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Summary 

Some of the worlds most devastating plant pathogens are those with broad host 

ranges (Kamoun et al., 2015, Dean et al., 2012). Yet there has been little investigation 

into the molecular mechanisms that enable broad host range (Mbengue et al., 2016). 

Phytophthora capsici is an oomycete plant pathogen with a broad host range and is 

well placed to become a model organism for the investigation of the mechanisms of 

host range and dynamic adaption in oomycete plant pathogens (Lamour et al., 2012a). 

Thus, this projects aims were two fold, 1) to develop tools for the examination of P. 

capsici biology and 2) to investigate the mechanisms of host specific dynamic adaption 

during infection. It was decided that this project would take an unbiased, “omics” based 

approach in defining the dynamic adaption to multiple host plants. 

Initial efforts were focused on developing a technology for the isolation of P. capsici 

translating mRNA from infected plant tissue, to avoid excessive plant material 

contaminating omics analysis (Chapter 2). However, while the isolation of mRNA in 

ribonucleic complexes was successfully established in vitro, implementation of this 

technology was not feasible in samples from the infection cycle. Based on these 

results, a simpler methodology was developed. To investigate early changes in gene 

expression, induced by host-derived signals, a method that relies on the incubation of 

germinating cysts with plant extracts was developed and validated. The new system 

was then used to carry out two separate omics experiments. First RNA-sequencing of 

total RNA comparing tomato extract and cucumber extract at 2, 4 and 8 hours post 

inoculation was conducted (Chapter 3). Followed by an identical proteomics 

experiment (Chapter 4). Results of these experiments point to key elements and 

patterns of the host specific dynamic adaptation of P. capsici. We have found that host 
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extracts were able to induce differential expression of genes, and proteins, amongst 

these oxidoredctase activity, and transporter proteins were found in high abundance, 

suggesting a necessary host-specific detoxification element to dynamic host 

adaptation. Proteins with phosphorylation activity, and other potential signalling 

molecules were also found in abundance in our suite of differentially regulated 

elements. However, what mechanisms induce this differential expression event, be 

they direct host perception or perhaps nutrient sensing, or some other indirect 

mechanism, is still unclear. In addition, how biologically relevant the dynamic 

adaptation event to host extract is to infection and colonisation of a host plant is still 

an open question.   It was then the aim of this project to develop tools for the 

characterisation of the key genes identified in these two experiments. Two 

transformation methodologies for P. capsici were optimised, mainly for the use in the 

CRISPR/Cas9-system (Chapter 5). We were unable in this study to show the utility of 

the CRISPR/Cas9-system in P. capsici, and indeed it is still unclear how functional 

CRISPR/Cas will be in Phytophthora species in general. Overall this project was able 

to shed some light mechanism of host-specific dynamic adaption and did develop 

some tools for the future study of P. capsici.  
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Chapter 1: General Introduction 

1.1 Introduction 

The capacity to feed oneself and one’s family, and the quality of that food is central to 

human health and wellbeing. However, global food security has always been and will 

always be a fundamental and ubiquitous concern. When considering the five major 

food crops, on average, 22.5% of global yield is lost to pests or pathogens each year 

(Savary et al., 2019). This, in addition to increasing populations and the climate crisis, 

leaves food stocks worryingly vulnerable (Schnitter and Berry, 2019). Thus, 

addressing one of the main limiting factors of food stock levels, that being crop loss 

due to pest and pathogen, is key to maintaining global human health and wellbeing.  

Those pathogens with high economic impact, in general, share one of two factors. 1) 

They affect one of the major global food crops, for example Magnaporthe oryzae, or 

rice blast fungus, which endangers the main calorie source of over half the population 

of the world (Dean et al., 2012) or Phytophthora infestans which causes potato late 

blight and is infamous for being the main biotic cause of the Irish Potato Famine 

(Kamoun et al., 2015). 2) They have a broad host range, for example Botrytis cinerea, 

also known as grey mould, which boasts over 200 know host plant species (Dean et 

al., 2012), or the oomycete Phytophthora ramorum which has over 109 host plant 

species, and globally is the main cause of sudden oak death  (Grunwald et al., 2008). 

While broad host ranged pathogens are widely recognised as highly impactful in term 

of crop loss, the majority of plant-pathogen interaction studies have focused on single 

pathogen-host associations. Understanding how broad host range pathogens are able 

to maintain virulence in multiple host plants from distinct plant lineages is an important 
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area for future study (Dong et al., 2015) (Mbengue et al., 2016). However, as of now, 

the factors that determine whether a plant is a host or non-host, and the factors that 

define a pathogen’s host range, be it a broad host ranged or a specialist host range, 

are yet elusive. To alleviate the burden caused by crop loss, engineer solutions, and 

inform breeding programmes, it is necessary to understand the strategies employed 

by crop pathogens and the determinants of pathogenicity. 

1.2 Coevolution of the Plant immune systems and 

Pathogenicity strategies   
 

For a microbe to become a pathogen it has to overcome the innate immunity of a 

chosen host, pathogenesis is a specialised lifestyle that only a few microbes achieve, 

and only on particular plants. The plant - pathogen community exists in a state of 

constant flux, under constantly changing evolutionary pressures. Both plant and 

pathogen are in a continuous evolutionary arms race for improved 

immunity/pathogenicity, reciprocal adaptations in order to maintain the status quo in 

terms of virulence. As stated by the Red Queen to Alice, “In this place it takes all the 

running you can do to keep in the same place”. A broad host range pathogen, 

presumably, must keep evolving on multiple fronts.  

1.2.1 Pathogen triggered immunity, Effectors and Effector triggered 

immunity 
 

Plants do not have mobile, specialized immune cells as in animals, a plant is able to 

mount an immune response in any tissue upon pathogen perception. That initial 

recognition of the pathogen by the plant by what are termed pattern recognition 

receptors (PRR) which recognise pathogen associated molecular patterns (PAMP) 

leads to PAMP triggered immunity (PTI) (Figure 1.1). This is usually a reaction to initial 
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contact with a pathogen and takes place on the surface of the plant and pathogen 

cells. PAMP are typically generic components of pathogens such as the flagellin of 

many bacteria or chitin of the cell walls of many fungal pathogens. For a microbe to 

successfully cause disease in a plant, it must evade or suppress PTI. Commonly the 

deployment of a suite effector molecules disables immunity and enhances 

susceptibility, enabling the microbe to become pathogenic and colonise the plant.  

Many pathogens, including Phytophthora species, secrete both apoplastic effectors 

and intracellular cytoplasmic effectors through haustoria or similar specialised 

structures such as the type 3 secretion system found in bacteria. Oomycete 

cytoplasmic effectors are characterised by a highly conserved Arg–X–Leu–Arg 

(RXLR) motif, which is required for translation into the plant cytoplasm (Whisson et al., 

2007). P. capsici has 515 of these predicted RXLR effector proteins, a similar quantity 

to the >500 predicted in P. infestans. (Haas et al., 2009). While functions of RXLRs 

are diverse, they commonly target processes that suppress immunity or facilitate 

disease progression. For example, AVR3a suppress the cell death response induced 

by the P. infestans elicitin infestin 1 (INF1), by stabilizing the host E3 ligase CMPG1 

(Bos et al., 2006, Bos et al., 2010). Whereas P. capsici PcAvr3a12 targets and inhibits 

the host plant peptidyl-prolyl cis-trans isomerase (PPIase) which is a key regulator of 

immunity-associated functions (Fan et al., 2018). However, the majority of RXLRs 

identified in Phytophthora, remain uncharacterized. A second conserved family of 

effectors found in Phytophthora species are the crinklers (CRN) named for the 

CRinkling and Necrosis phenotype cause in plant leaves when these proteins are 

overexpressed. They are characterised by an N-terminal LXLFLAK motif, an N 

terminal signal peptide enabling translocation inside the plant cell, and a diverse C 
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terminal presumably contributing to their effector function (Stam et al., 2013, Amaro et 

al., 2017). One important role of all effectors, CRN, RXLR, and others, is to suppress  

  

Figure 1.1: Diagram of Plant Immunity and the Zig-zag model. 

Upon confrontation with a microbe and potential pathogen, initial recognition of the 

microbe is through conserved pathogen associated molecular patterns (PAMPS). 

These are recognised by pattern recognition receptors (PRR), which activates the first 

level of plant immunity, PAMP trigger immunity (PTI). This immune response can 

include toxin metabolisation, NB-LRR generation, and ROS production. For a microbe 

to successfully become a pathogen it has to inhibit this initial PTI. It does this through 

the secretion of effector proteins from specialised structures such haustoria. These 

effectors inhibit the immune response and allow pathogenicity, this is termed effector 

trigger suitability (ETS). Through years of coevolution of host and pathogen, plants 

have evolved a means to recognise these effectors using R-genes or NB-LRR 

proteins, this triggers a secondary immune response, effector triggered immunity 

(ETI). Along with the other hallmarks of the immune response ETI can also lead to a 

hypersensitivity response (HR) which is characterised by plant cell death to inhibit 

infection spread. Continued coevolution of host and pathogen leads to a back and 

forth, an arms race, where the pathogen evolves new effectors in order to more 

effectively inhibit the immune response and allow pathogenicity, making the plant a 

host. In response the plant produces new R –genes for effector recognition in order to 

maintain and increase the amplitude of the immune response and obstruct the 

pathogenicity of the microbe. 
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the plant immune system, this is termed effector-triggered suppression (ETS) and is 

required for disease on host plants.  

Plants have a second layer of immunity however, based on the recognition of effector 

genes (sometimes termed avirulence genes - AVR) from potential pathogens. This 

second recognition mechanism of the plant immune system additional to PTI is mainly 

intracellular in its action, and is based on either the direct, or more often indirect 

recognition of effectors, and is termed effector-triggered immunity (ETI). This 

recognition is primarily mediated by a class of receptors that contain a conserved 

nucleotide-binding domain (NB) and a leucine-rich repeat domain (LRR), often termed 

NB-LRR. Several NB-LRR proteins that confer resistance to Phytophthora have been 

characterised (Vega-Arreguin et al., 2017). These NB-LRR make up the large majority 

of what are termed resistance genes (R-genes), each with a matching effector AVR 

gene, which upon recognition triggers the immune response.  

Continued development and layering of the immune response (ETI) and pathogenicity 

(ETS), this back and forth between host and pathogen is an evolutionarily given. 

Pathogen evasion of ETI is necessary for a pathogen to successfully infect its host 

plant. This can be achieved in various manners. It is known that pathogen effectors 

have high levels of allelic diversity, or that the pathogens have high levels of gene 

copies with high diversity to maintain an ever-evolving effector repertoire (Goss et al., 

2013). In addition, effector genes often have a relationship with genetic elements that 

allow duplication and mutation. Having a diverse family of genes that will be under 

almost constant evolutionary pressure mean that pathogens often can lose genes that 

confer plant resistance (AVR genes) while maintaining pathogenic fitness, potentially 

even maintaining the pathogens ability to target the same host target. Avoidance of 

the plant immune system, i.e. ETI suppression, can also be achieved directly by 
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effectors (Staal et al., 2006). Consequently, plants need an ever evolving suite of R-

genes to combat the innovation that takes place in microbes as evidenced by the rapid 

expansion and evolution of effector repertoires. This evolutionary back and forth 

between pathogen and plant, and the continuing arms race of effector and R-gene is 

described by the zig-zag model of plant immunity. The zig-zag model postulates that 

intense selective pressures drive the emergence and death of molecular innovations 

responsible for enhanced immunity and virulence in host and pathogen respectively 

(Figure 1.1). 

1.2.2 The plant immune response 
 

The dual system of PTI and ETI make up the plant immune system, and result in the 

activation of a suite of complex cellular, chemical, and molecular mechanisms that aim 

to limit infection and colonisation. The signalling pathways that are triggered as a result 

of PTI and ETI are well described (Dodds and Rathjen, 2010), utilizing kinase 

signalling, calcium signalling, NB-LRRs to trigger changing in transcriptomic, cell 

morphology and make up, and changes in the well-described salicylic acid and 

jasmonic acid–ethylene hormone pathways (Jones and Dangl, 2006).  A key 

component of this system is the biosynthesis of small molecular secondary 

metabolites with antimicrobial activity that limit pathogen growth.  Large numbers of 

diverse metabolites with a putative function in the plant immune system have been 

identified (Piasecka et al., 2015). For example, Glucosinolates (GS) are a group of 

secondary metabolites common to the Brassicaceae family, and Camalexin is a 

characteristic secondary metabolite found in Arabidopsis thaliana. These two in 

combination produce a disease resistance phenotype in Arabidopsis thaliana to 

Phytophthora brassicae (Schlaeppi and Mauch, 2010). Defensive strategies also 

ubiquitously include the accumulation of reactive oxygen species (ROS), these ROS 
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have multiple functions including signalling pathogen recognition, inducing cell death 

response, or having antimicrobial activity. The pathways that produce ROS are 

frequently the target for pathogen effector genes and therefore must be a key 

component of plant immunity (Jwa and Hwang, 2017). Often, however, the immune 

response results in localized cell death at the site of infection, known as the 

hypersensitive response (HR). The HR limits the progression of infection by limiting 

nutrient supply to the pathogen. All these together make an effective barrier to most 

pathogens, whether induced by PTI or ETI. To be pathogenic therefore microbes need 

to suppress this innate immunity.  

1.3 Determinants of host range and host specific pathogenicity 
 

Pathogenicity is the capacity of a microbe to cause disease. Host specific 

pathogenicity, therefore, is the capacity of a microbe to cause disease in a specific 

host species. What factors determine host specific pathogenicity and how these 

factors contribute to, and define the host range of a pathogen is still an open question.  

There will undoubtedly be many individual factors and mechanisms which enable 

pathogenicity on multiple hosts (i.e. enable a broad host range). Due to the variety of 

potential hosts and the fact that a single pathogen may be able to cause disease on a 

multitude of these distinct organisms it is safe to presume that factors that determine 

pathogenesis on a single host may not necessarily aid pathogenesis on another. 

Therefore a pathogen able to cause disease on a broad range of hosts must have a 

suite of host specific pathogenicity determinants to employ for each of those hosts. It 

is perhaps also the case that these individual determinates of host specific 

pathogenicity, taken together, do not encompass the entire mechanics that enable 

pathogenicity of multiple hosts. There is potential for other, general molecular 



25 
 

 

mechanisms that enable the maintenance of broad host range separate from multiple 

individual host specific pathogenicity determinants. What individual general 

mechanisms or sum of factors enable broad host range is again, very much, an open 

question. The themes and finding of the current research into the factors that 

determine host specific pathogenicity and enable broad host range have been 

explored here. 

1.3.1 Host Range and Host jumps 

Host range is generally defined as the subset of plant species that a certain pathogen 

species can cause disease on. There is an argument to be made, however, that this 

definition should be widened to include those plants on which a pathogen can 

proliferate regardless of symptoms. It is also important to distinguish between those 

hosts that the pathogen has been observed to proliferate on and cause disease in a 

natural environment, and those that have only be observed as hosts in a laboratory 

environment. In addition, there are what are termed non-hosts, plants that the 

pathogen is unable to colonise. Factors that determine a non-host/hosts status could 

include a successful PTI/ETI immune response, the presence or absence of essential 

nutrients for the pathogen, or simple that non-host is not present in the pathogens 

environment. 

Regardless of the breadth or narrowness of the definition used, pathogens can be split 

up into two broad categories, specialist and generalists. The factors that determine the 

fitness of specialist (those able to cause disease in hosts from one or a few closely 

related taxa) versus generalist (those able to cause disease in hosts from multiple 

unrelated taxa) is complex and not well understood, moreover it is more a question of 

epidemiology and evolution and not molecular biology. Briefly however, a generalist 
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pathogen would gain greater opportunities for proliferation and spread, it is usually 

assumed however that evolution favours a specialist approach. There is largely 

assumed to be a fitness cost with breaking resistance in a new host and maintaining 

virulence on that host and the original (Bahri et al., 2009, Morris and Moury, 2019). 

Furthermore, different hosts embody different selective pressures, maintaining fitness 

across many hosts results in trade-offs limiting fitness to a single host (Kirchner and 

Roy, 2000). This pressure results in the specialisation of pathogens to a specific host. 

A clear example of this specialisation can be found in P. infestans isolates taken from 

France and Morocco, isolate from France were more aggressive on cultivars of potato 

common to France and less aggressive to those cultivars found in Morocco, the 

Moroccan isolates showed similar specialisation favouring Moroccan potato cultivars 

over French (Andrivon et al., 2007). However, generalist pathogens continue to thrive, 

apparently showing a reduction in cost for maintaining multiple host fitness or 

increased benefits from increased opportunities for proliferation and spread. It is 

important to investigate and understand the determinants of host range to understand 

how pathogens maintain multiple host fitness. These determinates could be 

generalised mechanisms that enable broad host range, or the cumulative effect of 

multiple individual host specific pathogenicity determinants.  

Many studies that examine the determinants of host range and specific host 

pathogenicity concentrate on host jumps. A host jump starts when a pathogen 

encounters and infect a new host. Oftentimes, this interaction is not very productive 

for the pathogen and can result in extreme selective pressures acting on key 

(a)virulence factors. This results in adaptation of the pathogen to the new host, and is 

often followed by specialisation; a potential mechanism for speciation. However, it is 

necessarily true that some pathogen species are able to expand their host range 
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without experiencing the diversification that precedes and defines speciation. A 

diverse range of mechanisms have been attributed to functionality in host jumps, 

including hybridization, gene deletion, amino acid substitutions, and horizontal gene 

transfer (Morris and Moury, 2019). Hybridization between subspecies can be the 

impetus for a host jump, or maybe more specifically a host range expansion, for 

example, Blumeria graminis f. sp. triticale, was formed from the hybridization of a   B. 

graminis subspecies specialised to wheat and another subspecies specialised to rye, 

resulting in a species which hosts include both wheat and rye (Menardo et al., 2016). 

Hybridization can also occur through distinct species hybridization, many 

Phytophthora species are known to have their origins in inter-species hybridisation, 

enabling host jumps and expansion of host range. (Depotter et al., 2016). One 

Phytophthora species with multiple solanaceae hosts known to have emerged through 

the hybridisation of P. infestans and an unknown species is Phytophthora andina, 

(Goss et al., 2011). Gene deletion has also been shown to be another mechanism that 

contributes to host jumps, extensive loss of genes, particularly putative secreted 

proteins, in the smut fungus Melanopsichium pennsylvanicum which is thought to have 

enabled jump from monocot hosts to dicot hosts (Sharma et al., 2014). In contrast, a 

single gene loss can also be the factor that allows a host jump, the loss of function of 

an AVR gene that was a target for specific R genes found in many wheat cultivars, 

allowed evasion of the wheat’s immune system. And, is thought to be the onus for 

Wheat blast fungus’s host jump to common wheat (Inoue et al., 2017). It is not just 

loss of genes that lead to host jump but also mutation in the form of amino acid 

substitution, for example Phytophthora species were able to jump between Solanum 

species via an amino acid substitution in a protease inhibitor (Dong et al., 2014). 



28 
 

 

Host jumps and host expansion can also occur when a new host species is introduced 

to the environment of the pathogen, or the pathogen is transported to a new area 

where potential hosts are located (Panstruga and Moscou, 2020). In such a situation 

the determinants of virulence for a single host may contribute to virulence on other 

potential hosts. What role effectors and other determinants of virulence may have in  

potential new hosts and non-hosts is a relatively understudied area of research (Stam 

et al., 2014). Some effectors have shown to have activity in non-hosts, for example, 

33 P. infestans RXLR were tested for their ability to suppress FRK1 (FLAG22-

INDUCED RECEPTOR-LIKE KINASE 1) in the P. infestans host tomato and the non-

host Arabidopsis. 8 RXLRs were able to suppress FRK1 in tomato, whilst only 3 

maintained this activity in Arabidopsis. Suggesting the 5 other effectors lost their ability 

to affect their target in the non-host plant (Zheng et al., 2014). Although in this example 

3 effectors maintained effectivity in a non-host species, other studies show how key 

hosts determinants from closely related oomycete species were unable to suppress 

immunity in the other species’ hosts and vice versa. P. infestans and P. mirabilis are 

close phylogenetic relatives, and have both evolved to specifically inhibit proteases 

from their distantly related respective hosts tomato and four o’clock flower (Mirabilis 

jalapa) (Dong et al., 2014). The P. infestans is a cysteine protease inhibitor PiEPIC 

and the homologue from P. mirabilis (PmEPIC1) whilst both shown to be active against 

the cysteine protease from the pathogens respective host, where shown to be inactive 

against the homologue from the other pathogens respective host. PiEPIC1 was able 

to suppress the tomato proteases RCR3 but not the Mirabilis homologue MRP2. And 

PmEPIC1 whilst able to suppress MRP2 had no activity against RCR3. It has been 

hypothesised that pathogens may be unsuccessful in the colonisation of distantly 

related non-host through the failure of effectors, specifically evolved for activity on the 
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host plants, to affect their targets (Dong et al., 2014, Antonovics et al., 2013). In fact, 

the phylogenetic relationship between hosts seems to be a key determinant in 

predicting host breadth and the probability of host jumps (Gilbert et al., 2012, de 

Vienne et al., 2013, Gilbert and Webb, 2007). Although there is little study as to why 

this may be the case, an obvious explanation would be the plants from similar plant 

families offer similar environments and resources. It could also be the case that related 

plants share aspects of the immune defence strategy whether that be specific R genes 

that have been circumvented, or more basic non-host resistance strategies e.g. 

recognition of PRR that the pathogen has lost (Schulze-Lefert and Panstruga, 2011). 

1.3.2 Genomic Structure and Effector Repertoire Expansion as 

Determinants of Host Range 

It is clear from our understanding of plant immunity, and the evolution of host range 

and the factors that contribute to host jumps, that the effector repertoire of a pathogen 

is key to determining that pathogens host range. A good example of this principle can 

be found in the filamentous fungi of the genus Fusarium, many of which cause blight, 

wilting and root rot in crops, but have marked differences in their host range. Three 

notable members are Fusarium graminearum and Fusarium verticillioides, important 

pathogens of cereal crops, and Fusarium oxysporum f. sp. lycopersici (FOL) which 

also infects monocotyledonous plant but can also infect dicotyledonous plants, is a 

notable pathogen of tomatoes, and boasts a much broader host range. Genomic 

analysis of these three fungi showed that FOL had four unique chromosomes 

representing over 25% of its genome. It was discovered that genes know to be key to 

tomato pathogenicity, Six1 (Avr3) and Six3 (Avr2), as well as an oxidoreductase 

(ORX1), known to be secreted in planta, were found on these chromosomes. More 

notable is the fact that partial or total transfer of these 4 chromosomes into a non-
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pathogenic strain of Fusarium oxysporum, enabled that strain to infect tomato plants. 

Demonstrating that this distinct suite of genes was necessary for specific host 

pathogenicity (Ma et al., 2010).  

Other genomic studies of filamentous pathogens reveal a similar process 

demonstrating the importance, in terms of virulence and pathogenicity, of a 

genomically distinct and diverse effector gene repertoire, and how this has evolved in 

those pathogens. Genomic analysis of six closely related Phytophthora species 

showed that gene-sparse areas of the genomes, those areas that are known to contain 

genes induced in planta, and especially effector genes, undergo rapid evolution. This 

is in contrast to gene dense areas which mostly contain genes common to all 

Phytophthora species and undergo less rapid evolution. Other families of genes found 

in these highly dynamic, gene sparse regions include several enzymes e.g. cell wall 

hydrolases and proteins involved in epigenetic maintenance. Another notable family 

was enriched in gene-spares regions, perhaps surprisingly was histone and ribosomal 

RNA (rRNA) methyltransferases, often showing presence/absence polymorphisms 

(Raffaele et al., 2010). This phenomenon has been observed in other filamentous plant 

pathogens and has been termed “the two-speed genome.”  The pathogens genome is 

structured in such a way that pathogenicity factors undergo constant adaptive 

evolution in certain genomic areas, regions that aid gene expansion and diversification 

(Dong et al., 2015). Although this could be a mechanism by which pathogens maintain, 

and possibly adapt, the repertoire of pathogenicity factors that determine their host 

range, so observance of this so-called two-speed genome is not unique to broad host 

ranged pathogens. A similar genomic structuring also plays a key role in the host range 

of the fungal wheat pathogen Zymoseptoria tritici. Studies identified clusters of co-

regulated genes, induced specifically during the infection of wheat compared to 
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another host. These pathogenicity islands showed signatures of positive selection 

during the evolution and specialisation of Zymoseptoria tritici and may represent 

determinants of host specific pathogenicity (Kellner et al., 2014). This study introduces 

a possible mechanism of dynamic adaption to the host, that is, co-regulation of 

pathogenicity factors specific to that host. Interestingly of those co-regulated genes, 

detoxification genes, particularly gene involved in peroxidase activity, oxidoreductase 

activity, and antioxidant activity were predominant and were key in determining 

pathogenicity on a specific host (Kellner et al., 2014). Representing a host-specific 

adaption and response to toxic secondary metabolites and reactive oxygen species 

produced by host plant immune system. This is evidenced by several cases of 

detoxification factors, like these, being factors that contribute to host specific 

pathogenicity in other fungal pathogens (Bowyer et al., 1995, Coleman et al., 2009, 

Srivastava et al., 2013).  

The genomic structure of pathogens often includes portions that are diverse from other 

closely related species and a key to determining host specific pathogenicity, they often 

show hallmarks of evolutionary selection as well as the ability to create diversity and 

mutations. (Hacquard et al., 2013, Raffaele et al., 2010). It is also shown that these 

regions of diversity of pathogenicity islands are often differentially expressed as a form 

of host-specific dynamic adaption (Kellner et al., 2014). It is clear that the suites of 

effectors and other factors of host specific pathogenicity that a pathogen possesses 

define its host range. It is also clear that pathogens have evolved ways to expand and 

regulated the pathogenicity factor repertoires (Liang and Rollins, 2018). 
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1.3.3 Differential Gene Expression as a Driver of Dynamic Adaption 

to distinct Host Plants 

A key example of this differential gene expression during distinct host infection can be 

found in the fungal cereal crop pathogen Fusarium graminearum. (Harris et al., 2016). 

Interestingly transcriptomic analysis revealed that during the infection of barley and 

wheat, the gene expression of Fusarium graminearum was similar in both host plants. 

However, when infecting maize, a third host, a group of differentially expressed genes 

was revealed. Showing the ability of Fusarium graminearum to dynamically adapt to 

different host may be due to the expression of a different set of genes. The importance 

of differential expression for host specific pathogenicity is also demonstrated within 

the Phytophthora species. Genomic analysis of Phytophthora cactorum an extremely 

broad host ranged pathogen of rhododendron and many other woody species, 

revealed expansion of detoxification enzymes, suggesting these are a key determinant 

of its broad host range. More specifically ATP-binding cassette (ABC) transporter 

families and major facilitator superfamily (MFS), as well as the cytochrome P450 

(CYPs), peroxidase (POD), glutathione S-transferases (GSTs), methyltransferase 

(MTR), and dehydrogenase were all expanded in the P. cactorum genome. (Yang et 

al., 2018). Differential expression of these families of genes is part of several 

Phytophthora species response to the ginsenosides, notably P. cactorum, P. capsici 

differentially express 267 and 408 respectively when cultured with ginsenosides. 

(Yang et al., 2018).  Sclerotinia sclerotiorum is another broad host range pathogen, 

studies of differential expression of genes in response to two host plants from different 

host families revealed host specific differential expression. However, in this species, 

the effect of distinct host plants on the transcriptome of the pathogen was limited, 53 

of 628 genes. Although these genes did all have roles in the detoxification of host 

metabolites (Allan et al., 2019). Showing that whilst genomic structure and differential 
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expression may not be a universal determinant for host specific pathogenicity or 

dynamic adaption to multiple hosts, these concepts do seem to be a recurring theme 

in understanding broad host range. It is therefore fair to hypothesise that diversification 

and evolutionary selection of effectors genes and the subsequent expression of a 

subsets of the effector repertoire determines host range and dynamic adaption of a 

pathogen to a distinct host.    

A crucial stage of a pathogens life cycle and surely a key component of a pathogens 

ability to infect multiple hosts involves its ability to perceive a distinct host and act 

accordingly. In some fungal pathosystems, G-protein coupled receptors (GPCR) play 

a key role in sensing environment and initiating downstream signalling pathways. One 

such GPCR, called PTH11, is found abundantly in the species of the fungal pathogen 

class Sordariomycetes. In the fungal insect pathogen Metarhizium acridum, multiple 

PTH11-related receptor paralogs were used to distinguish host from nonhost, 

however, in a closely related but more generalist pathogen, a single Metarhizium 

roberstii utilized a single PTH11-related receptor to recognize multiple hosts (Quandt 

et al., 2016). The GPCR class of receptors is not found in great numbers Phytophthora 

species, especially P. capsici. However, a mechanism of host perception must remain, 

this could be direct recognition through receptors similar to GPCRs in function, or 

indirect mechanism, such as nutrient sensing mechanisms like the nitrogen metabolite 

repression regulator (NMRA) which alter transcription as part of a potential nitrogen 

metabolite sensing mechanism (Pham et al., 2018).  
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1.3.4 Other Mechanisms of Host Range: Necrotrophs, and bacteria.  

 

Pathogens can crudely be divided into two different groups, based on their strategy of 

infection and colonisation, those pathogens where the death of the host’s cells 

happens in consort with, or even prior to, the colonisation of the host, these are called 

necrotrophs. In contrast, there are those pathogens that colonise the plants, whilst 

suppressing the plant immune response, maintaining host cell viability, and cell death 

occurs post colonisation, these pathogens are called hemibiotrophs. To some extend 

this division may be a false dichotomy, and even the notion that a neat line can be 

drawn to divide the two extremes of these infection strategies, biotrophic or 

necrotrophic, may be somewhat baseless (Oliver and Ipcho, 2004, Oliver and 

Solomon, 2010b).  Even still, how different the methods and mechanisms of 

maintaining broad host range can differ in these two types of pathogens remains an 

open question. The majority of what is discussed above in this thesis may largely 

pertain to hemibiotrophs, however much many of the mechanisms for the maintenance 

of a generalised lifestyle and broad host rages may be shared amongst so-called 

hemibiotrophs and necrotrophs. 

Some necrotrophic pathogens have remarkable broad host ranges Botrytis cinerea, 

for example, is a necrotrophic fungus with hosts from 146 taxonomic families, 

Rhizoctonia solani a soil-borne fungal pathogen has hosts in 169 families (Newman 

and Derbyshire, 2020). Additionally, distinct mechanisms, or determinants of host 

range have been proposed for necrotrophic pathogens. It has been noted that many 

taxa of broad host ranged plant pathogens display a greater amount of asexual 

reproductive habits than their narrow host counterparts (Gibson, 2019, Ross et al., 
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2013, Newman and Derbyshire, 2020). The reasons for this seems unclear, some 

have theorised that Large populations enabled by a generalist lifestyle enables 

random mutations to allow for enough genetic diversity, and minimise the amount of 

deleterious mutations (Newman and Derbyshire, 2020). It has also been noted that in 

the insect fungal pathogen genus Metarhizium, that there is a significantly close 

relationship between the genome size and gene coding capacity of the species and 

the potential host range of the species (Hu et al., 2014). 

In addition to an asexual lifestyle and expanded genomes, several specific molecular 

mechanisms, and strategies of virulence have been noted to be common in broad host 

ranged necrotrophic pathogens. These include the modulation and adaptive 

adjustment of host ROS and host pH (Newman and Derbyshire, 2020). In addition, it 

has been noted, as in hemibiotrophic pathogen, detoxification of a variety host-derived 

antifungal secondary metabolites is necessary for colonisation of a broad range of host 

plants. However as with Hemibitrophic pathogens, the evolutionary benefits of host 

generalism is not well understood, and it has been noted that more research into the 

molecular mechanisms that enable broad host range is necessary.  

The discussions of host range above has largely been focused on eukaryotic 

pathogens, oomycetes and fungi. However, a large portion of the most devastating 

broad host ranged plant pathogens are bacteria. However broad theme in the 

mechanism of broad host range can be recognised. Bacteria genomes or often 

organised into sections of core conserved sequences and accessory genomic islands. 

These genomic islands encode a variety of organism specialisations, such as 

pathogenesis. A gene island can carry genes from diverse origins, built piece by piece 

through deletion and insertion events, they can also be exchanged between organisms 
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by lateral gene transfer. In pathogens, these genomic islands have frequently been 

found to encode virulence factors such as type III secreted effectors, these specialised 

genomic islands can be referred to as pathogenicity islands (Hacker et al., 1997), and 

characterisation of the genomic island has revealed host specific virulence factors 

((Parkhill et al., 2001a, Parkhill et al., 2001b, He et al., 2004). Experiments have shown 

that virulence genes can be acquired by horizontal gene transfer of pathogenicity 

islands (Lindeberg et al., 2008, Lovell et al., 2009). Diversification of effector repertoire 

has also been noted in bacterial strains through homologous recombination, 

contributing to differences in the host range of different strains (Yan et al., 2008), in 

fact in large part it seems the gene – for gene hypothesis of plants immunity and by 

extensions the acquisition and loss of key virulence genes such as genes coding for 

type III secreted effector proteins and key in defining and expanding host range. These 

genes either working as important avirulence factors, or key effectors determining 

virulence (Lindeberg et al., 2008, Cai et al., 2011). The presence and absence of 

certain PAMP triggers has also been shown to be a key determinant of host range. 

For example, different flagellin alleles from strains with different host ranges, and host 

range breadth, has a marked effector on the bacterial growth in planta (Takeuchi et 

al., 2003). However, it is still up for debate how important the loss or gain of certain 

key effectors, or PAMP triggers is in determining host range evolution (Cai et al., 

2011).  

1.4 A highly destructive broad host ranged plant pathogen: P. 

capsici 
 

Phytophthora capsici is a highly virulent and versatile pathogen of crop plants that 

occurs throughout warmer climates (Lamour et al., 2012b). P. capsici was isolated 

from diseased chilli peppers in New Mexico and described in detail for the first time in 
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1922 (Leonian, 1922). It is a filamentous oomycete plant pathogen that causes crop 

blight, and can infect plants at any stage of development, causing seedling damping-

off, crown root and foliage blight, and fruit rot prior or post crop harvest. Its host range 

encompasses multiple members of the Cucurbitaceae or gourd family, and the 

Solanaceae or nightshade family, major crop hosts include but are not limited to 

peppers (Capsicum annuum), cucumbers (Cucumis sativus) squashes (Cucurbita 

maxima, Cucurbita moschata, Cucurbita pepo), gourds (C. moschata), watermelons 

(Citrullus lanatus), melons (Cucumis melo), tomatos (Lycopersicon esculentum), 

eggplants (Solanum melongena), and black pepper (Piper nigrum) (Figure 1.2). More 

recently identified hosts include green beans and lima bean (Babadoost  et al., 2008), 

in total studies suggest that its host range could include up to 49 different species of 

crops and weeds (Drenth and Guest, 2004, Erwin and Ribeiro, 1996, Tian and 

Babadoost, 2004).  

In the United States of America in 2019, approximately USD$621 million worth of chilli 

and bell pepper were grown, using 48,500 acres of land (NASS, 2020) all at threat 

from P. capsici disease. Taking into account the broad range of crop plants that P. 

capsici infects, global food crops under threat each year are estimated to be worth 

over USD$1 billion (Lamour et al., 2012b). In addition to the economic effect, 

pathogens such as P. capsici can have a humanitarian impact. For example, in 

Sarawak state, Malaysia, where over 60,000 family farms grow black pepper, making 

it the most important crop in that region, a P. capsici outbreak in the mid-1950s  caused 

100% crop losses throughout the whole state (Drenth and Guest, 2004), and the state 

is still blighted by the pathogen today with one region suffering 75% disease incidence 

(Farhana et al., 2013). Necessarily having ramification for the ability of the farmers to 

provide for themselves and their families.  
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Figure 1.2: Infection in the field of multiple host plants.  

