the various EWH layers are now estimated by running a Kalman filtering algorithm using the
available measurements. Further details on the overall estimation scheme can be found in [32].

4.3. Local MF controller: local actions with global results

A significant challenge of a large-scale control of dispersed energy storage in power systems is the presence of
literally millions of control points, each contributing a small amount to the overall load and generation smooth-
ing effort. A classical direct control view of this problem, as has been the case in traditional load management
programs, would quickly run into the limits of large (and expensive) data communication requirements, and, more
importantly, a very large computational burden for the synthesis of the required control signals. Instead, the hybrid
control architecture currently adopted enables addressing this issue: it is centralized at the system level for optimal
scheduling, as described previously, but decentralized at the implementation level to allow scalability and increase
the level of customer acceptance of the controls (since enforcement of security and comfort constraints becomes
local). Such an organizing architectural principle is possible thanks to a state-of-the-art development in control
theory known as MF control. Roughly described, MF control relies on the statistical predictability of large numbers
of similar controlled plants or devices to produce optimal controls (i) with significantly reduced communication
requirements, and (ii) using distributed computation to apply the required local control signals. Simply put, MF
control is the main enabler for smartDESC.

Let us further detail what MF control is and how it can help us in achieving the goal of best steering millions of
individual energy storage elements so that their aggregated behavior follows an optimal target trajectory specified at
the systems level (further details can be found in [22, 23]). As stated before, a linear dynamics has been adopted for
EWHs. A careful choice of a quadratic cost function induces a linear feedback controller, with coefficients calculated
backwards in time thanks to so-called Riccati equations. The coefficients are parametrized by θ, a boolean process.
The state 0 represents no water draw event, whereas 1 represents water draw. A scheme of the operation of the
local MF controller for say EWHij , i.e. the ith EWH in the jth sub-group, is reported in Figure 5. Note that
the MF controller receives the 24-hour target profile for the EWH optimal mean temperature of EWHs in the jth

subgroup, as computed by the optimization module. It also receives the estimated mean temperature in the jth

sub-group at the start of the control horizon. This information is then used by the local MF controller to compute
a local state feedback law through a fixed-point calculation (see [22] for details). This control law is applied in the
feedback loop (see the lower part of Figure 5). The local MF controller receives the estimate of the temperature T̂i
of all the layers i in the EWH as well as θ̂. This data is used to set the value of the instantaneous power of the two
heating elements of the EWH using an optimal feedback control law. The updated temperature is then captured
by the two thermal sensors (i.e., T3 and T8). The observer employs these two values to update the temperature

vector estimates (i.e., T̂i) as well as water draw state estimates (i.e., θ̂). The remarkable fact is that, thanks to the
law of large numbers, a locally computed and implemented control law leads at the aggregate level to the mean
behavior dictated by the coordinator, and thus to a system-wide optimal behavior. Note, however, that for this to
happen, the data concerning the EWH physical parameters in homogeneous sub-groups must be regularly updated
(for instance, the water inlet temperature changes over the seasons). In addition, the statistical parameters of the
water usage statistics must also be updated periodically. These parameter updates can be carried out locally and
sent back to the optimization module - at low rates - through the communication module.

5. Simulation results

The smartDESC simulator was developed to design and evaluate load control, renewable penetration and demand
response algorithms in a realistic setting. The whole environment setup is implemented using Jade (Java Agent
Development Framework), which provides a versatile platform for parallel computing. The smartDESC framework
provides a layer of abstraction facilitating the design of custom models and provides base classes, conventions and
guidelines for their development. It also provides an interface for the user and the environment in which components
can run in a coherent manner.

