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Abstract The facility layout problem is concerned with �nding an arrange-
ment of non-overlapping indivisible departments within a facility so as to min-
imize the total expected �ow cost. In this paper we consider the special case
of multi-row layout in which all the departments are to be placed in three or
more rows, and our focus is on, for the �rst time, solutions for large instances.
We �rst propose a new mixed integer linear programming formulation that
uses continuous variables to represent the departments' location in both x
and y coordinates, where x represents the position of a department within a
row and y represents the row assigned to the department. We prove that this
formulation always achieves an optimal solution with integer values of y, but
it is limited to solving instances with up to 13 departments. This limitation
motivates the application of a two-stage optimization algorithm that combines
two mathematical optimization models by taking the output of the �rst-stage
model as the input of the second-stage model. This algorithm is, to the best of
our knowledge, the �rst one in the literature reporting solutions for instances
with up to 100 departments.
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1 Introduction

The facility layout problem (FLP) is concerned with �nding an arrangement of
non-overlapping indivisible departments within a facility so as to minimize the
total expected cost of �ows. This cost between two departments is measured
as the rectilinear distance between their centroids multiplied by the projected
�ow between them. We refer the reader to [9] and and [21] for recent reviews
of the state-of-the-art in FLP.

In this paper we consider the special case of the FLP in which all the
departments are to be placed in three or more rows. This case is referred
to as multi-row facility layout problem (MRFLP) [9]. Instances of the MR-
FLP arise in various practical contexts. One such context is in manufacturing
where the machines (equivalent to departments) are to be placed in rows with
a predetermined separation between the rows to accommodate movement of
people and/or materials. A related application of row FLPs is in the design of
application-speci�c integrated circuits for which the layout of the components
is organized in rows (called base layers), the objective is to minimize the total
wirelength required to connect the components, and the separation between
rows is used for the wires connecting the components. A review of the recent
trends of layout in recon�gurable manufacturing systems is given in [29].

Our interest here in the MRFLP with three or more rows because �rst, the
cases of one row and two rows have already been well studied in the literature,
and second, the practical contexts mentioned above often require layouts with
more than two rows. Furthermore, in manufacturing systems, the material
handling devices determine the type of layout [18, 20]. The most common
material handling devices are: a) handling robot; b) automated guided vehicle
(AGV); and c) gantry robot. The �rst device determines a circular machine
layout, the second one determines single-row or double-row layout, where the
available space may determine which one should be used. The third device
determines multi-row layout with more than 2 rows. When gantry robots are
used to transfer parts among the machines, for instance when space is a limiting
factor, multi-row layout plays an important role. Thus, the multi-row layout
is a layout variant with its own applicability di�erent from that of single or
double-row layout, and from a mathematical optimization point of view, multi-
row layout required specialized models.

Our contribution is mainly on providing solutions for medium- and large-
scale instances of the MRFLP, for which we are not able to obtain the optimal
solutions. We �rst propose a new mixed integer linear programming formula-
tion that uses continuous variables to represent the departments' location in
both x and y coordinates, where x represents the position of a department
within a row and y represents the row assigned to the department. We prove
that this formulation always achieves an optimal solution with integer values of



Mathematical Optimization Approach for Facility Layout on Several Rows 3

y, even though y is continuous. Because our fomulation, like other exact global
optimization approaches in the literature, is limited to solving instances with
up to 13 departments, we use it as the basis for a new two-stage optimization
algorithm. The algorithm combines two mathematical optimization models by
taking the output of the �rst-stage model as the input of the second-stage
model. Our computational experiments show that this algorithm is, to the
best of our knowledge, the �rst one in the literature reporting solutions for
instances with up to 100 departments in reasonable time.

This paper is structured as follows. In Section 2 we review the problem and
the relevant literature, with a focus on previous mathematical optimization ap-
proaches. Our new mixed integer linear programming formulation is presented
in Section 3, and its theoretical integrality properties are proved in Section
4. Section 5 describes the two-stage optimization algorithm. We describe it
explicitly as an algorithm (for the �rst time), and report results (Section 6)
showing that it can e�ciently �nd solutions for large-scale problems. Finally,
Section 7 concludes the paper.