(A) P. capsici infection of a garden tomato cv. (Solanum lycopersicum) displaying 

buckeye rot of fruit. (B) P. capsici infection of watermelon (Citrullus lanatus) showing 

large lesion and sporulation. (C) P. capsici infection of on fruit of yellow crookneck 

squash (Cucurbita pepo) showing large lesion, sporulation and fruit root. (D) Signs of 

P. capsici infection on lima bean (Phaseolus lunatus) in a laboratory setting. (E) P. 

capsici infection of eggplant (Solanum melongena) displaying a large lesion and the 

beings of sporulation at the base. (F) P. capsici infection of pepper  showing extensive 

fruit rot and sporulation (Capsicum annuum).  Pictures A, C, E and F courtesy of 

Gerald Holmes, Strawberry Center, Cal Poly San Luis Obispo, Bugwood.org, picture 

B courtesy of Jason Brock, University of Georgia, Bugwood.org, picture F courtesy of 

Nancy Gregory, University of Delaware, Bugwood.org    
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The broad host range and global reach, while not unique amongst Phytophthora 

species, gives P. capsici a far-reaching and profound impact on crop growers. 

However, the studies of, and molecular tool for the studies of, other Phytophthora 

species such as Phytophthora infestans, or P. sojae, both of which have relatively 

small host ranges, are further advanced. Despite the ease and speed it can be cultured 

in laboratory setting P. capsici remains understudied. Whilst a partial genome was 

published in 2012 (Lamour et al., 2012a) genomic tractability remains elusive. 

However, P. capsici is well-placed to become a model organism for studying the 

determinants of host specific pathogenicity and range, and the mechanisms of 

dynamic adaption to host in oomycetes and other pathogens. Therefore, this thesis 

aims to expand our understanding of the mechanisms that underlie broad host range 

in P. capsici and develop tools to aids in the study of oomycete plant pathogens, 

specifically increasing genetic tractability and the ability to conduct transcriptomic 

studies during key but recalcitrant stages of a pathogens lifecycle. 

1.4.1 P. capsici as an evolutionary power-house 
 

P. capsici can reproduce both sexually and asexually, and genetic variation, in 

particular deviations in host range, are well reported (Tian and Babadoost, 2004). P. 

capsici is a heterothallic species and, therefore, in the field two mating types (A1 and 

A2) exist and are required for sexual reproduction. Mating leads to the formation of 

thick-walled oospores that can remain dormant in the soil for long periods and persist 

through harsh environmental conditions (Figure 1.3). Because of their persistence and 

longevity, the presence of oospores in the soil can render fields unsuitable for the 

production of susceptible crops. Sexual reproduction also means that P. capsici 
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populations are genetically diverse. These features, alongside high mutation rates in 

P. capsici when subject to UV irradiation, can lead to fast shifts in population structure 

and fungicide resistance (Barchenger et al., 2018). In fact, P. capsici is notoriously 

malleable and demonstrates rapid adaptability, displaying a single nucleotide variation 

(SNV) density and diversity significantly higher than that of most eukaryotes. Further 

genomic malleability is demonstrated by the remarkable high instances of loss of 

heterozygosity, where tracts of the genome from one of the parents is switch to the 

other parent's haplotype, allowing mating-type switching (Lamour et al., 2012a). It is 

therefore widely assumed that genetic diversity underpins the remarkable adaptability 

of P. capsici.  

Under favourable field conditions, P. capsici is also able to reproduce rapidly by 

asexual reproduction. Following successful infection, large numbers of sporangia are 

produced on the surface of plant stems, leaves and fruit. Over three billion viable 

spores have been reported on the surface of a single squash fruit (Lamour et al., 

2012b). These characteristically lemon-shaped or limoniform sporangia (Figure 1.3) 

are induced to detach on contact with water, under humid or rainy conditions 

facilitating mechanical spread. They each contain, and thus release 20-40 free 

swimming, biflagellate zoospore, which acts as one of the main means of infection and 

spread in a field (Figure 1.3). These zoospores are chemotactically attracted toward 

plants and swim upwards being negatively geotropic. Remarkable they have been 

reported to survive in tail-water for up to 45 days (Roberts et al., 2005). Individual 

analysis of these zoospores has recently revealed a dramatic plasticity to the P. 

capsici genome; sequencing of single zoospores reveals extreme aneuploidy, termed 

Dynamic Extreme Aneuploidy (DEA), it means asexual reproduction results in high 
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intra-genomic variation in chromosome copy number varying from diploid (2N) to 

anywhere up to 6N or beyond (Hu et al., 2020).  

Alongside meiosis and frequent outcrossing, loss of heterozygosity, high SNV and this 

dramatic genomic restructuring occurring during asexual reproduction, all happening 

in a potential three billion spores, each with up to 40 viable zoospores, the genetic 

diversity even in a single field of infected plants could be massive.  

Once a zoospore, oospore or sporangia has found a host plant and germination has 

begun it has to invade the host plants tissues and successfully evade or suppress the 

host's innate immunes system. On contact with a plant, the zoospores encyst and 

germinate, these germinating cysts produce germ tubes that either directly penetrate 

the plant cuticle, which can take up to an hour (Hausbeck and Lamour, 2004), or can 

utilize natural opening such as stomata (Katsura and Miyazaki, 1960). Penetration is 

often aided by the enzymatic breakdown of the plant tissue (Yoshikawa et al., 1977). 

Direct germination of oospores and sporangia is also possible, and the disease 

progresses similarly. 

1.4.2 The Infectious life cycle of P. capsici  
 

P. capsici has a hemibiotrophic lifestyle. This is characterized by two distinct phases 

during the disease cycle. The first stage involves the development of an appressorium 

and penetration peg for invasion. Followed by hyphae, filamentous tubes, which 

colonise the plant tissue, and the formation of haustoria, structures that branch off 

from the hyphae and expand inside the plant cell walls creating an intimate shared 

membrane for the transfer of water, nutrients and effectors (Bozkurt and Kamoun, 

2020)(Figure 1.3). Notably, this biotrophic stage includes the suppression of the plant 

immune response whilst the pathogen invades the host tissue. Specifically, in P. 
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capsici biotrophy is from 0 hours post inoculation (hpi) to about 16 hpi. It can tentatively 

be characterised as the portion of time when the haustoria formation marker gene P. 

capsici haustorium-specific membrane protein 1 (PcHmp1) is up-regulated and before 

the up-regulation of the necrotrophy marker P. capsici necrosis-inducing Phytophthora 

protein 1 (PcNpp1). This biotrophic phase (0 – 16 hpi) features the enriched induction 

of genes with roles in the expression and translation of genes, and protein metabolism. 

This demonstrates that in the early stages of P. capsici infection proteins are derived 

from de novo synthesis rather than from host derived amino acids (Jupe et al., 2013). 

This is consistent with the high expression of amino acid biosynthesis genes found in 

early P. infestans infection (Grenville-Briggs et al., 2005). And suggests a host 

perception induced bootstrapping of infection initiation and places a particular onus on 

the ability of germinating cysts to detect and adapt to the host and invade its tissue 

without deriving nutrient from the host.   

 Following this initial colonisation and growth inside the plant, the second phase is the 

necrotrophic phase, which involves the death of the plant tissues and continued 

nutrient harvest. The Necrosis and ethylene-inducing peptide 1 (Nep1)-like protein 

superfamily, a family of necrosis-inducing peptides key in pathogenicity, and genes 

associated with catabolism and degradation are found co-regulated with the 

necrotrophy marker gene PcNPP1. Induction of these genes are part of a 

transcriptional shift that occurs around the 16 hpi mark and represents the shift from 

biotrophy to necrotrophy. Following successful infection and during the death of the 

plant (or in a similar vegetative stage during the routine maintenance of lab strains) 

P. capsici grows as coenocytic filamentous mycelium, formed of multiple free 

branching hyphae, from which sporangia or oospores can be derived or induced 

(Figure 1.3). These life cycle phases while dynamic are closely regulated by shifts in  
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Figure 1.3: Life cycle images and diagram. 

A A-C show images of P. capsici at various stages: sporangia filled with zoospores 

and empty (A), biflagellate swimming zoospores (B), and mycelia grown on V8 agar 

medium in the laboratory (C). The diagram shows the life cycle of P. capsici. Following 

colonisation and completion of the plant infection sporulation is induced and spores 

erupt from the plant tissue. Two kinds of spores are produced, oospores through 

sexual reproduction and sporangium through asexual reproduction. Oospores can 

persist for many years in the soil, but will  eventually germinate and produce 

sporangium of their own. Sporangium production can also be induced in the 

laboratory. In the laboratory mycelia is maintained on V8 agar medium, and 

sporulation is induced through fresh plating and a specific dark-light cycle, which 

allows collection and isolation of sporangium. Sporangium contain up to 40 biflagellate 

mobile zoospores which are released. These are the main inoculum material for P. 

capsici. Upon contact with plant tissue the zoospore encysts and germinates, forming  
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the pathogens transcriptome. During the final stages of infection and upon sporulation, 

there is an increase in signalling and developmental processes (Jupe et al., 2013).  

A lifecycle that includes a portion that is biotrophic and a portion that is necrotrophic 

is described as hemibiotrophic. The hemibiotrophic life cycle is common to many 

fungal plant pathogens such as Magnaporthe, Colletotrichum, and Mycosphaerella 

genera (Perfect and Green, 2001). Traditionally a biotrophic relationship has been 

considered sophisticated and thus advanced in terms of evolution and molecular 

mechanisms (Lewis, 1973). Biotrophy is thereby, characterised by complex molecular 

mechanisms aimed at fine-tuning the plant immune system. It enables colonisation 

without an immune response whilst maintaining the plant’s ability to grow and thrive. 

During the biotrophic stages P. capsici forms intimate and complex morphological 

structures, such as haustoria, that invade the cell and extracting nutrients whilst also 

inhibiting cell death and the immune response. Thus, biotrophy seems to be a highly 

sophisticated co-evolved relationship. However, it is now clear that highly evolved, and 

complex host-specific killing mechanism are employed by necrotrophic pathogens as 

well (Oliver and Solomon, 2010a). It, therefore, seems remarkable that pathogens can 

maintain both biotrophic and necrotrophic lifestyles in the same host with fine-tuned 

temporal control as seen in P. capsici and other hemibiotrophs. Hence, a broad host 

ranged hemibiotrophic pathogen with a co-evolved, intimate and presumable 

a germ germinates, forming a germ tube and an appressorium penetration structure. 

In the early stages of colonisation the immune system is inhibited and the plant tissue 

is not damaged. Haustoria form pushing into the plant cell, without penetrating the 

membrane, allowing the pathogen to form an intimate connection with the host cells. 

This is known as the biotrophic stage of infection. After colonisation of the tissue P. 

capsici moves into the necrotrophic stage of its lifecycle, drawing nutrients from the 

plant and causing water soaked lesions, which eventually give rise to sporulation 

and continuation of the cycle. Pictures A, B courtesy of Elizabeth Bush, Virginia 

Polytechnic Institute and State University. 
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idiosyncratic relationship with multiple diverse host plants must have sophisticate 

pathogenicity strategies indeed. Identifying and understanding these mechanisms is 

one of the main goals of this research.     

1.4.3 Dynamic host adaption in P. capsici  
 

Previous studies have shown that the P. capsici infection progression phenotype is 

similar in four different host plants (Unpublished Huitema Lab). The progression of 

infection was examined in 4 host plants, the model plant Nicotiana benthamiana and 

three crops, cucumber (Cucumis sativa), tomato (Solanum lycopersicum) and pepper 

(Solanum capsicum). Macroscopic observation of inoculated leaves shows that P. 

capsici appears to grow similarly on all four host-species (Figure 1.4). Initially infection 

displays asymptomatic biotrophic growth. After approximately 16 hpi, surface 

mycelium is visible followed by necrotic, water-soaked lesions, which are forming at 

32 hpi, and clearly observed at 72 hpi. Confocal microscopy on all four hosts at 16 hpi 

showed haustoria in all hosts (Figure 1.4 - white arrows). As Biotrophic infection seems 

established in all four host by 16 hpi this time point was chosen for transcriptomic 

analysis. The purpose of which was to examine if, despite the similar disease 

phenotype, differential gene expression was driving host specific pathogenicity.  

Microarray experiments followed by differential gene analysis revealed 2452 genes 

are differentially expressed between the four hosts (p<0.05, BH correction) 

(Unpublished Huitema Lab). With 1246 genes significantly expressed with p<0.01. 

Using the more stringent significance about 13% of genes could be host dependently 

differentially expressed by P. capsici.  Pairwise comparisons showed that cucumber, 

the single Cucurbitaceae host, is most different from all other hosts. Cucumber 

compared with any of the other hosts gives 1529, 2043 and 1850 genes that are 
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differentially expressed between cucumber and pepper, N. bethamiana or tomato 

respectively. Furthermore, when comparing pepper and tomato, the two most closely 

related solanaceae species, only 280 genes are differentially expressed.  

Figure 1.4: Four host leaf infection assay and confocal microscopy. 

(Huitema lab unpublished results). Droplet inoculation of four P. capsici host plants 

shows the progression of disease. 0 – 72 hours post inoculation (hpi). 4 host plants 

have been used the model plant Nicotiana benthamiana and three crops, cucumber 

(Cucumis sativa), tomato (Solanum lycopersicum) and pepper (Solanum capsicum).  

Intial gowth 0 – 16 hpi in biotrophic and therefore relatively asymptomatic. However 

post 16 hpi symptoms in the form of mycelia can be observed in all for hosts, with 

water soaked lesion appearing in all four host by 72 hpi. Confocal microscopy at 16 

hpi revels a similar infection phenotype across the hosts. Infiltrating hyphae and 

haustoria can be seen in red, with haustoria formation in all 4 hosts by 16 hpi (indicated 

with white arrows). 
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Venn diagrams of the host overlap of differentially expressed genes were constructed 

to see if the same genes are differentially expressed in 2 or more host compared to a 

single other. Again, cucumber stands out as both prompting the largest number of 

uniquely differentially expressed gene (3299), and having the largest proportion of 

Figure 1.5: Venn diagrams of the number of DE genes in each of the four host 
compared to each of the other hosts from Microarray experiments of P. capsici 
16 HPI from leaf infection assay of four host plants. 

The 4 host plants that have been used are the model plant Nicotiana benthamiana 

and the three crops, cucumber (Cucumis sativa), tomato (Solanum lycopersicum) and 

pepper (Capsicum annuum). (A) shows the 3299 DE genes of cucumber infection, (B) 

the 2200 DE genes of tomato infection, (C) the 2074 genes from Pepper infection, and 

(D) the 1246 DE gene of the N. benthmaniana infection all separated into the 

comparisons between each of the three other host plants. The table (E) shows each 

number of DE genes from each comparison group in its entirety with the total number 

of up regulated genes and the total number of down regulated genes. 

 



48 
 

 

those differentially expressed genes (677, 20.5%) found shared in the individual 

comparisons with each of the other 3 hosts (Figure 1.5 A). The other three host N. 

benthamiana, pepper, and tomato only having 173 (6.4%), 76 (3.7%), and 79 (3.6%) 

of their uniquely differentially expressed genes that are jointly different in a comparison 

with the other three hosts (Figure 1.5). 

Within those genes that are differentially expressed RXLR effectors are amongst the 

most dramatically differentially expressed genes across all the host, in terms of the 

largest differences in transcript level (Unpublished Huitema Lab). In total 147 out of 

463 (31%) RXLR appear to be regulated in a host-dependent manner, with a majority 

showing dramatic changes in gene expression.  26% of the top 200 most differentially 

expressed genes, in term of changes in transcript expression, are RXLRs. In the top 

100, that number goes up to 31% and the top 10 most differentially expressed genes 

contain six RXLR genes: PcRXLR 373, 374, 030, 039, 475 and 325.  This suggests 

that RXLR effectors can be switched on or off specifically dependent on the host being 

infected.  

The principal expression profiles were identified by performing hierarchical clustering 

of all differentially expressed genes followed by the plotting of the genes expression 

profile (Unpublished Huitema Lab). These analyses resulted in the establishment of 

10 distinct clusters, defined by host-dependent changes in expression. Within these 

clusters, 10 different expression profiles identified, ranged from host specific clusters 

to groups of genes that show expression on 3 out of four hosts (Figure 1.6). Cluster 1 

and 4 show specific high expression on cucumber, whereas cluster 8 shows the 

opposite pattern. Cluster 3 shows higher expression in tomato and pepper and clusters 

5, 6 and 7 are smaller clusters with higher expression in pepper, tomato or N. 

benthamiana respectively.  The two largest are clusters 1, those genes that are 
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induced in cucumber and down-regulated in the other 3 host plants, and cluster 8 

whose genes are induced in the Solanaceae hosts and down-regulated in cucumber. 

When specifically clustering only the RXLR genes, four possible expression profiles 

22 shows higher expression in both tomato and pepper and a third shows up-

regulation in the more distal solaneceous species N. bethamiana. Cluster four is a very 

Figure 1.6: Heat map of Hierarchical cluster analysis of DE genes from 
Microarray experiments of P. capsici 16 HPI from leaf infection assay of four 
host plants. 

The 4 host plants that have been used are the model plant Nicotiana benthamiana 

and the three crops, cucumber (Cucumis sativa), tomato (Solanum lycopersicum) and 

pepper (Capsicum annuum). Hierarchical cluster analysis shows 10 different 

expression profiles of all differentially expressed (DE) genes.  Blue are those genes 

induce and white and those gene turned off. Hierarchical clustering of DE RXLR and 

CRN effector genes was also carried out. The RXLRs cluster into 4 expression 

profiles and the CRNs cluster into two. 
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small cluster that shows minor up-regulation in Cucumber and pepper, but not in the 

two other hosts. 

These studies (Unpublished Huitema Lab) show that differential gene expression may 

be a driver of dynamic adaption to the specific host plant. It also supplied a list of 

potential genes that may be determinates of host specific pathogenicity and therefore 

host range, and that analysis of these genes may reveal the mechanism that allows 

maintenance of pathogenicity on a broad range of hosts. Analysis of the expression 

profile of these genes shows that of the four hosts tested, 3 being members of the 

Solanaceae family Nicotiana benthamiana, Pepper (Capsicum annuum), and Tomato 

(Solanum lycopersicum), the fourth host being cucumber (Cucumis sativus) of the 

family Cucurbitaceae, that the single Cucurbitaceae host plant induced the most 

differential expression of genes. This shows that differential gene expression may be 

a mechanism of dynamic host adaption of P. capsici, information that may illuminate 

the mechanisms of broad host range in oomycete. It also demonstrates that there may 

be an association between the genes being expressed and the closeness of the 

relationship of the host plant. That is, closely related hosts have more genes in 

common that are necessary for host specific pathogenicity, whereas, distantly related 

hosts have less of these shared host specific pathogenicity genes. Therefore, perhaps 

a better term for some of these genes may be determinates of genus specific 

pathogenicity rather than host specific pathogenicity.   

1.5 Tools for the molecular investigation of pathogens 
 

As previously explained much research into the mechanism of plant immunity are 

conducted in model species. These species are often genetically tractable and key 

insights into the fundamentals of pathogen-host systems can be gleaned from these 
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kinds of experiments, however, the applicability of these studies to inform resistance 

breeding or agricultural strategies to limit crop loss may be restricted. Novel 

techniques are constantly being developed across multiple biological disciplines which 

allow deep interrogation and smarter experimental design. However the ability to apply 

certain techniques to non-model organisms is limited, their implementation can be a 

great boon to picking complex processes and important biological problems. In 

particular developing tools in real-world relevant pathosystems, such as P. capsici may 

lead to a better understanding of broad host pathogenicity and dynamic adaption that 

is notable to that species and other key pathogens. 

1.5.1 Gene editing and Characterisation 
 

An obvious example of novel techniques with broad applicability that has been 

developed in recent time is the CRISPR-Cas9 nuclease gene editing tool. The 

methodology is based around the Cas9 nuclease that forms a complex with a 

sequence specific targeted short guide RNA. This complex can recognise and bind to 

the target genomic DNA via Watson-crick base pairing, the nuclease then selectively 

make a double stranded cut in the portion of targeted DNA. Endogenous DNA repair 

mechanism can introduce mistakes when joining the two DNA ends back together, 

termed non-homologous end joining (NHEJ), it can introduce base pair addition and 

deletion causing frameshifts knocking out the gene in a process called non-

homologous recombination. The introduction of a repair template into this system 

allows specific editing, such as the insertion of specific and desired point mutations, 

or the introduction of large genes, like selections markers at the point of cleavage. The 

ability to knock out and edit, with a high level of accuracy, genes in situ has enabled a 

greater understanding of gene function in many biological systems. This system was 

first successfully utilized in mammalian cells in a pair of papers published in 2013 and 



52 
 

 

since has been in thousands of lab in various organism and system (Hsu et al., 2014). 

It was another 5 year until the first Phytophthora species (P. sojea), was modified 

through genome editing (Fang and Tyler, 2016, Fang et al., 2017).  This provided an 

important tool for the molecular investigation of oomycete plant pathogens. However, 

implementation in other oomycete species has been slow progress. A transformation 

procedure and functional editing of key genes have since been published in P. capsici 

(Wang et al., 2018, Miao et al., 2018) and functional studies have also been carried 

out in Phytophthora palmivora (Gumtow et al., 2018). However, several systematic 

attempts to implement the same system in P. infestans (van den Hoogen and Govers, 

2018) has had no success, meaning the success of this system could be very species 

or even strain-specific. 

1.5.2 “Omics” studies for functional analysis.  
 

Over the last decade the advent of high throughput technologies, bioinformatics and 

increased computational power, and unbiased systems biology approaches has 

dramatically increased the ability to conducted broad “omics” based studies. This has 

had a vast impact on our understanding of complex processes in disease progression 

and lifecycle, host adaptation, virulence, and gene/protein function. In addition 

integration of multiple “omic” technologies can be a powerful technique for the 

discovery of system-scale mechanisms of pathogenesis and host adaption, and the 

molecules with key roles in pathogenesis (Ball et al., 2020). Proteomic and 

transcriptomic studies have been used to elucidate key genes and mechanisms for 

many lifecycle stages of Phytophthora species (Resjö et al., 2017, Pang et al., 2017). 

Or, in discovering key elements of fungicide resistance (Pang et al., 2016, Ma et al., 

2018), and host adaptation in plant pathogens(Yang et al., 2018). However, due to a 
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large part of the lifecycle of the pathogen taking place inside the host plant, 

transcriptomic analysis of these key infectious stages remains elusive. The use of 

normal techniques to probe such time points mean that pathogen reads have to be 

distinguished from host reads which will always be in excess, this comes at the 

sacrifice of breadth and depth of sequencing, meaning the loss of low expression 

transcripts and difficulty in identifying all but the most differential of expression. This is 

a significant problem especially in the early stages of infection where pathogen 

biomass is so low.  

Therefore, there have been many experimental designs to avoid the need to 

discriminate pathogen and host genes post-sequencing. Isolation of host genes can 

be conducted at any stage in the experimental design. There are two main types of 

experimental design that allow this, 1) In vitro systems and 2) Nucleic acid purification 

systems, these methodologies both allow separation of the pathogen material from 

that of the host, in vitro systems prior to RNA extraction and Nucleic acid purification 

post RNA extraction.  

Examples of the former include, what are termed here as “sandwiches”, which are 

mycelia placed on the abaxial side of the leaf and a second leaf placed on top. This 

methodology has been used to characterizing those key genes of P. sojae of the early 

stages of soybean infection (Chen et al., 2007). A similar methodology has since been 

utilized to examine the interaction between P. capsici and the non-host model plant 

Arabidopsis thaliana (Ma et al., 2018). Other methods that have been trialled is 

culturing P. palmivora in different plant broth to detect novel secreted proteins (Apinya 

et al., 2018). Lastly, host interactions with the culturable tomatoes host cell MsK8 and 

several Phytophthora species have been investigated. Interestingly, only species 

pathogenic to tomato could infect the cultured cells and hallmarks of the plant immune 
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response were shown, reactive oxygen species and cell death response. Additionally, 

signatures of infection such as germ tube penetration and haustoria formation, as well 

as RXLR and other effector expression were observed (Schoina et al., 2017).  

In contrast, there are methodologies that have been developed to involve purification 

of extracted RNA following normal in planta infection assays. Two popular 

methodologies that could fit this mould are translating Ribosome Affinity Purification 

(TRAP) Followed by RNA Sequencing Technology (TRAP-SEQ), and Pathogen 

enrichment sequencing (PenSeq). TRAP-SEQ involves the tagging of small 

conserved ribosomal proteins, purification of translating ribosomal complexes with 

their attached mRNAs using this tagged protein. Followed by isolation of the mRNA 

followed by sequencing. This has been used to isolate mRNA from rare cell types and 

tissue-specific cells in both mammalian and plant systems (Heiman et al., 2008, 

Reynoso et al., 2015), it could be utilized to isolate pathogen cells from infected plant 

tissue, however to date this has not been conducted. A different methodology that has 

been specifically designed to enrich pathogen DNA is PenSeq. PenSeq involves the 

creation of a library of genes that are to be enriched, incubating that library with the 

isolated DNA, binding of the tagged library to the complementary sequences thus 

allows purification and enrichment of these target sequences. Although, originally this 

methodology was developed for use with gDNA, it has since be used to investigate 

cDNA and thus has greater utility now for transcriptomic analysis (Lin et al., 2020). 

These methodologies represent a wide range of options to use an “omics” style 

approach to interrogating the molecular mechanism of pathogenicity is key, but 

recalcitrant, and therefor understudied, infectious stages of the pathogen life cycle. 

Additionally, the implementation of the CRISPR-cas9 system in oomycetes is a 

significant step in increasing the genetic tractability of these species. It is thus, one of 
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the aims of this project to further explore and develop tools for broad omics style 

experiments, and advance powerful gene characterisation technologies in P. capsici.  

1.6 Conclusion and Aims 
 

P. capsici is a global pathogen with a far-reaching impact. Its oversized impact is 

perhaps largely due to its broad host range, meaning it can decimate cucumber and 

squash crop in the Midwest of America whilst impacting chilli pepper and black pepper 

farmers in Indonesia and Southeast Asia. Understanding what molecular determinates 

and processes enable its broad host range, therefore, is key to treating this disease 

on the global scale where it functions. Like other generalist pathogens, and like many 

oomycetes P. capsici has a remarkable penchant for genomic malleability and genetic 

diversity. The ability for genomic restructuring and expansion seems to be key in 

broadening and maintaining host range and is perhaps the impetus for host jumps in 

many species. Having a diverse or expansive genome is not the full story however, 

regulation in the form of differential expression of key genes seems to be a 

fundamental mechanism in the dynamic adaptation to a specific host.  

This projects main aim is to explore the mechanisms that underlie the broad host 

range. It is can be readily hypothesised that a key mechanism by which P. capsici can 

dynamically adapt to distinct hosts is through differential expression of genes. 

Therefore the specific aim of this project is to analyse this differential expression of 

genes in response to different host plants. And to characterise and identify those key 

genes that are differentially expressed during distinct host infection.  

However, the genomic tractability of P. capsici is limited, and characterisation 

experiments can only give so much insight conducted with the current tools. 
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Additionally, transcriptomic studies of key lifecycle stages, notably those early stages 

of infection are hard to carry out, especially when looking for differential expression of 

genes. In light of these limitations, new tools for genomic editing and methodologies 

for transcriptomic in vivo studies are required. Therefore this project has also aimed 

to enable the deeper study of P. capsici through the development of such tools.  
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Chapter 2:  Implementation of a TRAP-SEQ 

technology for the study of gene expression and 

translation in P. capsici  
 

2.1 Introduction 
 

Previous studies have highlighted the importance of the differential expression of 

genes in the dynamic adaption of a pathogen to a specific host and how this may be 

a mechanism that enables pathogenicity on multiple distinct host plants (Harris et al., 

2016, Yang et al., 2018, Allan et al., 2019). To investigate the gene regulation that 

defines host adaptation, understanding of the early events that lead to the required 

changes is key. For this, an unbiased “omics” style approach to explore and define the 

earliest stages of infection is required. The project seeks to thereby identify key host 

preferential effectors and regulators, regulation patterns of host specific virulence and 

dynamic host adaption, in order to better understand the mechanisms that underlie 

broad host range in oomycetes.  

To do this, transcriptomic analysis of the gene expression during leaf infection is 

necessary. However, in vivo transcriptomic analysis is limited due to the presence of 

host-derived mRNAs that dominate the samples and diminish signals in most if not all, 

high throughput gene profiling technologies. Broad, and deep data sets, describing 

pathogen gene expression, are hard to acquire due to the scarcity of pathogen mRNA 

in the early stages of infection. Isolation and enrichment of RNA, either prior or post 

sequencing, is therefore necessary. Therefore, to address the inherent limitation of the 

host-pathogen system, attempts were made to implement a novel TRAP (Translating 

Ribosomal Affinity Purification) followed by RNA sequencing (TRAP-SEQ) protocol in 

P. capsici. Thus in this context TRAP-SEQ enables the isolation of translating mRNA 
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of P. capsici from that of the material of the host plant, allowing the definition of early 

transcriptional changes that underpin dynamic adaptation and enable host invasion. 

This data alongside data from microarray experiments (Chapter 1) aids the definition 

of a suite of genes that are critical to distinct host virulence. 

2.1.1 Translating Ribosome Affinity Purification – RNA sequencing 

To analyse the transcriptome of P. capsici as described above there is a need to purify 

the mRNA of the pathogen from the excess of plant material, derived from an infected 

leaf. TRAP allows for the isolation of translating ribosome/ polysome complexes from 

a specific cell type, from a pool of total cell extract, in this case P. capsici material from 

infected leaf material (Figure 2.1). To do this in P. capsici, it was necessary to optimise 

and validate the TRAP protocol. TRAP involves cloning and epitope (FLAG) tagging 

of a ribosomal protein (RP). Epitope-tagged ribosomal units are then expressed in the 

target organism (Gracida and Calarco, 2017) or cell type (Bertin et al., 2015). Immuno-

precipitation of intact ribosomal complexes can then be used to isolate translating 

mRNA from specific cell types or stages (Reynoso et al., 2015). The methodology was 

initially described by Heiman et al. (2008) and was used to specifically isolate the 

translating mRNA from a rare subset of mice neurons. Heiman et al. used the 60S 

ribosomal protein L10a tagged with eGFP for immunoprecipitation. More recent 

studies have isolated other cell types and from a diverse range of organism, from X. 

laevis (Yoon et al., 2012) (Watson et al., 2012) to zebrafish (Fang et al., 2013) (Tryon 

et al., 2013), Arabidopsis thaliana (Jiao and Meyerowitz, 2010) and 

Drosophila (Thomas et al., 2012, Huang et al., 2015). These studies have also used 

a variety of tagged large ribosomal protein subunits (RPL) and epitopes for 
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immunoprecipitation.  In Arabidopsis, RPL18 with both His-FLAG tags and a GFP tag 

were utilised, and in Mice a HA-tagged RPL22 has been used (Lyons et al., 2020). 

Both Drosophila and C. elegans both utilised GFP-tagged RPL10a (Thomas et al., 

2012, Gracida and Calarco, 2017). 

 

The aim of this project was to use the TRAP protocol, as described, to isolated P. 

capsici translating mRNA from infected plant tissue, and thus sequence the P. capsici 

translatome in the early stages of infection. It was hypothesised that by epitope-

tagging and isolating ribosome-mRNA complexes solely from P. capsici, TRAP-SEQ 

will thus enable an increased breadth, and depth of sequencing by isolating only P. 

capsici genes. If true, a TRAP-SEQ approach will enable a more in-depth analysis of 

Figure 2.1: Schematic of TRAP-SEQ methodology.  

This schematic shows the FLAG tagged ribonucleic complex, the FLAG tagged RPL 

of which was transformed and overexpressed in P. capsici. The strain of FLAG tagged 

RPL overexpressing P. capsici was then used to infect a host leaf. Following the 

progression of infection, total extract taken in a ribosomal maintenance media which 

preserves the integrity of the polysome. The total extract contains an excess of plant 

material in addition to P. capsici material which includes the intact polysomes. 

Immunoprecipitation of the ribonucleic complex using the FLAG tag, was used to 

isolate the P. capsici translating mRNA still attached to the intact polysome. The 

translating mRNA from these ploysomes was then isolated and used for RT-PCR or 

Sequencing. 
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changes in the P. capsici transcriptome during distinct host infection. By isolating and 

sequencing the translatome, TRAP-SEQ may also improve the correlation between 

transcript and protein levels, as only actively transcribed mRNAs are sequenced. 

Indeed, TRAP-SEQ has been shown to enable the isolation and sequencing of 

actively-translating mRNA derived from purified polysomes, which can give a more 

accurate view of protein production and content (de Sousa Abreu R, 2009). 

 

The aim of this chapter was therefore to validate TRAP-SEQ methodology, novel to 

oomycetes and a host-pathogen bio-system, and to utilise it to examine the differences 

in the molecular mechanism of host adaptation to two distinct P. capsici hosts (tomato 

and cucumber).  A strain of P. capsici overexpressing a FLAG tagged RPL was 

created, immunoprecipitation of the ribonucleic complex from P. capsici mycelial tissue 

grown in vivo was performed. Isolation of the FLAG tagged RPL22 was shown to be 

possible, however, purification of the translating mRNA from isolated FLAG tagged 

RPL22, presumed to be in a polysome complex, proved challenging. Thus this chapter 

also outlines details of the optimisation of the TRAP methodology from infected plant 

leaves, and the potential further work that may be necessary to successfully implement 

this technology in P. capsici.  

2.2 Results 

2.2.1 Identification of Phytophthora capsici ribosomal proteins for 

candidates to clone for ribosomal purification.   
 

Within the P. capsici, genome annotation of RP is incomplete in places and 

erroneously redundant in others. Therefore, it was necessary to manually annotate 

proteins for use with TRAP-SEQ. The P. capsici genome (Lamour et al., 2012a) was 

searched and genes extracted using the gene ontology (GO) term “ribosome” 
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(GO:0005840). This identified 141 potential ribosomal protein genes, Sequences, 

corresponding to these candidates were then searched by BLASTP against a 

database of ribosomal protein sequences (Nakao et al., 2004). No hits were found for 

34 genes and 27 matched mitochondrial ribosomes. These analyses left 80 genes 

assigned to 69 of the 79 conserved eukaryotic RP. To confirm these hits the human 

RP sequences were BLASTP searched against the P. capsici genome (Lamour et al., 

2012a). Hits obtained in these analyses were compared to the original candidates. 

This resulted in 76 putative RP gene sequences found in both methods. The 76 genes 

Figure 2.2: Schematic showing the RPL selection process.  

Initially two different selection processes where used to conform ribosomal 
annotations on the P. capsici RPL. The 79 annotated human RPs were blast searched 
against the P. capsici genome giving 109 genes and then the 141 gene annotated with 
the GO term “ribosome” where blast searched against a ribosomal protein database. 
This gave 80 genes. The overlaps of these genes and which RP they were mapped to 
is shown in the pie chart. Overall 77 of the conserved eukaryotic RP where found. 
These were used when selecting the RPL for cloning a FLAG tagging for the TRAP 
methodology.  
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were the candidate genes used to pick the RP to be tagged, they covered 69 of the 79 

conserved eukaryotic RP (Figure 2.2). 

Within the literature no information seems to be available with regards to ribosomal 

protein selection for use in TRAP, although in all cases, the larger RPL subunit is used. 