Two simulation scenarios results are presented here. The case presented is based on a population of 400
smartDESC-controlled EWHs, denoted hereafter with s-EWHs, constituting the experimental group. The com-
parison benchmark is a system of same size, but with traditional t-EWHs, denoted hereafter with t-EWHs, and
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Figure 6: Simulation results with smartDESC controlled EWHs (s-EWHs) as opposed to traditional thermostatically controlled EWHs
(t-EWHs) in a deterministic scenario and classical peak shaving objectives.

setpoints at 56◦C and 61◦C, constituting the control group. These 2 temperatures represent the boundaries of the
customer comfort zone: when the temperature is below 56◦C a traditional thermostatic controller activates the
heating elements, which are subsequently turned off when the temperature reaches 61◦C. In order to visualize the
full effect of the local smartDESC MF controllers, the thermostats have been disabled for the experimental group
of s-EWHs: by doing this, the activation of the heating elements is solely decided by local MF controllers. Another
note is that the observer module is also disabled; we basically assume that the exact temperature profile of the
tank, and the instantaneous water draw state are available to the coordinator at each time instant. This gives a
theoretical upper bound on the performance that can be achieved with this approach.

The first simulation result is displayed in Figure 6. At time 0, the optimization module receives the total power
consumption (green curve) together with the 7-day power consumption profile (not reported in the figure) for the
Thermostatically controlled EWH (t-EWH) population. The uncontrolled load forecast is then computed as the
total power consumption minus the t-EWH consumption. The optimization module also calculates the target power
profile for s-EWHs, represented with a red curve in the figure. The purple curve represents the total target power,
i.e., the uncontrolled load plus the s-EWH target power. smartDESC simulation is then performed and results
are also shown in Figure 6: the blue curve represents the power consumption of s-EWHs while the orange curve
corresponds to the aggregate power consumption of the whole system.

Simulation results indicate that the mean power profile of the s-EWHs (blue curve) satisfactorily tracks the
target (red curve). Comparing the two curves, we computed a root mean square error (RMSE) of 135.279 W with
a normalized-RMSE value of 0.088. Consequently, the total simulated power consumption (orange) is close to the
target power (purple). The total simulated power curve (orange) also shows a reduced variability and considerable
peak shaving, when compared to the total consumed power in the reference scenario where traditional t-EWHs are
employed.

In the second simulation, a more complex scenario was considered, assuming the coordinator is provided with
random forecasts of wind production and of uncontrolled electric load demand. Wind production forecasts were
generated by the company WPred, based on weather forecasts provided by Environment Canada. The forecast
includes the speed and direction of wind between 10 and 150 metres above ground level, as well as the atmospheric
pressure and air temperature. Additional details on the generation of wind power scenarios from numerical weather
predictions can be found in [33]. The stochastic scenario also includes the uncontrolled load projection in the desired
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time horizon. The load projection module, provided by the company Artelys, is based on the weather forecast and
on historical electric load data. Additional details can be found in [34].

The simulation results in the stochastic scenario are displayed in Figure 7. In this figure, the upper border of
the cyan area represents the uncontrolled demand, whereas the cyan area itself shows the potential time-varying
range of wind power produced. The bottom border of the cyan area represents the net uncontrolled demand. Given
the forecast, the coordinator computes a target profile for the s-EWH population (red curve). Summing up the
uncontrolled demand with the s-EWH target power, one obtains the purple curve, representing the total target
power. The green curve represents, as in the previous case, the total consumed power when regular t-EWHs are
employed. The behavior of s-EWHs is subsequently simulated: the blue curve represents the simulated power
consumption of the 400 s-EWHs and the orange curve represents the total simulated power. The s-EWH power
consumption closely follows the target consumption dictated by the optimization sub-module of the coordinator
(see Section 2 for details). Here the curve comparison gave an RMSE of 91.192 W and a normalized-RMSE value
of 0.084. Load balancing characteristic of the orange curve can easily be seen in the figure, in comparison with the
green curve. Of particular interest is the valley in the early parts of day 2, where most of the valley filling is due
to the peak of wind production.

In order to highlight and quantify the benefit brought by the use of s-EWHs, we analyzed the power reduction
in the time interval from 4:30 pm to 10:50 pm in the three days (red-circled in Figure 7): results from this analysis
are shown in Table 1. A daily mean reduction in the electrical consumption per house of 236.97 W is observed in
those time intervals, which corresponds to 7.68 % of the total consumed power per house when regular t-EWHs are
employed. During the peak hours, an average daily energy saving of 1.55 kWh per house was observed. The power
consumption reduction was specifically analyzed during peak hours because it is the most difficult to manage by the
power operators. The achieved peak-shaving in the average power consumption per house can easily be translated
into an overall reduction of the demand during peak hours, with potentially significant value for power operators
and even consumers if the electricity cost is higher during these periods.

