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Abstract: Demand response (DR) is an integral component of smart grid operations that offers the1

necessary flexibility to support its decarbonisation. In incentive-based DR programs, deviations2

from the scheduled DR capacity affect the grid’s energy balance and result in revenue losses for the3

DR participants. This issue aggravates with increasing DR delivery from participants such as large4

consumer buildings who have limited standard methods to follow for DR capacity scheduling. Load5

curtailment based DR capacity availability from such consumers can be forecasted reliably with the6

help of supervised machine learning (ML) models. This study demonstrates the development of7

data-driven ML based total and flexible load forecast models for a retail building. The ML model8

development tasks such as data pre-processing, training-testing dataset preparation, cross-validation,9

algorithm selection, hyperparameter optimisation, feature ranking, model selection and model10

evaluation are guided by deployment-centric design criteria such as reliability, computational11

efficiency and scalability. Based on the selected performance metrics, the day-ahead and week-ahead12

ML based load forecast models developed for the retail building are shown to out-perform the13

synthesised naive models. Further, the deployment of these models for DR capacity scheduling is14

proposed as an ML pipeline that can be realised with the help of ML workflows, computational15

resources as well as systems for monitoring and visualisation. The ML pipeline ensures faster,16

cost-effective and large-scale deployment of forecast models that support reliable DR capacity17

scheduling without affecting the grid’s energy balance. Minimisation of revenue losses encourage18

increased DR participation from large consumer buildings, ensuring further flexibility in the smart19

grid.20

Keywords: Machine learning, Data-driven, Deployment, Smart grid, Demand response, Flexibility,21

Large consumer building, Retail building, Load curtailment22

1. Introduction23

The smart grids of today encourage building consumers to deliver demand response (DR) through24

load curtailment. DR programs are designed to utilise this distributed and flexible energy resource for25

managing the supply-demand balance in the grid. Such DR programs are key enablers of reliable grid26

operation, particularly in scenarios where intermittent renewable energy generation and electric vehicle27

charging are higher. In electricity markets such as the United States of America (USA), Great Britain28

(GB), most of continental Europe and Oceania, depending on the services availed, the transmission29

system operator or the distribution system operator plays the additional role of a DR program operator30

[1]. The building consumers participating in DR programs deliver DR to the grid either directly or31

through third-party DR aggregators [2]. Together, they are referred to as DR participants here. Based32
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on their contribution to the energy balance of the grid, facilitated by the incentive-based DR programs33

[3], the DR program operator incentivises the DR participants.34

While residential buildings are encouraged to participate in DR programs in many of the electricity35

markets, this study focuses only on large consumer (commercial and industrial) buildings. For36

building consumers participating in incentive-based DR programs, capacity scheduling is the task of37

estimating their load curtailment availability for different forecast horizons such as the hour-ahead to38

the week-ahead or even the month-ahead. They may be required to notify the DR program operator39

about this availability in advance. However, it is possible that the forecasted load curtailment and40

subsequently the scheduled capacity is inaccurate due to errors in the forecast model used by the41

DR participant. This is one of the uncertainties faced by the DR program operators [4]. Deviations42

from the scheduled DR capacity would necessitate additional real-time balancing and reserve energy43

resources to guarantee the security of supply in the grid [5]. Often, such deviations result in penalties44

to the DR participants, who may be discouraged to continue delivering DR. This is an unhealthy trend,45

particularly at a time when we need increased grid flexibility through DR participation in order to46

support its decarbonisation.47

1.1. An overview of ML methods for demand response48

Operator prescribed models for DR capacity scheduling are absent in many of the incentive-based49

DR programs. As a result, DR participants commit their own estimates of the capacity availability for50

a given forecast horizon. Depending on the load curtailment strategy used, the capacity scheduling51

task for building DR participants can involve either total load forecasting or flexible load forecasting.52

Building load forecasting is a widely studied domain and extensive literature is available on this53

subject. Physics based building load forecast models, as reviewed in [6], are highly accurate since54

detailed information relating to ambient weather, geographic location and orientation, building design55

and geometry, thermo-physical aspects of building materials, characteristics of the HVAC system,56

occupancy information and operating schedule, among others are used in the model development [7].57

However, such detailed level of information and datasets are not always available nor accessible from58

building consumers participating in DR programs. This limits the applicability of physics based models59

for DR capacity scheduling. In addition, when large number of building consumers are participating60

in DR programs, physics-based models provide minimal opportunity for replication, making their61

deployment in live operation a tedious process. Machine learning (ML) based data-driven building62

load forecasting is based on implementations of functions deducted from samples of measured data63

describing the behaviour of a building load. The ML based building load forecast models have been64

extensively reviewed in: [8–13]. Some of these models are developed for specific application areas65

such as building performance measurement and verification [14–17], building control [18–20] and66

demand-side management [21,22], whereas a significant number of studies are application agnostic.67

Literature demonstrates the capability of supervised ML algorithms such as artificial neural networks68

(ANN) [23], support vector machines (SVM) [24], decision trees [25,26], Gaussian processes [27–29]69

and nearest neighbours [30], among others in developing reliable building load forecast models. In70

contrast to the physics based models, the ML based load forecast models require lesser amount of71

information from the buildings. Using training data, the supervised ML algorithms are capable of72

learning the non-linear relationships between influencing (predictor) variables and the building load.73

The ML based models continue learning from the new incoming data, making them more adaptable to74

deployment and operational scenarios. For these reasons, ML based load forecast models are observed75

to be quite suitable for DR related tasks.76

Few previous studies have explored the use of ML for DR related tasks such as capacity77

scheduling. Nghiem and Jones [31] developed a Gaussian processes based supervised regression78