RPL18 has been used multiple times in plants (Slane et al., 2014, Jiao and 

Meyerowitz, 2010), whereas RPL10A has been used in C. elegans (Gracida and 

Calarco, 2017 ) and RPL22 has been used in mice (Lyons et al., 2020). Therefore, the 

orthologues of RPL18, RPL10A and RPL22 (in this case two distinct orthologues were 

found PcRPL10Aa, and PcRPL10Ab) were used for cloning giving four FLAG-epitope-

tagged ribosomal proteins: (Phyca11_9769: PcRPL18, Phyca11_15914: PcRPL10Aa, 

Phyca11_39189: PcRPL10Ab, Phyca11_19566: PcRPL22). BLASTP search of 

PcRPL10Ab against the P. infestans genome gave two results, one a putative 

uncharacterized protein and the other a 60S ribosomal protein: L10a-1 

(PITG_22135T0), with which it has low homology. Additionally, the original BLASTP 

search against the ribosomal protein database gave poor homology, and the BLASTP 

of the human RP genes did not find this gene as it did with PcRPL18, PcRPL10Aa and 

PcRPL22. That being the case PcRPL10Ab was omitted from further consideration.  

Note that PcRPL18, PcRPL10Aa and PcRPL22 were also searched for using BLASTP 

against the P. infestans genome resulting in PITG_11099:60S ribosomal protein L18-

2, PITG_22135: 60S ribosomal protein L10a-1 and PITG_01042T0: 60S ribosomal 

protein L22, respectively. Finally, these three candidates were searched in the four 

host Microarray data (Unpublished Huiteme Lab – Chapter 1) to check that these 

genes were not differentially expressed in any of the four hosts.  Thus these RPLs 

were cloned, FLAG tagged and transformed into P. capsici. A modified Agrobacterium 

mediated transformation methodology was used (Vijn and Govers, 2003), 
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unfortunately due to low transformation efficiency only transformants expressing 

FLAG tagged PcRPL22 were obtained.  

2.2.2 Ribosomal Immunoprecipitation 
 

Immunoblots were used to check the presence of FLAG tagged PcRPL22 and the 

effectivity of immunoprecipitation, the expected band (17 kDa) from total mycelia 

extract was present (Figure 2.3). Two transformants were tested for the presence of 

the FLAG tagged PcRPL22 (FlagRPL22(3) and FlagRPL22(2)). Immunoprecipitation 

using anti-FLAG magnetic beads following total extraction of protein using RMM media 

enable isolation of PcRPL22, however, this process is not 100% efficient as FLAG 

Figure 2.3: Western blot of TRAP pull down from Mycelia.  

From mycelia grown on an agar plate with 2 FLAG-tagged RPL22 overexpressing 
strains (2) and (3), a Flag-NMRA overexpressing line as a positive control, and a wild 
type strain (WT) total protein extract was obtained. Total protein extraction was used 
as material for immunoprecipitation of the FLAG tagged ribosome. Here the total 
extract, unbound fraction, elute, and the remaining beads where run on and SDS-
page gel. The gel was probed with anti-FLAG antibody, and visualised with a 
secondary antibody conjugated to HRP. Loading control was conducted using 
coomassie. Note that for the unbound fraction and the beads the strain Flag-RPL22(2) 
has been omitted. The red arrow indicates the protein band of Flag-RPL22 following 
elution.  
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tagged protein remains in the unbound fraction and bound to the magnetic beads 

(Figure 2.3). However, immunoprecipitation was successful and a band for the FLAG 

tagged RPL22 can be seen in the eluted fraction for P. capsici strains FlagRPL22(3) 

and FlagRPL22(2).  

 

Figure 2.4: Leaf infection assay and Western blot of TRAP pull down from 
infected leaf.  

P. capsici drop inoculated infected leaves from cucumber and tomato plants, picture 
taken at 24 hours post inoculation (HPI) and 48 hpi. For both host infection with FLAG-
tagged RPL22 overexpressing strain and a wild type strain (WT). Total protein 
extraction from leaves, from both host plants and both strains was used as material 
for immunoprecipitation of the FLAG tagged ribosome. Unbound faction, elute and the 
remaining beads where run on a SDS page gel, and probed with anti-FLAG antibody, 
and visualised with a secondary antibody conjugated to HRP. Loading control was 
conducted using coomassie. 
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 Two host plant (cucumber and tomato) were then infected with wild-type P. capsici 

(LT1534) alongside FlagPcRPL22 P. capsici, infection progressed the same (Figure 

2.4) in each host when comparing the wild type strain (WT) to the FLagRPL22 

overexpressing strain. The presence and successful immunoprecipitation from 

infection of cucumber and tomato were investigated with immunoblot. 

Immunoprecipitation was achieved and qualified by the observation of the expected 

band, although expression seems stronger in cucumber compared to tomato (Figure 

1.4).  

2.2.3 RNA from Ribosomal purification 

FlagPcRPL22 P. capsici allows isolation of ribosomal proteins. To check for the 

presence of translating mRNA from P. capsici RT-PCR of ribosomal complexes 

purified from total mycelia extract was conducted. The presence of FLAG tagged 

ribosomal proteins allowed the amplification of the constitutively active PcRPL18 

mRNA following ribosomal complex purification, whereas WT extract showed no 

Figure 2.5: RT-PCR of control gene RPL18 form TRAP from mycelia.  

From mycelia grown on a agar plate a FLAG-tagged RPL22 overexpressing strain and 
a wild type strain (WT) total extract was obtained. From this translating ribosomal 
complexes where purified and translating mRNA derived thereof. RT-PCR of this 
mRNA amplify the constituently expressed RPL, RPL18. RT-PCR of RNA from total 
extract was also conducted. Here the positive control is a plasmid containing RPL18 
used as template DNA and the negative control is water used as the DNA template. 
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amplification. However, it appears there is mRNA in total extract which would be 

expected from mycelia extraction (Figure 2.5). The experiment was repeated using 

infected leaves, here the presence of FlagPcRPL22, following RP purification, showed 

weak amplification of the housekeeping gene, almost none from infected cucumber 

leaves and low levels from infected tomato leaves. Again, greater quantities of mRNA 

appear to be gained from total extraction, and a strong band for the amplified PcRPL18 

was observed (Figure 2.6). However, this result was not repeatable, and it proved 

challenging to obtain any mRNA from purified ribonucleic complexes from infected 

leaves.    

2.2.4 Methodology optimisation 
 

Aspects of this methodology were changed in order to gain reliable, good quality 

translating mRNA from infected leaf tissue. Efforts were made in three main areas to 

Figure 2.6: RT-PCR of control gene RPL18 form TRAP from leaf infection assay.  

P. capsici drop leaf infection assay was conducted on leaves from cucumber and 
tomato plants, For both host infection with FLAG-tagged RPL22 overexpressing strain 
and a wild type strain (WT). Samples were taken at 24 hours post inoculation, total 
extraction from both host plant leaf infections and both strains was used as material 
for TRAP. mRNA was derived thereof. RT-PCR of this mRNA (Elute) was conducted 
to amplify the constituently expressed RPL, RPL18. RT-PCR of RNA from total extract 
was also conducted (Total). 
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optimise the protocol 1) the leaf infection assay itself, 2) the extraction and 

immunoprecipitation, and 3) RNA extraction from immunoprecipitated ribosomes/ 

polysomes. As it was possible to reliably isolate translating mRNA from mycelial 

tissue, the reason that unrepeatable, low quality and low quantity mRNA was derived 

from infected leaf tissue was perhaps due to the very small amount of P. capsici tissue 

present in the sample. Initial optimisation efforts centred on attempts to increase the 

amount of P. capsici tissue present in the infection assay. Changes in concentration 

and leaf inoculation methods were trialled. The initial methodology was to place a 10 

μL drop of isolated zoospores, at 1x106 spore per mL onto the abaxial side of the leaf. 

Development of the methodology consisted of, larger droplets up to 200 μL of 

zoospore suspension added to the leaf surface, and then a spray inoculation where 

the whole abaxial side of the leaf was sprayed with zoospore suspension with a misting 

bottle was also trailed. Finally, the leaf was placed abaxial side down into 20 mL of 

zoospore suspension for the first 2 hours of the infection assay. Whilst P. capsici was 

able to successfully colonise the leaf in all these inoculation techniques, they did not 

have any effect on the ability to pull out P. capsici translating ribosomes and 

successfully isolate mRNA thereof.  

With the extraction technique there was little that could be changed, the buffer was 

well described by other methodologies, and is key for maintaining polysome integrity. 

The aspects that were changed were whether the tissue was flash frozen in liquid 

nitrogen prior to lysis, or if lysis was carried out in the buffer or without. Tissue lysis 

was also carried out using a mortar and pestle or using the TissueLyser II (QIAGEN). 

Attempts to increase the immunoprecipitation efficiency were also carried out by 

increasing the volume and number of elutions, and also the time the extract was given 

to bind and the temperature it was kept at during the binding process. However, 
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binding and elution never reached 100% as FLAG tagged ribosome always remained 

in both the unbound fraction and attached to the bead. Finally, several different RNA 

extractions methodologies were used to try and extract RNA from the purified 

ribosomal complexes, if indeed there were complexes present. Three kits were used, 

RNeasy Mini Kit (Qiagen), Monarch Total RNA Miniprep Kit (NEB) RNA/DNA 

Purification Kit and (Norgenbiotek). In addition to the RNA isolation protocol using 

TRIzol RNA Isolation Reagents (Thermo Fisher). Again, none of these optimisations 

had any effect on the ability to isolate translating mRNA from P. capsici during leaf 

infection (Figure 2.7).  

 

Figure 2.7: Schematic of Optimization.  

Various stages of the TRAP protocol were changed in order to obtain translating 
mRNA from infected leaves. Each stage were subject to some change, from the 
isolation of zoospores for infection to the RNA isolation following TRAP.     
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2.3 Methodology   

2.3.1 Ribosomal protein identification 

The P. capsici genome (Lamour et al., 2012a) and genes extracted using a search for 

the gene ontology term “ribosome” (GO:0005840). Potential ribosomal protein genes 

were then searched by BLASTP against a database of ribosomal proteins 

(http://ribosome.med.miyazaki-u.ac.jp), To confirm hits the human ribosomal proteins 

were BLASTP searched against the P. capsici genome (Lamour et al., 2012a). 

Following investigation of the literature, four candidate RPL were chosen, 

Phyca11_9769: PcRPL18, Phyca11_15914: PcRPL10Aa, Phyca11_39189: 

PcRPL10Ab, Phyca11_19566: PcRPL22. The candidate genes were then blasted 

against the Phytophthora Infestans genome to confirm homology and annotation. 

Expression of these three genes was also checked in P. capsici whole cell baseline, 

Microarray data and four hosts differentially expression microarray data to check for 

good basal expression but not differential expression induced by different host plants.  

This resulted in three candidate genes for cloning and use in the TRAP-SEQ 

methodology. Phyca11_9769: PcRPL18, Phyca11_15914: PcRPL10Aa, 

Phyca11_19566: PcRPL22.  

2.3.2 Generation of RPL over expression vectors 

Following a literature search for TRAP-SEQ protocols, three candidate RP were 

selected for use in vector generation and the TRAP-SEQ procedure: P. capsici 

Ribosomal protein L22 (PcRPL22), L18 (PcRPL18), and L10A (PcRPL10A). Primers 

were designed to N-terminally FLAG epitope tag these three PcRPLs for expression 

in P. capsici using the Agrobacterium vector pCB301TOR. The MCS of pCB301TOR 

contains an EcoRI site which was chosen for linearization prior to cloning in the 
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amplified PcRPL PCR products. The Infusion method of cloning (Takarabio) was used 

as per the manufactures instruction.  Full-length CDS for the three candidate RP were 

cloned from total mRNA extractions. PCR amplicons were then transferred into the 

vector pCB301TOR, sequence fidelity was checked with sequencing and correct 

vectors were transferred into Agrobacterium tumefaciens for use in the transformation 

of P. capsici.  

2.3.3 P. capsici Transformation 
 

Agrobacterium mediated transformation of Phytophthora was modified from (Wu et al., 

2016). Agrobacterium containing the desired plasmid, two days prior to transformation 

were spread onto new Lysogeny broth (LB) plates, containing the necessary selection 

antibiotics. To do this one large colony was dissolved in 50 μL of water and then spread 

evenly across the entire plate. In two days this results in a completely carpeted plate. 

A portion of these cells were then collected by pipetting up a down with 5 mL of 

Agrobacterium induction medium (IM). IM medium contains per 1 litre, 800 μL 1.25 M 

K2HPO4 pH 4.8, 1 mL  1% CaCl2, 10 mL  0.01% FeSO4, 40 mL 1 M MES buffer pH 

5.5, 10 mL 50% glycerol, 2.5 mL 20% NH4NO3, 20 mL 20% glucose, 5 mL 

Microelements solution (containing 0.1% w/v of ZnSO4.7H2O, MnSO4.H2O, 

CuSO4.5H2O, Na2MoO4.7H2O, and H3BO3), and 20 mL MN buffer (containing 3% w/v 

MgSO4.7H2O, 1.5% w/v NaCl) with the addition of 200 μM Acetosyringone). These 

were then agitated in the dark for 2 hours at room temperature on a shaker (60 rpm) 

to induce virulence gene expression. After 2 hours on the shaker, the optical density 

(OD) was examined, the Agrobacterium suspension was then diluted to 0.4 OD with 

IM medium. Zoospores were collected. P. capsici LT1534 was grown on 90 mm V8 

agar plates in the dark at 25°C sealed with parafilm. This was followed by 2 days of 

growth in the light at 22°C without parafilm. Zoospores were collected by flooding the 
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90 mm plate with 10 mL of sterile distilled water at room temperature, then the mycelia 

growth was agitated with a sterile plate spreader and everything was transferred to a 

second P. capsici inoculated V8 agar plate. Continuing in this fashion, the 10 mL of 

water was used to flood and agitate three 90 mm plates recovered into a 50 mL falcon 

tube. The sporangia suspension was left for 30 minutes with the lid removed on a 

lightbox to induce zoospore release. The suspension was then filtered through one 

layer of Miracloth to remove mycelia and any agar chunks in the suspension, this 

process yielded approximately 5 mL of ≥ 1 x 106 spores mL-1 zoospore suspension. 

Equal volumes of Agrobacterium and zoospore suspension (2-5 mL each) were added 

together and gently swirled. The mixture was then incubated for 2 hours in the dark at 

room temperature. Then 500 μL of the mixture was placed on top of a 5x5 cm piece 

of sterile Hybond N+ membrane, which had been placed in a 90 mm solid IM plate, 

and dried for 10 minutes. IM solid is IM medium as previously described with 1.5% w/v 

agar. The plates were then incubated in the dark for 2 days at room temperature. After 

2 days the membrane should be coated in fluffy mycelia, it is then transferred upside 

down to a Plich medium. Modified Plich media contains per 1 litre, 0.5 g KH2PO4, 0.25 

g MgSO4.7H2O, 1 g Asparagine, 1 mg Thiamine, 0.5 g Yeast extract, 10 mg β-

sitosterol, 25 g Glucose, and 15 g Agar with 50 μg/mL G418 and 200 μM cefotaxime. 

It is then incubated in the dark for a further 3 days at room temperature. The membrane 

is then removed and the plate checked at 1-3 days for G418 resistant colonies. These 

are transferred to V8 medium plates containing 50 μg/mL G418 and 200 μM 

cefotaxime and checked for expression of transgenes.   
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2.3.4 Immunoblotting to check the expression of tagged RPL 
 

P. capsici mycelia mats were grown in 10 mm plates with 25 mL pea broth, following 

3 days of growth mycelia mats were harvested and total protein extracted. For the 

purposes of total protein, isolation mycelia was harvested and lysis buffer GTEN 

(containing: 10% v/v Glycerol, 25 mM Tris buffer pH 7.5, 1 mM EDTA, 150 mM NaCl, 

10 mM DTT, 2% w/v PVPP, 0.1% v/v tween, and 1 mM PMSF) was added. Tissue 

was disrupted with a TissueLyser II (Qiagen) for 1 minute at 30 Hz then adapter flip 

and shake repeated.  The resulting lysate is spun at 14,000 xg at 4°C for 10 minutes. 

The supernatant is taken the protein suspension was then diluted in equal volumes 2x 

SDS page buffer, boiled for 5 minutes at 95°C, and loaded onto Mini-PROTEAN TGX 

precast gel 4-20% (Bio-rad). Separated proteins were then transferred onto a 

nitrocellulose membrane. The membrane was subsequently blocked with 10% dried 

skimmed milk (Marvel). Membranes were probed with primary anti-FLAG (1:5000) for 

60 minutes at room temperature. Subsequently, they were incubated with horseradish 

peroxidase labelled secondary antibodies (1:10,000) (LI-COR) and analysed.  

2.3.5 Optimization of TRAP  

The protocol was adapted from Mauricio A. Reynoso et al. (2015). The TRAP-RNA 

extraction process requires a FLAG tagged RP to be overexpressed in P. capsici. This 

allows isolation of translating mRNAs trapped in the ribosomal complex. For isolation 

of translating mRNA either P. capsici overexpressing FlagPcRPL22 was grown for 3 

days in pea broth at 25°C in the dark, or zoospores were isolated as above, diluted to 

a concentration 1x106 zoospores/mL, host leaves (tomato and cucumber) were 

completely submerged in zoospore solution the left in a humid environment at room 

temperature and the infection left to progress for 24 hours. Then total leaf extract was 
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obtained using ribosomal maintenance media (RMM, containing: 100 mM Tris–HCl 

(pH 9.0), 200 mM KCl, 25 mM EGTA (pH 8.0), 36 mM MgCl2, 1% Brij L23, 1% Triton 

X-100, 1% IGEPAL CA-630, 1% TWEEN 20, 2% polyoxyethylene (10) tridecyl ether, 

1% deoxycholic acid, 5 mM DTT, 1 mM PMSF, 50 μg/mL cycloheximide, 50 μg/mL 

chloramphenicol, 40 U/mL RiboLock RNase Inhibitor). 700 μl of RMM was added to 

each sample then shaken with a TissueLyser II (Qiagen) for 1 minute at 30 Hz then 

adapter flip and shake repeated. Lysed tissue was spun at full speed for 10 minutes 

at 4°C, and whole lysate supernatant collected. Total lysate was then used for 

immuno-precipitation of FLAG tagged ribosomal complexes. 30 μL of M2 anti-FLAG 

magnetic beads were added to 300 μL of total lysate, then incubated for 1 hour at 4°C. 

Following 5x washed with RMM, the sample was eluted twice with 150 μL of 250 μg/mL 

5xFLAG peptide for a total of 300 uL eluted ribosomal complexes. Elute was either 

frozen at 80 °C or RNA extracted directly.  

2.3.6 RNA Extraction 
 

Multiple extraction methods of RNA extraction were used and quality compared. 

Initially, RNeasy (Qiagen) was used to extract RNA, due to the potential loss of short 

mRNAs the method was changed to use TRIzol reagent extraction. Monarch Total 

RNA Miniprep Kit (NEB), and RNA/DNA Purification Kit and (norgenbiotek) were also 

trailed for their effectivity. For the Kits extraction was conducted as per the 

manufactures instruction. For extraction using TRIzol reagent, 300 µL of elute was 

added to 800 µL TRIzol reagent. This was then vortexed for 30 seconds and then left 

at room temperature for 5 minutes to allow the dissociation of the mRNA from the 

ribonucleic complexes. 200 μL chloroform was then added. This was then shaken well 

by hand until uniform and cloudy, and centrifuged from 15 minutes at 12,000 xg at 

4°C. This step allows the separation of distinct phases, a bottom organic phase 
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containing proteins, lipids and other cell debris, a middle interphase consisting of a 

cloudy film of DNA, and the clear upper phase which contains the RNA. The upper 

phase was transferred into a fresh RNase free 2 mL Eppendorf and 500 µL of 

isopropanol added to precipitate the RNA, this was inverted gently and then either left 

at room temperature at 10 minutes or a -20°C overnight. This was then centrifuged for 

5 minutes at 12,000 xg at 4°C. The RNA pellet was then washed with 1 mL of ethanol 

and then spun for 5 minutes at 7,500 xg at 4°C. The pellet was then resuspended in 

50 μL. The quantity of RNA was then estimated by nanodrop and the presence of 

mRNA checked with RT-PCR.  

 

2.3.7 RT-PCR  
 

To check for the presence of mRNA, RT-PCR from the constituently active RPL18 

gene was conducted. For cDNA synthesis, RQ1 RNase-Free DNase (Promega) 

treatment immediately followed by Superscript reverse transcriptase III with 

Oligo(dT20) was used (Invitrogen) as per the manufactures instruction. PCR of RPL18 

was conducted using GoTaq® G2 Flexi DNA Polymerase (Promega) as per the 

manufacturer’s instructions.  

 

2.4 Discussion  

2.4.1 Aims and outcome 

The aim of this research was to develop a technology novel to oomycete research, 

TRAP-SEQ. If successful this would allow the isolation of P. capsici, or other pathogen 

material directly from infected plant tissue, material that could then be used in 

transcriptomic/translatomic analysis. This would open up a recalcitrant but key stage 
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in the P. capsici / pathogen lifecycle that is potentially understudied due to the difficulty 

of access for such omics style experiments.  

It was shown to be possible to use TRAP to isolate, what can be presumed to be, 

translating mRNA from mycelial tissue, although, it was not possible to reliably isolate 

any translating mRNA from the pathogen during plant leaf infection. However, TRAP-

SEQ used in P. capsici in vitro represents a technique by which isolating translating 

mRNA as appose to the steady state RNA transcripts can be purified from P. capsici 

mycelia. Sequencing translating mRNA would be a way of both validating RNA 

sequencing experiments, and analysis what resemblance steady sate RNA transcripts 

and translating RNA have to each other. This could be carried out in mycelia, and 

perhaps other time points where plant tissue is not present, sporangia and germinating 

cysts for example. Although it has not been shown here, the TRAP protocol would 

likely be functional with those time points. One weakness of this study is that these 

experiments were never carried out and the translating mRNA from mycelia was never 

sequenced.  

 

2.4.2 Potential Problems and Further optimisation 

The TRAP-SEQ methodology has been used in several organisms mRNA from distinct 

cell types or developmental stages. Although TRAP-SEQ has been applied in plants 

(specifically in Arabidopsis), it has never been used in a pathosystem. The technology, 

therefore, has immense potential in host-microbe model systems, as we know very 

little about the early stages of pathogen infection.  The ability to isolate and enrich 

pathogen material from a host opens up a clear route to understanding cellular 

processes at the very early stages of infection.  For this reason, further optimisation of 
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the protocol is worthwhile. In terms of optimisation of TRAP-SEQ during plant infection, 

it was originally assumed that the inability to isolate translating mRNA was because of 

low levels of P. capsici material in the extraction process. Although, strong protein 

bands for the tagged-RPL22 were detected, both from total extraction and following 

ribosomal pulldown. In order to increase the amount of P. capsici material present in 

the leaf, multiple changes to the infection assay where trialled. Nonetheless, 

optimisations did not result in any improvement. It may be that the presence of host 

material in the pull down affected the isolation of mRNA, it is possible that something 

about the presence of the plant material in the extract has an effect on either the 

viability of the mRNA or perhaps the integrity of the polysome complex. Tomato and 

cucumber leaves especially have a multitude of phenolic and antioxidant compounds 

(Silva-Beltrán et al., 2015, Yunusa et al., 2018), and that some of these metabolites 

interfere with RNA or ribonucleic complex integrity. This would explain why the 

pulldown was possible in mycelia but not from infected plants. However, it has been 

shown that the TRAP methodology is functional in Arabidopsis thaliana. A possible 

test to examine if the methodology is viable from infected leaves, would be to infected 

Arabidopsis (which although is not a true host to P. capsici can be infected under 

certain conditions) and see if translating mRNA can be successfully isolated from that 

system. This would show whether the host plant material itself is interfering with the 

TRAP. Further attempts to implement this technology would also be to try other RPLs, 

RPL10A was cloned and is a popular RPL used with this technology. However, 

although attempts to transform FlagRPL10A into P. capsici were made, no 

transformants where produced. It would also be conceivable to use other tags for the 

immunoprecipitation of the ribonucleic complex, His tags and eGFP are also 

commonly described in the literature (Gracida and Calarco, 2017, Watson et al., 2012).  
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2.4.3 Conclusion  
 

The aim of this novel technology was to study the dynamic adaption of P. capsici to 

host plants whilst infecting a host leaf. Although the TRAP-SEQ methodology was 

implemented in P. capsici in vitro, currently it does not work with staring material from 

infected plant leaves. It is not yet clear why this is the case. However, although 

attempts were made to optimise the methodology, alternative techniques to study the 

same life-cycle stages are possible. Although TRAP-SEQ would have been a great 

boon to the study of plant pathogens during infection, a great deal of further work may 

be necessary to successfully implement this technology and easier alternatives could 

be pursued and have been explored in the following chapters.  
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Chapter 3:  Transcriptomic analysis of P. capsici 

during an in vivo model of infection of two distinct 

hosts 
 

3.1 Introduction 
 

Phytophthora capsici is a global and devastating oomycete plant pathogen that 

threatens a wide variety of economically important food crops across the planet. The 

size of this threat is partially due to the broad host range of P. capsici, capable of 

causing disease on many commercially important crops, particularly those in the 

Solanaceae and Cucurbitaceae families, in total 40 different crop plant species have 

been reported as hosts (Drenth and Guest, 2004). However, our understanding of 

what mechanisms enable P. capsici pathogenicity on this diverse range of crops is 

very limited. 

The majority of studies trying to understand the pathogenicity of key plant pathogens 

usually involve a single pathogen-host system (Näpflin et al., 2019). With an 

understanding of the plant immune system and pathogen virulence strategies, it can 

be confidently stated that the pathogen has to run a very specific gauntlet to be able 

to cause disease on a host plant: avoidance and suppression of the plant immune 

system, resistance to innate toxins and reactive oxygen species (ROS), intimate 

integration and growth within the host, and incorporation of the metabolic environment, 

all represent idiosyncratic challenges specific to each host. Therefore, the dynamic 

adaption of a pathogen to a host plant can be presumed to be very distinctive, and 

different host plants, especially those from different families, can represent very 

different environments for pathogen growth. The current conception of the key 

determinants of host specificity and host range is limited: it is not fully understood how 
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a pathogen can infect multiple host plants. Recent research that has been conducted 

examining host specificity and host range shows two main trends in pathogens with 

broad host ranges. Firstly, they have dynamic genomes, prone to expansion and/or 

mutation, and can create vast genetic diversity relatively quickly (Ma et al., 2010, 

Raffaele et al., 2010, Hacquard et al., 2013). Secondly, they display differential 

expression of genes upon different host infection (Yang et al., 2018, Harris et al., 2016, 

Allan et al., 2019), presumably a display of dynamic adaption to that specific host or 

environment.       

It is already well documented that P. capsici is genetically diverse and has a 

remarkably pliable genome (Barchenger et al., 2018, Lamour et al., 2012a, Hu et al., 

2020). Additionally, it is reasonable to hypothesise that differential gene expression 

acts as the driver of the dynamic adaption of P. capsici to its many hosts. However, to 

date, no studies have been conducted examining the pathogenicity differences of P. 

capsici on different host plants. Understanding the key mechanisms of dynamic 

adaption of P. capsici, especially in terms of its devastating broad host range is, 

therefore key to tackling the disease. It could also be hypothesised that early time 

points in the plant infection are key to host perception and therefore the fate decisions 

that yield the distinct virulence strategies in question. Therefore, transcriptomic studies 

of different host plant infections, especially at early time points, would grant great 

insight into the mechanics of host perception and the dynamic adaptions of P. capsici.  

To further understand the differences in the virulence strategies, and the mechanisms 

that drive host-specific dynamic adaption, detailed transcriptomic studies are key. 

However, due to limitations discussed in previous chapters, it is not yet possible to 

conduct deep and broad transcriptomic analysis of P. capsici during the early stages 

of plant infection. No methodology yet exists to isolate and sequence the transcriptome  
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Figure 3.1: Schematic of leaf infection assay and zoospore inoculation assay 
methodology. 

P. capsici was grown on V8 agar plates, it was induced to sporulate and the spores 

collected. From these sporangia zoospores were isolated and used for three different 

infection assays. 1) extract inoculation in both tomato (TE) and cucumber extract (CE), 

2) broth inoculation in both tomato (TB) and cucumber broth (CB), also included here 

is the germinating cysts (GC) control, zoospores used to inoculate water. Zoospore 

where also used to conducted 4) leaf infection assays in both tomato (TLF) and 

cucumber leaves (CLF). In addition mycelia was grown in liquid pea broth to form 

mycelia mats, which where then used sandwiched between to leaves to conduct the 

3) mycelial sandwich infection assay, conducted with both tomato (TSW) and 

cucumber leaves (CSW). Samples from two these infection assays were harvested at 

2, 4 and 8 hours post infection (hpi). From all these samples total RNA was extracted 

and used for transcriptomic studies or qRT-PCR. Note this numbering is used to refer 

to these methodologies throughout the text. 
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of P. capsici whilst infecting plant tissue. Therefore, alternative methodologies were 

explored that do not require distinguishing P. capsici sequence reads from excessive 

and spurious host reads post-sequencing. Initially, three potential in vitro 

methodologies were trialled and assessed to identify which method resulted in gene 

expression patterns most similar to those observed in infected tissues. 

The three methodologies were designed as in vitro models of infected plants, they 

comprise of 1) zoospores used to inoculate plant extract, 2) zoospore used to inoculate 

plant broth, and  3) mycelia leaf sandwiches (Figure 3.1). Briefly; zoospores used to 

inoculate plants broths or extracts comprised isolated zoospore suspension, mixed 

with either plant broth or plant extract and left to germinate and grow. What is referred 

to as plant broth in the chapter consisted of plant leaf tissue in water, autoclaved, and 

then filtered. Plant extract consisted of plant leaf tissue frozen in liquid nitrogen, ground 

into a fine powder, suspended in water and then filtered. Mycelia leaf sandwiches were 

comprised of two host plant leaves placed either side of a square of P. capsici mycelial 

tissue with the abaxial side in contact with the mycelia. These methodologies have the 

potential to be used with any host or non-host plants to examine both common and 

differential gene expression induced by that particular plant. This study allowed us to 

assess two host plants. Previous experiments had shown that from the four host plants 

available, cucumber and tomato were the two most different in terms of inducing 

differential gene expression in P. capsici during infection. Cucumber and tomato are 

members of the two plant families that make up the majority of the host plants of P. 

capsici, Cucurbitaceae and Solanaceae respectively. They were, therefore, two ideal 

host candidates to examine the mechanisms of dynamic adaption that drive broad host 

range. Understanding these two patho-systems has real-world applicability as they are 

both grown commercially and suffer from P. capsici caused crop losses.    
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Following examination of differential gene expression in all three in vitro systems, 

zoospores germinated and cultures in plant extract were found to be the most similar 

to infected plant leaves (Figure 3.2, Figure 3.3). This model system was therefore 

taken forward and total transcriptomic analysis by RNA sequencing was conducted 

(Error! Reference source not found.). 

This study has found host dependent changes in the profile of P. capsici transcriptome 

in vitro. In early time points, cucumber extract induces an up-regulation of many genes 

not found to be induced by tomato extract. On the contrary, P. capsici response in 

tomato is surprisingly mostly characterised by a down-regulation event. These 

differentially expressed genes have been identified at early time points and were found 

to be largely integral components of the membrane with roles in oxidation/reduction, 

transmembrane transport, and phosphorylation. A large amount of differentially 

expressed effectors were also identified, they largely shared a similar expression 

profile for the other differential expressed genes,  that is, induced in response to 

cucumber and down-regulation in response to tomato. These genes require 

characterisation and validation but may represent a bounteous list of genes with 

putative host specific roles. This understanding could be used to inform further 

mechanistic studies of host perception and dynamic adaption of P. capsici and other 

broad host range oomycete pathogens.  

 

3.2 Results  
 

3.2.1 Validation of in vitro methodologies by qRT-PCR of known 

genes  
 



83 
 

 

The novel in vitro methodologies (1.Extract inoculation, 2.Broth inoculation, and 

3.Mycelia sandwiches) of P. capsici culture that were trialled for potential use with 

transcriptomic analysis were conducted, and samples were taken. From these 

samples, expression data of genes that were known to have host dependent 

differential expression (DE) (unpublished Huitema Lab) were assessed through qRT-

PCR. Of the three potential in vitro methodologies, only zoospore inoculation of 

Extracts and Broths were initially conducted. For these experiments two host plants 

Figure 3.2: qRT-PCR expression of key gene in Extract and Broth inoculation. 

Total RNA was obtained from 1) extract inoculation assay of tomato  (TE) cucumber 
extract (CE), and from 2) broth inoculation assay of tomato (TB) and cucumber  broth 
(CB). RNA was also isolated from inoculated V8 juice and pea broth (PB). qRT-PCR 
was used to analysis the expression of six genes in these six conditions. The six genes 
are PcHMP1 (A), ABC1-117 (B), RXLR374 (C), PcNPP1 (D), HAT3-117 (E), and 
RXLR135 (F). Expression relative to the house keeping gene Tubulin is shown and 
was calculated using the ΔΔCT method. Expression is shown relative to PB. Error bars 
show the SEM of at least 3 technical replicates. Statistical significance is shown for 
comparison between CE and TE, and CB and TB. Two tailed unequal variance student 
t-test was conducted, significant bonferroni adjusted P values are shown. Adjusted P 
values of <0.05 = *, <0.01 = **, <0.001 = ***, >0.05 = non-significant (NS). Note that 
Leaf infection assay and  
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were used (tomato and cucumber), therefore a total of 4 culture conditions are possible 

Tomato Broth (TB), Tomato Extract (TE), Cucumber Broth (CB) and Cucumber Extract 

(CE). In addition zoospore inoculation of V8 juice (V8) and Pea broth (PB) were 

included. In the initial experiments cucumber leaf infection (CLF) and tomato leaf 

infection (TLF) were not included.    

The expression of six genes was examined, two of these were marker genes PcHMP1 

(Phyca11-506620) and PcNPP1 (Phyca11_11951) markers of biotrophy and 

necrotrophy respectively. A further four genes (ABC1-117/ Phyca11_512023, HAT3-

117/ Phyca11_512020, RXLR374/ Phyca11_13953 and, RXLR135/ 

Phyca11_534478), which were all shown to be host dependently differentially 

expressed were tested. Specifically, these four genes were found to be up-regulated 

in CLF at 16 hours post-inoculation (hpi) with respect to 3 other Solanaceae host plants 

(unpublished Huitema Lab – Chapter 1). In all four of the genes tested the same host 

dependent differential expression, that being up regulation in cucumber based 

conditions, was observed if zoospores were used to inoculate the host extract (TE 

compared with CE) (Figure 3.2). Therefore, in P. capsici cultured in plant extract, 

genes known to be up-regulated in CLF are also specifically induced in CE and not 

induced in TE. It is also the case that the expression in CE is always higher than the 

two control conditions: zoospore used to inoculate V8 media and Pea Broth (PB). 

However, it was observed that culturing in host broths was not able to induce the same 

host dependent differential expression pattern as expected. CE presented higher 

expression of the marker gene PcHMP1 compared to TE and the other 4 culture 

conditions. However, the marker gene PcNPP1 was only induced in TE and had low 

expression in the other 5 conditions, especially CE, CB and V8 (Figure 3.2).  
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Figure 3.3: qRT-PCR expression of key gene in Extract inoculation, Leaf 
infection assay and, Mycelia Sandwich across a time course 2hpi – 48hpi.  