2 Literature Review

The FLP on rows can be stated in the following general form: given a num-
ber of rows, a set of departments represented by rectangles, each of a given
length, and a non-negative weight for each pair of departments, determine an
assignment of departments to rows, and the positions of the departments in
each row, so that the sum of weighted center-to-center distances is minimized.
We assume that the rows and the departments all have the same height, that
any department can be assigned to any row, and that the distances between
adjacent rows are equal.

The row FLP most studied in the literature is the Single-Row FLP (SR-
FLP). We refer the reader to the recent survey papers [27] and [26] for the
state-of-the-art on SRFLP, including extensions, meta-heuristics, and exact
approaches. The Double-Row FLP (DRFLP) allows departments to be placed
on both sides of a central corridor. Because there are only two rows, it is suf-
�cient to determine which departments are placed in one of the rows, as the
remaining departments must be in the other row. This property is explicitly
exploited in the model presented in [2]. To the best of our knowledge, the ear-
liest formulation of the DRFLP is a nonlinear optimization model proposed in
[18] and used to �nd locally optimal solutions. Most of the subsequent math-
ematical optimization approaches in the literature use either mixed integer
linear programming (MILP), see [12] and [2], or semide�nite programming
(SDP) [24]. Among the most recent publications on the DRFLP are [3], [32]
and [11] that present MILP models for DRFLP; we note that [32] makes use of
the concept of betweenness from [1]. New combinatorial lower bounds for the
DRFLP that can be computed very fast are presented in [13]. Problems re-
lated to the DRFLP that are also the focus of current research are the corridor
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allocation problem, see [35] and [17], and the parallel row ordering problem
[34].

An important class of instances of the MRFLP arises in situations where
gantry robots are used, for example in �exible manufacturing systems and in
pick and place applications. Gantry robots have linear axes of control and
move up/down and left/right with the movement directions at right angles,
as illustrated in Figure 1. This makes multi-row layouts particularly suitable,
and so the total weighted sum of the center-to-center rectilinear distances is
a good measure of the total displacement of such a robot to complete a given
task.

Robot

Fig. 1 Operational setup of a gantry robot

The MRFLP has received very limited attention in the operations research
literature to date. The MRFLP was formulated as a two-dimensional continu-
ous space allocation problem in [18], using a nonlinear optimization approach.
However, in many practical problems, the departments are arranged in well-
de�ned rows because the separation between the rows is predetermined accord-
ing to the features of the material-handling system; that is, this problem can
be viewed as discrete in one dimension and continuous in the other. Heuristic
algorithms were proposed in [18], and a nonlinear formulation was given in [16]
and solved using a genetic algorithm (GA). A GA was also proposed by [31]
but they do not enforce the strict row structure as we do here. An SDP-based
approach was introduced in [24], and to the best of our knowledge, this is the
only global optimization approach for the general row FLP with more than
two rows. However, their approach only provided lower bounds for instances
with up to 9 departments.

The most recent results on the MRFLP are reported in [15] and [37]. The
�rst of these papers is specialized to the space-free version of MRFLP, while
the second considers a variant of the MRFLP to handle groups of machines.
The work presented here is therefore not directly comparable with either of
these.
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3 A New MILP Formulation

In this section we present our proposed new MILP formulation for row FLPs
with three or more rows. Like the models reviewed in Section 2 and most other
mathematical optimization models in the literature, our proposed model uses
binary variables to prevent overlap. Unlike most other models however, it uses
continuous variables for the assignment of departments to rows, and we prove
that these variables have integer values at optimality, so that departments are
assigned to rows without the need for rounding or other similar operation.