ML model for predicting the load response DR behaviour of commercial buildings using DR79

signals and weather variables as predictors. Jung et al. [32] estimated the available flexible DR80

capacity in two large buildings based on an ML model using data from building variables such as81
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temperature/humidity/light sensors, carbon dioxide sensors, passive infrared sensors and smart plug82

power meters; the model is claimed to be better than the conventional manual audit processes used to83

estimate DR capacity. Yang et al. [33] developed ML based forecast models for energy consumption84

of heating, ventilation and air conditioning (HVAC) subsystems by using building data and weather85

forecast information, towards optimising the building energy management system operation as part of86

DR. Studies have also implemented ML based building load modelling for other DR related tasks such87

as baseline load estimation towards accurately quantifying the energy delivered as part of DR [34].88

1.2. Motivation for this work89

The need for flexibility in the grid is higher than ever before and promisingly many large90

consumer buildings are coming forward to participate in DR programs. This means that, reliable,91

computationally efficient and scalable models are required to support DR related tasks such as92

capacity scheduling. While previous studies have highlighted the benefits of ML models in such93

DR related tasks, they have seldom focussed on the deployment of such models in live operation94

and the challenges that come along. The presented study attempts to fill this gap by developing95

reliable ML based building load forecast models that are deployable in an industrial production96

environment. The ML model development tasks such as data pre-processing (outlier removal,97

gap filling, feature transformation), training-testing dataset preparation, cross-validation, algorithm98

selection, hyperparameter optimisation, model selection and model evaluation are guided by99

deployment-centric design criteria such as reliability, computational efficiency and scalability. The100

performances of the ML models are compared with that of synthesised naive models that would101

have served as alternatives. The study shows that supervised ML models can out-perform the naive102

models in terms of their forecast performance based on the selected performance metrics. Further,103

the deployment of the ML based building load forecast models is proposed as an ML pipeline that104

implements a workflow with sequential and repetitive tasks. ML workflows, computational resources,105

monitoring tools and visualisation platforms that form part of the ML pipeline are investigated. The106

study highlights that faster, cost-effective and large-scale deployment of ML models in DR related107

tasks such as capacity scheduling, facilitated by the ML pipelines, can benefit the grid as well as the108

DR participants.109

1.3. Article structure110

The ML model development for building load forecast towards DR capacity scheduling is111

discussed in Section 2. Aspects related to deployment of the ML models are detailed in Section112

3. A discussion of the performance of the proposed ML-based DR capacity scheduling is presented in113

Section 4. Section 5 concludes the study.114

2. Machine learning (ML) model development115

In this section, the tasks involved in ML based model development for building load forecasting116

are discussed in detail. This starts with the ML problem definition that directs the modelling required117

towards achieving the end goal. This is followed by data collection and data exploration, within118

which outliers, data gaps and patterns in the collected data are investigated. The section on feature119

transformation discusses the necessary changes made to the collected variables towards helping the120

ML algorithm learn the data relationships. Further, the data preparation activity presents the global121

dataset and its adaptation for training the ML algorithm. The selection of a suitable ML algorithm and122

the reasoning behind the same is discussed next, followed by a mathematical description of the selected123

algorithm. Sections on selection of a suitable hyperparameter optimisation method as well as a feature124

ranking method, advises the succeeding section on ML model selection. The model development125

process concludes with the ML model evaluation task that compares the performance of the selected126

ML models with synthesised naive models.127
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2.1. ML problem definition128

The aim of this research is to develop building load forecast models using ML for DR capacity129

scheduling. This is demonstrated using a total load curtailment strategy as well as a flexible load130

curtailment strategy commonly observed in DR practices from large consumer buildings. Total load131

curtailment can be achieved only if the building site has backup resources such as diesel generators132

or large batteries. In such cases, the ML problem is to forecast the total load for different horizons.133

Flexible load curtailment can be achieved by turning off loads such as HVAC for a small duration134

without affecting the building thermal comfort or business processes. The ML problem here is to135

forecast how much of that flexible load is available for curtailment. The load forecast horizon depends136

on the requirements of the DR programs. In order to demonstrate different use cases, day-ahead and137

week-ahead forecast models are developed for the total load and flexible load in a large consumer138

building. This results in 4 different building load forecast models that are then deployed for DR139

capacity scheduling.140

2.2. Data collection and exploration141

One year long smart meter data are collected from a retail building located in GB at 30 minutes142

intervals. This meter dataset includes recordings of the total building load as well as that of the flexible143

HVAC load. These data are resampled from 30 minutes to 1 hour resolution using the mean values.144

The collected meter data have few outliers standing out in magnitude from the remaining recorded145

values. For example, if the absolute value of the maximum rated building load is 500, the meter data146

values such as 10000 are acknowledged as outliers in this study. These are removed using the Tukey147

fences method [35], according to which, for a dataset with Q1 as the lower quartile (25th percentile),148

Q3 as the upper quartile (75th percentile) and (Q3 −Q1) as the interquartile range, the data samples149

outside the following range [Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)] for k = 1.5 are identified as outliers.150

In order to remove outliers from the data that may feed into the model in deployment at a later stage,151

the Tukey fences are recorded.152

Removal of the outliers leave gaps. Single timestamp gaps are filled by imputing with the mean153

of preceding and succeeding values. In the case of two or more consecutive gaps, the data samples154

are removed from the dataset. After dealing with the data gaps, the meter data are scaled using the155

maximum rated building load. This is primarily done for the purpose of data anonymisation. A one156

week snapshot of these scaled data are shown in Figure 1. It can be seen that the flexible HVAC loads157

constitute about 25-40 percent of the maximum rated building load. The loads other than HVAC are158

assumed to be non-flexible for the purpose of providing DR.159

Figure 1. Snapshot of flexible and non-flexible loads within the total load of the retail building
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In ML terms, the total load and flexible load are considered as target variables that should be160

forecasted. Since the values of each of these target variable are continuous, the modelling employs a161

regression algorithm that can forecast them with the help of predictor variables (or predictors).162