After having shown the positive effects of using s-EWHs on the aggregated behavior of the system, we now focus
on population dynamics. Figure 8 shows how the temperature profile of s-EWHs evolves in time. It is seen that
the system maintains variability in temperature at all times but the transitions are smooth. The absence of sudden
changes in the temperature distribution is important because it shows that the use of MF-based control does not
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Day 1 Day 2 Day 3 Daily mean

Average power reduction (W) 216.55 247.95 246.41 236.97
Percentage of power reduction (%) 6.61 8.38 8.17 7.68

Energy savings (kWh) 1.41 1.62 1.61 1.55

Table 1: Summary of the benefits during peak hours highlighted in Figure 7.
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cause steep changes in the tank mean temperature, which would constitute an undesirable situation. Fairness is
also important: one of the objectives of the control architecture is that the burden of lowered or increased mean
temperature should be evenly distributed across the population. In order to put the fairness characteristic of the
control algorithm to test, we report in Figure 9 the temperature curves of three randomly selected s-EWHs (orange,
green and purple curves). The orange and blue curves represent the top and bottom deciles, respectively. One
can see that individuals switch position quite often. We did not observe unfortunate scenarios with some s-EWHs
predominantly within the cold temperature or some others always within the hot temperature zone. These two
scenarios would cause the undesirable consequences of a reduction of customer comfort or a higher cost of heating,
respectively.
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Figure 9: Temperature profile of three s-EWHs and percentile evolution.

In terms of communications, numerical results show the delay in the downlink direction to be significantly
higher than the uplink delay. This is because the transmission times of uplink packets, randomly generated by
each local MF controller, are usually well spread over time. On the other hand, the coordinator transmits the
same target temperature to all the local MF controllers at the same time, in a broadcast fashion. This mechanism
causes network congestion, mainly due to the limited size of node buffers. Moreover, the required utilization of the
communication channels is very low (the smart meters transmit packets only about 0.13% of the time on average).

6. Conclusions

The smartDESC concept offers an integrated architecture to turn the energy storage potential of distributed
existing electrical devices into a reliable and responsive asset for load and generation leveling. The foundation
of smartDESC lays in a recent theoretical development, i.e., mean field control theory, which is used to manage
the macro-micro separation of optimization at the utility level and control at the local level. It constitutes a novel
paradigm that could find applications in many different areas of engineering. The smartDESC architecture has been
implemented in a simulator and tested on realistic case studies involving a homogeneous population of electric water
heaters (EWHs) in a grid with renewable penetration. The simulation results showed that the smartDESC approach
reduces the burden to power operators during peak hours with minimal impact on the comfort of customers. The
simulation scenario with realistic wind power generation showed that the use of smartDESC-controlled EWHs could
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enable a more efficient use of power coming from renewable sources. Overall, the results showed that the smartDESC
concept works as expected, and no substantial issue of scalability is expected to arise.

It is worth mentioning that a hardware implementation of a local mean field controller was realized and installed
on a real EWH, which has been tested jointly with the simulated EWHs (not shown in this paper): the concept also
proved to work on the physical device. The smartDESC concept is therefore ready to progress towards a hardware
testing stage. More details about the smartDESC project can be found in the public report available online [34].
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(LTE) of IREQ (Institut de Recherche d’Hydro-Québec), WPred Inc., Artelys, SG2B, and Coopérative St-Jean-
Baptiste (a small electricity distributor in Montérégie, QC, Canada). The authors also address a special thanks to
all researchers and students who took part in this project, namely (in alphabetical order): D. Beauvais, B. Bourdel,
J. Coulombe, S. Fan, F. Li, R. Losseau, K. Ratelle, M. Sauvé, J. Solis and A. I. Tammam.
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