Total RNA was obtained from leaf infection assays of both cumber (CLF) and tomato 
(TLF) (A-D), inoculation assay of cucumber (CE) tomato extract (TE) (E-H), and 
Mycelia sandwich infection assays of both cumber (CSW) and tomato (TSW) (I-L). For 
all six conditions RNA was collected at time points 2 hpi, 4 hpi, 8 hpi, 16 hpi, 24 hpi  
and 48 hpi.  qRT-PCR was used to analysis the expression of 4 genes in these six 
condition in all time points mentioned. The four genes are PcHMP1 (A, E, I), PcNPP1 
(B, F, J), ABC1-117 (C, G, K) and RXLR374 (D, H, L). Expression relative to the house 
keeping gene Tubulin is shown and was calculated using the ΔΔCT method. 
Expression is shown relative to GC 2 hpi samples which are not displayed in the 
graphs but are set to 1. Error bars show the SEM of at least 3 technical replicates. 
Statistical significance is shown for comparison between CE and TE at each time 
point. Two tailed unequal variance student t-test was conducted, significant bonferroni 
adjusted P values are shown. Adjusted P values of <0.05 = *, <0.01 = **, <0.001 = ***, 
>0.05 = non-significant (NS). Note that inoculation of broths has not been included 
here, and leaf infection assays have.  
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Following these experiments, time course data for both host extract inoculation and 

leaf infection assay was collected. In addition, a time-course experiment for the third 

in vitro methodology: mycelial sandwiches (Tomato leaf sandwich – TSW and 

Cucumber leaf sandwich – CSW) was conducted and samples collected. qRT-PCR  

real leaf infections. For these experiments, four genes were tested. The two marker 

genes PcHMP1 and PcNMP1 as mentioned previously, and two genes that were 

shown to be induced in cucumber leaf infection at 16 hpi (ABC1-117 and RXLR374) 

(Figure 3.3). For ABC1-117 and RXLR374, the host dependent differential gene 

expression in TE and CE was the same as the differential expression found in the leaf 

infection assay. However, this was not observed with the mycelial sandwiches (TSW 

and CSW), as there was no difference in gene expression between hosts, with 

expression seemingly increasing as the infection progresses in both TSW and CSW 

(Figure 3.3). In terms of the marker genes, PcHMP1 expression is similar when 

comparing leaf infection assay to zoospores in host extract, both having reductions in 

expression as the experiment progresses, with little host dependent change in 

expression. PcNPP1 expression, however, does not follow similar trends in CE, TE or 

leaf infection. PcNPP1 shows an increase in expression during the latter stages of 

infection in leaf, however in extract the expression of PcNPP1 is very low. Mycelial 

sandwiches show a completely different expression profile of the two marker genes 

tested, with increasing expression as the infection progresses (Figure 3.3). It was 

therefore decided that host extracts would be used for transcriptomic analysis of the 

effect that the host has on P. capsici during the early stages of infection. 
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3.2.2 RNA extraction and quality control  
 

For Transcriptomics high-quality RNA was essential. From hosts extract inoculation 

assays, the initial experimental design resulted in poor quality RNA, this was 

characterised by a low 260/280 ratio (<2) and low 260/230 ratio (<1.7) as measured 

by nanodrop. Gel electrophoresis of these samples showed a smear, characteristic of 

degraded RNA. Multiple optimisation steps in the methodology for RNA extraction 

were trialled.  

 

Following optimisation, a new methodology for growth in an extract that allowed 

removal of the plant extract before lysis of the cells was developed. This allowed 

extraction of better-quality RNA, characterized by high 260/280 and 260/230 ratios, >2 

and >1.7 respectively (Table 3.1). When analysed with gel electrophoresis, the 

absence of smear indicated that RNA was not degraded. It could be suggested that 

an excess of plant extract during the lysis phase, and perhaps persisting through the 

extraction process was causing RNA degradation and low purity. Removal of the 

extract before extraction is therefore essential to gain good quality RNA from zoospore 

inoculation experiments.  

To quantify degradation and therefore the integrity of the RNA, the high purity RNA 

was analysed by Tapestation, giving RNA integrity numbers (RIN) that should be 

greater than seven for human RNA samples. However plant RNA is known to contain 

many small RNAs compared to human-derived RNA and therefore gives a lower RIN, 

Phytophthora species are similar to plants in this way, that they contain a lot of short 

mRNA and therefore a lower RIN than expected (Die and Román, 2012). Indeed 

electrophoresis showed good integrity, especially in samples derived from the control 
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germinating cyst samples (GC)  which have an average RIN of 5.2 (Table 3.1). The 

RIN of RNA samples from zoospores that had been incubated in TE or CE were less 

that germinating cysts, there are several possible reasons for this. Either 

contamination with degraded RNAs from the plant extract, the extract itself causing 

Table 3.1: RNA purity, quantification and integrity.  

Extract inoculation of Tomato extract (here: Tom) and cucumber extract (here: Cuc) 
and samples taken at 2 hpi, 4 hpi, 8 hpi and 16 hpi. In addition germinating cysts at 
2hpi (GC) were also sampled. Four biological replicates for each host extract and time 
point were obtained and RNA extracted. RNA purity and an estimation of concentration 
was obtained from Nanodrop analysis, purity is shown by the 260/280 and 260/230 
ratios and an estimate concentration is shown here in ng/μL. Quibit analysis was used 
further quantify the quantity of RNA, here shown both in total amount (μg), and 
concentration (ng/μL). RNA integrity numbers (RIN) were obtained from Tapestation 
analysis and shown here.         
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some degradation during extraction (even though most has been removed), or a shift 

in the size of mRNAs when comparing GC to extracts. However, it is notable that all 

16 hpi samples had a very low RIN and gel electrophoresis shows that very few high 

nucleotide length RNAs are present in the 16 hpi samples (Supplementary Table 1, 

Figure 3.5). These samples were therefore not taken forward for RNA-SEQ. It is 

difficult to explain the reason for this low integrity RNA from 16 hpi, perhaps due to 

Figure 3.4: Mean variance trend, expression level of all expressed transcripts, 
and filtered transcripts.  

The number of reads for each gene are assumed to follow a negative binomial 
distribution, with relation to variance plotted against the log2(number of read counts). 
The Mean varienc of the reads of gene for both the “all gene” database (A, B) and the 
effector (RXLR and CRN) database (C, D) are shown here raw (A, C) and post filtering 
(B, D). Reads were retained of an expressed transcript had  ≥ 12 samples for “all 
genes “ and 17 for (RXLR and CRN) ≥ 1 (Counts per million) CPM expression. 
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decreased lysis of P. capsici tissue as by this time, there was high mycelial growth, 

meaning the tissue was more difficult to lyse.   

3.2.3 Host extract induced differential gene expression 
 

RNA-SEQ was conducted on samples from both host extracts (TE and CE) at 3 time 

points (2hpi, 4hpi and 8hpi) as well as germinating cysts in water at 2hpi (GC) used 

as a control (Error! Reference source not found.). Following data pre-processing 

and low expression transcript filtering, 9,974 genes were found to be expressed out of 

19,729 originally annotated  

by Salmon-quant (Galaxy Version 0.14.1.2) (Patro et al., 2017) (Figure 3.4). For this 

study, the interest lay, initially in the comparison between the two host plant extracts  

Figure 3.5: RNA gel electrophoresis.  

Carried out by Novogene prior to RNA sequencing. All RNA samples numbered 1 – 36 
are shown here (details of numbering shown in Table 3.1). 1 - 8 are in sequence 
Tomato extract (TE) 2 hpi, 4 hpi, 8hpi and 16hpi, followed by Cucumber extract (CE) 
2 hpi, 4 hpi, 8hpi and 16 hpi. Thus 9 – 16 are the same sequence of samples and 
represent the second biological replicates, 17-24 the third biological replicates and 25 
– 32 the fourth. Samples 33 – 36 are the four biological replicates of GC at 2 hpi. 
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(TE versus CE), and secondly in the ability of either host extract to elicit a response 

when compared to a water control (Extract v GC). The 7 comparison groups were split 

into two sets for results analysis, TE v CE and Extract v GC. For all comparisons, of 

the 9,974 expressed genes, 1,092 (10.9%) were found to be differentially expressed 

(DE) (Figure 3.6).  

  

Figure 3.6: Number of gene expressed, before filtering, after filtering and after 
differential expression analysis.  

Two databases of genes were used, all genes as annotated in the P. capsici LT1534 
version 11 and an effector library containing RXLR and CRN genes. The number of 
genes that are found to be expressed in the RNA sequencing for both databases is 
shown, the number of each effector type is also shown. The number of genes following 
filtering of low expression gens is shown. Seven comparisons were then made of the 
purpose of differential expression analysis. The comparisons are shown for the All 
genes database but are the same for the Effector database, the comparisons have 
been split into two groups those between tomato extract and cucumber extract (TE v 
CE) and those between the host extracts and germinating cysts (Extract v GC). From 
these seven comparisons the number of differentially expressed (DE) genes and non-
differentially expressed genes is shown. 
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Figure 3.7: Number of differentially expressed genes in each comparison group.  

For all genes as annotated in the P. capsici LT1534 version 11 (A-C), and the effector 
library containing RXLR and CRN genes (D-F) the number of differentially expressed 
(DE) genes for all seven comparisons are shown. The number of DE genes for the all 
gene database and the effector database are shown for the four tomato extract (TE) 
v cucumber extract (CE) (A, D). For these DE genes those up-regulated in TE are 
shown in blue on the lower portion of the graph and those genes up-regulated in CE 
are shown in orange the lower portion of the graph. In addition, the number of DE 
genes for the all gene database and the effector database are shown for the three  
host extract v germinating cysts (GC) (B, E). For these DE genes those up-regulated 
in Extract are shown in blue on the lower portion of the graph and those genes up-
regulated in GC are shown in orange the lower portion of the graph. Note across some 
of the time points DE genes may appear in multiple comparison, Venn diagrams of 
the overlap of the DE genes from the four TE v CE and the three extracts v GC are 
shown for the all gene database (C) and effector database (F). 
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3.2.4 Host extract induced differential gene expression: Extracts 

compared with germinating cysts 
 

Of these 1,092 DE genes, the majority (1,036, 94.9%) are differentially expressed 

when comparing between transcript levels in host extracts and GC (Figure 3.7). The 

results show that the greatest difference in gene expression is shown when comparing 

GC to TE at 2hpi, with 599 differentially expressed genes (DEGs), in contrast to the  

 

Figure 3.8: Venn diagrams showing the overlap of each comparison group in 
both the TE v CE set and the Extract v GC set.  

The overlap all 139 of the unique DE genes from the tomato extract comparison with 
cucumber extract (TE v CE) is shown (A). The number of genes total is shown in 
brackets above the section. For the four TE v CE comparison (2 hpi, 4 hpi, 8 hpi, All 
hpi) the total number of gene in each overlap is shown, those gene that are up-regulate 
in TE are shown in blue, and those gene up-regulated in CE are shown in orange. The 
overlap all 1036 of the unique DE genes from the two host extract vs germinating cysts 
(Extract v GC) is shown (B). The number of genes total is shown in brackets above 
the section. For the three Extract v GC comparison (TE 2 hpi, CE 2 hpi, and both 
extracts pooled 2 hpi) the total number of gene in each overlap is shown, those gene 
that are up-regulate in Extract are shown in blue, and those gene up-regulated in GC 
are shown in orange. 
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380 DEGs when comparing GC to CE at 2 hpi (Figure 3.7). It is notable that for those 

uniquely DE genes between GC and TE at 2 hpi, the majority are induced in GC, 350 

genes contrasted with 74 genes up-regulated in TE 2 hpi (Figure 3.8). Additionally, 

those genes that are DE and shared between both host extract comparison-groups 

(TE 2hpi compared with GC, and CE 2hpi compared with GC) show the opposite 

pattern, the majority of the genes are induced in both the host extracts, with 132 DEGs 

up-regulated by both extracts, and only 43 genes up-regulated in GC. Interestingly, 

and differing from TE 2 hpi, unique DE genes in CE 2 hpi show a similar but less 

Figure 3.9: Hierarchical cluster analysis of all differentially expressed genes.  

The DE genes from all seven comparisons for all genes from the database Two 
databases of genes were used, all genes as annotated in the P. capsici LT1534 
version 11 (REF) and an effector library containing RXLR and CRN genes. Pearson's 
correlation coefficient was used to for Hierarchical clustering of the genes and for all 
genes 10 clusters are shown on the right, and for the RXLR and CRN genes 5 cluster 
have been calculated. The expression is shown by Z-score. 
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pronounced pattern, with 123 genes being induced in CE to the 82 up-regulated in 

GC. Both host extract expression data combined (2hpi Extract) and compared to GC 

gave an additional 232 DE genes which showed a similar pattern to those genes 

unique to TE 2 hpi: indeed, of the 232 genes, 190 were up-regulated in GC and only 

42 were up-regulated in 2hpi Extract (Figure 3.8).  

3.2.5 Host extract induced differential gene expression: Host to 

Host comparison 
 

DE of genes was also found when gene expression in TE was compared to CE. Host-

host comparisons were made at 2 hpi, 4 hpi, 8 hpi, and at every time point pooled (All-

Figure 3.10: volcano plot show DE of genes at 2hpi TE and CE both compared 
to 2hpi GC.  

The log2 fold change (FC), and the Log10 p value (adjusted with Bonferroni correction) 
for each gene when comparing between two conditions has been plotted. The two 
comparisons were Tomato extract (TE) at 2 hours post inoculation (hpi) compared with 
germinating cysts at 2 hpi (GC) (A), at cucumber extracts at 2 hpi (CE) compared with 
GC (B). 
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hpi). Of the 9,974 genes expressed only 139 (1.4%) were differentially expressed 

between the two hosts (Figure 3.7). However, it was striking that of the 139 DE genes 

Figure 3.11: volcano plot show DE of genes at 2hpi, 4hpi and 8hpi comparing 
TE with CE.  

The log2 fold change (FC), and the Log10 p value (adjusted with Bonferroni 
correction) for each gene when comparing between two conditions has been plotted. 
Here three comparisons were made: Tomato extract (TE) at 2 hours post inoculation 
(hpi) compared cucumber extracts at 2 hpi (CE), TE 4 hpi compared with CE 4hpi, 
and TE 8 hpi compared with CE 8 hpi. 
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110 (79.1%) of them had higher expression in CE; All 110 genes were found to have 

differentially higher expression in CE at 2 hpi, or in All-hpi, (50 found uniquely at 2 hpi, 

22 found at both 2 hpi and All-hpi and 38 only found when the data for all time points 

were pooled). Of the remaining 29 genes that were DE, and had higher expression in 

TE, the majority (23) were only DE at All-hpi. Interestingly, there was a larger temporal 

spread in P. capsici genes with higher expression in TE, a spread that did not occur in 

CE where all genes were DE at 2 hpi or in pooled data (Figure 3.8). In summary TE 

did not show a great differential increase in transcript levels, either when compared to 

CE or when compared to GC, contrastingly CE and GC show a much larger number 

of transcripts with increased expression levels. 

A similar pattern can be found if DE is separated by hierarchical cluster analysis. The 

1,092 DE gene were separated into 10 Clusters. The induction of genes in GC and CE 

can be easily spotted. Clusters 3, 5 and 7 where there is marked induction in GC, in 

Clusters 2 and 4 where genes induced in CE can be found in and in Clusters 9 and 10 

where those genes are collected that are both induced in CE and GC. These clusters 

represent 49.5% (Clusters 3, 5 and 7), 16.8% (Clusters 2 and 4) and 12% (Clusters 9 

and 10) of the total DE gene suite. This leaves only Cluster 1, 6 and 8 where there is 

increased gene expression in TE. Cluster 1, the smallest cluster (40 genes) are those 

gene induced in TE, particularly at 2 hpi, and Clusters 6 and 8 (18.1% of total DE 

genes) are genes showing a shared induction in TE and CE and down-regulation in 

GC. Interestingly, in these clusters, shared induction in TE and CE for the majority 

happens in 4 hpi and 8 hpi (Figure 3.9). A further breakdown of comparison group 

clusters at different stages of inoculation can be found in table 2 (Supplementary Table 

2)  
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Upon inoculation of CE, there is a marked increase in the expression of genes at 2 hpi 

that is not seen in TE. This shift is lost as inoculation continues and there is little 

significant differential expression of genes at 4 hpi and 8 hpi (Figure 3.11). However, 

host extracts, TE and CE, seem to be able to cause a large number of changes in the 

expression profile of P. capsici as can be seen when comparing to GC at 2 hpi. 

However, there is a host difference in the type of response. The difference between 

Figure 3.12: Venn diagram showing overlap in DE RXLR and CRN genes in both 
the TE v CE set and the Extract v GC set.  

The overlap all 18 of the unique DE genes from the tomato extract comparison with 
cucumber extract (TE v CE) is shown (A). The number of genes total is shown in 
brackets above the section. For the four TE v CE comparison (2 hours post inoculation 
(hpi), 4 hpi, 8 hpi, All hpi) only two had DE expressed genes (2hpi and All hpi) the total 
number of gene in each overlap is shown, those gene that are up-regulate in TE are 
shown in blue, and those gene up-regulated in CE are shown in orange. The overlap 
all 47 of the unique DE genes from the two host extract vs germinating cysts (Extract 
v GC) is shown (B). The number of genes total is shown in brackets above the section. 
For the three Extract v GC comparison (TE 2 hpi, CE 2 hpi, and both extracts pooled 
2 hpi) the total number of gene in each overlap is shown, those gene that are up-
regulate in Extract are shown in blue, and those gene up-regulated in GC are shown 
in orange. 
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TE and GC is characterised by a large induction of genes in GC and limited induction 

of genes in TE. In contrast to this, the response of P. capsici zoospores to CE when 

compared to GC shows a greater induction of genes in CE than in GC. However, the 

difference between extract and GC for CE versus GC in terms of induction in one 

condition compared to the other is not as marked as it is in TE versus GC (Figure 3.10)   

3.2.6 Host extract induced differential RXLR and CRN expression 
 

In addition to the 19,729 total annotated genes, transcripts from another set of genes 

were also annotated and quantified using the salmon quant tool (Galaxy Version 

0.14.1.2) (Patro et al., 2017). This set included both known and putative effector 

protein genes, RXLRs and CRNs. All 712 were found to be expressed at some level, 

however, after filtering low abundancy transcripts 226 RXLRs and CRNs were found 

to be expressed (Figure 3.4), of these 148 were RXLRs and 78 were CRNs. Using the 

same 7 comparison groups and with all other genes again separated into two sets for 

analysis, TE v CE and Extracts v GC, 52 of these 226 (23%) were found to be 

differentially expressed. Of the 52 DE effectors 38 were RXLRs and 16 were CRNs 

(Figure 3.6). 

In terms of expression pattern, the RXLRS and CRNs display similar patterns to the 

other genes. The majority of genes were found DE when comparing the two host 

extracts to GC. 47 genes were DE comparing Extract to GC this is in contrast with the 

18 genes DE when comparing TE to CE, 11 genes are shared in these two sets of DE 

effectors. The majority of these 47 DE effectors are induced in GC, more so when the 

GC are compared to TE, few genes are induced in GC when comparing to CE. This 

shows again the up-regulation events that occur both in GC and CE (Figure 3.7, Figure 

3.12). Interestingly, the effectors that are induced in the extract are either found 
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uniquely induced in 2hpi  CE or shared between 2 hpi CE and TE. CE seems able to 

induce gene expression in P. capsici zoospore whereas DE in TE is characterised by 

down regulation events. This is shown when comparing TE to CE for effector 

expression. 11 RXLRs or CRNs are DE when comparing host extracts, all are induced 

in CE and the most are found during the 2 hpi time point (Figure 3.7, Figure 3.12). 

Hierarchical cluster analysis of the 54 DE RXLRs and CRN into 5 clusters revealed 

their expression patterns. The largest cluster (Cluster 2) are effector genes induced in 

GC, additionally, Cluster 3 also displays a similar expression pattern. Cluster 4 and 

Cluster 1 are also notable having genes up-regulated in CE 2 hpi and GC and those 

genes up-regulated just in CE 2 hpi. In total 87.0% of genes are found in clusters 1-4 

and therefore either induced in GC, CE 2 hpi or both. The final cluster, cluster 5 are 

genes that are notably turned off in 2 hpi TE and show variable induction at other time 

points, again showing the TE is characterised by down-regulation events (Figure 3.9).  

Figure 3.13: the level of each GO term in genes DE when comparing 2hpi 
extracts to GC, in TE, CE and in Both combined compared to GC, both incuced 
in extract and incued in GC.  

The GO (gene ontology) terms of all the DE genes from the comparison of host 
extracts at 2 hours post inoculation (hpi) and germinating cysts at 2 hpi were obtained. 
The GO term of the differentially expressed genes (DEG) for the category of biological 
processes have been separated down by comparison TE 2hpi v GC, CE 2hpi v GC 
and both extracts pooled v GC. Thus the percentage of the top biological process GO 
terms form each comparison is shown in the pie charts.    
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3.2.7 DE Gene characterisation using GO term annotation    
 

The role of the putative effector gene is assumed to be as a normal effector, i.e. to 

suppress the plant immune system or allow extraction of nutrients, and either being 

secreted into the plant cell or apoplastic space. However, the function of the other 

1092 DE genes are unknown. GO term analysis of DEGs was conducted to glean 

gene function and identify the mechanisms that could contribute to dynamic host 

adaption. First, the 1036 genes that were DE when comparing extract to GC were GO 

annotated. GO terms are broken up into three main classes, molecular function, 

Figure 3.14: the level of each GO term in genes when comparing 2hpi extracts 
to GC.  

The GO (gene ontology) terms of all the DE genes from the comparison of host 
extracts at 2 hours post inoculation (hpi) and germinating cysts at 2 hpi were obtained. 
The top 9 GO terms for all the genes from the Molecular function category and both 
the percentage of DE genes and the number of DE genes that have be annotated with 
that GO term is shown. In addition the top 8 GO terms from the biological function 
category and the top 5 genes from the cellular component category and there 
respective percentages and numbers of DE genes are also shown.   
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biological process, and cellular component. Of the GO terms that are classed as 

molecular function, amongst the most enriched were hydrolase activity (GO:0051336) 

catalytic activity (GO:0003824), nucleic acid binding (GO:0003676) and 

oxidoreductase activity (GO:0016491). In terms of biological processes GO terms that 

were enriched, the three most common were phosphorylation (GO:0016310), cellular 

protein modification (GO:0036211) and oxidation-reduction processes (GO:0055114). 

Interestingly, when examining the GO terms for the cellular component, by far the 

Figure 3.15: the level of each GO term in genes DE when comparing TE to CE.  

The GO (gene ontology) terms of all the DE genes from the comparison of tomato 
extracts (TE) at 2 hours post inoculation (hpi) and cucumber extract (CE) at 2 hpi were 
obtained. The top 10 GO terms for all the genes from the Molecular function category 
and both the percentage of DE genes and the number of DE genes that have be 
annotated with that GO term is shown. In addition the top 12 GO terms from the 
biological function category and the top 6 genes from the cellular component category 
and there respective percentages and numbers of DE genes are also shown.   
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largest group of genes are annotated as integral components of the membrane (Figure 

3.14). Breaking down the distribution of these GO terms into the three comparison 

groups included in the extract v GC set, and just examining those up-regulated in 

Extracts (TE, CE, and Shared) reveals something more. In those genes that are 

uniquely up-regulated in CE, or DE up-regulated in both extract set, that largest set of 

genes have been annotated with GO terms for oxidation-reduction processes. 

Additionally, the second most common GO term in CE is transmembrane transport 

(GO:0055085) and is not found to be enriched in the shared genes or TE. 

Contrastingly, the largest groups in TE DE genes are phosphorylation, translation 

(GO:0006412), protein folding (GO:0006457) and transport (GO:0006810). 

Phosphorylation and translation are not unique to TE, however, and they are the 3rd 

and 4th most common in gene up-regulated in CE and 2nd and 3rd most common in 

shared genes (Figure 3.13). 

When comparing TE to CE and looking at those genes just DE, the picture is clearer. 

The majority of these genes are up-regulated in CE. The common five GO terms in 

this set are oxidoreductase activity, oxidation-reduction processes, transmembrane 

transport, cellular modification processes and integral component of the membrane.  

A similar list of potential roles to those identified when examining DE gene from the 

comparison of CE with GC (Figure 3.15).    

3.2.8 Expression of known genes and marker genes 
 

The expression profile gained via RNA-SEQ of several marker genes and genes of 

interest was examined. This may provide some information mechanistically on what is 

occurring inside P. capsici and examining genes with known expression pattern can 

enable validation of the sequencing. The expression of some common P. capsici 
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marker genes were analysed. PcHMP1, a marker of biotrophy associated with 

haustoria formation is uniformly expressed in all time points and extracts, as well as 

GC. PcNMRA1 (Phyca11_505845) which is switched off during necrotrophy and as is 

known to mediate the switch from biotrophy to necrotrophy (Pham et al., 2018) is also 

Figure 3.16: expression pattern as shown by RNA seq of key genes. 

For several key genes, consisting of three marker genes PcHMP1, and PcCDC14, 
and PcNMRAL1 (A), 5 gene thought to be differentially regulated by host TF1-117, 
ABC1-117, TF2-117, ABC2-117 and TF3-117 (B). Four large ribosomal protein 
subunits PcRPL18, PcRPL10Aa, PcRPL10Ab, and PcRPL22 (C), and three so called 
housekeeping genes ACTIN, TUBULIN and UBIQUITIN (D). Relative Fold change for 
each gene from the mean expression of that gene was calculated. Expression in the 
tomato extract (TE) and cucumber extract (CE) at the three time points 2 hours post 
inoculation (hpi), 4 hpi, and 8 hpi, and in germinating cyst (GC) 2 hpi. 
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fairly uniformly distributed, it is mildly induced in GC. Expression of PcCDC14 

(Phyca11_ 510939), a marker of sporulation, was also examined, this showed rapid 

down regulation as the time progressed in both extracts (Figure 3.16).  

The expression profiles of genes frequently used as housekeeping genes were 

examined, these genes ought to have stable expression. However, their expression is 

fairly different in the different samples, all housekeeping genes tested actin (Phyca11_ 

132086), tubulin (Phyca11_ 576734) and ubiquitin (Phyca11_510705), showed 

increased expression as the experiment progressed, as well as low expression in GC 

Figure 3.17: Venn diagram showing overlap in DE gene identified from RNA seq 
of zoospore inculcation experiments and 16hpi microarray of leaf infection 
assay of four host plants.  

Differentially expressed (DE) genes from the two main groups of comparisons in the 
RNA seq experiments, Tomato extract v cucumber extract (TE v CE) and Host extracts 
versus germinating cysts (Extract v GC) were collected. The overlap of all these DE 
genes with those from the microarray is shown, the total number of unique total 
number DE genes from all experiments is shown at the top and the number of DE 
genes in each category is shown in brackets beside the Venn diagram.      
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samples. Worryingly for most housekeeping genes, a high level of variability was seen. 

For example, tubulin showed a range of 0.5 fold change above the mean to a twofold 

decrease below mean expression. In addition to these genes, other genes with 

presumably high stable expression were analysed, four large ribosomal protein (RPL) 

subunit gene expression was also examined (PcRPL18 – Phyca11_ 9769, 

PcRPL10Aa – Phyca11_15914, PcRPL10Ab – Phyca11_ 39189, and PcRPL22 

Phyca11_ 19566). These RPLs had a much more stable expression pattern, with the 

largest range displayed in RPL10Ab (0.23 fold change above the mean to 0.60 fold 

change below the mean) and the smallest range in PcRPL22 (0.19 FC above the mean 

to 0.34 FC below the mean) (Figure 3.16).  

Finally, the expression of some genes of interest that were used during the validation 

test were examined. All the genes have previously shown differential gene expression, 

specifically up-regulation in cucumber infection. Validation of the in vitro methodology 

has also shown these genes to be up-regulated in CE in a similar fashion. The RNA-

SEQ data concurs with all of the other results, that there is an up-regulation of these 

genes in CE compared to TE. However, the RNA-SEQ data, as well as some of the 

previous validation experiment, also showed that GC had higher expression than most 

of these genes of interest. Having said that, none of these genes were significantly 

differentially expressed in comparison between the two host extracts (Figure 3.16).  

In fact, comparing the genes that are differentially expressed in this RNA-SEQ 

experiment and those that appear differentially expressed according to microarray 

data of 4 hosts leaf infection assay at 16hpi, shows that there is little overlap. 

(Unpublished Huitema lab data). In total 198 genes are shared between the two 

experiments (Figure 3.17). 



107 
 

 

  

Figure 3.18: Validation experiments, comparison of expression pattern of genes 
shown by RNA seq and qRT-PCR (1).  

Three genes that were shown to have differential expression (DE) in the RNA seq 
were probed for expression in Tomato extract (TE) 2 hours post inoculation (hpi), TE 
4 hpi, TE 8 hpi, cucumber extract (CE) 2 hpi, CE 4 hpi, CE 8 hpi, tomato leaf infection 
(TLF) 2hpi, TLF 4 hpi, TLF 8 hpi, cucumber leaf infection (CLF) 2 hpi, CLF 4hpi, CLF 
8hpi, and germinating cysts at 2 hpi. Relative expression calculated using the ΔΔCT 
method against the housing keeping gene RPL22, with the expression of GC 2hpi set 
to 1 is shown for three genes Phyca11_527102 (A), Phyca11_551137 (B), and 
Phyca11_535308 (C). The expression pattern, as shown By the Log fold change from 
the mean expression of that gene, from the RNA seq experiment is also shown for all 
these genes. Statistical significance is shown for comparison between TE and CE at 
2hpi, 4hpi and 8hpi, and TLF and CLF at 2hpi, 4hpi and 8hpi. Two tailed unequal 
variance student t-test was conducted, significant bonferroni adjusted P values are 
shown. Adjusted P values of <0.05 = *, <0.01 = **, <0.001 = ***, >0.05 = non-
significant (NS).   
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Figure 3.19: Validation experiments, comparison of expression pattern of 
genes shown by RNA seq and qRT-PCR (2).  

Three genes that were shown to have differential expression (DE) in the RNA seq 
were probed for expression in Tomato extract (TE) 2 hours post inoculation (hpi), TE 
4 hpi, TE 8 hpi, cucumber extract (CE) 2 hpi, CE 4 hpi, CE 8 hpi, tomato leaf infection 
(TLF) 2hpi, TLF 4 hpi, TLF 8 hpi, cucumber leaf infection (CLF) 2 hpi, CLF 4hpi, CLF 
8hpi, and germinating cysts at 2 hpi. Relative expression calculated using the ΔΔCT 
method against the housing keeping gene RPL22, with the expression of GC 2hpi set 
to 1 is shown for three genes Phyca11_17807 (A), Phyca11_97362 (B), and 
Phyca11_8265 (C). The expression pattern, as shown By the Log fold change from 
the mean expression of that gene, from the RNA seq experiment is also shown for all 
these genes. Statistical significance is shown for comparison between TE and CE at 
2hpi, 4hpi and 8hpi, and TLF and CLF at 2hpi, 4hpi and 8hpi. Two tailed unequal 
variance student t-test was conducted, significant bonferroni adjusted P values are 
shown. Adjusted P values of <0.05 = *, <0.01 = **, <0.001 = ***, >0.05 = non-significant 
(NS).   
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3.2.9 Validation 
 

To validate the RNA-SEQ experiments, the expression pattern observed was 

attempted to be replicated with qRT-PCR. Six genes of interest were tested, three with 

higher expression in TE (Figure 3.18), and three with higher expression in CE (Figure 

3.19), however only one replicate is present in each experiment, so conclusions that 

can be drawn from these experiments are limited. In addition, these experiments also 

contain leaf infection assay samples from the same time points as extract inoculation 

samples were taken. For two out of three genes induced in TE (Phyca11_551137 and 

Phyca11_535308) the differential host expression pattern is maintained, however the 

expression profile as the experiment progresses is different, i.e. they are induced/ 

down-regulated at different time points in the experiment. For the other gene induced 

in TE (Phyca11_527102) though the expression pattern is similar across time points 

for each extract, the host to host relative expression is different (Figure 3.18). For all 

three genes induced in TE, the expression in leaf infection assay is lower than that in 

extract. The only exception is the high level of expression on Phyca11_551137 at 2 

hpi cucumber leaf infection assay (Figure 3.18). For the three genes that showed 

higher expression in CE in the RNA-SEQ, none of the host specific differential 

expression patterns were maintained. Of the three Phyca11_17807 shows the closes 

resemblance, although a high expression in TE in the qRT-PCR at 2 hpi limits the 

similarity. Interestingly though, for all of the genes, but especially Phyca11_17807 the 

host specific differential expression pattern observed in the RNA-SEQ is present in the 

leaf infection assay as shown by qRT-PCR (Figure 3.19).  
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3.3 Methodology 
 

3.3.1 Broths-Extracts-Sandwiches. 
 

Commercially available tomato plants (Solanum Lycopersicum cv. Moneymaker) and 

cucumber plants (Cucumis sativus cv. Venlo Pickling) susceptible to P. capsici were 

grown with a 16 hour light cycle and maintained at 22-25°C. 3 – 5-week old tomato 

and cucumber detached leaves were used for leaf infection assays and sandwich 

infection assays and leaf and stem material were used for broth and extract inoculation 

assays. P. capsici strain LT1534 was grown on V8 agar (10% v/v V8 vegetable juice, 

1 g/L calcium carbonate, 300 mg/L β-sitosterol, 15% w/v Agar). For the purposes of 

infection and inoculation assays, zoospores were collected. P. capsici LT1534 was 

grown on V8 agar in the dark at 25°C sealed with parafilm. This was followed by 2 

days of growth in the light at 22°C without parafilm to induce sporangia formation. 

Zoospores were collected by flooding the 150 mm plate with 30 mL of sterile distilled 

water at room temperature, then the mycelia growth was agitated with a sterile plate 

spreader and everything was transferred to a second P. capsici inoculated V8 agar 

plate. Continuing in this fashion, the 30 mL of water was used to flood and agitate four 

150 mm plates recovered into a 50 mL falcon tube. The sporangia suspension was 

left for 30-45 minutes with the lid removed on a light-box to induce zoospore release. 

The suspension was then filtered through one layer of Miracloth to remove mycelia 

and any agar chunks in the suspension, however both full and empty sporangia are 

retained, this process yielded approximately 25 mL of ≥ 1 x 106 spores mL-1 zoospore 

suspension. The zoospore suspension was then diluted to 1 x 106 spores mL-1 (Error! 

eference source not found.). For the purposes of leaf infection assay, 20 µL of 

zoospore suspension was placed on the abaxial surface of a detached leaf. Infection 
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was left to progress in a box lined with damp tissue paper to maintain a humid 

environment, at 22°C with a 16-hours photoperiod. For RNA extraction, 8 mm infected 

leaf discs centred on the site on inoculation were collected using a core borer. Leaf 

discs were flash-frozen in liquid nitrogen and kept at -80°C until RNA extraction.  

For the purposes of sandwich infection assays, P. capsici LT1534 was grown on V8 

agar. 5 mm cubes of infected V8 agar were used to inoculate 20 mL of pea broth 

poured into a 90 mm petri dish. The plate is sealed with parafilm was allowed to grow 

in the dark at 25°C for 7 days. This produced a uniform mycelial “carpet”, from which 

a 20 mm by 20 mm square of mycelia was cut using a scalpel and placed on the 

abaxial surface of a detached leaf. A second detached leaf was then placed on top, 

abaxial side facing the mycelia. The resultant “sandwich” was then pressed together 

to ensure good contact of leaves and mycelia. Infection was left to progress in a box 

lined with damp tissue paper to maintain a humid environment, at 22°C with a 16-

hours photoperiod. For RNA extraction,  the leaves were removed and discarded while 

the mycelia square was flash-frozen in liquid nitrogen and kept at -80°C until RNA 

extraction.  