In order to understand the temporal influence on the energy consumption patterns in the retail163

building, load profiling is performed on the collected smart meter data. The time-of-day variations for164

the scaled total and flexible loads across day-of-week and month-of-year are shown in Figure 2 and165

Figure 3 respectively. The plotted lines represent annual mean values for day-of-week and monthly166

mean values for month-of-year.167

Figure 2. Time-of-day total load variations across day-of-week and month-of-year

Figure 3. Time-of-day flexible load variations across day-of-week and month-of-year
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The time-of-day load variations across day-of-week captures the operational hours of the retail168

building. For most of the days, except Sundays, the energy consumption is consistently high between169

7 am and 8 pm, possibly correlated with the building occupancy. From the time-of-day load variations170

across month-of-year, it can be observed that this consumption pattern is more pronounced during the171

winter months. During the summer months, the energy consumption peak is observed only during the172

midday hours and this could be attributed to the cooling energy requirements in proportion with the173

ambient temperature. Since, temporal variables such as time-of-day, day-of-week and month-of-year174

show clear influence on the building loads, they are considered as the default set of predictors for all175

the building load forecast models.176

Local weather variables such as temperature, humidity, wind speed and solar radiation influence177

building energy consumption [36]. Among these, temperature has the highest influence on building178

loads such as HVAC. Also, temperature variations are usually consistent within a considerable distance179

from the building location [37]. For this study, temperature recordings from the nearest available180

meteorological station are collected at one hourly resolution. Wet bulb temperature recordings are181

preferred over dry bulb temperature recordings since the latter takes into account humidity as well. No182

outliers were observed in the temperature dataset. Nevertheless, the Tukey fences method as discussed183

earlier is used to help weed out potential outliers that may feed into the model in deployment at a184

later stage. Temperature is considered as a candidate predictor for all the building load estimation185

models, albeit with certain transformations as discussed in the next section.186

2.3. Feature transformation187

Feature transformations are the changes made to the collected raw variables that enable the ML188

algorithm to learn patterns easily. These may be performed either based on the data type or based on189

domain expertise. Some of these are discussed below.190

2.3.1. Categorical to dummy variables191

Categorical variables such as day-of-week and month-of-year are converted to dummy variables192

in order to help the supervised ML algorithm learn their relationship with the target variable [38]. This193

means that, instead of using values such as 1 for Monday and 2 for Tuesday, dummy variables such as194

’is Monday’ and ’is Tuesday’ are derived with values 0 or 1. Hence a data sample for Monday will195

have value 1 for ’is Monday’ and 0 for the remaining dummy variables derived for day-of-week.196

2.3.2. Degree days197

Temperature and humidity levels maintained inside a building determine its thermal comfort.198

Base temperature is defined as the ambient temperature at which the HVAC systems do not need to199

operate in order to maintain thermal comfort. A base temperature of 15.5 degree Celsius is widely used200

in the GB. When ambient temperature is below the base temperature, the heating system provides201

heat proportional to the temperature difference. The heat energy consumption over a period of time202

relates to the summation of temperature differences between the ambient temperature and the base203

temperature. This is referred to as the heating degree days (HDD). Similarly, cooling systems operate204

when the ambient temperature is above the base temperature, and the summation of their differences205

over a period of time gives the cooling degree days (CDD) [39]. HDD and CDD are good indicators of206

building thermal energy consumption and hence used as predictors in the building load estimation207

model. Since the ambient temperature data are collected at hourly intervals, an hourly method is used208

for calculating the daily HDD (dayHDD) and daily CDD (dayCDD), based on the equations below:209

dayHDD =
∑24

i=1 (Tb − Ti)
+

24
(1)

dayCDD =
∑24

i=1 (Ti − Tb)
+

24
(2)
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where Tb is the base temperature, Ti is the ambient temperature at the ith hour of the day. The210

plus symbol (+) highlights that the negative temperature differences are equated to zero [39]. The211

weekly degree days weekHDD and weekCDD are calculated based on the summation of daily degree212

days over a week.213

2.3.3. Temperature estimates214

The mean, maximum and minimum values of the ambient temperature over different time periods215

such as the day or the week are derived to capture seasonal trends in local weather conditions and216

enrich the information fed into the ML model.217

2.3.4. Lag values to replace forecasts218

Use of weather variables for training ML algorithms brings in the responsibility of feeding219

their forecast values into the model once it is deployed. Errors in weather forecasts add to the220

errors of the building load forecast model, affecting its overall performance. This issue is not given221

enough attention in many of the applied ML modelling studies since deployment is not always222

a priority. The meteorological office in the United Kingdom claims that 92% of their day-ahead223

temperature forecasts are accurate within 2 degrees Celsius [40]. However, it is accepted that, as224

the forecast horizon increases, the weather forecast accuracy declines [41,42]. A possible solution225

to address this uncertainty is the use of time-shifted lag values of the weather data to train the226

ML models. In this study, the day-ahead building load forecast models use the daily temperature227

estimates from the previous day (day_temp_min_lag1,day_temp_mean_lag1,day_temp_max_lag1)228

and daily degree days from the previous day (day_HDD_lag1,day_CDD_lag1) as229

candidate predictors. Similarly, weekly temperature estimates from the previous week230

(week_temp_min_lag1,week_temp_mean_lag1,week_temp_max_lag1) and weekly degree days231

from the previous week (week_HDD_lag1,week_CDD_lag1) are used in the week-ahead forecast232

models.233

2.4. Data preparation234

From the data exploration and the subsequent feature transformation performed earlier, candidate235

predictors are identified for the day-ahead and week-ahead building load forecast models. These are236

listed in Table 1. Along with the target variables, they form the global dataset for the respective ML237

forecast models.238

Table 1. List of candidate predictors for day-ahead and week-ahead building load estimation models (*
represents categorical variables)