We assume that we are given the following parameters: n is the number of
departments; m is the maximum number of rows allowed for the layout; d is
the row width; cij is the pairwise connection cost between departments i and
j; `i is the length of department i; and L =

∑n
i=1 `i is the sum of the lengths

of all the departments.
For each department i we use the variable xi to represent the horizontal

position of department i (within the row assigned to it), and yi to represent the
vertical position of i (the row it is assigned to). For each pair of departments i
and j, we use the following binary variables to encode their relative position:
αij = 1 if i is placed to the left of j in the same row and 0 otherwise; βij = 1
if i and j are placed in di�erent rows and i is below j, 0 otherwise. We use the
total distance in our objective function, and let dxij and d

y
ij equal the horizontal

and vertical distances between i and j.
Using the above parameter and variable de�nitions, the proposed formula-

tion for the double- and multi-row FLP is:

min
∑

1≤i<j≤n

cij(d
x
ij + dyij) (1)

s.t. dxij ≥ xi − xj , dxij ≥ xj − xi, 1 ≤ i < j ≤ n (2)

dyij ≥ yi − yj , d
y
ij ≥ yj − yi, 1 ≤ i < j ≤ n (3)

xj − xi ≥
1

2
(`i + `j)− L(1− αij), 1 ≤ i < j ≤ n, (4)

xi − xj ≥
1

2
(`i + `j)− L(1− αji), 1 ≤ i < j ≤ n, (5)

yj − yi ≥ d−md(1− βij), 1 ≤ i < j ≤ n, (6)

yi − yj ≥ d−md(1− βji), 1 ≤ i < j ≤ n, (7)

yi − yj ≤ (1− αij − αji)(m− 1)d, 1 ≤ i < j ≤ n, (8)

yj − yi ≤ (1− αij − αji)(m− 1)d, 1 ≤ i < j ≤ n, (9)

0 ≤ yi ≤ d(m− 1), 1 ≤ i ≤ n, (10)

1

2
`i ≤ xi ≤ L−

1

2
`i, 1 ≤ i ≤ n, (11)

αij + αji + βij + βji = 1, 1 ≤ i < j ≤ n, (12)

αij + αjk ≤ 1 + αik, βij + βjk ≤ 1 + βik, 1 ≤ i < j ≤ n (13)

αij , βij ∈ {0, 1}, 1 ≤ i, j ≤ n. (14)
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Constraints (2)-(3) establish the horizontal and vertical distances between
departments. Constraints (4)-(5) prevent any two departments from overlap-
ping. Constraints (6)-(7) avoid the overlapping of rows, and simultaneously
create the rows. Constraints (8) and (9) ensure that yi = yj when depart-
ments i and j are placed in the same row. Constraints (10) limit the number
of rows to m rows (each of width d). Constraints (11) provide basic bounds on
the variables xi. Constraints (12) require the separation of i and j in only one
dimension (though they may be separated in both dimensions). Constraints
(13) are triangle inequalities.

4 Integrality Properties of the Model

As mentioned above, the formulation presented in Section 3 uses continuous
variables to represent the assignment of departments to rows. In this Section,
we give the proof that we can always achieve an optimal solution with integer
values for these variables, meaning that the rows are well de�ned.

Theorem 1 For every feasible instantiation of the variables αij and βij, i.e.,
which satisfy constraints (12)-(14), the matrix of the constraints (4)-(11) is

totally unimodular.

Proof Let A be the system matrix of the constraints (4)-(11). We prove that A
is totally unimodular. Observe that every element in AT is −1, 0 or +1, this is,
the coe�cients of the variables xi or yi are −1, 0 or +1. Since every column of
AT corresponds to the coe�cients of xi, xj or yi, yj in each constraint, then it
contains at most two non-zero elements. For each column of AT with two non-
zero elements, these are of opposite sign. Therefore by Proposition 2.6, chapter
III.1 of [30], AT is totally unimodular. Thus, A is also totally unimodular. The
result follows. ut

Corollary 1 For every feasible instantiation of the variables αij and βij, if d
is integer, the y-components of every extreme point of (4)-(11) are integer.

Proof For integer d, the right hand side of the constraints (6)-(10) is integer.
The result follows by Theorem 1.

5 Two-Stage Optimization Algorithm

The exact MILP model proposed in Section 3 can only obtain global optimal
solutions for instances with up to 13 departments. To obtain solutions for
larger instances, we propose a two-stage algorithm to compute solutions but
without the guarantee of global optimality.