For the purposes of Extract and Broth inoculation experiments, plant leaf and stem 

tissues were collected as described. To produce Broth, 20 g of plant material was 

placed in 70 mL of sterile distilled water. This was autoclaved and then filtered through 

one layer of Miracloth. The resulting broth was then topped up to 100 mL with sterile 

H2O. To produce extracts, 20 g of plant material was flash-frozen in liquid nitrogen 

immediately after collection. This was then ground up using a pestle and mortar and 

suspended in 100 mL of sterile distilled water. This was then filtered through one layer 

of Miracloth and topped up to 100 mL with sterile H2O. 5 mL of 1 x 106 spores mL-1 

zoospore suspension and 5 mL of either broth, extract or distilled water were mixed in 
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a 15 mL falcon tube. This inoculated broth, extract or water was then shaken 

vigorously to induce zoospore germination. The 15 mL falcon tube were stored at 22°C 

in the light, and placed at an angle (as close to horizontal as you dare) on its side with 

no lid. For RNA extraction, the liquid was discarded carefully, leaving germinated 

spores adhering to the side of the tube. It was flash-frozen in liquid nitrogen and kept 

at -80°C until RNA extraction.  

3.3.2 RNA extraction 
 

Samples were removed from the -80°C freezer and placed on ice. For broth and 

extract inoculation experiments 1 mL of TRIZOL reagent was added to the sample, 

directly in the 15 mL falcon tube. The sample was allowed to defrost on ice. During 

defrosting time, the sample was vortexed until it became homogenous. For leaf 

infection and sandwich infection assays, tissue was placed in a 2 mL Eppendorf 

containing a steel ball. 1 mL of TRIZOL reagent was added and this was placed in a 

TissueLyser II with chilled gaskets and disrupted for 1 minute at 30 Hz. The resulting 

lysate was centrifuged at 12,000xg for 10 minutes at 4°C to remove debris. The 

supernatant was removed and retained.     

Following lysis in TRIZOL, 1 mL of tissue lysate from inoculation or infection 

experiments was then transferred to an RNase free 2 mL Eppendorf and 200 μL 

chloroform was added. This was then shaken well by hand until uniform and cloudy, 

and centrifuged from 15 minutes at 12,000 xg at 4°C. This step allows the separation 

of distinct phases, a bottom organic phase containing proteins, lipids and other cell 

debris, a middle interphase consisting of a cloudy film of DNA, and the clear upper 

phase which contains the RNA. The upper phase was transferred into a fresh RNase 

free 2 mL Eppendorf and the same volume of 70% ethanol added. The mixture was 
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then vortexed well, allowing the ethanol to precipitate the RNA and bind it to the 

column. The sample was then added to a spin column from the PureLink RNA Mini Kit 

(Ambion, Life technologies). The column and collection tube was then centrifuged at 

12,000 xg for 30 seconds at room temperature and the flow-through discarded. The 

rest of the extraction was carried out as per the instructions from the PureLink RNA 

Mini Kit. Following elution in 40-60 μL RNase free water the Purity and quantity of RNA 

were assessed with nanodrop analysis. Gel electrophoresis on 1% agarose gel 

dissolved in Tris-Borate-EDTA (TBE) buffer was also conducted to estimate RNA 

integrity. TBE buffer contained 45 mM Tris-borate, 1 mM EDTA. The gel was run for 

45 minutes at 75 volts RNA was then used for qRT-PCR analysis. RNA intended for 

sequencing underwent Qubit analysis which was conducted to better estimate RNA 

quantity, and RIN was found as assessed by the Agilent 2200 TapeStation systems.          

3.3.3 qRT-PCR  
 

Quantitative 2 step reverse transcriptase PCR (qRT-PCR) was conducted to quantify 

gene expression. Using RNA from infection and inoculation assays, RQ1 RNase-Free 

DNase (Promega) treatment was used (as per manufacturer protocol) to eliminate 

background amplification from contaminant DNA and avoid skewing the results. 

Following DNase, denaturation cDNA was generated using reverse transcription with 

SuperScript III reverse transcriptase (Invitrogen) using Oligo (DT) 20 primers as per 

the manufactures instructions. qRT-PCR was conducted using the real-time PCR 

master mix FastStart Universal Probe Master (Rox). Primer and corresponding 

universal probe library (UPL) probes were designed and chosen using the Universal 

Probe Library Assay Design Center 

(https://lifescience.roche.com/en_gb/brands/universal-probe-library.html). The use of 

the mastermix, the primers and probes, and cDNA, allowed quantification of chosen 

https://lifescience.roche.com/en_gb/brands/universal-probe-library.html
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transcripts. qRT-PCR was thus performed in StepOne™ Real-Time PCR System and 

data was collected and analysed using the StepOne™ software. Thereby, gene 

expression levels were calculated relative to expression in a germinating cyst at the 

initial time point (control), using the cycle threshold (ΔΔCT) methodology. Expression 

levels of genes were normalized to P. capsici ubiquitin gene (Phyca11_510705) or 

RPL22 gene (Phyca11_19566). Following RNA-sequencing results, minor variation in 

ubiquitin expression patterns meant that future gene expression quantification was 

normalized to RPL22. 

3.3.4 RNA Sequencing (Novogene)  
 

RNA library preparation and sequencing was conducted by Novogene. Sequencing 

libraries were generated using NEBNext® UltraTM RNALibrary Prep Kit for Illumina® 

(NEB, USA) following manufacturer’s recommendations. Briefly, mRNA was enriched 

using poly-T oligo-attached magnetic beads. Fragmentation was carried out using 

divalent cations and high temperature in NEBNext First StrandSynthesis Reaction 

Buffer (5X). cDNA was synthesized using random hexamer primer and M-MuLV 

Reverse Transcriptase (RNase H-) and Polymerase I. The 3’ ends of DNA fragments 

were adenylated, and NEBNext Adaptors with hairpin loop structures were ligated for 

hybridization. Fragment selection cDNA of preferentially 150~200 bp in length were 

purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER 

Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 

15 minutes followed by 5 minutes at 95 °C before PCR. PCR amplification was 

performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and 

Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library 

quality was assessed on the Agilent Bioanalyzer 2100 system. Illumina sequencing 

was then conducted.  
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3.3.5 RNA-SEQ pre-analysis  
 

The raw sequence reads for each sample were filtered to remove low-quality reads 

and sequencing of the adapters necessary for Illumina sequencing. Reads containing 

adaptors, reads with more than 10% undetermined bases and reads with low-quality 

base making up over 50% of the read, were all removed. For all samples, an average 

of 97.5% of total reads, deemed clean, were retained. This filtering was conducted by 

Novogene. Raw reads were recorded as FASTQ files, as sequencing conducted used 

paired ends, every sample was composed of two paired FASTQ files. Samples were 

uploaded to the bioinformatics platform Galaxy (https://usegalaxy.eu) and paired.  

The paired reads were annotated and quantified. Annotation used filtered transcripts 

lists based on the P. capsici reference genome (LT1534 v11.0) 

(https://genome.jgi.doe.gov/portal/Phyca11). To conduct annotation and 

quantification, the Salmon quant tool (Galaxy Version 0.14.1.2) was used, to annotate 

and quantify transcript abundance (Patro et al., 2017).  

Raw read count data pre-processing, transcript-gene mapping, and differential gene 

expression analysis were conducted using the 3D RNA-SEQ interface (Guo et al., 

2020). In order to compare the gene expression levels between samples, the 

abundance of reads per transcript was normalized for transcript length and depth of 

sequencing using transcripts per kilobase million (TPM). TPM uses the number of 

reads per transcript length in kilobases and normalises it per sequence depth i.e. per 

million reads. Low expression transcripts were removed. As read count and the mean-

variance thereof are assumed to follow a negative binomial distribution, the log2 of the 

read count plotted against the mean-variance allowed visual exploration of low 

expression transcripts (Figure 3.4). As such, counts per million reads (CPM) is set to 

https://usegalaxy.eu/
https://genome.jgi.doe.gov/portal/Phyca11
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1 and the sample number cut offset to 12, filtering very low expressed transcripts. 

Thus, an expressed transcript must have ≥ 12 samples with ≥ 1 CPM expression else 

the transcript was filtered out. Exploratory principal component analysis (PCA) was 

conducted to assess the batch effect. This analysis was used to determine the 

variance between biological replicates, where differences could be caused by samples 

being prepared under differing conditions. Although the PCA showed a distinct batch 

effect variance in biological replicate 3, the data was not modified to remove this effect. 

Finally, so library composition did not sway the differential expression analysis, the 

data was normalised using TMM (weighted trimmed mean of M-values). All data pre-

processing was carried out using the 3D RNA-seq App. 

3.3.6 RNA-SEQ differential gene analysis 
 

Differential expression analysis was conducted using the Limma-Voom pipeline/ R 

package via the 3D RNA-SEQ App (Guo et al., 2020).  The P-value for the significance 

of differential expression of genes was calculated using F-test. The adjusted P-value 

for significance was 0.01, adjusted using the BH method.  

3.4 Discussion  
 

It is crucial for the understanding of host specificity and dynamic host adaption that 

organisms with broad host range such as P. capsici are studied whilst causing disease 

on different host plants. To be able to combat broad host pathogens in the field and in 

the multiple crop plants in which they are able to cause disease, there is a need to 

understand the determinants and mechanisms that are utilised to dynamically adapt 

to an individual host or to multiple hosts. Broad transcriptomic analysis and 

comparison of multiple host infections is key to increasing our understanding in this 

area. However, RNA sequencing of P. capsici infection in vivo has many limitations, 
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especially at important early time points of infection, where pathogen biomass is very 

low. This study demonstrates the utility of an in vitro methodology as a model system 

for transcriptomic analysis with the potential for experimental design adaptation to 

other oomycete pathogens and other host systems.  This methodology has been 

utilized to examine the difference in the gene expression of P. capsici in two different 

host plants.  

3.4.1 In vitro methodology validation  
 

In this study, three in vitro methodologies were trialled for their ability to produce host 

dependent differential expression of the gene in a manner that had previously been 

observed (Unpublished Huitema Lab). Initial experiments indicated that the use of 

plant extracts was able to induce differential gene expression, similar to that observed 

in microarray data described in Chapter 1, in P. capsici, in all the genes tested. Of the 

four genes tested all showed up-regulation in CE and down-regulation in TE as 

predicted by previous studies (Unpublished Huitema Lab).  When compared over time, 

culturing with plant extract gave an acceptable resemblance to plant leaf infection 

gene expression. However, for one of the marker genes tested, PcNPP1, the extract 

did not induce the expression, this gene is a marker of the late stages of infection and 

the shift into a necrotrophic lifestyle. It is therefore tempting to assume that extract is 

unable to reproduce the environmental condition that induces the switch to 

necrotrophy. It was concluded that this methodology has more utility in modelling the 

early stages of infection, especially the moment and mechanisms of host perception. 

Indeed, the early stages of infection are those that have been hypothesised to be key 

in the regulation of dynamic host adaption. The extract inoculation assay was therefore 

used to carry out transcriptomic analysis of the response of P. capsici to two host 

extracts (cucumber and tomato) over an 8-hour time course, in order to elucidate the 



118 
 

 

molecular determinants of the dynamic adaption of P. capsici to these two host plants. 

This methodology represents new way in which omics style studies of infectious 

lifecycle stages, that would otherwise be difficult or impossible to conduct, can be 

carried out simpley.  

3.4.2 Differential gene expression in response to host may reveal 

host-specific dynamic adaptive mechanisms.  
 

Previous studies have demonstrated that the molecular determinants of host 

specificity and range can be largely divided into two main categories; genetic plasticity 

and dynamic adaption. Whilst the genetic plasticity of P. capsici has been fairly well 

described (Hu et al., 2020, Lamour et al., 2012a), the ability of P. capsici to dynamically 

adapt to different host plants has to date not been analysed. In this study, it was 

hypothesised that dynamic adaption is largely driven by differential gene expression 

in response to host perception, as it has been demonstrated that many pathogens 

show an ability to differentially express genes in response to distinct host 

environments that presumably enable pathogenicity on that specific host (Harris et al., 

2016, Yang et al., 2018, Kellner et al., 2014). These studies also give insight into what 

broad families of genes determine host pathogenicity and characterise dynamic 

adaptions in plant pathogens. One broad family of genes that has often been observed 

as being a factor in host determinism and therefore likely has a role in dynamic 

adaption are detoxification genes. These studies highlight genes involved in 

peroxidase activity, oxidoreductase activity, and antioxidant activity as important in 

dynamic adaption (Bowyer et al., 1995, Coleman et al., 2009, Srivastava et al., 2013, 

Kellner et al., 2014). More specifically the oxidoreductase (ORX1), an important 

antioxidant protein, has been shown to be a key gene in determining the host range 
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of members of the filamentous fungi genus Fusarium (Ma et al., 2010). GO term 

annotation of differentially expressed genes in this study has shown that genes 

involved in oxidation and reduction processes also have a role in the adaption of P. 

capsici to specific hosts, and they may have a role in the ability of P. capsici to infect 

cucumber. Additionally, transmembrane transporters, particularly ABC transporters, 

have often been shown to be key in resistance to certain toxins, including plant 

secondary metabolites and fungicides, (Yang et al., 2018, Judelson and Senthil, 2006, 

Pang et al., 2016). Oomycetes, particularly Phytophthora species show expansion and 

diversity within the ABC transporter superfamily, showing clear evolutionary selection 

and therefore a likely increase in fitness with large amounts of these types of genes 

(Morris and Phuntumart, 2009). ABC transporters and other related efflux pumps are 

clearly key to the adaption of oomycete plant pathogens to toxins and therefore novel 

plant environments, expression of which may be key to dynamic adaption to a specific 

host. Here they have also been identified, alongside other efflux pumps, 

transmembrane proteins to having a potential role in the dynamic adaption of P. 

capsici to its host, and to host extract.  

In this study, the main trend in expression shows that genes are up-regulated on 

contact or within the first 2 hours of contact with CE, as well as a large up-regulation 

event characterising GC. This induction of genes early on in infection and unique to 

CE may represent a suite of differentially expressed genes with a role in perception 

and adaption to host. GO term annotation showed that many of these genes 

specifically had roles in oxidation-reduction processes. It could be suggested that 

these genes have an important role in detoxification of the host plant environment, are 

cucumber specific, and allow colonisation of the cucumber plant. An example of the 

detoxification role of the redox processes can be found in plant pathogens.  Capsidiol, 
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a secondary metabolite toxin found in peppers, has been found to be detoxified via 

oxidation to a less toxic ketone, capsenone, during in vitro inoculation with fungi (Ward 

and Stoessl, 1972, Giannakopoulou et al., 2014). However, it is known that P. capsici 

does not detoxify capsidiol in this way, although this does not mean that other toxic 

secondary metabolites are not detoxified in a similar manner in P. capsici. These 

oxidation-reduction processes may also have a role in defence against ROS, a 

common component of the plant immune system. Interestingly, the other large family 

of genes that were uniquely found up-regulated in CE when compared to GC or when 

comparing TE and CE directly, were transmembrane transporters. It has previously 

been demonstrated that ABC transporters and other transporters are key in protection 

against toxins. Moreover, with genomic expansion of ABC transporters with respect to 

other Phytophthora species, P. capsici may rely on these sorts of efflux pumps to 

overcome sensitivity to capsidiol, and transporters may be key determinants of host 

range (Giannakopoulou et al., 2014). The results of this study also suggest that efflux 

pumps or transmembrane transports may be a key defence mechanism to hostile plant 

environments and therefore a determinant of host range. The ability of P. capsici to 

infect and cause disease on cucumber may rely on its ability to pump out innate 

secondary metabolites found in cucumber plants.  

In contrast to the up-regulation event in CE, the response in TE is a down-regulation 

event. Few genes show differential up-regulation in TE and those that do are 

frequently shared between both host extracts and up-regulated when compared to GC 

and to later stages of the extract colonisation.  This could be for several reasons, 

presumably tomato plants are not “easier” to infect and thus rely on fewer genes. One 

other possibility is that the lab strain of P. capsici used to inoculate the extract has 

been routinely grown on V8 media. The principal component of V8 media tomato fruit 
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juice, perhaps the lab strain of P. capsici has constitutive adaption to the tomato host 

environment and limited changes are necessary when adapting to the TE 

environment. Even perhaps demonstrating the importance of epigenetic factors to 

dynamic host adaption. Additionally, in previous studies (Unpublished Huitema Lab) 

where tomato infection of P. capsici was compared to three other host plants, tomato 

infection was also characterised by less up-regulating of genes (91 of 2452), and 

cucumber infection showed the largest up-regulation event of the 4 host plants tested 

(742 of 2452). Interestingly, the genes that this study showed to be up-regulated in TE 

and also up-regulated in CE in comparison to GC had a different GO term composition. 

The largest group of genes, in this case, being phosphorylation, translation, protein 

folding and transport. This suggests a change in cell signalling and a move to a longer-

term change in cellular make up. It may represent a more sustained adaptive 

mechanism initiated by the initial perception and dynamic reactionary phase, perhaps 

representing a shared pathway common to adaption to both hosts.     

The vast majority of differentially expressed genes in all comparison groups, but 

especially those that had been found uniquely up-regulated early in response to CE, 

are integral parts of the cell membrane. This demonstrates that the majority of 

differential expression is causing a large change in protein complement at the 

membrane. Many of these will be transporters as already mentioned, however, the 

membrane may have other key functions during host perception and host colonization, 

acting as a signalling hub for dynamic adaption. The host perception signalling 

mechanisms of plant pathogens are not well studied, but reports have suggested that 

the surface of the pathogens has a role. It has been demonstrated that both physical 

and chemical signals can induce a response in plant pathogens (Kou and Naqvi, 

2016). As in most species, phosphorylation is a key part of this signalling, and MAP 
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kinase pathways and other phosphorylation based signalling pathways have been 

described in plant pathogens used to respond to host signals (Kou and Naqvi, 2016, 

Liu et al., 2011). Proteomic studies of the pathogen membrane reveal it as a key area 

for many functions related to pathogenicity and adaption to host, including metabolism, 

oxidative stress response, autophagy and cell death. Many of which are controlled by 

changes in phosphorylation that occur at the membrane (Escobar-Niño et al., 2019). 

This study and others reveal the importance of the membrane as a site of host 

perception and dynamic adaption.  

3.4.3 Marker gene expression and house-keeping gene expression 

reveals aspects of in vitro phenotype. 
 

Expression profiles of marker genes gave insight into the similarity of the in vitro 

methodology to leaf infection, and the lifecycle stages perhaps replicated in extract 

inoculation. Neither PcHMP1 nor PcNMRA1 were induced in either extract, however, 

PcNMRA1 was induced in GC. PcNMRA1 controls nitrogen metabolism and may be 

induced to increase nitrogen recycling during metabolite shortages. This may 

demonstrate that whilst GC may have some starvation phenotypes, metabolite 

sensing and nutrient extraction is occurring in both extracts, suppressing PcNMRA1 

expression (Pham et al., 2018). PcCDC14 is a known marker of sporulation and shows 

a marked decrease in expression as the inoculation progresses as P. capsici moves 

out of the spore stages into a more mature phase. This change in PcCDC14 would 

also be observed in leaf infection.  

Genes that were known to be differentially expressed, specifically genes that were 

known to be up-regulated in cucumber at 16 hpi in infected leaf tissue (Unpublished 

Huitema Lab) were also analysed. Although the same expression profile was 

observed, in that they were up-regulated in cucumber in comparison to TE, they were 
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not significantly DE. However different stages of infection were being compared, and 

it is likely that the later stages of infection are not replicated during in vitro culture in 

extract. There is no information or studies on what would be expected to be 

differentially expressed during the early stages of infection in P. capsici for 

comparison.  

The final set of genes that the expression profile was analysed are the housekeeping 

genes. These genes, in theory, should be uniformly expressed across all time points. 

However, this analysis shows a large variation in expression across the different 

condition. This is particularly worrisome as these genes are frequently used as a 

baseline level of expression for relative expression calculation such as the ΔΔCT 

method used for qRT-PCR analysis. In light of this, other genes that have been 

identified in other studies in the Huitema lab were tested for expression, genes that 

are frequently used as a positive control during routine PCR experiments. The large 

ribosomal subunits (RPLs) were examined for expression levels with the expectation 

of high and stable expression in all conditions. They showed as expected, high levels 

of expression and relative to the other housekeeping genes tested, were very similar 

in expression levels. Going forward these RPLs and in particular, RPL22 which 

showed the most stable expression of the four genes tested, will be used as a routine 

housekeeping gene for relative expression analysis as in qRT-PCR. It should also be 

noted that caution should be practised in assuming a stable expression of 

housekeeping genes even if routinely used in the lab and literature.   

3.4.4 RNA-SEQ validation. 
 

In order to validate the RNA-SEQ experiment, several genes were chosen for 

evaluation of their expression profile via qRT-PCR. Due to time constraints, only six 
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genes were tested. Of the six genes tested, none showed exactly the same expression 

profile as the RNA-SEQ predicted. However, in two of the genes, the host differences 

in expression were maintained. Expression in the leaf infection assay was analysed at 

the same time points and two of the genes displayed the same host specific differential 

expression as observed in the RNA-SEQ. A caveat lies over these results due to the 

lack of experimental replicates. The results do suggest that the methodology is highly 

variable and it may be that more replicates are necessary to effectively predict DE 

genes.  

3.4.5 Conclusion and further work 
 

This study has developed a novel methodology for in vitro infection assessment of P. 

capsici that has the potential to be utilised with other oomycete plant pathogens and 

with multiple host plants enabling broad transcriptomic analysis. This novel 

methodology has been used for a two-host comparison and has shown that extract is 

able to induce host-specific differential expression. In general, the response to 

cucumber extract is characterised by an early up-regulating event of genes with 

putative roles in detoxification and the efflux of toxins. The response to tomato extract 

is characterised by down-regulation, however, those genes that are up-regulated when 

compared to germinating cysts (control) are also up-regulated in cucumber extract and 

are largely characterised by genes that have putative roles in cell signalling and 

translation, pointing to a long-term dynamic adaptive response found in both host 

extracts. Although a question still exists over the reproducibility of this methodology 

and the predictive ability to generate genes with key roles in host specificity, potential 

key insights into the mechanisms that define dynamic adaption have been gained. 

Furthermore, the role of many genes identified should be examined and the 



125 
 

 

mechanisms identified considered in further studies. Characterisation of the genes 

identified here during leaf infection and their effect on the pathogenicity of P. capsici 

in different hosts is a key step towards understating how dynamic adaption drives host 

specificity and host range.  
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Chapter 4:  Proteomic analysis of P. capsici during 

an in vivo model of infection of two distict hosts 
 

 

4.1 Introduction 
 

Few studies have taken a broad ‘omics’ style analysis of the effect that a host plant 

has on a plant pathogen during infection. Especially concerning the analysis of the 

mechanisms and molecular basis of pathogen host range. The broad host ranged 

pathogen Phytophthora capsici, can infect multiple host plants, but how it maintains 

this broad host range is still vague. However, as described in previous chapters, there 

is evidence of differential gene expression as a driver of dynamic adaption to the host 

environment (Harris et al., 2016, Allan et al., 2019, Yang et al., 2018, Ma et al., 2010). 

As such, joint transcriptomic and proteomic analysis of the effect of multiple hosts on 

the pathogen may shed some light on the deeper cellular mechanisms, and molecules 

with roles in broad host range pathogenicity in oomycetes and other broad host ranged 

plant pathogens. ‘Omic’ analysis of various lifecycle stages in Phytophthora can also 

be useful in highlighting key proteins and their potential life stage-specific functionality 

(Resjö et al., 2017) 

Proteomics is an indispensable tool when characterising the protein content of a cell. 

As such it has long been used as an unbiased approach to understand the factors that 

contribute to plant immunity and pathogen virulence and their interplay. Tracking 

changes to a pathogen or plant cells through the infection lifecycle, from PAMP 

mediated recognition and immunity (PTI) through to effector release, and the 

susceptibility or immunity that is triggered from those effectors (ETI/ ETS), allows 

identification of the key molecular players in those battlegrounds. As such, many 
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studies have been conducted in planta investigating the plant's response to assault 

with a pathogen. (Xiao et al., 2019, Larsen et al., 2016). Proteomics can also find utility 

in probing other areas where pathogen plant interactions are taking place. For 

example, the apoplastic space is a key compartment in which plant-microbe conflicts 

play out and proteomics can easily detect associated signatures (Delaunois et al., 

2014). Additional studies have look at a particular pathogens response to chemicals. 

For example, the response of the oomycete pathogen P. capsici to a fungicide 

flumorph. Identifying 181 proteins considered to contribute to the adaptive response 

of P. capsici to such a fungicide. (Pang et al., 2016). Studies have also examined 

changes in Phytophthora proteome during its life cycle, with an emphasis on pre-

infectious lifecycle stages (Resjö et al., 2017, Pang et al., 2017). 

However, as these studies increase our picture of how the plant responds to a 

pathogen and how a pathogen can respond to its environment, there is still a gap in 

our understanding of plant-pathogen interactions.  It is more challenging to investigate 

the response of the pathogen to the perception of a potential host in planta, than that 

of studying the host's response. Proteomic in planta studies of a pathogens response 

to host would be near impossible to conduct, as stated in previous chapters, the 

perineal problem is a great excess of plant material in any potential sample blocking 

any possible signal from pathogen molecules. Especially when considering desired 

breadth and depth in signal strength to make any differential expression analysis 

possible. Therefore, other non-in planta methods of deriving sample for proteomic 

analysis are necessary. The work conducted in Chapter 3 has validated and 

conducted similar ‘omics’ based experiments. In order to investigate the changes that 

a pathogen undergo during infection, it was necessary to develop a methodology to 

isolate the pathogen material from the plant. Chapter 3 details the development and 
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validation of an extract inoculation assay, a system in which the environment to which 

P. capsici is exposed during the early stages of infection is mimicked. This 

methodology was used to conduct a transcriptomic investigation of the effects of 

different host extracts on the early stages of P. capsici adaptation to its host. This 

approach enables us to attempt to patch the gap left by previous studies; Phytophthora 

life cycle analysis, which has invariably focused on the non-infectious life cycle stages, 

and in studies of plant-pathogen interactions which often focus on the changes in the 

plant’s system and not the pathogen response.  

RNA sequencing of the extract inoculation assay demonstrated that challenging P. 

capsici with different host plants affects the genes being expressed, and is therefore 

influenced by its host environment and its resident signals.  

For the experiment that was carried out in Chapter 3 the effect and difference between 

only two host extracts was investigated (Tomato and Cucumber). RNA sequencing of 

this extract inoculation assay conducted with two host plants, revealed initially that 

incubation of the P. capsici zoospores in host extracts induced a response, more 

specifically it was found that there is a large quantity of differential expressed genes 

when comparing between the hosts at 2 hours post inoculation (hpi). It highlighted 

genes involved in oxidation and reduction processes, membrane proteins, especially 

transmembrane transporters, particularly ABC transporters. It also revealed a large 

number of proteins localised to the membrane, and proteins that have phosphorylation 

process to be important in host perception or dynamic adaption. The results of the 

RNA sequencing demonstrated the potential utility and simplicity of the extract 

inoculation methodology in ‘omics’ analysis of a pathogen in response to its host. To 

both further validate this methodology and the data generated by the RNA sequencing, 

a dual ‘omics’ approach was deemed to be valuable as transcript levels may not 
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always represent protein levels and their predicted impact on P. capsici phenotype. 

Therefore a separate proteomic analysis of the two host extract inoculation experiment 

was also conducted.  

4.2 Results  
 

4.2.1 Protein extraction and quality control 
 

Proteins were extracted using multiple methodologies to see which would perform the 

best in term of total concentration and integrity as viewed on Coomassie stained gels. 

Eight methodologies were trialled, those were a combination of two different extraction 

buffers GTEN-T and GTEN-DM, two different lysis aids: vortexing or using the 

TIssueLyses II machine, and then whether the protein was purified or not (Figure 4.1). 

By simply examining visualised total protein extraction on the SDS polyacrylamide gel, 

it was determined that GTEN-DM gave a better concentration and that vortexing or 

using the TissueLyser II had little to no effect on the integrity of total amount of proteins 

isolated, nor did whether the proteins were methanol precipitated to purify or left in 

extraction buffer (Figure 4.1). Therefore GTEN-DM buffer was used for total protein 

extraction, the tissue was then lysed only through the aid of vortexing to mix 

thoroughly. Due to the contaminating nature of the high concentration and mix of 

detergents present in GTEN-DM, and the fact that it appeared to have little effect on 

the amount of total protein recovered, the protein was purified using methanol 

precipitation, prior to suspension in a Tris-SDS buffer for proteomic analysis.  
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4.2.2 Extract inoculation and differentially abundant protein 

identification  
 

Following P. capsici zoospore isolation the zoospores were subjected to seven 

different conditions. They were either challenged with cucumber extract (CE) or tomato 

extract (TE), samples were then collected at 2 hours post inoculation (hpi), 4 hpi, or 8 

hpi, giving six possible conditions. The final seventh conditions was zoospores left in 

water to germinate also known as germinating cysts (GC) and collected at 2 hpi. This 

resulted in a total of seven conditions CE 2hpi, CE 4 hpi, CE 8 hpi, TE 2 hpi, TE 4 hpi, 

TE 8 hpi, and GC 2 hpi. For each condition, four biological replicates were generated 

and total protein extracted. Label-free quantitative Mass spectrometry analysis was 

conducted. To identify proteins that are present in each of the samples the peptides 

were searched against the P. capsici predicted proteome using the Maxquant software 

Figure 4.1: coomassie stained SDS-page gel or protein extraction 
methodologies.  

This shows the 8 proteins extraction methodologies trailed, with the two different  
buffers (GTEN-0.1%Tween and GTEN-1%DM), either methanol purified (Meth-ppt) or 
non purified (input), and using the an vortex or a TissueLyser II to aid lysis. Sample 
were then run on an SDS-page gel and stained with coomassie to visualise. The 
protein ladder is PageRuler™ Plus Prestained Protein Ladder, 10 to 250 kDa 
(thermofisher). 
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(Cox et al., 2009). 2914 proteins were identified of a potential 19,805 from the current 

best-predicted protein database for P. capsici. By far the most proteins identified were 

in the GC sample, 2700 (92.66%) proteins were found in at least one of the four GC 

replicates. Of the samples challenged with host extracts (TE/CE) those derived from 

the challenge with CE had the most identified proteins, with 630, 1121, and 966 

identified respectively from CE 2 hpi, CE 4 hpi, and CE 8 hpi. Searches in samples 

Figure 4.2: Number of Proteins Identified in each sample.  

For each of the 7 condition, the number of proteins that were identified in at least 1 of 
the four replicates is shown (A). In addition the average intensity for each protein 
identified was summed between the 4 samples and the average calculated. The total 
intensity for each condtion averaged for each protein as described above was then 
summed (B). The linear relationship between average summed intensity and the total 
number of proteins for each condition was calculated, with a  pearsons correlation (R) 
= 0.9705,   
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from the TE inoculation identified fewer proteins with 457, 498, and 553 identified 

respectively from TE 2 hpi, TE 4 hpi, and TE 8 hpi. (Figure 4.2 A).  

For each condition, there were 4 biological replicates, resulting in 28 total samples. 

The total intensity of all identified proteins in each sample was summed for each 

condition and the averaged summed intensity across the replicates was calculated to 

estimate relative protein abundance and potential plant protein contamination. A 

pattern of average summed intensity was calculated for each condition that was similar 

to the number of proteins identified in each condition (Figure 4.2 B). Plotting the total 

protein count against the average summed intensity for each condition shows a close 

linear relationship (R2=0.9705) between the two (Figure 4.2 C).  

To examine the effect of host extract on P. capsici and the difference in protein 

intensity induced by the two hosts extracts, multiple comparisons of the seven samples 

were made. For the purpose of these results, the comparisons have been separated 

into two distinct groups, those between the both host extracts and GC; Extract versus 

GC, and those between the two host extracts; CE versus TE. For the differential 

protein intensity analysis that is shown here, differential analysis was conducted for 

every protein that was identified in any sample. However statistical significance test 

could only be conducted if a minimum of two of the replicate samples from both the 

conditions compared had intensity data. As such the differential protein set that has 

been analysed here are for those proteins that had intensity data from as a minimum 

2 of the 4 replicates. For completion and validation the number of differentially 

abundant proteins has been calculated using more stringent requirements for the data. 

Using as a minimum 3 of the 4 replicates having intensity data, or all 4 replicates 

having data, each reduced the number of statistically significant proteins with 

differential abundance (Figure 4.3). Showing that a lot of those proteins that were  
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Figure 4.3: Comparison of statistical analysis of differential protein intensity. 

The number of proteins with differential intensity from each 7 comparisons. These seven 
comparisons are separated into four Tomato Extract (TE) and Cucumber Extract (CE) 
comparisons at 2 hours post inoculation (hpi), at 4 hpi, at 8 hpi and at All hpi pooled. And 
three Extracts (EX) and germinating cycst (GC), TE compared with CG at 2hpi, CE 
compared with GC at 2hpi and the two Extracts pooled at 2 hpi compared with GC at 2 
hpi. For all seven comparison, the number of proteins with differential intensity are shown 
if the comparisons are only carried out if there is data present for that protein for a certain 
number of replicates in each sample. The number of replicates with data necessary for 
comparison of a proteins intensity to be carried out is on the right A and D needed 4 
replicates, B and E needed 3 replicates, and C and F needed 2 replicates. The number 
of proteins upregulated in CE (A,B,C) and GC (D, E,F) is shown in orange, the number 
of proteins upregulated in TE (A,B,C) and in Extract (D,E,F) is shown in blue. The number 
of those proteins is shown in each bar.  
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found to have differential abundance were missing in one or two of the replicates. 

However, due to the variability of the data, and the fact that many interesting proteins 

may have low abundance in some of the conditions or samples, or indeed may have 

been out competed by plant material, it is our view that having at least 2 replicates 

with data is sufficient for this analysis. Indeed, the pattern of the number of differentially 

abundant proteins between comparisons remains the same. It is important to note, 

however, if any of these proteins are to be explored further, the pattern of abundance 

should be fully validated. If this analysis was conducted again, it would be suggested 

to only use proteins present in at least 3 replicates. The difference in the numbers of 

differentially abundant proteins found is greater between analysis using 2 – 3 as a 

minimum number of replicates where proteins were present, than the difference 

between 3 – 4 (Figure 4.3). 

 

 

4.2.3 Extracts compared with germinating cysts: Host extract 

induced differential protein abundance 
 

Initial analysis to examine whether host extracts induce differences in the proteome 

was conducted.For this three comparisons were made: CE 2 hpi versus GC 2 hpi, TE 

2 hpi versus GC 2hpi, and the 2 hpi time point with both CE and TE pooled versus GC 

2 hpi (Extract vs GC 2 hpi).  Volcano plots of these comparisons were generated  

(Figure 4.4 A-C). In both the CE 2 hpi and TE 2 hpi compared with GC 2 hpi, a increase 

in abundance of a number proteins can be seen in the GC condition (Figure 4.4 A-B). 

This big shift of gene on the left can also be seen when comparing Extract at 2 hpi 

with GC (Figure 4.4 C).  From all these proteins, those that were significantly  
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Figure 4.4: Volcano Plots showing proteins intensity for comparisons of Host 
extracts and GC.  

 For three of the comparisons (CE 2hpi vs GC 2hpi, TE 2hpi vs GC 2hpi and the pooled 
condition of CE and TE 2hpi here name Extract vs GC 2hpi) the LOG2 fold change 
(FC) and the adjusted P value (from a two tail t-test with Bonferroni correction) for 
each protein found in at least 2 replicate form the two compared conditions was 
calculated.  The LOG10 p value and the LOG2FC for each protein for each 
comparison have been plotted. Those proteins that have been shifted to the right are 
comparably induced in extract (CE, TE, or pooled) and those proteins that have shifted 
to the left are induced in GC. Those significantly differentially abundant proteins i.e. 
with a Log2FC ≤-1.5 or ≥1.5, and a  -log10 P value ≥ 1.3 have been shown in orange, 
and the point where a protein is significant has been indicated with a black line. Protein 
in the greyed area represented by a blue dot are not significantly differentially 
abundant (A-C) The number of significantly induced proteins in each subset are shown 
at the top of each plot.. The number of significantly differentially abundant proteins in 
each condition in comparison to GC 2hpi (TE 2hpi, CE 2hpi, and Extracts have been 
shown with those up-regulated in extract (CE, TE or pooled) shown in blue in the 
bottom portion of the bar, and those up-regulated in GC shown in orange in the top 
portion of the bar (D).  
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differentially abundance where isolated (Log2FC ≤-1.5 or ≥1.5, and -log10 P-value ≥ 

1.3). For all three comparisons between extracts and GC, the volcano plots show a 

increase in abundance of a greater number proteins in GC than in extracts, which was 

borne out by the number of significantly differentially abundant proteins. 123 and 78 

proteins had greater abundance in GC that TE and CE respectively. With only 11 

proteins in the TE condition and 20 in the CE condition having greater abundance in 

those respective extracts. Also, when all extract samples were pooled, this gave 64 

proteins with greater abundance in GC and 22 with greater abundance in extracts 

(Figure 4.4 D). 