Type of predictor Day-ahead models Week-ahead models

Temporal hour_of_day hour_of_day
day_of_week∗ day_of_week∗

month_of_year∗ month_of_year∗

Weather day_HDD_lag1 week_HDD_lag1
related day_CDD_lag1 week_CDD_lag1

day_temp_min_lag1 week_temp_min_lag1
day_temp_mean_lag1 week_temp_mean_lag1
day_temp_max_lag1 week_temp_max_lag1

The simplest approach to ML model development is to train an algorithm on some data samples239

and test it on unseen samples using error metrics. To improve the generalisation capability of an240

ML model while making the best use of the available data, the training-testing process is repeated241

on different samples using cross-validation. The k-fold is a widely implemented cross-validation242

technique in which the data samples are randomly split into k parts of roughly equal sizes. In each243
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iteration, a unique part is held-out for testing and the remaining k− 1 parts are used for training. The244

general forecast performance of the model is then estimated using the average of the error metrics for245

each iteration. Such cross-validation techniques do not represent the real-world timeseries forecasting246

problems and results in data leakages [43]. Hence a custom cross-validation technique as explained247

below is used for this deployment-centric ML modelling.248

The number of data samples required in a testing set (i.e. the testing set size) is determined based249

on the forecast horizon of the model. For example, the testing set size for the week-ahead models250

is the number of hourly values in one week. The training set samples are taken from the preceding251

days of the testing set without gaps in between to ensure that the latest data is used for training. The252

training-testing sets are selected for cross-validation using a forward sliding window method as shown253

in Figure 4. The training-testing sets slide forward in steps equal to the size of the testing set. This254

also simulates the real-world operation of the ML models that we would want in deployment for DR255

capacity scheduling.256

Figure 4. Forward sliding window based selection of training-testing sets for cross-validation

Prior to performing cross-validation, each global dataset in timeseries is split into a development257

set and an evaluation set in the ratio 75:25 respectively. The training-testing sets generated using the258

forward sliding window method in the development set are used to perform ML model selection259

(elaborated in Section 2.8), whereas those generated in the evaluation set are used to compare the ML260

models’ performance against the respective naive models (discussed in Section 2.9).261

2.5. Algorithm selection262

Selection of an appropriate ML algorithm is an important task within ML model development.263

A simple linear regression algorithm can comprehend non-linear relationships between predictors264

and building load with the help of custom transformations such as polynomial functions. Since load265

characteristics are unique for each building, it is not easy to identify custom functions while developing266

ML models for large number of buildings involved in DR programs. Hence, the linear regression267

algorithm is not adopted for ML model development in this study. Compared against the linear268

regression algorithm, deep learning algorithms can naturally learn non-linear relationships but with269

the help of extremely complex architectures. Application of different ML algorithms in building load270

forecasting has shown that a deep learning based model, while using higher computational resources271

and complex training schemes do not produce any better results on a one year dataset, than the272

shallow algorithms [44]. Shallow algorithms such as artificial neural networks (ANN), support vector273

machines (SVM), decision trees, ensembles [45], Gaussian processes [46] and nearest neighbours [47]274

are good at learning non-linear relationships. There is no requirement to use custom transformations275

of predictors to establish non-linear relationships with the target variable. They have proven predictive276

performances on building load data and are computationally less demanding than deep learning277
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algorithms. While the methodology used in this study is replicable on any supervised ML algorithm, a278

decision trees based ensemble algorithm namely gradient boosted trees (GBT) is selected for developing279

the building load forecast models. The GBT algorithm architecture is discussed in detail in the section280

below.281

2.5.1. Gradient boosted trees (GBT) regression algorithm282

This is an ensemble of the decision trees (DT) algorithm. Starting from a root node, the DT283

algorithm generates a set of if then else rules at each decision node below, until the tree terminates284

at the leaf nodes. The set of decision rules in the DT algorithm are highly interpretable and easy to285

implement, making it a favoured ML algorithm. Based on its architecture, the DT algorithm also can286

handle heterogeneous data [48]. For this reason, predictor data scaling has not been performed in287

this study. However, it has to be noted that, algorithms such as ANN would require mandatory data288

scaling prior to training.289

This study adopts the classification and regression trees (CART) based DT algorithm, discussed290

in [49]. The mathematical formulation for CART given further is derived from [45]. The DT regression291

algorithm examines a training set S to find a predictor and split-value that partitions the data samples292

into two groups (S1 and S2), starting from the root node. This is based on the minimisation of a293

splitting criterion such as the sum of squared errors (SSE):294

SSE = ∑
iεS1

(yi − y1)
2 + ∑

iεS2

(yi − y2)
2 (3)

where y1 and y2 are the averages of the target variable values within the S1 and S2 groups295

respectively. The predictor with the lowest SSE splits a node into two new nodes below and this296

continues until the leaf node. This recursive partitioning grows the tree until the number of samples297

in the leaf node falls below a threshold represented by the hyperparameter minimum samples in leaf.298

The distance from the root node to the farthest leaf node is quantified in terms of the hyperparameter299

maximum number of nodes. It is important to find an optimal DT for a given training data because300

increase in the tree size increases the complexity of decision rules and may result in over-fitting. The301

DT hyperparameters minimum samples in leaf and maximum number of nodes can be used to optimise the302

size of the DT.303

The DT algorithm generates feature importance scores through the measurement of relative304

importance of predictors during training. This is achieved by aggregating the reduction in SSE (or305

other splitting criterion used) for the training set over each predictors. Intuitively, the predictors being306

split in the upper nodes of the tree or those used multiple times are inferred to have more influence on307

the predictions [48]. This capability is utilised for deriving feature rankings, discussed in Section 2.7.308