Two-stage approaches have been successfully used for unequal-area facility
layout problems, see [9]. A two-stage approach based on the attractor-repeller
(AR) technique for VLSI �oorplanning was introduced in [5]. The �rst-stage
uses the Attractor-Repeller technique to establish the relative positions of
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the departments, and the second-stage �nds a feasible layout satisfying the
relative positions speci�ed by the solution to the �rst-stage via a mathematical
optimization model.

A nonconvex model with the repeller function 1
z−1 was proposed in [5]; this

model was modi�ed in [6] to achieve convexity, but then the addition of a new
penalty term resulted again in a loss of convexity, though in a more controlled
manner. Signi�cant improvements to this approach were carried out in [25],
and most recently in [8]. We follow the same ideas as in [8] with the additional
improvement of an automatic strategy for adjusting the parameters.

5.1 First-stage model

The �rst-stage model minimizes a nonlinear and non-convex function over a
box to estimate the desired relative positions of the departments. To achieve
this, we relax constraints (4)-(9) and (12) and penalize overlapping in the
objective function via the penalty function

f(t) =
1

t
− 1, t > 0.

This barrier was originally used for VLSI �oorplanning in [14], further tested
in that context in [5], and used in convexi�ed form in [6] for the unequal-areas
FLP and in [28] for �oorplanning. It was also used without convexi�cation or
other modi�cations in a two-stage framework for the unequal-areas FLP in [8].

We give a short description of the technique to make this paper self-
contained. The distance between departments i and j is measured with the
squared Euclidean distance. D2

ij = (xi−xj)2+(yi−yj)2. To establish a thresh-
old for this distance a (squared) target distance between departments i and
j is de�ned in terms of their lengths: T 2

ij = 1/4
(
(li + lj)

2 + 4
)
. We penalize

overlap using the scaled squared Euclidean distance by adding the following
term to objective function:

f

(
D2

ij

log T 2
ij

)
. (15)

The idea of using log Tij (instead of Tij) to scale the distance Dij di�ers
from the one presented in [8] and [25]. Although it has the same role, the
magnitude of the lengths of some instances is quite di�erent (in some instances
the lengths are 10 times bigger than others) and the logarithm gives some
amount of uniformization to the target distance. In addition, it improves the
adjusting of parameter µ. In this way, we develop a two-stage strategy where
adjusting the only parameter is straightforward, as we will explain later.
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The �rst-stage model is thus:

min
∑

1≤i<j≤n

cijD
2
ij +K

∑
1≤i<j≤n

(
log(T 2

ij)

D2
ij

− 1

)
s.t. 0 ≤ yi ≤ d(m− 1), 1 ≤ i ≤ n,

1

2
`i ≤ xi ≤ L−

1

2
`i, 1 ≤ i ≤ n,

The objective function combines the total connectivity cost between depart-
ments, and the penalty term (15) for overlap. To appropriately balance these
terms, we scale the penalty term by the parameter:

K = µ10−1
∑

1≤i<j≤n

cij , with 0 < µ ≤ 1. (16)

Unlike the �rst-stage models in [6] and [25], this objective function is not
convex; nevertheless we can compute local optimal solutions and if we appro-
priately tradeo� the connectivity cost with the overlap penalty, these solutions
will give information about the relative positions between departments that
are passed on to the second stage via the non-overlapping constraints, and
contribute to the quality of the layouts computed by the second-stage model.
The parameter µ acts by increasing or decreasing the weight of the barrier
term against the connectivity cost, in order to balance the weight of both
terms in the objective function. For each value of µ, we �nd a local optimum
of the �rst stage model.

Figure 2 shows a typical local optimum for the �rst-stage model applied
to the HeKu12 benchmark problem. We allow departments to overlap because
in the �rst-stage our objective is not to �nd a feasible layout but rather to
obtain information about the relative positions of departments. The relative
position is determined by the position of the departments' centroids. Strict
non-overlap is enforced in the second stage (Section 5.2).