Examining the overlap between the collections of differentially abundant proteins can 

give clues to how the response of P. capsici to different extracts can differ (Figure 4.5).  

There is a large overlap, 78 proteins, which can be found with greater abundance in 

GC when comparing to both host extracts (Figure 4.5 B). However, of those proteins 

found with greater abundance  uniquely in GC when comparing to a single host extract, 

all 45 are found when comparing to TE, there are no proteins found with greater 

abundance in GC compared to CE that are not also found in the comparison with the 

other host extract. Or to put it another way, every protein that has a higher 

abundancein GC than in extract is also found with increased intensity in CE (Figure 

4.5 B). This overarching pattern of abundance was shown more clearly by plotting the 

intensity of all proteins which were found with greater abundance in GC and not in P. 

capsici in host extract on a heat map. It can clearly be noted that in general those 

proteins that have high abundancy in GC also have higher abundance in CE, 

especially CE 4 hpi and 8 hpi, relative to their intensity in TE samples (Figure 4.6).  
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Although less than the number proteins with greater abundance in GC,  some proteins 

were found with increased abundance in host extracts (2 hpi) compared to GC. 34 

unique proteins were significantly abundant in P. capsici in host extracts. Of these 

proteins, the majority were found with increased intensity in CE 2 hpi, 20, whilst only 

11 were found with increased intensity in TE 2 hpi. Pooling these two conditions and 

time points gave an additional 11 uniquely significantly differentially abundant proteins 

(Figure 4.4-4). Again, the overlapping abundance of these proteins can reveal clues 

to the response of P. capsici to extract. Few of these significantly differentially 

abundant proteins, only 3, are uniquely found with increased  

Figure 4.5: Venn diagrams showing the overlap between those proteins induced 
in extracts, and the overlap of those proteins induced in GC.  

The overlap in the proteins that were shown to be significantly abundant in extracts 
(CE 2hpi , TE 2hpi and pooled (extract 2hpi) compared to GC (A). And the overlap in 
the proteins that were shown to be significantly abundant in GC compared to extracts 
(CE 2hpi , TE 2hpi and pooled (extract 2hpi) (B). The total number of proteins in each 
comparison is shown in brakets by the circle and the total number of unique proteins 
in the three comparisons together is shown in brackets under the title. 
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Figure 4.6: Heat map of 139 proteins with greater abundance in GC compared to 
EX.  

Expression is shown by adjusted z-score. Down regulation is shown in blue and up 
regulation is shown in yellow.     
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intensity in TE 2 hpi. Whilst, 8 proteins were found in both host extracts, and the 

majority (12) of these proteins with greater abundance can be found uniquely in CE 

2hpi (Figure 4.5 A). This can, perhaps, be seen more clearly in the heat map, where it 

can be seen that abundance levels at 2 hpi can be separated up into two major 

categories, those proteins that have higher abundance in both extracts (CE 2hpi and 

Figure 4.7: Heat map of 34 proteins with greater abundance in EX compared to 
GC.  

Intesity is shown by adjusted z-score. Down regulation is shown in blue and up 
regulation is shown in yellow.     
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TE 2hpi) and those that are found only higher in just CE 2hpi. Very few proteins can 

be found uniquely abundant at TE 2hpi (Figure 4.7).  

4.2.4 Extracts compared with germinating cysts: Protein 

Functionality and intensity profile   
 

To examine the potential role of these proteins, Biological process GO terms, and 

EuKaryotic Orthologous Groups or KOG annotations were found for each. Informed 

by these results the proteins were then manually subdivided into 9 different categories. 

The categories were, 1) transcriptional / translation regulation, 2) Heat Shock Proteins, 

3) Proteasomal, 4) Cellular structure / translocation, 5) Regulation/ signalling, 6) 

Chaperonin complex component, 7) Metabolic, 8) oxidoreductase activity/ 

Figure 4.8: Distribution of broad functionality categories in proteins with 
significantly differential abundance between extracts and GC.  

Using GO terms and KOG annotation each protein was manually assigned to a broad 
functionality group that was enriched in the differentially regulated proteins. These 
consist of 139 proteins up-regulated in GC and 34 proteins up-regulated in extract. 
From the top of both charts moving clockwise those categories are Transcriptional/ 
Translational regulation, Heat Shock Proteins, Proteasomal Proteins, Proteins 
involved in Cellular structure or translocation, Metabolic Proteins, Proteins with 
Oxidoreductase activity or Mitochondrial association, Uncharacterised Proteins, 
Regulation of signalling Proteins, and Components of the Chaperonin Complex. Note 
that of those proteins induced in Extract none are Components of the Chaperonin 
Complex. 
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mitochondrial, and 9) Uncharacterised (Figure 4.8). Described below, for each these 

protein groups in turn, is an examination of their relative differential abundance in GC 

and extract, and their intensity profile across the time course of the experiment.  

Transcriptional regulators and translational regulators are highly abundant in both GC 

and P. capsici in host extracts. 26 (18.7%) of these proteins are found with increased 

intensity in GC and 10 (29.4%) in extract samples (Figure 4.8). The GO terms and 

KOG annotation for these proteins vary. However, for those with higher intensity in 

GC, there is a high abundance of KOG annotated tRNA synthases, in fact, 13 of the 

26 proteins in this category are various tRNA synthases (Supplementary Table 3). 

Whereas those proteins found with increased intensity in response to extracts, 5 of the 

10, are various ribosomal proteins (Supplementary Table 3). The intensity profile of 

those transcriptional, translational regulators with higher intensity in GC, frequently 

increased in intensity as the time course progresses in the TE and CE samples (Figure 

4.9 A). The same pattern cannot be seen in those proteins that have increased 

intensity in extracts, most seem to have a stable abundance over the time course of 

the experiment or have a small decrease (Figure 4.9 B). Notable of these proteins is 

Phyca11_538207, with a KOG annotation of “DEAH-box RNA helicase” with a 

particularly high intensity in TE at all hpi (Figure 4.9 B). 

Amongst the differentially abundant proteins Heats shock proteins (HSP) or Molecular 

chaperones HSPs, were frequently identified by KOG annotation. They also have 

relatively similar abundance, 5 (3.6%) with greater abundance in GC and 1 (2.9%) with 

greater abundance in extract samples (Figure 4.8). Similar to the proteins identified as 

transcriptional/translational regulator, those proteins with increased intensity in GC 

frequently a show progressive increase in intensity in extracts as the time course of 

the experiment progresses (Figure 4.9 C). In addition, the single Molecular  
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Figure 4.9: Intensity profile of Proteins.  

For each protein that was manually annotated with the broad functionality category 
Transcriptional/ Translational regulation (A,B), Heat Shock Proteins (C,D), 
Proteasomal Proteins (E,F), the average intensity from all replicates for each condition 
(CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 2 hpi) has been plotted. The protein from these 
functionality categories that were induced in GC (A,C,E) and induced in Extract (B,D,F) 
are shown here. If there are fewer than 4 proteins plotted on a single graph the 
standard deviation has been shown with error bars.      
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Figure 4.10: Intensity profile of Proteins.  

For each protein that was manually annotated with the broad functionality category 
Cellular structure or translocation (A,B), Regulation of signalling Proteins (C,D), and 
Components of the Chaperonin Complex (E), the average intensity from all replicates 
for each condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 2 hpi) has been plotted. The 
protein from these functionality categories that were induced in GC (A,C,E) and 
induced in Extract (B,D) are shown here. If there are fewer than 4 proteins plotted on 
a single graph the standard deviation has been shown with error bars. 



144 
 

 

  

Figure 4.11: Intensity profile of Proteins.  

For each protein that was manually annotated with the broad functionality category 
Metabolic Proteins (A,B), Proteins with Oxidoreductase activity or Mitochondrial 
association (C,D), and Uncharacterised Proteins (E, F), the average intensity from all 
replicates for each condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 2 hpi) has been 
plotted. The protein from these functionality categories that were induced in GC 
(A,C,E) and induced in Extract (B,D, F) are shown here. If there are fewer than 4 
proteins plotted on a single graph the standard deviation has been shown with error 
bars. 
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chaperone HSP found with greater abundance by extract when compared to GC, 

decreases in intensity as the time course of the experiment progresses (Figure 4.9 D).        

Another group of proteins that were found commonly amongst those with greater 

abundance in GC were related to proteasomal function. 8 (5.8%) were identified with 

greater abundance in GC samples (Figure 4.8), and these were KOG annotated as 

either a 26S proteasome regulatory complex subunit or 20S proteasome regulatory 

subunits (Supplementary Table 3). Contrastingly, only 1 protein with a possible 

proteasomal related KOG annotation was found with greater abundance in host 

extracts (Figure 4.8)(Figure 4.9 F). But, of those 8 proteins with increased intensity in 

GC, theintensity pattern is as expected; all have high abundance in GC compared to 

the two host extracts, and at a gross level all of these proteins seem to also have a 

small increase in intensity in CE compared to TE (Figure 4.9 E).  

Proteins with a KOG annotation with a function in cellular structure seem to be found 

in similar numbers of proteins with greater abundance in both GC and extracts (Figure 

4.8). However, the three (8.8%) proteins found with increased intensity in extract were 

KOG annotated as either beta tubulin or alpha tubulin, whereas the 11 (7.9%) proteins 

with increased intensity in GC (Figure 4.10 A) have a variety of annotated functions 

(Supplementary Table 3). Interestingly the 3 tubulin proteins all have a similar intensity 

pattern, decreasing in abundance in both host extracts as the time course of the 

experiment progresses (Figure 4.10 B).  

One group of proteins that are found to a greater extent with greater abundance in 

extracts, compared to the number found with greater abundance in GC are those with 

a potential function in signalling and regulation. With 4 (2.9%) with increased intensity 

in GC and 7 (20.6%) with increased intensity in response to host extracts (Figure 4.8). 
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They vary in the KOG annotated functions, however, 3 of the 7 with greater abundance 

in extracts have a KOG annotation as part of the RAB GTPase superfamily 

(Supplementary Table 3). Intensity patterns of these 7 proteins vary, however they 

seem in to decrease in intensity in both extracts as the time course of the experiment 

progresses (Figure 4.11 C-D).  

Contrasting to those there were another group of proteins that are found uniquely with 

greater abundance in GC. These were the 5 (3.6%) Chaperone Complex components 

(Figure 4.8). Although they show higher intensity in GC samples they also all show 

increased intensity in the extract samples as the experiment progressed, especially in 

CE samples (Figure 4.10 E).  

The last two groups of proteins to cover were the largest two groups of those proteins 

that were found with greater abundance in GC, those with a metabolic function of 

which 149 (33.1%) were found with increased intensity in GC, and those with 

oxidoreductase function or mitochondrial relationship of which 27 (19.4%) were found 

with increased intensity in GC. Interestingly, whilst there was only 1 protein with 

metabolic function with greater abundance in extracts, oxidoreductase proteins were 

found at in similar amounts with greater abundance in extracts as GC, with 7 (20.6%) 

found with increased intensity in extracts (Figure 4.8). For these few proteins, graphing 

the intensity show that the single protein with metabolic activity peaks at 4 hpi in both 

extracts; the 7 oxidoreductase proteins have a variety of intensity patterns, but many 

show progressive increases in intensity in both extracts as the time course of infection 

continues (Figure 4.11 B, D).  
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Figure 4.12: Volcano Plots showing proteins intensity for comparisons between 
Host extracts.  

For four of the comparisons (CE vs TE at 2phi, 4hpi, 8hpi, and at all the time points 
pooled) the LOG2 fold change (FC) and the adjusted P value (from a two tail t-test 
with bonferroni correction) for each protein in found in at least 2 replicate form the two 
compared conditions was calculated.  The LOG10 p value and the LOG2FC for each 
protein for each comparison have been plotted. Those proteins that have been shifted 
to the right are comparably induced in TE and those proteins that have shifted to the 
left are induced in TE. Those significantly differentially induced proteins i.e. with a 
Log2FC ≤-1.5 or ≥1.5, and a  -log10 P value ≥ 1.3 have been shown in orange, and 
the point where a protein is significant has been indicated with a black line. Protein in 
the greyed area represented by a blue dot are not significantly differentially expressed 
(A-D). The number of significantly induced proteins in each subset are shown at the 
top of each plot. 
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4.2.5 Host to Host Comparison: differential protein abundance 
 

It was also of interest to examine the differences in proteome between the two hosts. 

For this, 4 comparisons were made CE v TE at 2 hpi, CE vs TE at 4 hpi, CE v TE at 8 

hpi, and TE v CE where all time points were pooled (All hpi). To explore this data 

volcano plots were generated for each comparison (Figure 4.12). For all time points, 

there is a defined shift to the left representing a greater number of proteins with greater 

abundance in CE compared to TE (Figure 4.12A-D). As before for each of these 

comparisons, those  

proteins that were significantly differentially abundant were isolated (Log2FC ≤-1.5 or 

≥1.5, and -log10 P-value ≥ 1.3). As shown by the volcano plots proteins with increased 

intensity in CE are in the majority of significantly differentially abundant proteins. There 

are 13, 21, 11 and 17 proteins which have a significantly greater abundance in 

samples inoculated with CE compared to TE at 2 hpi, 4 hpi, 8 hpi, and all hpi 

respectively (Figure 4.13 A). This is contrasted with the 5, 6, 2 and 6 proteins, at 2 hpi, 

4 hpi, 8 hpi and all hpi respectively, which have a greater abundance in TE than in CE 

(Figure 4.13 A). 

By these comparisons, the extracts were seen to have a host-dependent effect on 

protein abundance in P. capsici.  In the case of proteins with a higher intensity in TE, 

only 11 unique proteins were identified to be significant in at least one of the time 

points examined. Looking at how these 11 proteins overlap at each time point shows 

that only two protein were found to be differentially abundant across all time points in 

TE (Figure 4.13 B), they were Phyca11_508140 and Phyca11_508411. A single 

Protein was identified differentially abundant in TE at 2 hpi and 4 hpi, as well as the 

pooled samples,  
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Figure 4.13: Overlap of Host – Host comparisons and Extracts GC comparisons.  

The number of significantly differentially expressed proteins in each comparison have 
between CE and TE (those being at 2hpi, 4hpi, 8hpi and all time point pooled) have 
been shown with those up-regulated in CE shown in blue in the bottom portion of the 
bar, and those up-regulated in TE shown in orange in the top portion of the bar (A). 
The overlap in the proteins that were shown to be significantly induced in TE at each 
time point compared to CE (B) and the overlap in the proteins that were shown to be 
significantly induced in TE at each time point compared to CE (C) is displayed. The 
total number of proteins in each comparison is shown in brackets by the circle and the 
total number of unique proteins in the three comparisons together is shown in brackets 
under the title. 
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Phyca11_534354. However, all other proteins with a higher abundance in TE 

compared to CE were only found at a single time point; 2 with greater abundance at 

2hpi, 3 at 4hpi, and additional 3 proteins when the time points were pooled (Figure 

4.13 B).  

More proteins were identified to have greater abundance in CE than TE. There were 

38 unique proteins found with significantly higher abundance in CE compared to TE. 

Contrasting with the proteins with greater abundance in TE, none of these were 

identified to have greater abundance at all time points, although many were found in 

just two or three of the time points. 4 hpi has the most unique proteins with greater 

Figure 4.14: Heat map of 11 proteins with greater abundance in TE compared to 
CE.  

Intesity is shown by adjusted z-score. Down regulation is shown in blue and up 
regulation is shown in yellow 
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abundance at that time, having 13 compared to the 6 at 2hpi and 1 at 8 hpi (Figure 

4.13 C).  

Heat maps can show these same patterns as well. The 11 proteins that have greater 

abundance in TE have a variety of intensity patterns, but for the most part, it can be 

seen that for all protein, there is a higher intensity in TE lower intensity in CE, and a 

variety of intensity patterns in GC (Figure 4.14). However, the 38 proteins with greater 

abundance in CE have a consistent intensity pattern. Notably that although intensity 

is higher in CE, especially at 4 hpi and 8 hpi, in all but two of the proteins, there is a 

greater intensity in GC than in CE (Figure 4.16). 

4.2.6 Host to Host comparison: Protein Functionality and intensity 

profile   
 

Figure 4.15: Distribution of broad functionality categories in proteins DE 
between hosts.  

Using GO terms and KOG annotation each protein was manually assigned to a broad 
functionality group that was enriched in the differentially regulated proteins. These 
consist of 39 proteins up-regulated in CE and 11 proteins up-regulated in TE. From 
the top of both charts moving clockwise those categories are Transcriptional/ 
Translational regulation, Heat Shock Proteins, Proteins involved in Cellular structure 
or translocation, Metabolic Proteins, Proteins with Oxidoreductase activity or 
Mitochondrial association, Uncharacterised Proteins, Regulation or signalling 
Proteins. Note that of those proteins induced in CE none are Regulation or signalling 
Proteins. And of those proteins induced in TE none are Proteins involved in Cellular 
structure or translocation, or Proteins with Oxidoreductase activity or Mitochondrial 
association. 
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As with the previous suite of proteins, in order to explore the potential roles of these 

proteins, Biological process GO terms, and EuKaryotic Orthologous Groups or KOG 

annotations were found for each. The proteins were subdivided into the same 9 

different categories. The categories were, 1) transcriptional / translation regulation, 2) 

Heat Shock Proteins, 3) Proteasomal, 4) Cellular structure / translocation, 5) 

Figure 4.16: Heat map of 38 proteins with greater abundance in CE compared to 
TE.  

Intesity is shown by adjusted z-score. Down regulation is shown in blue and up 
regulation is shown in yellow.     
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Regulation/ signalling, 6) Chaperonin complex component, 7) Metabolic, 8) 

oxidoreductase activity/ mitochondrial, 9) Uncharacterised (Figure 4.15). Challenging 

zoospores with both TE and CE increase the abundance of a number of proteins 

involved in transcription and translation, and heat shock proteins and although the 

proteins with increased abundance in both groups also contain metabolic proteins, 

only 18.2% of the proteins with increased abundance in TE had predicted metabolic 

activity, compared to the 42.1% of proteins with increased abundance in CE. The rest 

of the subcategories of proteins, bar uncharacterised proteins, only appear to have 

increase abundance in either TE on CE but not both. Cellular structure proteins and 

oxidoreductase activity proteins, only appear with increased abundance in CE, and 

proteins with a potential role in signalling and regulation are found only with increased 

abundance in TE (Figure 4.15).  

The LFQ intensity of each of the host extract depended differentially abundant 

proteins, both those that were found with increased abundance in TE and those found 

with increased abundance in CE has been plotted. The intensity pattern may give 

clues to the mechanisms and importance of the proteins of interest.  

11 proteins had a higher intensity when the P. capsici was challenged with TE. In all 

these proteins the intensity pattern differs, however, 3 generalisations can be made. 

For Phyca11_504650, Phyca11_534354, and Phyca11_505974, a peak of high 

intensity and TE 4 hpi seems to be the main contributor to their differential abundance 

(Figure 4.17 B, C, D). For others (Phyca11_510755, Phyca11_11073, 

Phyca11_508140, and Phyca11_120320) intensity remain relatively level across the 

three-time points, but is consistently higher than that of abundance in CE (Figure 4.17 

A, B, D, E). And lastly, there are those proteins for which the intensity continue to rise  
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Figure 4.17: Intensity patterns and Functionality of Proteins Up regulated in TE 
compared to CE.  

For each protein that was manually annotated with the broad functionality category 
Heat Shock Proteins (A), Metabolic Proteins (B), Regulation of signalling Proteins (C), 
Uncharacterised Proteins (D), Transcriptional/ Translational regulation (E,F), the 
average intensity from all replicates for each condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, 
and GC 2 hpi) has been plotted. The protein from these functionality categories that 
were induced in TE are shown here. If there are fewer than 4 proteins plotted on a 
single graph the standard deviation has been shown with error bars. 
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over the course of the experiment, Phyca11_503721, Phyca11_101373, 

Phyca11_508411, and Phyca11_538207 (Figure 4.17 D, E, F). The last of these 

Phyca11_538207 stand out by having a dramatic and consistent increase intensity in 

TE compared to its intensity in the other host extract and its  

 

Figure 4.18: Intensity patterns and Functionality of Proteins Up regulated in CE 
compared to TE.  

For each protein that was manually annotated with the broad functionality category 
Oxidoreductase activity or Mitochondrial association, the average intensity from all 
replicates for each condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 2 hpi) has been 
plotted. The Proteins have been further broken sown into subcategories. The protein 
from this functionality categories that were induced in TE are shown here. If there are 
fewer than 4 proteins plotted on a single graph the standard deviation has been shown 
with error bars. 
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intensity in GC (Figure 4.17 F).  There seems to be little correlation between the 

intensity pattern and the subcategory the proteins were placed in due to their predicted 

function, except for the fact that the three of the four proteins with a potential role in 

transcription and translation both show progressive increases in intensity over the time 

course of the experiment (Figure 4.17 F). Those being Phyca11_101373, 

Figure 4.19: Intensity patterns and Functionality of Proteins Up regulated in CE 
compared to TE.  

For each protein that was manually annotated with the broad functionality category Heat 
Shock Proteins (A), Proteins involved in Cellular structure or translocation (B,C), and 
Uncharacterised Proteins (D), the average intensity from all replicates for each 
condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 2 hpi) has been plotted. The protein 
from these functionality categories that were induced in CE are shown here. If there are 
fewer than 4 proteins plotted on a single graph the standard deviation has been shown 
with error bars. 
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Phyca11_508411, and Phyca11_538207 KOG labelled as a 40S ribosomal protein S2, 

a 26S proteasome regulatory complex subunit, and a DEAH-box RNA helicase 

respectively (Supplementary Table 4). For the 38 proteins that have a higher intensity 

when P. capsici was challenged with CE, 8 were found to have oxidoreductase activity 

or to be associated with the mitochondria. For graphing the intensity patterns of those 

proteins involved in oxidoreductase activity/ mitochondrial, have been subdivided 

Figure 4.20: Intensity patterns and Functionality of Proteins Up regulated in CE 
compared to TE.  

For each protein that was manually annotated with the broad functionality category 
Transcriptional/ Translational regulation (A), Metabolic Proteins, (B), the average 
intensity from all replicates for each condition (CE 2, 4, 8 hpi, TE 2, 4, 8 hpi, and GC 
2 hpi) has been plotted. The protein from these functionality categories that were 
induced in CE are shown here. 
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again, into ion channels, pyruvate kinases, electron-transferring activity and a 

carbonate dehydratase (Supplementary Table 4). In addition to these 8 proteins, 2 

heat shock protein were identified, 4 proteins involved in cellular structures and 1 

uncharacterised protein’s (Figure 4.15)( Supplementary Table 4). The two larger 

groups are the 7 proteins with potential roles in transcription and translation, and the 

14 proteins with potential metabolic activity. For those 8 proteins with a potential role 

in oxidative stress, oxidoreductase processes and/or mitochondrial processes, for the 

most part had a similar intensity pattern. The proteins all have higher intensity when 

challenged with CE, often increasing in abundance as the time course progresses, 

whereas the abundancy found in TE either reduce or remain relatively level (Figure 

4.18). A similar pattern of increasing intensity in by CE as the time course progresses 

can also be noted in the two heat shock proteins, Phyca11_511132 a potential 

nucleosome assembly protein, and the uncharacterised protein Phyca11_510042 

(Figure 4.19 A, B, D). For the other three proteins with a predicted role in cellular 

structure, their intensity is relatively stable across the time points, with consistently 

higher intensity in by CE (Figure 4.19 B, C). Similar patterns to those described above 

can be seen in the 7 proteins with potential roles in transcription and translation, and 

the 14 proteins with a potential metabolic activity (Figure 4.20). It should be noted that 

for all these proteins with increased intensity in CE compared to TE, with the 

exceptions of Phyca11_509200 (Figure 4.18) and Phyca11_538675 (Figure 4.20) 

there is a higher intensity in GC than in CE or TE (Figure 4.15, 17-19) 

4.2.7 Comparison of the Proteomics data set with RNA-SEQ and 

Microarray  
 

To both validate and examine the selectivity and sensitivity of both this proteomic data 

and the RNA sequencing transcriptomic data from chapter 4, comparisons of 
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differentially abundant proteins sets and the differentially expressed gene sets were 

made. Immediate comparisons showed that of all the genes identified and found to be 

DE in from the RNA sequencing experiments of Chapter 4, of those 1092 genes, 407 

were identified in the Proteomic set. Of those 407 proteins that had corresponding 

differentially expression in the RNA sequencing, 55 were found to also be differentially 

abundant in the proteomic data set (Figure 4.21). 42 of the 55 genes/proteins that 

were differentially expressed in both RNA sequencing and proteomics were from those 

genes that were according to the RNA sequencing induced in extracts, leaving 13 that 

were found with increased intensity in GC. 3 of these were also DE in the RNA 

sequencing when comparing between CE and TE (Table 4.1).  

When comparing those DE genes identified by the RNA-SEQ to the differentially 

abundant proteins in the proteomics, first looking at the largest group; the 42 genes 

induced in extract compared to GC, it was found that 30 of those were actually 

differentially induced in GC compared to higher abundance in extract in the proteomic 

Figure 4.21: Proteomic comparison with RNA sequencing and Microarray.  

The overlap of those all proteins identified at in at least on condition, and the 
differentially expressed (DE) genes from the RNA sequencing (Chapter 4) (A). And 
the over lap of all differentially abundant proteins from all comparisons and the 
differentially expressed genes from the RNA sequencing (Chapter 4) (B). The total 
number of proteins/genes in each group is shown in brackets above the Venn 
diagrams.  
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data, and only 6 were found to match the RNA-SEQ by also being with higher 

abundance in GC. 14 of the genes were also found to be DE in the host-to-host  

Figure 4.22: Heat map of 55 DE expressed genes from RNA sequencing that can 
also be found DE in Proteomics.  

Expression is shown by adjusted z-score. Down regulation is shown in blue and up 
regulation is shown in yellow.     
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Table 4.1: RNA seq vs Proteomics DE genes/proteins overlap.  

The 55 Proteins/genes that were both differentially expressed in the proteomics and the 
RNA sequencing. The conditions in which these proteins and genes are differentially 
expressed (DE) is shown with a tick in the top table. In the summary table below the 
total number of DE genes or proteins induced in either TE, CE, Extract or GC is shown 
from both the RNA SEQ and the proteomics. Furthermore the number of the 55 
genes/proteins that were found in DE in both RNA SEQ and proteomics that are found 
overlapping in at least two of the groups of induced gene when comparing the RNA 
SEQ to the Proteomics          
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comparison in the proteomic data set, 3 were induced in TE and 11 induced in CE. 

The comparison improves, however, when examining the 13 genes with higher 

expression in GC compared to extracts. The proteomics found 11 of the corresponding 

proteins also had higher intensity in GC, whilst only 1 of the proteins was found with 

higher intensity in the extract. The final gene could only be found in the proteomics 

data with greater abundance in CE (Table 4.1) (Figure 4.22).  

 

4.3 Methodology 
 

4.3.1 P. capsici and Host Plant growth and Extract Inoculation 

Assay 
 

Commercially available tomato plants (Solanum Lycopersicum cv. Moneymaker) and 

cucumber plants (Cucumis sativus cv. Venlo Pickling) susceptible to P. capsici were 

grown with a 16 hour light cycle and maintained at 22-25°C. 3 – 5-week old tomato 

and cucumber leaf and stem material were used to produce extract for inoculation 

assays. P. capsici strain LT1534 was grown on V8 agar (10% v/v V8 vegetable juice, 

1 g/L calcium carbonate, 300 mg/L β-sitosterol, 15% w/v Agar). 

Zoospores were collected. P. capsici LT1534 was grown on V8 agar in the dark at 

25°C sealed with parafilm. This was followed by 2 days of growth in the light at 22°C 

without parafilm to induce sporangia formation. Zoospores were collected by flooding 

the 150 mm plate with 30 mL of sterile distilled water at room temperature, then the 

mycelia growth was agitated with a sterile plate spreader and everything was 

transferred to a second P. capsici inoculated V8 agar plate. Continuing in this fashion, 

the 30 mL of water was used to flood and agitate four 150 mm plates recovered into a 

50 mL falcon tube. The sporangia suspension was left for 30-45 minutes with the lid 
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removed on a lightbox to induce zoospore release. The suspension was then filtered 

through one layer of Miracloth to remove mycelia and any agar chunks in the 

suspension, however both full and empty sporangia are retained, this process yielded 

approximately 25 mL of ≥ 1 x 106 spores mL-1 zoospore suspension. The zoospore 

suspension was then diluted to 1 x 106 spores mL-1. 

For the Extract inoculation experiments, plant leaf and stem tissues were collected as 

described. To produce extracts, 20 g of plant material was flash-frozen in liquid 

nitrogen immediately after collection. This was then ground up using a pestle and 

mortar and suspended in 100 mL of sterile distilled water. This was then filtered 

through one layer of Miracloth and topped up to 100 mL with sterile H2O. 5 mL of 1 x 

106 spores mL-1 zoospore suspension and 5 mL of either broth, extract or distilled water 

were mixed in a 15 mL falcon tube. This inoculated broth, extract or water was then 

shaken vigorously to induce zoospore germination. The 15 mL falcon tube were stored 

at 22°C in the light, and placed at an angle on its side with no lid. For protein extraction, 

the liquid was discarded carefully, leaving germinated spores adhering to the side of 

the tube. It was flash-frozen in liquid nitrogen and kept at -80°C until extraction.  

4.3.2 Protein extraction and Purification 
 

Samples were removed from the -80°C freezer and placed on ice. Several extractions 

and purification methodologies were trialled to see which would give the best 

concentration and integrity and visualised by electrophoresis of total protein extraction.  

All extractions were conducted using GTEN buffer as a base, GTEN consists of 10% 

glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, and 150 mM NaCl. Using GTEN as a base 

two extraction buffers were trialled GTEN-T and GTEN-DM, GTEN-T consists of 

GTEN, 2% w/v PVPP, 10 mM DTT, and 0.1% v/v Tween 20. Whereas GTEN-DM 
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consist of GTEN, 2% w/v PVPP, 10 mM DTT, and 1% v/v detergent mix. Detergent 

mix consists of 25% v/v Brij L23, 25% v/v Triton X-100, 25% v/v IGEPAL CA-630, 25% 

v/v TWEEN 20. 5ml of extraction buffer (GTEN-T or GTEN-DM) was added to the 15ml 

falcon tube containing the sample, vortexed for 1 minute and then Spun at 12,000 xg 

at 4°C for 10 minutes, collecting the supernatant following centrifugation. Or, the 5ml 

was vortexed for 1 minute, and then decanted into 3 2 mL Eppendorfs containing steel 

balls. This was then placed in a TissueLyser II (Qiagen) and lysed at 30 Hz for 1 

minute. Samples were then centrifuged at 12,000 xg at 4°C for 10 minutes and the 

supernatant collected.  

Supernatant for both extraction using GTEN-T or GTEN-DM, and both using vortexing 

and the TissueLyser II to aid lysis were both loaded on a gel for electrophoresis or 

underwent methanol purification. In a 2 mL Eppendorf, to 200 μL of sample 800 μL of 

Methanol was added, and then vortexed to mix. 200 μL of Chloroform was added and 

again vortexed to mix. 600 μL of Milli-Q water was added and again vortexed to mix. 

The mixture was centrifuged for 2 min at 14,000 xg. The top aqueous layer was 

removed and discarded, followed by the addition of a further 800 μL of Methanol and 

the mixture inverted several times to mix. The mixture was centrifuged for 3 min at 

14,000 xg and the supernatant was pipetted off. The pellet was allowed to air dry for 

5 minutes and then suspended in Tris-SDS (pH 7.5) (25 mM Tris-Cl, and 0.1% SDS) 

For electrophoresis, 15 μL of the sample was added to 5 μL of x4 sample buffer 

containing 0.2M Tris-HCl (pH 6.8), 8% w/v SDS, 6mM Bromophenol blue, and 40% 

v/v Glycerol. 0.5 μL 1M DTT was added to each 20 μL sample and the samples were 

boiled at 98°C for 5 minutes. Samples were then loaded onto a 4–15% Mini-

PROTEAN® TGX™ Precast Protein Gels (BioRad) and run per manufactures 

instructions. The gel was then fixed with 50% v/v Methanol, 10% v/v Glacial acetic 
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acid, and 40% v/v water overnight, then stained with the above solution containing 

with 0.25% Coomassie Brilliant Blue R-250 for 2 – 3 hours. And, de-stained overnight 

in 5% v/v Methanol 7.5% v/v Glacial acetic acid, and 87.5% v/v water.  

For Proteomic analysis samples were extracted as above using GTEN-DM, lysed as 

above by simply vortexing, purified as above using methanol precipitation and 

suspended in Tris-SDS.  

 

4.3.3 Mass Spectrometry Analysis and Data analysis 
 

Mass spectrometry was conducted by the University of Dundee FingerPrints 

Proteomics Facility. S-TRAP purification was conducted on all samples. Following this 

a minimum of 1 μg of peptides from each sample was analysed using the Ultimate 

3000 RSLCnano ultra-high-performance liquid chromatography system (Thermo 

Scientific) coupled with a Q Exative HF-X Mass Spectrometer (Thermo Scientific). 

Samples were then injected in 0.1% formic acid and trapped on an Acclaim PepMap 

100 (C18, 100 μM x 2 cm). The peptides were then subsequently separated on an 

Easy-Spray PepMap RSLC C18 column (75 μM x 50 cm) (Thermo Scientific). The 

mobile phase consisted of 0.1% formic acid (solvent A) and 80% acetonitrile in 0.08% 

formic acid (solvent B). A constant flow rate of 0.3 μL/min was used. Following 

separation, the peptides samples were then transferred to the mass spectrometer via 

an Easy-Spray source at 50ºC with a source voltage of 1.9 kV. The top 15 most intense 

peaks in each MS1 scan were then taken for MS2 analysis. The level of resolution for 

MS2 spectra was 17,500 and the spectra were fragmented using collision-induced 

dissociation (CID) with a mass range of 350 to 1600 m/z.  
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The RAW files were then analysed using MaxQuant version 1.6.2.0 against a P. 

capsici database with data manipulation in Microsoft Excel 2013 to produce 

comparisons between samples. Maxquant analysis and sample comparisons were 

conducted by C. Rogers. Fixed modifications included Carbamidomethyl (C) and 

variable modifications included were Oxidation (M), Acetyl (N-term), Deamidation 

(NQ), Dioxidiation (MW) and Gln->Pyro-Glu with an error tolerance of 10ppm for FTMS 

and 0.06Da for ITMS. Average intensity for each condition was calculated for the 4 

biological replicates, and the fold change was calculated by dividing on condition of 

interest with the comparison condition. For significance tests, the log2 fold changes 

were calculated for each comparison and a two-sample equal variance two-tailed t-

test was used to generate the P-value. Significant differential abundance Log2FC 1.5 

+ or – from zero  and -log10 P-value of 1.3 or greater (equivalent to P-value of ≤ 0.5). 

Significant differential abundance was only calculated if at least two of the replicates 

in each condition had intensity data.  