DT based models have high variance and a small change in the training data could result in a309

different set of splits. Ensembles are particularly useful in solving this problem. Boosting ensembles310

based on the gradient boosting machines developed by Friedman [48], follow the principle: given311

a loss function (such as least squares) and a weak learner (a trained base model with poor forecast312

performance), the algorithm seeks to find an additive model that minimises the loss function. The DT313

base models are good candidates for boosting since they can be easily generated, optimised and added314

sequentially. In the GBT ensemble algorithm, additive models of the following form are considered:315

F (x) =
M

∑
m=1

γmhm (x) (4)

where hm(x) represents the DT base models of fixed size and γm the weight parameter. The316

models are built in a forward stage-wise fashion such that the model at the mth stage is:317

Fm (x) = Fm−1 (x) + γmhm (x) (5)
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Given the model fit Fm−1(xi) on n samples of the training set, γmhm(x) is obtained by minimising318

the loss function:319

n

∑
i=1

L (yi, Fm−1 (xi) + γmhm (x)) (6)

using steepest descent optimisation. Loss functions such as least squares (LS), least absolute320

deviation (LAD) or Huber can be used for this purpose [48].321

The hyperparameters of GBT algorithm considered in this research are the loss function, the number322

of base models, the maximum number of nodes and the minimum samples in leaf. These hyperparameters323

are optimised based on the method discussed in the next section.324

2.6. Hyperparameter optimisation method325

Hyperparameter optimisation is the process of selecting the optimal set of hyperparameters in an326

algorithm that gives the best forecast performance to an ML model [50]. This process usually begins327

with defining an initial pool of hyperparameter values from which different trial sets are selected. The328

performance of the models using these selected trial sets are then tested through cross-validation.329

One of the most common methods for selection of trial sets is by manual-search where the values330

are hand-picked from an initial pool using experience based judgement, as demonstrated in [51,52].331

While manual-search is a simple method, it is not easily replicable since human judgement is not332

consistent. Further, manual-search becomes complicated with increasing number of hyperparameters333

that are required to be optimised. Grid-search is another widely adopted method where the trial334

hyperparameter sets are formed using all possible combinations from the initial pool, as demonstrated335

in [53,54]. In comparison with manual-search, grid-search selects the most optimal values. However,336

as the number of hyperparameters increases, the computational cost of grid-search also escalates. As337

a computationally efficient alternative to grid-search, the random-search method was proposed by338

Bergstra and Bengio [55]. In this method, trial sets are randomly selected from the initial pool using a339

predetermined sampling size. The sampling size can be varied based on the available computational340

resources, giving better control to the modeller. Since ML model development in this study is driven341

by criteria such as computational efficiency and scalability, the random-search method is adopted for342

hyperparameter optimisation of the GBT algorithm.343

2.7. Feature ranking344

A simple ML model should use the minimum number of predictors and still be able to generate345

the best forecasts. This is particularly important in deployment since issues such as data gaps in each346

predictor would affect the entire model. Feature ranking methods help identify the best predictors and347

eliminate the redundant. In this study, based on the load profiling performed earlier, the temporal348

predictors are considered as the minimal set of predictors required for forecasting. Hence, feature349

rankings are derived only for the weather predictors listed in Table 1 based on a method referred350

to as recursive feature elimination [56]. For this purpose, all weather predictors are used to train a351

GBT algorithm on the entire development set and those with the lowest feature importance scores are352

eliminated in each instance of the training. The weather predictor that remains until the final training353

instance is given the rank 1. It has to be noted that the GBT algorithm applied at this stage uses a fixed354

set of hyperparameters (loss function=LS, number of base models=100, max. number of nodes=2, minimum355

samples in leaf=2). This is done purely for the purpose of feature ranking prior to model selection,356

discussed in the succeeding section. When large number of candidate predictors are available, feature357

ranking becomes an important strategy to help develop simple ML models. Table 2 shows feature358

ranking of the weather predictors for the 4 different building load forecast models.359
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Table 2. Feature ranking of weather predictors for the building load forecast models

Feature Total load Flexible load Total load Flexible load
ranking week-ahead week-ahead day-ahead day-ahead

Rank-1 week_temp_min_lag1 week_temp_mean_lag1 day_temp_max_lag1 day_temp_mean_lag1
Rank-2 week_temp_max_lag1 week_HDD_lag1 day_temp_mean_lag1 day_temp_max_lag1
Rank-3 week_HDD_lag1 week_temp_min_lag1 day_temp_min_lag1 day_CDD_lag1
Rank-4 week_temp_mean_lag1 week_temp_max_lag1 day_CDD_lag1 day_HDD_lag1
Rank-5 week_CDD_lag1 week_CDD_lag1 day_HDD_lag1 day_temp_min_lag1

2.8. ML model selection360

Model selection is the process of identifying the version of a given algorithm that gives the361

best forecast performance with the minimal set of predictors, sufficient training data and optimal362

hyperparameters.363

As part of the preparations for model selection, different feature sets are generated for each364

forecast model as follows. The first feature set (set-1) includes the temporal predictors only. The365

second feature set (set-2) contains the temporal predictors as well as the rank-1 weather predictor for a366

particular model. Further, set-3 contains the temporal, rank-1 weather predictor and the rank-2 weather367

predictor. This continues and the final feature set (set-6) contains all the predictors. In the proposed368

mode for deployment, the models are expected to be trained regularly. Taking this requirement into369

consideration, it is ideal for the deployed models to have the smallest training size and yet yield the370

best forecast performance. For this purpose, the following training sizes are considered: past-2-weeks,371

past-4-weeks, past-6-weeks and past-8-weeks of hourly values. For each building load forecast model,372

model selection is performed through an iterative process as summarised using the psuedo codes373

below.374

Algorithm 1 Model selection process

1: for features [Set-1, Set-2, Set-2,. . . , Set-6] do
2: for training-size [Past-2-weeks, Past-4-weeks,. . . , Past-8-weeks] do
3: Perform hyperparameter optimisation
4: end for
5: end for