Fig. 2 Instance HeKu12, with µ = 0.193
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5.2 Second-stage model

The second-stage model produces a feasible layout by using the model in Sec-
tion 3 with the binary variables �xed according to the optimal solution of the
�rst stage. The resulting linear programming model can be e�ciently solved
and provides the �nal layout:

min
∑

1≤i<j≤n

cij(d
x
ij + dyij)

s.t. dxij ≥ xi − xj , dxij ≥ xj − xi, 1 ≤ i < j ≤ n
dyij ≥ yi − yj , d

y
ij ≥ yj − yi, 1 ≤ i < j ≤ n

0 ≤ yi ≤ d(m− 1), 1 ≤ i ≤ n,
1

2
`i ≤ xi ≤ L−

1

2
`i, 1 ≤ i ≤ n,

a subset of non-overlapping constraints from (4)-(7).

The constraints (4)-(7) are selected by applying the following rule to the
�rst-stage solution. Let (ȳi, x̄i) be a solution of the �rst-stage model. For each
pair of departments i and j, if the rounded values of ȳi and ȳj are equal we
force horizontal separation. In this case, if x̄i ≥ x̄j we separate these two
departments horizontally, by adding the non-overlapping constraint xi− xj ≥
1
2 (li + lj); otherwise, we add xj −xi ≥ 1

2 (li + lj). For each pair of departments
i and j, if the rounded values of ȳi and ȳj are di�erent we force vertical
separation. In this case, if ȳi ≥ ȳj we add constraint yi− yj ≥ d; otherwise we
add yj − yi ≥ d.

The strategy of rounding the row position variables works well, which is
concordant with Corollary 1.

5.3 Two-stage optimization algorithm

The two-stage optimization algorithm (2SOA) that we propose is directly
based on the two-stage optimization framework presented in [8]. However,
we give here a straightforward way of setting the parameter µ, which allows
the algorithm to tune itself automatically for every instance.

The data of instances vary signi�cantly, for example the length of the
largest department for instance KeHu12 is 80, while for instance HuAn13 is
10. Therefore, it would be di�cult to tune the parameter µ homogenously,
i.e., keeping the same small interval for µ, independently of the instance data.
To this matter, instead of scaling Dij with Tij , we scaled with log Tij and
we were able to empirically prove that the best layouts are obtained with µ
varying between 0 and 1. Thus, in 2SOA we take values of µ as a �nite set of
values between 0 and 1, and choose the best layout among all those obtained.
Speci�cally, we consider µ ∈ G = {0.001 + 0.001i |i = 0, 1, . . . , 999}.

An explicit statement of the algorithm follows.
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Algorithm 1: Two-stage optimization algorithm (2SOA)

input : a set of departments to place with �xed length, within a �xed amount of
rows

output: a feasible layout

for µ ∈ G do
solve the �rst-stage model(µ);
add the non-overlapping constraints provided by the solution of the �rst-stage
model to the second-stage model;

solve the second-stage model;

choose the layout with lowest cost;

For each instance the interval for values of µ can be specialized and made
shorter. Figures 3 and 4 show the layouts obtained by the �rst-stage model for
the smallest and the largest values of µ. Note that the departments' centroids
almost coincide in Figure 3, therefore the value of µ should be increased. On
the other hand, Figure 4 shows departments being pushed apart, as they seem
to need fewer rows, therefore µ should be reduced.

row 1

row 2

row 3

row 4

Fig. 3 HeKu12, µ = 0.001

row 1

row 2

row 3

row 4

Fig. 4 HeKu12, µ = 1

After running 2SOA, we can visualize the solutions obtained using a graph
of the layout cost versus the corresponding value of µ, as shown in Figure
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5. While this curve has large jumps, a sub-interval of (0, 1] can typically be
identi�ed where the smallest cost layouts are obtained. One can them run
2SOA using only this sub-interval to search for better layouts.

Fig. 5 Layout costs versus µ

6 Computational Results for the Two-Stage Algorithm

In this section, we report our computational results using 2SOA. We imple-
mented the new formulation in 3 using the modeling language AMPL and
solved them using CPLEX (version 12.5.1.0). We tested the proposed algo-
rithm using the nonlinear optimization solver SNOPT 7.2-8 for the �rst-stage
model, and the solver CPLEX 12.5.1.0 for the second-stage model, both ac-
cessed via the modeling language AMPL. The computations were performed
on a dual core Intel(R) Xeon(R) X5675 @ 3.07GHz with 12Gb of memory.