 

4.4 Discussion  
Proteomics and other omics-based studies have examined many facets of the host-

pathogen interaction, and the many stages of the pathogen life cycle (Pang et al., 

2017, Pang et al., 2016, Reynoso et al., 2015).  However, there is a gap in these 

studies that remains unfilled. An omics-based approach to the examination of the 

infectious life-cycles stages and notably the pathogens side of the pathogen-host 

interaction remains elusive. This is partly because infecting pathogen is imbedded into 

its host plant’s tissue, and is hard to isolate and study in isolation, but in combination 

plant material is in such excess it makes omics style experiments impractical. In an 

attempt to fill this gap in current research and to examine the mechanism of host 
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adaption of P. capsici, especially in the context of distinct host plants, in Chapter 3 an 

extract inoculation assay was explored. This methodology attempted to partially model 

the early stages of plant infection and host perception to allow transcriptomic and 

proteomic analysis of potential mechanisms and key genes/proteins in the 

mechanisms host adaptation. Proteomic analysis of germinating cysts and the early 

time points of zoospore germination, and the formation of infection machinery in a 

model of a plant infection, has revealed a suite of interesting proteins with potential 

roles in host adaption.  

4.4.1 Cysts germinating in extract versus water control (Extract v 

GC): metabolism and respiration  
 

Although the experiment was designed to explore the differences induced by the host, 

the most dramatic shift in protein abundance happened when comparing GC to 

extract. This pattern of a large induction event in GC compared to P. capsici inoculating 

host extract was also observed in the RNA sequencing. The Proteomics suggests a 

mechanism as to why this may be the case. In fact, it may be the case that cysts 

germinating in water are a poor control condition for the examination of host-based 

differences in cyst germinating a plant extract.  

The two largest groups of proteins that were found with increased intensity in GC were 

proteins with a KOG annotation and or GO term that associated them with 1) 

metabolism or 2) oxidoreductase activity/ mitochondrial activity. This suggests a 

change or increase in respiratory activity paired with a change in the nutrients the cell 

has available or is using. Metabolic pathways that were frequently observed were 

those of amino acid synthesis, with multiple amino acid transferases and synthases, 

displaying remarkable de novo synthesis of amino acids (Supplementary Table 3). In 

fact, elevated amino acid biosynthesis has been observed previously in P. infestans 



168 
 

 

during appressorium formation suggesting that elevated amino acid biosynthesis and 

metabolism is required during germination (Grenville-Briggs et al., 2005). However, 

much like in this study cysts were allowed to germinate in the absence of plant 

material, so it is unclear if the addition of plant-derived nutrient in the form of plant 

extract alters the metabolic pathways usually seen during germination. In addition, 

there are other proteins that are elevated in GC and demonstrate a high metabolic 

activity in this life cycle stage; proteins that are involved the metabolism of high energy 

carbohydrates such as malate, succinate, and pyruvate demonstrating a high energy 

life stage. In addition, many elements of the fatty acid synthesis pathway were also 

observed to with increased intensity in germinating cysts, suggesting a change in 

cellular function or morphology and perhaps could be related to appressorium 

formation or again suggest a high metabolic activity.  

Acetyl-CoA, acetyltransferase, Pyruvate Kinases, Aldehyde dehydrogenase, other 

enzymes commonly associated with the mitochondrial, and dehydrogenase enzymes 

with roles in various metabolic pathways were also found to be elevated in GC. This 

suggests that the mitochondria are playing an important role in cyst germination, 

potentially having a protective role against oxidative stress, although the increase in 

abundance of multiple amino acid dehydrogenase suggest a role in the de novo 

synthesis of amino acids. There is also a likely increase in mitochondrial respiration 

that pairs nicely with the metabolic activity observed.  For example, The fatty acid 

degradation pathway and enzymes found in that pathway are of particular note, as 

they have been found with increased intensity in germinating cysts in P. capsici (Pang 

et al., 2017) and other Phytophthora species (Hosseini et al., 2015). In this study in 

GC, they found several enzymes known to be involved in the mitochondrial β-oxidation 

pathway of fatty acid degradation in addition to key enzymes of the glyoxylate cycle 
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that allows the synthesis of high energy carbohydrates for fatty acids such as malate. 

This led to the suggestion that lipid reserves are key energy stores used for cyst 

germination (Hosseini et al., 2015).  

 

4.4.2 Cysts germinating in extract versus water control (Extract v 

GC): Protein regulation 
 

One set of proteins that were almost uniquely found  with greater abundance in GC 

were subunits of the proteasomal regulatory complex. Whilst one 26S proteasome 

regulatory complex subunit was found with greater abundance in extract samples 

compared to GC, 8 were found with increased intensity in GC. Interestingly though no 

known regulator of enzymes that play a role in Ubiquitination were found with 

increased intensity in GC, whereas a single Ubiquitin-protein ligase was found 

differentially abundant in extract. However, this could be part of a starvation/ stress 

phenotype, or it could be part of a natural nutrient recycling to maintain amino acid 

levels during a highly metabolically active stage of P. capsici lifecycle. Although 

germinating cysts, in the tip of appressorium have been shown to have high levels of 

autophagy (Luo et al., 2014), it was, in fact found in P. infestans that proteasomal 

proteins did not play a big role in cyst germination, at least shown by RNA sequencing 

(Ah-Fong et al., 2017).  

In addition to protein regulation through the proteasome, heat shock proteins were 

found in relatively high numbers differentially abundant in both GC and extracts 

conditions. Heat shock proteins whilst being part of the normal cellular stress response 

to temperature and other stressor degrading damaged proteins, also function as 

molecular chaperones responsible for protein folding, assembly, and translocation. 
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These proteins have been observed to be key in plants response to pathogen infection 

(Park and Seo, 2015). Interestingly HSPs seem to be understudied in plant pathogens, 

especially in the context of the stress response to plant defence. Although some HSPs 

appear to be temperature responsive in some Phytophthora species (Puig et al., 

2018). This project however, suggests that other (plant-derived) signals, or the 

absence thereof, may affect their abundance in germinating cysts. The extent with 

which they contribute to infection and colonisation, however, remains to be 

determined. 

The presence of an active amino acid recycling mechanism pairs nicely with the 

dynamic, highly metabolically active cell, with high levels of protein synthesis and 

turnover that the rest of the proteomic suggests is occurring in GC. This does, 

however, beg the question; if germinating cyst are showing an active highly metabolic 

phenotype, with high respiration, and protein synthesis and turn over, what kind of 

phenotypic characteristic are found in cells challenged with extract and why do they 

differ from GC. 

 

4.4.3 Cysts germinating in extract versus water control (Extract v 

GC): Transcriptional Regulation 
 

Unlike GC there was no uniform regulation of metabolic proteins for plant extracts, 

although host difference in metabolic proteins was noted. Additionally, changes in 

dehydrogenases and mitochondrial proteins were noted, showing a similar although 

distinct increase in respiratory activity. However, the largest group of induced proteins 

in extract were those with a role in transcription and translation, and indeed after 

proteins involved in metabolism and mitochondrial processes the translational and 

transcriptional proteins are also the most abundant induced proteins in GC.  
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Examining those 26 proteins that have a predicted role in transcriptional and 

translation also revealed that half were tRNA synthases. De novo synthesis of tRNAs 

suggests that in GC, cellular processes, geared towards protein synthesis, may be 

activated in preparation of invasion. Although beyond their canonical role in protein 

synthesis, tRNAs may also have other regulatory functions that could affect P. capsici 

biology. For example, tRNAs have been shown as substrates for post-translational 

protein and cell membrane phospholipid modification (Guo and Schimmel, 2013). 

tRNA fragments have also been shown to have a role in translational regulation (Guo 

and Schimmel, 2013). While the exact role of tRNA’s in GC remains to be elucidated, 

t-RNA synthesis plays an important role in GC and are not key when the cysts are 

introduced to extract. The other 13 proteins suggest further that GC are regulating 

translational processes, with two Translation initiation factor 3s, two ATP dependent 

RNA helicases, and a single Predicted RNA-binding protein containing PIN domain. 

Suggesting a close regulation of translation and protein production. It is clear that there 

is a shift in protein biosynthesis that differs between GC in water and P. capsici 

germinating in extract. Compare this to the focus in those proteins with putative role in 

transcriptional regulation with increased intensity in extract. 5 of the 10 are proteins 

that are part of the ribosomal complex, showing again a regulation of protein synthesis 

but in a different manner, along this line, a DEAH-box RNA helicase was also 

identified. Besides this translational regulation, two Histones proteins were found with 

increased intensity, suggesting there is also the regulation of gene expression 

happening in extracts that is not found in GC. Perhaps even representing a 

mechanism where histones are released from chromatin to induce expression of 

genes, backed up by the fact that no increase in transcript level for histon genes were 

foun the RNA sequencing experiments (Chapter 3) (Meile et al., 2020). 
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4.4.4 Regulatory and structural Proteins uniquely induced in 

Extract 
 

Interestingly one category of proteins that were not found with increased intensity in 

GC but was found numerous times in extracts were proteins that were subcategorised 

as regulatory. Of the 7 categorised thus, 5 stand out, 3 were labelled as part of the 

RAB GTPase superfamily. RAB GTPases are membrane localized cytosolic proteins 

that act as molecular switches, when bound to GTP they are able to recruit effector 

molecules which facilitate their many functions, most of those function are to do with 

the regulation of membrane trafficking and vesicle formation and function in multiple 

different organelles. One of these functions is to regulate, actin- and tubulin-dependent 

vesicle formation movement, and fusion with other membranes (Zhen and Stenmark, 

2015). This may be notable as another category of proteins that were uniquely found 

with greater abundance in extract were 2 alpha tubulins and beta tubulins not found in 

GC. Perhaps pointing to the processes and movement of important vesicles that are 

key to P. capsici response to plant material. This could be to do with the release of 

effector molecule into the apoplastic space, or it could be to do with haustoria formation 

or another yet unknown mechanism of host adaption.  

In addition to the RAP GTPases, two FKBP-type peptidyl-prolyl cis-trans isomerase 

molecular chaperones involved in protein folding were identified, this is in addition to 

the single Molecular chaperones HSP that was identified with increased intensity in 

extract. Like the HSP, the FKBP-type molecular chaperones supervise protein folding 

(Subin et al., 2016) and both types seem to be involved in the stress response, 

although each family is perhaps in response to a different kind of stress, be that 

temperature, salinity, ROS, or chemical. Or even just a natural proteins regulation 

pathway of host adaption.  
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4.4.5 Host to Host comparison 
 

Examining host differences in abundancne of proteins in the early stages of infection 

can inform us of the host specific mechanism of host adaption and perception, and 

enlighten the study of broad host ranged pathogens like P. capsici.  

A broad analysis of the patterns of host differences in protein abundance revealed that 

CE was able to give rise to a large induction of protein not found induced in P. capsici 

in TE. This similar pattern was also found in the RNA sequencing data in chapter 4. It 

was suggested there that this may be due to the fact that P. capsici is routinely cultured 

on V8 vegetable juice, the main component of which is tomato fruit juice. It could be 

speculated that this gives the Lab strain of P. capsici that is used for these experiments 

some long term or short term, metabolic or other adataption or preference for growing 

on tomato based media. The timeline of infection also progresses quicker on tomato 

plants perhaps revealing a greater adataption to tomato.  What the proteomics does 

reveal which was not noted in the RNA sequencing results, however, is the relative 

similarity in proteins found differentially abundant in cucumber and GC 

4.4.6 Protein function in Host to Host comparison 
 

In tomato, only 11 proteins were found with increased intensity compared to cucumber. 

In terms of timing 5 were found only in one-time point 2 hpi and 4hpi, 3 were found at 

all time points and 3 additional proteins were found if you pooled all the time points. 

Suggesting close regulation of some proteins and overall need at all time points for 

others. There is no correlation however with function and at which time points these 

proteins are highly abundant. Notable for their consistently high abundance in TE 

compared to CE are three distinct regulator proteins. Annotated as 1) GTPase Rab2, 
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small G protein superfamily (Phyca11_504650) also induced in extract compared to 

GC, 2) Molecular chaperones HSP70/HSC70, HSP70 superfamily (Phyca11_104444) 

and 3) DEAH-box RNA helicase (Phyca11_538207) also induced in extract compared 

to GC. These three regulatory proteins may be key to distinct mechanism in tomato 

infection in P. capsici and thus warrant further examination.  

Whereas the reaction of P. capsici to CE seems to mirror the proteins intensity pattern 

seen when comparing extract to GC, and in fact, the majority of the differences noted 

in extract to GC comparison are largely driven by the response to TE and not the 

response to CE. And the functionality and distribution of the quantities of those 

functional groups of those proteins with greater abundance in CE are also very similar 

to that of the proteins induced in GC. The two largest functional groups found with 

greater abundance in CE are metabolic proteins and then oxidoreductase/ 

mitochondrial proteins. Maintained in these metabolic proteins are members of amino 

acid synthase pathways, high energy carbohydrate biosynthesis pathways such as 

succinate, pyruvate, and malate, and fatty acid synthesis pathways. All pathways that 

were also found enriched in GC, many of these proteins that make up these pathways 

can be found at a higher intensity in GC than CE.  CE also seems to induce a higher 

respiratory activity similar to GC and paired with the induction of metabolic activity. CE 

is also able to induce other similar proteins to GC, such as the two HSP that are found 

with increased intensity in CE and tRNA synthases. In fact the phenotype of GC and 

CE resemble the published information about the intensity patterns of germinating cyst 

in other Phytophthora species. TE on the other hand induced few proteins, but those 

that it does induce are interesting sources of further research.  
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4.4.7 Potential weaknesses of an in vitro model approach: 
 

The obvious weaknesses of this model are the lack of natural plant tissue, and the 

physical effects of the plant cells and leaf structure on P. capsici during infection and 

invasion. There is also a timescale issue, in that cysts in nature would only be 

confronted with the surface of a plant, whereas the cysts in this experiment are 

immediately confronted with the plant cell debris and plant derived nutrients, perhaps 

not triggering the expected life cycles stages, i.e. it may trigger a more vegetative 

growth stage as appose to germination and infection. However, they are being 

challenged with the internal environment of the plant and many chemicals and 

metabolites that are unique to that host plant. The plant also has no possibility to mount 

an immune response, so the initial defence mechanism that may trigger some 

elements of the P. capsici lifecycle, that is, notable elements of ETS may not be 

triggered and represent a large amount of the chemical signals normally found upon 

plant invasion may be missing. It has also been noted that the metabolic system of 

Phytophthora species is also paired with that of the plant, in terms of the derivation of 

some required nutrients. The intimate chemical relationship between pathogen and 

host may not be completely recreated just with the plant extract. (Rodenburg et al., 

2019). 

One of the purposes of this study was to validate the RNA sequencing that was carried 

out in chapter 4. When comparing to the RNA sequencing data there are similarities 

and differences in what was observed. At a gross level the results from the RNA 

sequencing and the proteomics appear similar. In both data sets there was a lot more 

differentially expressed gene/proteins induced in GC sample than in extract. Likewise 

in the host to host comparison, there were a larger amount of differentially expressed 

gene/proteins induced by CE than TE. There are comparisons to be made in the 
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functionality of the genes identified, in both data set. For example, there were a large 

amount of oxidoreductase enzymes, and enzymes with metabolic function. One of the 

groups of genes that were found heavily up-regulated in the RNA sequencing in terms 

of function were transmembrane, or membrane localised protein, however in the 

proteomics whilst a few proteins that were found differentially regulated were localised 

to the membrane, there were not largely enriched, and many were predicted to be 

mitochondrial membrane proteins.  

When examining the specific genes/proteins that were identified and differentially 

expressed in the proteomics and RNA sequencing however there is less alignment in 

the comparisons made. Of the differentially expressed gene in the RNA sequencing 

407 of a total 1092 were found identified in the proteomics. And of those 407 the 

proteomics identified 55 of them to also be differentially expressed.  When examining 

those 55 gene/proteins that both data set showed to be differentially regulated, few 

matched in which conditions they were found to differentially regulate in. This is likely 

down to two possible reasons, 1) that there is poor repeatability within extract 

inoculation experiment, and although pains were taken to separate biological 

replicates, plants used in say the proteomic experiment were likely of the same batch 

grown.  These plants therefore are more of a similar age and grown at a similar time 

of year and more similar condition, those plants from the batch used for the RNA 

sequencing experiment which would be more similar to each other that the proteomics. 

Additionally, although separate subcultures of P. capsici were used for each biological 

replicate, it is unclear how much P. capsici alters through sub-culturing and on a yearly 

cycle, the subculture for each experiment would have only been separated a week or 

so prior to the experiment meaning they again may be more similar than the same 

subculture of P. capsici a year later. And 2) there may be a large difference in the 



177 
 

 

mRNA transcript found in P. capsici and the protein content, this is, the perineal 

problem of using transcriptomics to assess protein content and cellular phenotype 

thereof.  

4.4.8 Conclusion and further work 
 

The purpose of this proteomics based study was, initially, to further validate and 

explore the extract inoculation assay as a model for “omics” analysis of the yet 

understudied pathogen response to plant host during the infectious lifecycle stages. 

As such, the data shown in this chapter has raised some interesting questions and 

avenues for further research, however it is yet unclear if the extract inoculation assay 

is a repeatable and accurate model of infected plant leaves.  

This study along with the RNA sequencing in Chapter 3 have pointed to the induction 

of molecular processes that may be important for germinating cysts, they have also 

shown that host extract is able to induce changes in transcript and protein levels when 

compared to those found in germinating cysts incubated without extracts.  The broad 

context patterns of that gene/protein expression that can be found in both studies 

suggest key molecular processes in host adaption. It has been clearly demonstrated 

that large changes in the protein suite with putative roles in the metabolism of P. 

capsici occur during cyst germination and when confronted with host extracts. Also 

notable are the changes in proteins with potential roles in protein synthesis, 

modification and metabolism, high energy carbohydrate biosynthesis, and fatty acid 

biosynthesis. It is also now clear that a less dramatic change in protein complement is 

necessary for P. capsici to adapt to tomato extract, this could be due to several 

reasons, perhaps to that fact that P. capsici is routinely cultured on V8 juice, the prime 

ingredient of which is tomato fruit juice, in the laboratory, or perhaps because tomato 
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is more susceptible to P. capsici infection. It is clear that the same mechanisms that 

are being utilized by P. capsici to successfully colonise tomato, as suggested by the 

protein/gene expression patterns shown here and in chapter 3, are not the same as 

those used to colonise cucumber, as demonstrated by extract inoculation at least. 

One interesting finding of these studies is the importance of the mitochondria and the 

potential changes in the respiratory capacity to cyst germination, and the adaption to 

certain host plants i.e. adaption to CE. This study has also identified a potential group 

of genes that are important for adaption to host plants, in particular to TE. The RAP 

GTPase superfamily warrants further study for its effect in host adaptation in P. 

capsici. The Heat shock protein chaperone family also seems to have a notable role 

in cyst germination even response to host extracts.  

This study and the study in chapter 3 has potentially identified some general 

mechanisms and protein families that may have a role in host adaptions, and thus 

potential avenues for further study into the dynamic host adaption mechanisms of P. 

capsici   
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Chapter 5:  Attempts to Implement the CRISPR-

Cas9 system for gene knock out in P. capsici 
 

This work includes contributions from Rudd Grootens and Joram Westera  

 

5.1.1 Introduction 
 

Phytophthora capsici is a broad range oomycete plant pathogen able to cause disease 

on a wide range of economically important crop plants. It is well placed to become a 

model organism for the study of oomycete genetics and molecular host range 

determinants. However in P. capsici as well as other Phytophthora species, efforts to 

functionally analyse genes of interest for their effect on host determination, 

pathogenicity, or life cycle, has been hampered by these species’ limited genetic 

tractability.  Multiple transformation procedures have been published for many 

Phytophthora species. Four methodologies have been utilized for the transformation 

of Phytophthora species, these include PEG/calcium mediated protoplast 

transformation, zoospore electroporation, micro projectile bombardment, and 

agrobacterium mediated transformation (Fang and Tyler, 2016, Birch and Whisson, 

2001, Judelson, 1997), however these methods vary in efficacy and reproducibility, 

and the success of these different approaches varies from species to species. Efficient 

transformation protocols are necessary to establish the genetic tractability of an 

organism. Although gene insertions, over expressions and knock-ins have long been 

possible, this only gives us a small picture of the role of a gene of interest. Depending 

on the transformation technique, the nature of random genome integration and the 

genetic plasticity of the species being studied, the efficiency, stability and even the 

phenotype of transformants can vary (Fang et al., 2017). In situ silencing would, in 

contrast, represent an additional and alternative approach to study gene functionality. 
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RNA interference (RNAi) has been utilized (Ah-Fong et al., 2008, Wang et al., 2011, 

Whisson et al., 2005) for functional studies. However knock-downs are not complete 

and the effectiveness varies between genes, experiments and laboratories. Although 

the more studied Phytophthora species have a growing number of methodologies for 

the gene insertion and deletion, the effectiveness of these methodologies and the 

reproducibility varies.  

The last few years have seen a revolution in the molecular biology field, with the advent 

of the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 

genome editing technique. The first CRIPSRs were identified in the late 1980s and 

were soon understood to be part of a bacterial anti-viral defence system, with the later 

discovery of the associated Cas proteins. It was not until 2002 (Hsu et al., 2014) that 

two groups published genome editing techniques in mammalian cell using the 

CRISPR/Cas9 system. The system utilizes the Cas9 protein which is bound to a 20 

base pair long protospacer sequence, the gene specific portion of the single guide 

RNA (sgRNA) which enables directed and specific knock-outs or edits to genes of 

interest. The addition of a DNA repair template is optional and allows the introduction 

of specific mutations. Once guided to the site of mutation the Cas9 makes a double 

stranded cut in the DNA: the cut occurs at the protospacer adjacent motif (PAM) 

sequence, a 3 base pair long sequence (5’-NGG-3’) which is specifically recognized 

by the Cas9 protein and directs the nuclease double stranded cut. The endogenous 

repair mechanism can introduce mistakes when joining the two DNA ends back 

together, these mistakes are referred to as non-homologous end joining (NHEJ) and 

are the mechanism by which mutations, deletion or insertion that can cause 

frameshifts resulting in gene knock outs.  Recently a methodology for the genome 

editing of Phytophthora sojea using the CRISPR/Cas9 system was developed (Fang 
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and Tyler, 2016). This was an important breakthrough in the molecular investigation 

of oomycete plant pathogens. However, it seems that every oomycete species 

represent a new challenge in implementing this tool. Following the publishing of 

genomic editing using CRISPR/Cas9 in P. sojea, several P. sojea genes have been 

mutated, edited or knocked out (Ma et al., 2017, Fang et al., 2017). More recently a 

procedure for the functional editing of key genes has also been published in P. capsici 

(Wang et al., 2018) and it has been used to investigate the effect of specifically 

inserted single point mutations in the Oxathiapiprolin resistance gene  ORP1 (Miao et 

al., 2018). Indeed, a mutated version of this gene (PcMuORP1) has since been shown 

to have utility as a selection marker for use with P. capsici and the CRISPR/Cas9 

system (Wang et al., 2019).  Functional studies of two genes from Phytophthora 

palmivora that have roles in pathogenicity have also been carried out (Gumtow et al., 

2018, Pettongkhao et al., 2020). Additionally, several systematic attempts to 

implement the CRIPSR/Cas9 system in P. infestans (van den Hoogen and Govers, 

2018) have had no success.  It seems the success of the Cas9 methodology may be 

very species or even strain dependant. The dynamic genome of most Phytophthora 

species may also limit the length of time for which these mutation have influence. But 

for some species the Cas9 system has been able to increase genetic tractability and 

allow better investigation of the functional roles of genes of interest.  

This project aimed to develop and utilize the CRISPR/Cas9 gene editing and knockout 

system in P. capsici, building on previous studies in this area. Here the aim was to use 

a single sgRNA system to enable quick, efficient total knock out of key genes. Previous 

studies have identified multiple genes of interest that may have functions in the host 

range determination in P. capsici. To truly investigate the determinants of broad host 

range it would be useful to be able to analyse the host pathogenicity phenotype of P. 
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capsici lacking these genes of interest. Many genes that have been identified because 

of their differential expression in the infection of different host plants are effector 

genes, more specifically they are RXLRs, a conserved family of effectors. In fact 

RXLRs are some of the most differentially expressed genes in these experiments 

(Chapter 1 Unpublished Huitema Lab). However, it is unknown if these effectors have 

host specific phenotypes. A methodology for quick and efficacious knock out of these 

sorts of genes would be a boon for the molecular investigation of P. capsici.  

The methodologies that are described in this study are adapted from those published 

by Fang and Tyler (2016), and Fang et al. (2017). Transformation protocols have been 

adapted from those published by Wu et al. (2016) and Wang et al. (2018). Initially two 

transformation protocol were utilized: agrobacterium mediated transformations (AMT) 

and PEG/calcium. AMT should be a more robust transformation with potentially 

multiple copies of the transgenes being incorporated into the genome. However, due 

to low transformant yield, PEG/calcium transformations were explored as they resulted 

in a greater number of transformants. Although these methodologies underwent 

several rounds of optimization, the Cas9 mediated gene editing of P. capsici genes 

published by others (Miao et al., 2018, Wang et al., 2019) was not able to be replicated. 

The experimental efforts to implement the CRIPSR/Cas9 system for gene knock down 

are described here, along with suggestions for future work in order to successfully 

implement this technology in the broad range plant pathogen P. capsici.      
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5.2 Results  
 

5.2.1 AMT transformation  
 

The primary vector for AMT was pCB301TOR, originally developed for transformation 

of the oomycete plant pathogen Phytophthora palmivora (Wu et al., 2016). It was 

constructed through the combination of the pC301 backbone developed for agro-

infiltration and plant transformation, including the T-DNA left and right boarders (LB 

and RB), and the oomycete expression vector pTOR. pCB301TOR itself contains a 

HAM34 promotor-terminator flanked MCS and a hsp70 promoter-NPTII-hsp70 

Figure 5.1: 7 AMT Transformants.  

GFP expression was assessed in all seven clones (Agro-mediated-transformation 
[AMT]1-7) and compared to a GFP+ clone transformed by other means, and a wild-
type (WT) control. Transformants and controls grown on V8 agar (A). Western blot 
shows the 7 transformants and controls total protein extract immunoblotted with 
anti-GFP and visualised with a secondary antibody conjugated to HRP. The 
immunoblot is shown stained with coomassie to show correct loading and total 
protein 
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terminator for selecting transformants using the antibiotic G418. For testing of this 

vector in P. capsici, eGFP was cloned into the MCS of pCB301TOR. AMT 

transformations were conducted with pCB301TOR-eGFP, to examine the viability of 

using AMT in P. capsici. 7 transformants were produced by a single transformation 

experiment (Figure 5.1 A). These were then tested for GFP expression by western 

blot. Expression levels varied, however it appeared that all but one of the 

transformants showed expression of GFP (Figure 5.1 B). To check the viability of AMT 

as a new transformation method it was also necessary to check that transformants 

maintained pathogenicity and virulence. Leaf infection assay was carried out in N. 

Figure 5.2: Transformants AMT1-4 leaf infection assay.  

Four  transformants from the AMT and a P. capsici wild type (LT1534) strain, were 
then assessed for virulence in N. benthamiana leaves. 10 μL of zoospore suspension 
was placed on the abaxial side of a N. benthamiana leaf, lesion diameter in mm was 
measured at 48 hpi (error bars show standard deviation) (B) and pictures of infection 
taken at 72 hpi 2 large water soaked lesion on the left and right hand side of the leaf 
can be seen surrounding the initial inoculation point (C).  Two tailed unequal variance 
student t-test was conducted, significant bonferroni adjusted P values are shown. 
Adjusted P values for all comaprisons between all samples were >0.05 and therefore  
non-significant, not shown on the graph.   
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benthamiana. Lesion size was measured at 48 hours post inoculation (hpi). There is 

no notable difference in between wild type (WT) P. capsici, LT1534 and the four 

transformants tested (Figure 5.2).  

Figure 5.3: the template for the bespoke dual Cas9 and sgRNA vector, and the 3 
vectors used in its construction.  

pCB301TOR is the backbone, used of AMT, containing the promotors and terminators 
for Phytophthora (HSP70 and Ham34) driving expression of a multiple cloning site 
(MCS) and Neomycin Phosphotransferase II (NPT II) resistance gene. The other two 
plasmid used to make pCB301TOR-PsNLS-hSpCas9-ribo-sgRNA  were pYF2-
PsNLS-hSpCas9 containing the human codon optimised Streptococcus pyogenes 
Cas9 protein (hSpCas9) P. sojea nuclear localisation signal (PsNLS) fusion protein, 
and pYF2.2-GFP-ribo-sgRNA containing the sgRNA cassette. The sgRNA cassette in 
more detail contains two ribozyme elements up and down stream of the 20 nucleotide 
(nt) sgRNA, the HH ribozyme and the HDV ribozyme, both of which are cleaved off 
during transcription (FANG 2016). For the construction of the dual vector the PsNLS-
Cas9 was placed in the MCS of pCB301TOR and the sgRNA caste with RPL41 
promotor and HSP70 terminator was placed between the selection gene and the left 
boarder (LB) T-DNA . 
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5.2.2 Construction of dual Cas9 – sgRNA vector for AMT  
 

Due to the low transformation efficiency of AMT, the transformation of two plasmids 

was viewed to be unfeasible. In order to insert both the Cas9 transgene and a sgRNA 

cassette into P. capsici for use in gene knock-out experiments, it was deemed 

necessary to produce a single dual plasmid with both the Cas9 gene and the sgRNA 

cassette. The pCB301TOR plasmid was used as the backbone. The two plasmids 

pYF2.2-GFP-ribo-sgRNA and pYF2-PsNLS-hSpCas9 were used as the source of the 

Cas9 and the sgRNA (Fang and Tyler, 2016) (Figure 5.3). This enabled amplification 

and cloning of a Streptococcus pyogenes Cas9 gene, encoded by codons optimized 

for human. This Cas9 version has been shown to function in diverse organisms (Peng 

et al., 2014, Zhang et al., 2014, Liu et al., 2011) with a 5’ P. sojea nuclear localisation 

signal (NLS) necessary for more efficient localisation of the Cas9 protein into the 

nucleus (Fang and Tyler, 2016). The sgRNA cassette was also altered for 

Figure 5.4: sequence and schematics of 4 of the sgRNAs designed and 
transformed.  

The sequence, target gene and cut site of each of the sgRNAs that were transformed 
in P. capsici is shown in the table. The target genes and the respective cut site in 
relation to the rest of the gene, the strand they target (5’ or ’3) and the PAM site for 
each is shown in the schematic underneath.   
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Phytophthora biology, in most organisms the sgRNA is synthesised by RNA 

Polymerase III, however there is no RNA polymerase III found functional in 

Phytophthora species to date, so a different method for sgRNA synthesis was 

necessary. Flanking the sgRNA with two cis-acting ribozyme sequence downstream 

of a P. sojea RPL41 promotor has been shown to generate the sgRNA in a 

Phytophthora system (Fang and Tyler, 2016) (Figure 5.3). These two cassettes, NLS-

hSpCas9 and HDV-ribozyme-sgRNA-HH-ribozyme, from these two plasmids were 

combined into one, using the pCB301TOR AMT backbone named pCB301TOR-

PsNLS-hSpCas9-ribo-sgRNA (Figure 5.3).  

5.2.3 sgRNA design and AMT Cloning 
 

Initially a single sgRNA was cloned for the ABC transporter PcABC1 (Phyca11_6218) 

here named ABC1-Δ668 (Rudd Grottens) (Figure 5.4). This was successfully cloned 

into pCB301TOR-PsNLS-hSpCas9-ribo-sgRNA. AMT transformation was conducted 

and 6 transformants created. Successful transformation and expression of transgenes 

was analysed using PCR of genomic DNA and RT-PCR of total RNA (Figure 5.5). The 

expected size of the NPTII amplicon was 771 bps, although an unspecific band 

appears in the WT and transformant 1, all transformants display NPTII integrated into 

Figure 5.5: All in one plasmid pYF515 from Fang et al 2017.  

A shematic showing the dual Cas9, sgRNA cassette pYF515. it also contains the 
Neomycin Phosphotransferase II (NPT II) resistance gene, all genes under their 
respective promotors and terminators. 
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gDNA and RNA transcript expression (Figure 5.5 A-B). Of course NPTII expression is 

necessary for growth on G418 media, on which the transformants were cultured and 

selected, of more relevance is the expression of Cas9 and the sgRNA. PCR of the 

Cas9 gene, with an expected amplicon of 1188 bps showed good expression, albeit 

with a band slightly lower than expected (Figure 5.5 C). Additionally, only two 

transformants showed any substantial expression in transcript form (Figure 5.5 D). 

Figure 5.6: PCRs of AMT transformants with Cas9 and sgRNA ABC1-668Δ.  

Genomic DNA and total RNA (from which cDNA was derived) was extracted from 
Wild-type P. capsici (LT1534) and the 6 transformants derived from AMT (ABC1-668Δ 
transformants 1-6). To test the success of the transformation and PCR of the selection 
gene NPTII was conducted from gDNA (A) and cDNA (B) with an expected amiplicon 
of 771 bp. PCR amplification of both the Cas9 protein in both gDNA (C) and cDNA 
(D), and of the sgRNA cassette in both gDNA (E) and cDNA (F), the expeted size of 
these amplicon was 883 bp and 554 bp respectively. In all cases 1000bp maker of the 
DNA ladder has been indicated. The positive control for all was a DNA template of the 
dual plasmid pCB301TOR-PsNLS-hSpCas9-ribo-sgRNA, and a negative control of 
water. 
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The sgRNA, however, displayed no integration into the gDNA and no expression in 

RNA form (Figure 5.5 E-F).  

5.2.4 Protoplast transformation and CRISPR element expression 
 

Due to low transformant numbers, lack of expression of key transgenes from the vector 

and CRIPSR/Cas9 system, and the publication of new methodologies, a new 

methodology for P. capsici transformation was trialled. This new transformation 

method was made more feasible by the development of a new dual Cas9, sgRNA 

plasmid pYF515 for use in Phytophthora (Fang et al., 2017) (Figure 5.6) An altered 

version of the protoplast transformation described by Wang et al. was developed 

(Wang et al., 2018); The recovery stage was maintained, however the growth stage 

was altered to only include liquid medium growth stages, and more than sufficient 

numbers of protoplast were obtained from this growth protocol.  

Figure 5.7: Schematic for the insertion of the sgRNA into the sgRNA cassette 
with ribozymes.  

For sgRNA design two annealing oligos containing HH-ribozyme and the 20 nucleotide 
protospacer, which an addition 6 nt of the protospacer which are used to create the 
secondary structure of the ribozyme. This can then be ligated into the vector using the 
NheI and BsaI restriction sites. Protocol is as described by Wang et al. 2018. 
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For this new plasmid and transformation system, 3 new sgRNAs were designed. 

These new sgRNA were designed for 2 RXLRs that were shown (Chapter 1) to be 

uniquely up-regulated in cucumber leaf infection, out of 4 host plants tested 

(PcRXLR135, and PcRXLR374). The third new sgRNA was designed to target another 

RXLR, PcRXLR001. These were named RXLR001-Δ160, RXLR135-Δ99, RXLR374-

Δ13 (Figure 5.4) and inserted into pYF515 (Figure 5.7) and then transformed into P. 

capsici using the protoplast transformation method. From the three plasmids 

transformed, here referred to by which sgRNA they contained, RXLR001-Δ160, 

RXLR135-Δ99, RXLR374-Δ13, 13, 26 and 31 transformants were obtained for each 

plasmid respectively (Table 5.1). They were collected in two “batches”: the first were 

initial colonies emerging 2-3 days post transformation, first to grow through the V8 

agar selection disc placed atop the PAM recovery media the day following 

Table 5.1: Summary of transformant testing.  