The process starts with the selection of the first feature set (set-1), iteratively followed by the set-2,375

the set-3, and so on, up to set-6. For each feature set selected, the process continues with the selection376

of a training size from those proposed earlier (past 2 to 8 weeks). For each feature set and training377

size selected, random-search hyperparameter optimisation is performed to identify a good candidate378

model as follows.379

Based on the available computational resources, a sampling size of 25 is chosen and the380

hyperparameter values of the GBT algorithm are randomly selected from the initial pool listed in Table381

3.382

Table 3. Initial pool of hyperparameter values of the GBT algorithm from which optimal values are
identified

Hyperparameters Initial pool of values

Loss function [LS, LAD, Huber]
Number of base models Integers between 10 and 1200
Max. number of nodes Integers between 2 and 500

Min. samples in leaf Integers between 2 and 500
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A given feature set, a training size and a set of hyperparameter values (for example, loss383

function=LAD, number of base models=130, max. number of nodes=11, minimum samples in leaf=4), are384

together identified as a model. Hence, for a given feature set and a given training size, the random385

sampling of hyperparameters results in 25 different models. For each of these models, forward sliding386

window cross-validation is performed on the training-testing sets in the development set (discussed in387

Section 2.4). Model forecast performance is measured based on the mean absolute error (MAE) metric388

given in the equation below:389

MAE =
∑n

i=1 |Fi − Ai|
n

(7)

where Fi is the forecasted value and Ai is the actual value. After cross-validation, average MAE390

is calculated for each model and the one with the lowest average MAE is identified as a candidate391

model. Hence, for a given feature set and training size, only one candidate model with the best forecast392

performance is selected.393

When all iterations over the 6 feature sets and 4 training sizes are complete, 24 candidate394

models are obtained for each building load forecast category (i.e. total load week-ahead, flexible395

load week-ahead, total load day-ahead and flexible load day-ahead). Based on their recorded average396

MAE values, relative model rankings are derived for each of these categories such that, a model with397

the lowest recorded average MAE is given rank 1 and selected as the best candidate. The model398

rankings are displayed as heatmaps in Figure 5 and Figure 6.399

Figure 5. Model rankings for the week-ahead models

For the total load week-ahead model, the best candidate uses feature set-2 and training size of400

past-6-weeks. Feature set-2 for this model includes temporal predictors (time_of_day, day_of_week,401

month_of_year) and minimum temperature from past week (week_temp_min_lag1). The flexible load402

week-ahead model shows best performance with set-1 (temporal predictors only) and training size of403

past-4-weeks.404
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Figure 6. Model rankings for the day-ahead models

For the total load day-ahead model, the best candidate uses feature set-3 and training size of405

past-6-weeks. Feature set-3 for this model includes temporal predictors as well as weather predictors406

such as maximum temperature from past day (day_temp_max_lag1) and mean temperature from past407

day (day_temp_mean_lag1). The best candidate for flexible load day-ahead model uses feature set-5408

and training size of past-4-weeks. Feature set-5 of this model includes temporal predictors and weather409

predictors such as mean temperature from past day (day_temp_mean_lag1), maximum temperature410

from past day (day_temp_max_lag1), daily CDD from past day (day_CDD_lag1) and daily HDD from411

past day (day_HDD_lag1).412

The optimised hyperparameters of all the best candidate models are listed in Table 4. These413

models are selected for model evaluation, elaborated in the next section.414

Table 4. Optimised hyperparameters of the best candidate models selected for evaluation

Optimised Total load Flexible load Total load Flexible load
hyperparameters week-ahead week-ahead day-ahead day-ahead

Loss function LS LS LS LAD
Number of base models 469 879 914 564
Max. number of nodes 142 104 435 433

Min. samples in leaf 83 12 5 83

2.9. ML model evaluation415

As mentioned in Section 2.4 on data preparation, 25 percent of all the global datasets are kept416

untouched for ML model evaluation. These datasets are used to simulate the operation of the best417

candidate ML models identified from the model selection process, in a production-like environment.418

Hence, model evaluation is also a pre-production test for the best candidate ML models where the419

training-forecasting process is simulated using the training-testing sets in the respective evaluation420

set (selected based on the forward sliding window method discussed in Section 2.4). For day-ahead421

models, this results in a continuous set of forecasts that are produced in daily steps based on the422

training data behind. Here the training data size depends on that of the best candidate ML model.423
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Similarly, for the week-ahead models the forecasts are produced in weekly steps. These forecasts424

are then compared against the actual values and model performances are quantified using the error425

metrics, mean absolute percentage error (MAPE), mean overprediction percentage error (MOPE) and426

mean underprediction percentage error (MUPE), given below:427

MAPE =
100
n

n

∑
i=1

∣∣∣∣ Fi − Ai
Ai

∣∣∣∣ (8)

MOPE =
100
n

n

∑
i=1

∣∣∣∣ Fi − Ai
Ai

∣∣∣∣ ∀Fi > Ai (9)

MUPE =
100
n

n

∑
i=1

∣∣∣∣ Fi − Ai
Ai

∣∣∣∣ ∀Fi < Ai (10)

where Fi is the forecasted value and Ai is the actual value. The selection of the over-prediction428

and under-prediction metrics are motivated by the use case i.e. DR capacity scheduling. Specifically,429

over-prediction and under-prediction errors in the scheduled capacities could impact revenues for the430

DR participant and also affect the grid balance. The percentage errors are selected for anonymising the431

actual load values. The values of the MAPE, MOPE and MUPE metrics of each building load forecast432

models are recorded for benchmarking purposes.433

The evaluation for ML based building load forecast models is incomplete without comparing their434

performances against conventional alternatives. For this purpose, four naive models are developed435

as alternatives to the four ML based building load forecast models. The day-ahead naive models use436

the meter data values from the previous similar day. For instance, the forecasted total load for the437

upcoming Monday will be the same as the metered total load for the previous Monday. The week-ahead438

forecast models use the meter data values from the preceding week. In order to avoid ambiguity due439

to dissimilarities in energy consumption, public holidays are removed from the evaluation sets. The440

testing sets in the evaluation set that were used to evaluate the ML models are used to evaluate the441

naive models as well. The performances of the naive models are also measured using the MAPE,442