We start by comparing its results for small instances, where the optimal
solutions are obtained using the MILP model. After this, we analyze the be-
haviour of the algorithm for large instances. All the results were obtained using
the default set G = {0.001 + 0.001i |i = 0, 1, . . . , 999} for the values of µ.

The algorithm is able to �nd solutions for instances up to size 13, in less
than 600 seconds. All the solutions are within 10% or less of the corresponding
optimal values. Moreover, more than half of the solutions are within 5%, as
shown by the results emphasized in bold in Table 1 (the number of departments
is indicated in the instance name). For small instances, as the size increases, the
MILP model requires an increasing amount of computational time to obtain
the optimal solutions. On the other hand, for small instances, the proposed
algorithm obtains solutions close to the optimum and the computational time
is in general stable. These results demonstrate that the 2SOA is able to quickly
compute solutions within a small gap of global optimality. More importantly,
we see that the gaps do not seem to increase with increasing problem size.
Thus, these results provide us with con�dence that the 2SOA may be able to



12 Miguel F. Anjos, Manuel V.C. Vieira

reach good solutions for larger instances, for which not even lower bounds can
be computed. Such large instances are considered next.

Table 1 2SOA results for small instances

Instance Source No rows
MILP Model 2SOA

Gap
Optimal cost Time(s) Cost Time(s)

HeKu8 [19] 3 1,473.0 9.3 1,473.0 291.0 0.0%
S_8 [33] 3 316.5 24.1 319.0 255.0 0.8%
SH_8 [33] 3 902.5 121.4 915.0 258.1 1.4%
S_9 [33] 3 907.0 216.9 976.5 248.9 7.7%
SH_9 [33] 3 1,636.5 1,203.4 1,689.0 244.6 3.2%
S_10 [33] 3 1,049.5 612.6 1,110.5 299.4 5.8%

4 827.5 1,297.7 842.5 320.1 1.8%
S_11 [33] 3 2,633.5 10,104.6 2,800.5 447.7 6.3%

4 2,172.5 16,223.2 2,347.5 538.2 8.1%
HeKu12 [19] 3 5,849.0 11,364.9 6,115.0 260.1 4.5%

4 4,238.0 37,825.5 4,603.0 240.4 8.6%
HuAn13 [22] 3 1,184.0 29,017.5 1,253.5 287.6 5.9%

4 966.0 69,481.6 998.5 152.2 3.4%

We further tested 2SOA on the set of large instances (n ≥ 14) which
is presented in Table 2. We obtained solutions for instances with up to 100
departments in less than 40 minutes per instance. More precisely, for the largest
instance sko100-05, we obtained a solution arranged within 7 rows in 2352.8
seconds.

7 Conclusion

In this paper, we consider the special case of multi-row layout in which all
the departments are to be placed in several rows, as happens for example in
the context of �exible manufacturing and in the design of application-speci�c
integrated circuits. We proposed a new mixed integer linear programming
formulation with the interesting property that the optimal solutions achieve
integer row assignments even though the corresponding variable in the model
is continuous.

To address larger instances, we proposed a two-stage optimization algo-
rithm that combines two mathematical optimization models by taking the
output of the �rst-stage model as the input of the second-stage model. Our
computational tests suggest that this new algorithm �nds, for the �rst time,
solutions for instances with up to 100 departments.

References

1. Amaral, A.R.S., 2009. A new lower bound for the single row facility layout
problem. Discrete Applied Mathematics, 157 (1), 183�190.



Mathematical Optimization Approach for Facility Layout on Several Rows 13

Table 2 2SOA results for medium- and large-size instances
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5 4,245.5 277.9
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N30-05 [7] 3 47,454.5 487.3
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Instance m Cost Time(s)
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6 133,905.0 846.3
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5 141,338.0 784.3
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