MUPE and MOPE metrics.443

Figure 7 and Figure 8 displays the forecasts for the week-ahead and the day-ahead models444

respectively. Using these figures, a visual comparison can be made between the forecast performances445

of the ML models and the naive models for a period of one week taken from the evaluation set. It446

can be observed that, the ML based forecasts are closer to the actual recorded values in most of the447

instances. Further, a comparison of the model performance metrics for the ML and naive models448

are shown in Figure 9. The ML forecast errors are noted to be consistently lower than those of the449

naive models. Further, the forecast errors of the day-ahead models are lower than their week-ahead450

counterparts.451
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Figure 7. Forecasts for the week-ahead models

Figure 8. Forecasts for the day-ahead models
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Figure 9. Comparison between ML and naive models based on different error metrics

3. ML pipeline for DR capacity scheduling452

The model evaluation performed in the previous section acts as a pre-production test for the453

selected forecast models. The performances of the ML models are found to be better than that454

of their naive alternatives. The next logical step is to deploy these models into the production455

environment. This section presents the scope for an ML pipeline that facilitates faster, cost-effective456

and large-scale deployment of ML models for DR capacity scheduling. Related aspects such as ML457

workflow, computational resource requirements and systems for monitoring and visualisation are458

discussed in detail.459

3.1. ML workflow460

A workflow is a sequence of tasks that repeats over time. The ML workflow for supervised ML461

based DR capacity scheduling involves tasks such as data pre-processing, training and forecasting.462

Data pre-processing refers to activities such as data cleaning, data gap filling and feature transformation463

that are performed on the raw dataset.464

During the ML model development process, data cleaning for the building load forecast models465

were performed with the help of Tukey fences and those values were recorded. In production, these466

recorded values are used to remove outliers from the live data feeding into the models. The strategy467

used for gap filling during the model development process is also implemented in production so that468

forecasts are reliable. Feature transformations used in the final set of predictors for each deployed469

models are applied on the respective live data feeds. For example, HDD and CDD are derived from the470

live temperature data feed before passing the values into an ML model. The functions used to derive471

these transformations are also recorded in a library for future use. This saves time when deploying472

other load forecast models with similar requirements.473

In deployment, ML model training can be performed occasionally or regularly depending on the474

computational resources available. For DR capacity scheduling, the forecast horizon and the frequency475

of forecasts are determined based on the DR program requirements. For instance, a week-ahead model476

may need to update the forecasts weekly or daily or even hourly. Further, the model performance may477

decline over time in comparison with the benchmark error metrics recorded during model evaluation.478
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In such cases, the model selection and evaluation processes may need to be repeated to re-deploy the479

best version. Although scheduled to run occasionally, these tasks also become part of the ML workflow.480

This complete ML workflow is represented in Figure 10.481

When large number of ML models are deployed into production, the unique scheduling482

requirements for their workflows necessitate the need for workflow management systems. Such483

systems are useful to schedule repetitive and sequential tasks very effectively. The open-source484

packages such as Apache Airflow [57] and Luigi [58] are good examples of workflow management485

systems that support ML pipelines.486

Figure 10. ML workflow schedules and tasks

3.2. Computational resource requirements487

Computational resources such as database servers, processing power and programming488

environments form the backbone of an ML pipeline.489

Data that flows through the ML pipeline are stored in databases at different stages. For instance,490

a database stores live incoming data from various sources continuously. For the building load491

forecast models developed in this study, the raw dataset includes meter data and weather data.492

Data pre-processing is performed on this raw dataset and the processed data is also stored for easy493

querying towards training and forecasting. The trained ML models with their parameters are stored494

for subsequent repeated forecasting on unseen data. The forecasted results and error metrics such495

as MAPE, MOPE and MUPE are also stored in the database for monitoring the model performances496

continuously.497

Model development is a computationally intensive process. Depending on the type of algorithm498

and the size of data used, the processing power requirements could also change. Due to their499

complexity, deep learning algorithms usually require graphical processing units (GPUs) for faster500

training. ML models based on shallow algorithms such as GBT used in this study can be easily501

trained using the ubiquitous central processing units (CPUs). For the purpose of this study, the model502

development is performed on a computer with the following specification: Intel i5, 4 cores 2.71 GHz503

CPU and 8 GB RAM. The computational times for different processes are listed in Table 5. For the504

computer specifications used, the model selection process takes between 48 and 53 minutes. This can505

be altered by changing the sampling size of the random-search hyperparameter optimisation method.506

Each instance of training-forecasting for the selected ML models takes between 8.1 and 8.6 seconds.507

Table 5. Computational times for ML processes

Process Total load Flexible load Total load Flexible load
week-ahead week-ahead day-ahead day-ahead

Model selection 48.01 mins 51.36 mins 52.98 mins 51.89 mins
Training-forecasting 8.6 secs 8.1 secs 8.4 secs 8.2 secs
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Tasks such as model selection, model evaluation, data pre-processing, training and forecasting508

that are part of the ML workflow are codified in a programming environment. The presented study509

has made use of the Python environment and its Scikit-Learn ML package.510

3.3. Systems for monitoring and visualisation511

In production, forecast models may fail because of data gaps or technical issues with512

computational resources. In such cases, backup models may need to be triggered to ensure business513

continuity. The naive models used in this study with relatively good forecast performances (as shown514

in Figure 9) could serve as backup models in such occasions. Systems capable of monitoring the515

models in production and alerting the right people towards taking corrective measures tend to be very516

useful. Many of the workflow management systems provide such monitoring capabilities.517

In addition to monitoring, visualisation of the forecast results supports better decision making.518

Figure 11 shows the total and flexible load forecasts for the week-ahead as well as the actual load519

values over a selected window in a representative visualisation dashboard. The DR capacity scheduled520

for each building and their deviations from the actual availability could be visualised in this way and521

the outputs could be directed to appropriate channels.522

Figure 11. A representative visualisation dashboard that shows the forecasted DR capacity availability
(total load and flexible load curtailment based) for the week-ahead along with deviations from the
actual availability for the retail building

4. Discussion523

The presented research attends to the need for reliable capacity scheduling in incentive-based524

demand response (DR). Since this DR task is not standardised at the moment, inaccurate forecasts from525

DR participants such as large consumer buildings result in deviations from their scheduled capacities.526

This affects the energy balance of the electricity grid and leads to penalties for the consumers. In this527

study, supervised machine learning (ML) based forecast models are developed for total and flexible528

loads of a retail building that can be used to schedule DR capacity availability for the day-ahead and529

the week-ahead. The study demonstrates that the ML based forecast models are more reliable than530

the alternative naive models and are hence applicable for DR capacity scheduling to different forecast531

horizons.532
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The study also considers the scenario of increasing DR participation from large consumer533

buildings towards increasing the grid flexibility. From a DR aggregator or DR program operator534

perspective this means that, faster, cost-effective and large-scale deployment of DR capacity scheduling535

models are necessary. Hence, the ML based building load forecast model development performed in536

this study is focused on deployment in a production environment. Further, the model development is537

guided by design criteria such as computational efficiency and scalability. These factors distinguish538

the presented study from the previous literature on ML based building load forecasting. The specific539

deployment-centric model development processes presented in this study are discussed below:540

• Data collection for the retail building focuses only on variables such as smart meter data and541

ambient weather data that are realistically accessible in a production environment. The use of542

weather predictors such as temperature forecast that comes with inherent errors are attempted to543

be minimised. Instead lag values of the measured temperature data are used.544

• Data pre-processing methods for outlier removal and gap filling are selected such that they are545

applicable on the new data feeds after deployment. Feature transformations are used to improve546

the learning capability of the ML algorithm and the functions used for this purpose are stored547

in a library for future use. This saves time and cost when repeating similar modelling on other548

building loads.549

• As part of data preparation, the testing sizes are selected on the basis of the forecast horizon550

(day-ahead or week-ahead) required for capacity scheduling. The use of cross-validation methods551

such as k-fold is avoided to minimise data leakage. Instead, a custom forward sliding window552

method of cross-validation is employed, that also simulates the actual training and forecasting553

process in deployment.554

• Computational efficiency guides the selection of gradient boosted tree (GBT) based regression555

algorithm for building load forecasting. The feature importance output from the GBT algorithm556

is utilised to identify the best predictors. Among the non-linear regression algorithms, while the557

use of deep learning algorithms for building load forecasting is observed to be computationally558

demanding, other shallow algorithms may be used to replace the GBT algorithm. However, this559

is beyond the scope of the presented study.560

• A random-search hyperparameter optimisation method is preferred over the manual-search and561

the grid-search methods as it provides more control to the modeller by letting select a sampling562

size based on the available processing power.563

• Feature ranking is performed using a recursive feature elimination method to ensure that a564

minimal set of predictors is used to develop the best ML models. This helps reduce the impact of565

data gaps in predictors on the models in production and hence minimise model failures.566

• The demonstrated model selection process ensures that the best performing ML models with the567

smallest set of predictors as well as the least training sizes are identified such that processing568

power requirements of the models in production are reduced, saving costs in the process. The569

savings are more significant when large number of models are in production.570

• The model evaluation acts as a pre-production test that simulates the training and forecasting571

process. Metrics that quantify the absolute, over-prediction and under-prediction errors are used572

to evaluate the model performances. Naive models synthesised as alternatives for the ML models573

are also evaluated using the same metrics. Against the naive models, the ML models show574

better performance. Nevertheless, it is proposed that the naive models can be used as backups in575

production if the ML models fail due to issues such as data gaps.576

To support the efforts towards faster, cost-effective and large-scale deployment of ML models,577

the research proposes an ML pipeline for DR capacity scheduling. The ML pipeline implements578

ML workflows of different sequential and repeating tasks scheduled with the help of workflow579

management systems. These include tasks such as data pre-processing, training and forecasting that580

are repeated at fixed intervals as well as tasks such as model selection, model selection and model581

redeployment that are triggered occasionally when the model performance declines over a period of582
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time. The ML pipeline also accounts for computational resource requirements such as the database583

servers, processing power and programming environments. In addition, systems for monitoring and584

visualisation are observed to be vital components of the ML pipeline.585

5. Conclusions586

A highly flexible smart grid can support the integration of renewable energy and electric vehicle587

charging towards its complete decarbonisation. In order to realise this, increased DR delivery588

must be expected from participants such a large consumer buildings with total or flexible load589

curtailment capability. The ML pipeline proposed in this study facilitates faster, cost-effective and590

large-scale deployment of reliable DR capacity scheduling models for such DR participants. If the DR591

aggregators and the program operators adopt such ML pipelines for DR related tasks, grid flexibility592

can be improved without affecting its reliability. This also helps minimise revenue losses for the DR593

participants who otherwise get penalised for deviations from their scheduled capacities. In aggregated594

scales, these ML pipelines could also pave the way for increased automation in smart grid operations.595

While open-source ML and computational resources are abundantly available, data quality issues596

such as outliers and data gaps should be minimised for effective functioning of these data-driven ML597

pipelines. This can be achieved through regulatory and industry-wide efforts towards improving data598

quality in the smart grids.599
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