To test if the transformants were positive PCR of the Cas9 transgene was performed 
form gDNA. The number of positive and negative transformants are shown for each 
sgRNA vector that was transformed. To test the success of the CAS9-sgRNA complex 
in mutating the target gene, the target gene was sequenced, the number of 
transformants that were sequenced and at how many weeks post transformation (wpt) 
the sequencing was carried out is shown in the lower portion of the table, in addition 
to the number of transformants found with or without mutations.  
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transformation. The second batch were the many more colonies that emerged on days 

4-6 post transformation. Of the initial colonies (of which there was 6, 5, and 13 from 

RXLR001-Δ160, RXLR135-Δ99, RXLR374-Δ13 respectively), when gDNA was tested 

for the presence of the transgene NLS-Cas9 all 6 RXLR001-Δ160 transformants, all 5 

RXLR135-Δ99 transformants, and 9 of the 13 RXLR374-Δ transformants were positive 

(Figure 5.8 A).  3 RXLR135-Δ99 positive transformants and 2 each of the RXLR001-

Δ160, RXLR374-Δ13 positive transformants were examined using RT-PCR, cDNA 

derived from total RNA was used to probe for the presence of sgRNA and Cas9 

transcripts. All of the tested samples were positive for sgRNA and Cas9 transcripts 

(Figure 5.9).  

Figure 5.8: Cas9 expression PCRs in Protoplast transformants gDNA.  

Genomic DNA from several transformants derived from protoplast transformation, 6 
from the transformation of the dual Cas9 sgRNA plasmid pYF515 containing the 
sgRNA RXLR001-160Δ, 5 from the sgRNA RXLR374-13Δ, and 13 from the sgRNA 
RXLR374-13Δ. PCR amplification of the Cas9 transgene was conducted 2 weeks 
post transformation (wpt) and again at 10 wpt. Only 16 of the transformants were 
tested at 10 wpt, which sgRNA was transformed into them, and which number 
transformant they are displayed above the 10 wpt gel picture. The expected Cas9 
amiplicon was 771 bp, and on all gel images the 1000 bp and 750 bp marker of the 
DNA ladder have been indicated. In all cases the positive control was a DNA template 
of the dual plasmid pYF515 and the negative control was water. 
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From these samples, i.e. 3 RXLR135-Δ99 positive transformants and 2 each of the 

RXLR001-Δ160, and RXLR374-Δ13 positive transformants, total protein was also 

extracted and run on a SDS-page gel. This was blotted for the presence of the NLS-

Cas9 fusion protein. It appeared that none of the positive transformants carried a full 

length Cas9 protein. However, samples loaded on the gel did seem to contain multiple 

smaller non-specific bands that were not present in the WT sample (Figure 5.10).   

In addition to these tests, gDNA was probed again by PCR 10 weeks post 

transformation in the initial “batch” of positive transformants. The PCR for the 

transgene NLS-Cas9 showed that the majority of tested mutants maintained Cas9 

expression. However, it appeared that 2 RXLR001-Δ160 transformants (numbered 1 

and 2) and a single RXLR135-Δ99 (numbered 12) had lost expression (Figure 5.8).  

Figure 5.9: Cas9 expression PCRs in Protoplast transformants cDNA.  

Total RNA from several transformants derived from protoplast transformation, 2 from 
the transformation of the dual Cas9  sgRNA plasmid pYF515 containing the sgRNA 
RXLR001-160Δ, 2 from the sgRNA RXLR374-13Δ, and 3 from the sgRNA RXLR374-
13Δ. PCR amplification from cDNA derived from these samples of the transgene Cas9 
and the sgRNA cassette. For each sample which sgRNA was transformed into them, 
and which number transformant they are displayed above the gel picture. The 
expected Cas9 amiplicon was 771 bp and the expected sgRNA cassette amplicon was 
554 bp, and on all gel images the 1000 bp, 750 bp and 500 bp marker of the DNA 
ladder have been indicated. In both cases the positive control was a DNA template of 
the dual plasmid pYF515 and the negative control was water. 
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5.2.5 Sequencing possible Cas9 mutants 
 

Both the initial “batch” of positive transformants and the later “batch” of negative 

transformants were sequenced to see if any mutation in the target genes had occurred. 

Unfortunately it was not possible to amplify the target gene RXLR001 from any of the 

transformants or even the WT LT1534 strain of P. capsici. Therefore, only RXLR135-

Δ99, RXLR374-Δ13 target genes were amplified and sequenced. Additionally the 

target genes of the positive mutants were sequenced twice, once at four weeks post 

transformation and once at 10 weeks post transformation. Four week post 

Figure 5.10: Cas9 expression in total protein derived from Protoplast 
transformants.  

Total protein from several transformants derived from protoplast transformation, two 
from the transformation of the dual Cas9  sgRNA plasmid pYF515 containing the 
sgRNA RXLR001-160Δ, two from the sgRNA RXLR374-13Δ, and three from the 
sgRNA RXLR374-13Δ and wildtype P. capsici (LT1534) was collected. Western blot 
analysis for the Cas9 protein was conducted. For each sample, the respective sgRNA 
and transformant number is displayed above the blot. Total protein was blotted with 
anti-Cas9 antibody and visualised with a secondary antibody conjugated to HRP. The 
membrane was then additionally stained with coomassie. The positive control was 
Cas9 Nuclease, S. pyogenes (NEB). 
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transformation of the five RXLR374-Δ13 transformants sequenced all showed no 

evidence of mutations around the PAM site indicative of Cas9 activity (Figure 5.11). 

Likewise at four weeks post transformation the 7 RXLR135-Δ99 transformants also 

showed no mutations (Figure 5.12). At 10 weeks post transformation sequencing the 

same transformants gave the same results, no mutants were derived from these 

transformation attempts.  

Figure 5.11: Sequence traces of PcRXLR374 form strains transformed with 
sgRNA RXLR374-13Δ.  

From 5 transformants and a wildtype strain of P. capsici (LT1534) the PcRXLR374 
gene was PCR amplified and sequenced. A schematic of the gene and the area where 
the sgRNA binds and cuts is show above. The 20 nt protospacer and PAM site are 
shown in red and blue respectively. The cut site is indicated on the gene by two red 
arrows. Sequence traces from the area around the cut site from the WT strain and the 
5 transformants are shown below. 
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Figure 5.12: Sequence traces of PcRXLR135 form strains transformed with 
sgRNA RXLR374-13Δ.  

From 7 transformants and a wildtype strain of P. capsici (LT1534) the PcRXLR135 
gene was PCR amplified and sequenced. A schematic of the gene and the area where 
the sgRNA binds and cuts is show above. The 20 nt protospacer and PAM site are 
shown in red and blue respectively. The cut site is indicated on the gene by two red 
arrows. Sequence traces from the area around the cut site from the WT strain and the 
7 transformants are shown below. 
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5.2.6 Further sgRNA development; in vitro transcription cleavage 

assay. 
 

The failure to obtain mutations in the target genes required trouble shooting. Although 

initial in vitro cleavage assays were carried out on two of the three sgRNAs used in 

the protoplast transformation (Figure 5.13), the results were inconclusive. Addition of 

the Cas9-sgRNA complex in both cases seemed to reduce the intensity of the band of 

the target gene, however there was no clear fragment bands present (Figure 5.13).  

To check the efficiency of the guide RNAs used and potentially develop new and better 

sgRNAs, the in vitro cleavage assays were repeated. Two new sgRNAs each for the 

target genes RXLR135 and RXLR374 were made, in addition four sgRNAs for a new 

target gene RXLR325 were designed and ordered (Table 5.4). As well as these, a 

positive control sgRNA was ordered that had previously been published functioning in 

P. capisci for the target gene ORP1 (Phyca11_564296) (Miao et al., 2018). However 

it proved challenging to PCR amplify the target gene ORP1, so it was not included in 

Figure 5.13: In vitro cleavage assay of the two transformed RXLR374-13Δ 
RXLR135-99Δ.  

A gel showing the digested products of the PCR products of PcRXLR374 and 
PcRXLR135 following in vitro incubation with the Cas9 nuclease and their respective 
sgRNA. Undigested controls without sgRNA presence are also shown. 650 bp and 
400 bp DNA band in the ladder are indicated. Expected full length of the PCR product 
of RXLR 374 is 417bp, and of RXLR135 is 386bp. Cuts sites as directed by the sgRNA 
for RXLR374 is 13bp from the start of the sequence, and for RXLR135 it is 99bp from 
the start of the sequence.    
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the in vitro cleavage assay. In vitro cleavage of target genes with these new sgRNA 

gave no positive results (Figure 5.14). It is unclear why none of these sgRNA were 

able to cleave their target genes in this experiment.   

 

5.3 Methodology 
 

5.3.1 P. capsici culturing 
 

P. capsici strain LT1534 was grown on V8 agar (10% v/v V8 vegetable juice, 1 g/L 

calcium carbonate, 300 mg/L β-sitosterol, 15% w/v Agar). This strain was used for 

Figure 5.14: In vitro cleavage assay of sgRNAs.  

Gels showing the digested products of the PCR products of PcRXLR135  and 
PcRXLR372 and PcRXLR325 following in vitro incubation with the Cas9 nuclease 
and their respective sgRNA., 3 each for PcRXLR135  and PcRXLR372 (A) and 4 for 
PcRXLR325 (B). Undigested controls with out sgRNA present are also shown. 650 
bp and 400 bp DNA band in the ladder are indicated. Expected full length of the PCR 
product of RXLR 374 is 417bp, of RXLR135 is 386bp, and of RXLR 325 is 423bp . 
No digested produces can be seen on this gel.   
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both transformation methodologies. P. capsici transformants were grown on V8 agar 

supplemented with section antibiotics, 50 μg/ml G418 and  100 μg/ml Ampicillin. All 

strains were cultured in the dark at 25°C. 

5.3.2 Agro bacterium vector construction 
 

For generation of the pCB301-Cas9-ribo-sgRNA vector, Cas9 was first cloned into the 

empty pCB301pTOR vector. The full length Cas9 coding gene with an N-terminal 

nuclear localisation signal (NLS) was amplified from pYF2.3-NLS-Cas9 vector 

complete with flanking 5’ ClaI and 3’ EcoRI sites. Both pCB301-TOR and NLS-Cas9 

were digested using ClaI (NEB) and EcoRI (NEB) in the 3.1 buffer (NEB). Digested 

amplicons were ligated into pCB301-TOR using T4 ligase (Promega), generating the 

pCB301-NLS-Cas9 vector. Next the sgRNA cassette was added to this vector. The 

full length Ribo-sgRNA cassette was amplified from pYF2.3-ribo-sgRNA plasmid with 

its 5’ RPL41 promotor and its 3’ Hsp70 terminator complete with flanking KpnI sites 

for insertion into pCB301-NLS-Cas9. Both pCB301-NLS-Cas9 and the full ribo-sgRNA 

cassette were digested using KpnI (Promega) in the buffer J (Promega). Resulting 

digested fragments were ligated using T4 ligase (Promega), generating the pCB301-

Cas9-ribo-sgRNA vector for use with AMT.  

 

5.3.3 E. coli and Plasmid preparation  
 

Vectors (pCB301TOR, pYF2-PsNLS-hSpCas9, and pYF515) for storage and 

amplification were transformed into MACH1 E. coli cells (One Shot™ Mach1™ T1 

Phage-Resistant Chemically Competent E. coli, ThermoFisher). Cells were 

transformed as per the manufactures instructions. Following transformation, 10-100 

µL of cells were plated on pre-warmed (37°C) LB broth agar (containing 10 g/L Bacto-
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tryptone, 5 g/L yeast extract, 10 g/L NaCl, 15 g/L agar, and 1 L of dH2O) supplemented 

with 100 µg/mL ampicillin plates. Plates were inverted and incubated overnight at 

37°C. Positive colonies confirmed by colony PCR were then stored in the form of 

glycerol stocks and/or used for plasmid amplification via mini or maxi prep. For long 

term storage, 500 µL of an overnight E. coli culture was added to 500 µL 50% glycerol 

and kept at -80°C. Plasmids were either collected via maxi (EndoFree Plasmid Maxi 

Kit) or mini (QIAprep Spin Miniprep Kit, Qiagen) prep depending on downstream use, 

and as per the manufacturer’s instruction.  

5.3.4 Agrobacterium transformation  
 

Agrobacterium mediated transformation of Phytophthora was modified from (Wu et al., 

2016). Agrobacterium containing the desired plasmid, 2 days prior to transformation 

were spread onto new LB agar plates, containing the necessary selection antibiotics. 

To do this one large colony was dissolved in in 50 μL of water and then spread evenly 

across the entire plate. In 2 days this results in completely carpeted plate. A portion of 

these cells were then collected by pipetting up a down 5 mL of IM medium. IM medium 

contains per 1 litre, 800 μL 1.25M K2HPO4 pH 4.8, 1 mL  1% CaCl2, 10 mL  0.01% 

FeSO4, 40 mL 1M MES buffer pH 5.5, 10 mL 50% glycerol, 2.5 mL 20% NH4NO3, 20 

mL 20% glucose, 5 mL Microelements solution (containing 0.1% w/v of ZnSO4.7H2O, 

MnSO4.H2O, CuSO4.5H2O, Na2MoO4.7H2O, and H3BO3), and 20 mL MN buffer 

(containing 3%w/v MgSO4.7H2O, 1.5%w/v NaCl) with the addition of 200 μM 

Acetosyringone). These were the agitated in the dark for 2 hours at room temperature 

on a shaker at 60 rpm to induce virulence gene expression. After 2 hours on the shaker 

the optical density (OD) was examined and the agrobacterium suspension was then 

diluted to 0.4 OD with IM medium.  
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Zoospores were collected. P. capsici LT1534 was grown on 90 mm V8 agar plates in 

the dark at 25°C, sealed with parafilm. This was followed by 2 days of growth in the 

light at 22°C without parafilm. Zoospores were collected by flooding the 90 mm plate 

with 10 mL of sterile distilled water at room temperature, then the mycelia growth was 

agitated with a sterile plate spreader and everything was transferred to a second P. 

capsici inoculated V8 agar plate. Continuing in this fashion, the 10 mL of water was 

used to flood and agitate three 90 mm plates recovered into a 50 mL falcon tube. The 

sporangia suspension was left for 30 minutes with the lid removed on a lightbox to 

induce zoospore release. The suspension was then filtered through one layer of 

Miracloth to remove mycelia and any agar chunks in the suspension, this process 

yielded approximately 5 mL of ≥ 1 x 106 spores mL-1 zoospore suspension. 

Equal volumes of Agrobacterium and zoospore suspension (2-5 mL each) were added 

together and gently swirled. The mixture was then incubated for 2 hours in the dark at 

room temperature. Then 500 μL of the mixture was placed on top of a 5 x 5 cm piece 

of sterile Hybond N+ membrane, which had been placed in a 90 mm solid IM plate, 

and dried for 10 minutes. IM solid is IM medium as previously described with 1.5% w/v 

agar. The plates were then incubated in the dark for 2 days at room temperature. After 

2 days the membrane was coated in fluffy mycelia, and is then transferred upside 

down to a Plich medium. Modified Plich media contains per 1 litre, 0.5 g KH2PO4, 0.25 

g MgSO4.7H2O, 1 g Asparagine, 1 mg Thiamine, 0.5 g Yeast extract, 10 mg β-

sitosterol, 25 g Glucose, and 15 g Agar with 50 μg/mL G418 and 200 μM cefotaxime. 

It was then incubated in the dark for a further 3 days at room temperature. The 

membrane was removed and the plated checked at 1-3 days for G418 resistant 

colonies. These were transferred to V8 medium plates containing 50 μg/mL G418 and 

200 μM cefotaxime  and checked for expression of transgenes.   
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5.3.5 sgRNA design and construction 
 

The sequences of the target genes were downloaded from JGI Mycocosm fungal 

genomic resource, (https://phycocosm.jgi.doe.gov/Phyca11/Phyca11.home.html) 

LT1534 Assembly v11. Three websites were used to screen for PAM sites and design 

sgRNAs, the Broad Institute’s sgRNA designer, the Eukaryotic Pathogen CRISPR 

guide RNA/DNA Design Tool (EuPaGDT), and Chopchop. 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design; 

http://grna.ctegd.uga.edu/; http://chopchop.cbu.uib.no). The top 5 ranked sgRNA were 

selected from each website, and overlaps discarded. Then any Restriction enzyme 

sites that sat within the PAM site of the guide RNAs were found using the NEB cutter 

tool (http://nc2.neb.com/NEBcutter2), and secondary structures were predicted using 

the ‘RNAstructure’ web tool  (https://rna.urmc.rochester.edu/RNAstructureWeb/). Any 

sgRNA with free energy secondary structure scores greater than -3.5 were rejected. 

Resulting sgRNAs were then blasted against the P. capsici genome top double check 

on target effects.  

(https://fungidb.org/fungidb/showQuestion.do?questionFullName=UniversalQuestion

s.UnifiedBlast). BLASTN with the E value set to 0.001 and only sgRNA with one hit 

i.e. the target gene were accepted. The resulting list was manually curated for on-

target effects, RNA secondary structure, and overlapping restriction enzymes sites, 

and the 5 best sgRNA for each gene were chosen. Approved sgRNA sequences were 

ordered with a 5’ HH ribozyme (starting with 6 reverse complement base pairs of the 

first 6 sgRNA nucleotides) and NheI and BsaI restriction enzyme sites for construction 

with the  pYF515 (Fang et al., 2017) or as described below for IVT and RNP. 

 

https://phycocosm.jgi.doe.gov/Phyca11/Phyca11.home.html
https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design
http://grna.ctegd.uga.edu/
http://chopchop.cbu.uib.no/
http://nc2.neb.com/NEBcutter2
https://rna.urmc.rochester.edu/RNAstructureWeb/
https://fungidb.org/fungidb/showQuestion.do?questionFullName=UniversalQuestions.UnifiedBlast
https://fungidb.org/fungidb/showQuestion.do?questionFullName=UniversalQuestions.UnifiedBlast
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5.3.6 Preparation of the pYF515 all-in-one CRISPR-Cas9 plasmid 
 

Preparations of the sgRNAs and pYF515 plasmid were all done according to the (Fang 

et al., 2017) protocol (Figure 5.7).  

5.3.7 sgRNA Oligo Construction 
 

sgRNA constructed were created either for in vitro transcription (IVT) or for insertion 

into vector for cloning. For construction of oligos for both IVT and vector construction, 

two complementary oligos were designed with a 20 nt complimentary overlap (Figure 

5.7). From 5’ to 3’ the oligos included a T7 promotor sequence, a target specific 

protospacer and PAM, and the scaffold sequence for S. pyogenes Cas9, with the 20nt 

overlap in the centre. And target specific protospacer portion of the sgRNA sequence 

had overlapping complementarity in the middle that spanned the guide RNA, with the 

overlap starting 10 bp in the 3’ direction from the end of the PAM. Note that the 

sequence has to end in two G’s, which may need to be added if not included at the 

start of the in target specific protospacer. So if the target sequence starts with one or 

two G’s the G’s at the end of the T7 promoter with the nucleotides from the 

protospacer, do not need to be added. PCR was then used to form the full oligo. Oligos 

were resuspended to 100µM in RNase/DNase free water, and a 100 μL HF Phusion 

polymerase PCR reaction was set up containing 20 μL of 5x HF buffer, 2 μL of 1 μM 

top oligo (sgRNA-specific), 2 μL of 1 μM bottom oligo (always the same), 2 μL of 100 

μM sgRNA forward primer, 2 μL of 100 μM sgRNA reverse primer,  2 μL of 10 μM 

dNTPs, 1 μL of HF Phusion polymerase, and 69 μL ddH2O. The PCR was run in a 

following manner, in a thermocycler: the sample was held at 98°C for 2 minutes, and 

then cycle of 98°C for 30 seconds, 60 °C for 30 seconds and finally 72 °C for 30 

seconds was repeated 30 times. Following cycling the sample was held at 72 °C for 1 
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minute and finally was held at 4 °C for maintenance until sample recovery and storage 

at 4 °C in a refrigerator.  To test the successful amplification for sgRNA double 

stranded DNA template 5 μL of the PCR product was loaded on to a 1% agarose gel 

dissolved in Tris-Borate-EDTA (TBE) and electrophoresis conducted for 30 minutes at 

100 V. TBE buffer contained 45 mM Tris-borate, 1 mM  EDTA. Successfully amplified 

oligo appeared as a 100 bp band. PCR buffer, substrate and enzymes were removed 

and PCR product purified using QIAquick PCR Purification Kit (Qiagen) as per the 

manufactures instructions. 

5.3.8 In Vitro Transcription (IVT) 
 

In order to test the efficiency of sgRNAs, and for the construction of CRISPR 

ribonucleoprotein (RNP) for both in vitro cleavage assays and RNPs for direct RNP 

mediated mutations, in vitro transcription (IVT) of sgRNA from double stranded DNA 

oligo templates was executed. To conduct IVT Invitrogen™ MEGAshortscript™ T7 

Transcription Kit was used. The IVT reaction was assembled in an RNase free 

microfuge tube, it was composed of a 20 μL reaction as per the manufacturer’s 

instructions. The IVT reaction contained 1 μL of  ddH2O, 8 μL of dNTP Solution mix 

(75 mM), 8 μL of Template DNA, and 1 μL of T7 Enzyme Mix. The reaction mix was 

mixed by gentle flicking, and spun briefly in a mini bench top microfuge to collect the 

reaction in the bottom of the tube. The reaction was incubated at 37°C for 2 hours. 

Finally, 115 μL nuclease-free water and 15 μL Ammonium Acetate Stop Solution was 

added. Transcribed RNA was recovered from the solution using acidic Phenol 

chloroform.  1 volume of Acid-Phenol:Chloroform, pH 4.5 (with IAA, 125:24:1) (Thermo 

scientific) was added, and the tube was mixed by vortexing. Next, 1 volume of 

chloroform was added and mixed by inverting 4-6 times. Following a short spin of 30 

seconds at 12,000 xg, the aqueous phase was recovered and transferred to a fresh 
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RNase free microfuge tube. The RNA was precipitated by adding 2 volumes of ethanol 

and mixing well followed by being chilled for at least more than 30 minutes at -20°C. 

The precipitated RNA was then pelleted by centrifuging at 4°C for 15 minutes at 

maximum speed. The supernatant was carefully removed and the RNA pellet was 

resuspend in RNase free water and stored at –70°C until used. 

5.3.9 In vitro cleavage assays 
 

The target DNA was amplified using PCR and purified using QIAquick PCR 

Purification Kit (Qiagen) as per the manufactures instructions. The Molar ration of 

Cas9 nuclease protein, IVT sgRNA and the target gene was set to 10:10:1, to obtain 

the best cleavage efficiency. 300 nM sgRNA was prepared by diluting the stock sgRNA 

from the IVT in RNAse free ice cold water. A dilution of 30 nM of the substrate DNA 

from the PCR was also prepared in nuclease-free ice cold water. The in vitro cleavage 

reaction was set up, comprising of 20 μL nuclease free water, 3 μL NEBuffer 3.1 (New 

England Biolabs), 3 μL 300nM sgRNA (for a final concentration 30 nM), 1 μL 1uM 

Cas9 Nuclease, S. pyogenes (New England Biolabs). This mixture was then incubated 

at for 10 minutes at 25°C followed by the addition of 3 μL of 30 nM substrate DNA. 

The mixture is pulsed once on a vortex to mix and incubated at 37°C for 30 minutes. 

The reaction was then stopped by the addition of 1 μL Proteinase K and incubation at 

room temperature for 10 minutes. To analyse the fragments and success of the 

reaction, the 30 μL was run on a 1% agarose TBE gel, at 100 v for 40 minutes.   

5.3.10 Ribonucleoprotein (RNP) construction 
 

The RNP was constructed either using Cas9 protein for RNP construction 

(https://international.neb.com/products/m0646-engen-spy-cas9-

nls#Product%20Information) or Cas9 protein for sgRNA in vitro cleavage assay: 

https://international.neb.com/products/m0646-engen-spy-cas9-nls#Product%20Information
https://international.neb.com/products/m0646-engen-spy-cas9-nls#Product%20Information
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SpCas9 nuclease (New England Biolabs) 

(https://international.neb.com/products/m0386-cas9-nuclease-s-

pyogenes#Product%20Information). The protein was refolded by incubating at 90°C 

for 5 minutes, followed by cooling to room temperature overnight on the bench. 

Equimolar, (120 pmol) each, Cas9 protein and sgRNA from IVT were incubated 

together at 25°C for 10 minutes. RNP was then used immediately for either in vitro 

transcription or for transfection.  

5.3.11 Protoplast Transformation  
 

P. capsici LT1534 was cultured anew on V8 solid plate for 2-3 days prior to 

transformation to encourage new growth. Following this, several agar plugs (5 mm) 

from the periphery of actively growing cultures were placed into five 200 mL containing 

nutrient pea broth (NPB) + 100 µg/mL ampicillin. Nutrient Pea Broth (NPB) contains 

per 1 L 1.0 g K2HPO4 (final 0.1%, w/v), 3.0 g KNO3 (final 0.3%, w/v), 0.5 g MgSO4 

(final 0.05%, w/v), 0.1 g CaCl2 (final 0.01%, w/v), 2.0 g CaCO3 (final 0.2%, w/v), 5.0 g 

d-sorbitol (final 0.5%, w/v), 5.0 g D-mannitol (final 0.5%,w/v), 5.0 g D-glucose (final 

0.5%, w/v), 2.0 g yeast extract (final 0.2%, w/v), all made up to 1L with Pea broth, (Pea 

broth itself is made using 125 g frozen peas placed in 700 mL of water, autoclaved for 

30 minutes and then the supernatant collected by straining through four layers of 

cheesecloth and then brought up to 1 L with ddH2O), NPB was then autoclaved, and 

once cool 2 mL vitamin stock (contains 10 μL of 0.02 g/mL Biotin (final 6.7 × 10−7 

g/mL), 10 μL of 0.02 g/mL Folic Acid (final 6.7 × 10−7 g/mL), 0.012 g of L-inositol (final 

4 × 10−5 g/mL), 0.06 g nicotinic acid (final 2 × 10−4 g/mL), 0.18 g pyridoxine–HCl 

(final 6 × 10−4 g/mL), 0.015 g Riboflavin (final 5 × 10−5 g/mL), 0.38 g thiamine–HCl 

(final 1.3 × 10−3 g/mL), H2O to 300 mL and sterilized using a 0.45 μm filter),  and 2 

mL trace elements (contains 0.215 g FeC6H5O7·3H2O (final 5. 4 × 10−4 g/mL), 0.15 g 

https://international.neb.com/products/m0386-cas9-nuclease-s-pyogenes#Product%20Information
https://international.neb.com/products/m0386-cas9-nuclease-s-pyogenes#Product%20Information
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ZnSO4·7H2O (final 3.8 × 10−4 g/mL), 0.03 g CuSO4·5H2O (final 7.5 × 10−4 g/mL), 

0.015 g MgSO4·H2O (final 3.8 × 10−5 g/mL), 0.01 g H3BO3 (final 2.5 × 10−5 g/mL), 

0.012 g Na2MoO4·H2O (final 3.0 × 10−5 g/mL), and H2O to 400 mL then sterilised 

using a 0.45 μm filter) was added. After 3 days of growth in NPB the mycelia from 

these flasks were transferred to two larger flasks with 500 mL NPB + 100 µg/mL 

ampicillin. One big flask provided enough protoplast for 10 transformations. This was 

allowed to grow for 1.5 to 2 days. At 1.5 days the P. capsici mycelia were harvested 

from the two large flasks using 500 μm filters and, rinsed twice with 0.8 M mannitol. 

Following washing, all the mycelia was transferred to a 50 mL Falcon tube, and given 

a further wash with 35 mL 0.8 M mannitol for 10 minutes on a gentle shaker. Whist the 

Mycelia was washing the enzyme solution was prepared and sterilized using a 0.45 

μm filter. The enzyme solution contained 10 mL of 0.8 M mannitol, 8 mL H2O, 0.8 mL 

of 0.5 M KCl, 0.8 mL of 0.5 M MES (pH 5.7), 0.4 mL of 0.5 M CaCl2, 0.15 g lysing 

enzymes from Trichoderma harzianum, and 0.06 g Cellulase from Trichoderma viride, 

for a total of 20 mL. Washed mycelia was then harvested using a 500 μm filters and 

transferred into the prepared enzyme solution and shaken vigorously before left to 

digest for 40 minutes on a gentle shaker. The digested mycleia, now protoplasts, were 

then filtered through one layer of miracloth stretched over a large beaker to remove 

mycelial debris. It is imperative that the protoplast are handled gently throughout. The 

protoplast solution was then transferred to a new 50 mL falcon tube.  This was then 

centrifuged at 530 xg at 4°C for 4 min. The pellet was then resuspend in 30 mL W5 

containing 0.093 g KCl, 4.6 g CaCl2·2H2O, 2.25 g NaCl, 7.8 g glucose, add H2O to 250 

mL, and then spun at 530 xg for 3 min. The pellet was resuspend 10 mL W5 and the 

protoplasts were left to rest on ice for 30 minutes. They were then spun at 530 xg for 

3 min and the W5 removed completely. This time they were resuspended in 5 mL    
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MMG containing 18.22 g mannitol, 0.76 g MgCl2·6H2O, 2 mL of 0.5 M MES (pH 5.7), 

H2O made to 250 mL with H2O. Following suspension in MMG, the concentration of 

protoplasts was checked using a haemocytometer, and diluted with MMG until the 

reached approximately 1 million protoplasts per ml. They were again left to rest at 

room temperature for 10 min. Plasmids were then prepared by adding 20 μg to a fresh 

50 mL falcon tube and 1 mL of the protoplast suspension was then added to the 

plasmids and gently mixed and left on ice for 10 minutes. 1.74 mL of freshly prepared 

PEG-calcium transformation solution containing 6 g PEG 4000, 3 mL H2O, 3.75 mL of 

0.8 M mannitol, 3 mL of 0.5 M CaCl2 was added in three portions of 580 μL each. The 

protoplast PEG-calcium solution was gently mixed and incubate on ice for 20 minutes. 

Following incubation on ice, 2 mL of ice cold PM containing 91.1 g D-mannitol, 1 g 

CaCl2, 2 g CaCO3, made up to 1 L with Pea broth was added to the tube gently by 

pipetting down the side. The mixture was then gently mixed by slowly inverting it once 

and incubated on ice for 2 minutes. 8 mL of ice cold PM was slowly added in the same 

fashion and again incubated for 2 minutes on ice, then 10 mL ice cold PM was slowly 

added in the same fashion and again incubated for 2 minutes. Finally, ampicillin was 

added for a final concentration of 100 μg/mL, and gently mixed as described 

previously. Protoplasts were then left to allow regenerations, incubated in the dark at 

25 °C for 14–18 hours.  

The regenerated protoplasts were collected by centrifugation at 700 xg for 5 min at 

4°C. The supernatant was poured off and the protoplast pellet was resuspended in 5 

mL PM medium. 45 mL warm liquid PAM made from PM with 1.5%, w/v Bacto agar 

(about 40-50 °C), and containing 30 μg/mL G418 and 100 μg/mL ampicillin, was added 

to the 5 mL of protoplast. This was inverted twice gently and was then poured 

approximately equally across three 90 mm petri dishes. After the medium had 
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solidified the plates were incubated at 25 °C for 2–3 days in the dark. Emerging 

colonies were covered with a disc of V8 agar medium containing 30 μg/mL G418 and 

100 μg/mL ampicillin, and transferred from the petri dish it was formed in using a sterile 

spatula on top of the PAM – protoplast dish. This was then incubated at 25 °C for 4-7 

days in the dark. Throughout this period the plates were checked and emerging viable 

colonies from transformed protoplast were transferred to a new V8 agar plate 

containing 30 μg/mL G418 and 100 μg/mL Ampicillin. This was done using a scalpel 

and excising a sliver of V8 agar containing the top of the colony from the plate. The 

transformants on V8 agar were incubated for at least 3 days in the dark at 25 °C. 

Transformants were subsequently tested for expression and mutations.  

5.3.12 DNA and RNA extraction 
 

For DNA and RNA isolation of P. capsici, agar plugs were transferred to pea broth 

containing 50 μg/mL G418 and 100 μg/mL Ampicillin and cultured in the dark at 25°C. 

After 3-5 days of growth, mycelia was separated from the agar plugs and placed into 

a 2 mL eppendorf tube with a single stainless steel bead and frozen in liquid nitrogen. 

After disruption using the TissueLyser II (QIAGEN), samples were placed on ice. DNA 

was isolated using the DNeasy Plant Mini Kit (QIAGEN) as per the manufacturer’s 

instructions.  RNA was isolated using the following protocol: 1 mL TRIzol was added 

to all samples and they were mixed via vortexing until they were completely thawed. 

200 μL of chloroform was added and samples shaken vigorously by hand. Samples 

were centrifuged at 12,000 xg for 10 minutes at 4°C and the upper aqueous phase 

was transferred into new tubes. 300 µL chloroform was added, samples were mixed 

by inverting and again centrifuged at 12,000 xg for 10 min at 4°C. Again, 1 volume of 

isopropanol was added (approx. 500 μL), mixed by inverting and RNA was precipitated 
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by leaving the samples for 10 min at room temperature or overnight at -20 °C. Samples 

were then centrifuged for 10 min at 12,000 xg and the supernatant was removed. 

Pellets were washed twice with 70% ethanol and allowed to air dry for 5-10 minutes. 

The RNA pellet was then dissolved in 20-50 µL RNAse free water. For cDNA 

synthesis, RQ1 RNase-Free DNase (Promega) treatment immediately followed by 

Superscript reverse transcriptase III with Oligo(dT20) was used (Invitrogen) as per the 

manufacturer’s instruction. For sequencing, PCR samples were treated with 

ExoProStar 1-step enzymatic PCR and sequencing clean-up (Illustra).  

5.3.13 Western blot  
 

For total protein isolation from P. capsici, agar plugs were transferred to pea broth 

containing 50 μg/mL G418 and 100 μg/mL ampicillin and cultured in the dark at 25°C. 

After 3-5 days of growth, isolation mycelia was harvested and lysis buffer GTEN 

(containing: 10%v/v Glycerol, 25mM Tris buffer pH7.5, 1mM EDTA, 150mM NaCl, 

10mM DTT, 2% w/v PVPP, 0.1%v/v tween, and 1mM PMSF) was added. Tissue was 

disrupted with a TissueLyser II (Qiagen) for 1 minute at 30hz then adapter flip and 

shake repeated.  The resulting lysate was spun at full speed at 4C for 10min. The 

supernatant was retained and then diluted in equal volumes 2x SDS page buffer, 

boiled for 5 minutes at 95°C, and loaded onto Mini-PROTEAN TGX precast gel 4-20% 

(Bio-rad). Separated proteins were then transferred onto a nitrocellulose membrane. 

The membrane was subsequently blocked with 10% dried skimmed milk (Marvel). 

Membranes were probed with primary anti-spCas9 (1:1,000) for 1 hour at room 

temperature. Subsequently, they were incubated with horseradish peroxidase labelled 

secondary antibodies (1:10,000) (LI-COR) and analysed. The nitrocellulose 

membrane was then stained with 50% v/v Methanol, 10% v/v Glacial acetic acid, and 
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40% v/v water containing 0.25% w/v Coomassie Brilliant Blue R-250 for 1 – 2 hours. 

And, de-stained overnight in water. 

5.4 Discussion  
 

The purpose of this study was to increase the genetic tractability of P. capsici and 

develop tools by which more in depth and enlightening gene characterisation studies 

could be carried out. To that end, the focus has been two fold, 1) to trial transformation 

techniques for P. capsici and 2) to develop the CRISPR Cas9 methodology so it can 

be utilised in P. capsici. 

The first transformation technique that was used was agrobacterium mediated 

transformation, as the methodology had proved successful in P. palmivora in 

implementing the CRISPR/cas9 system (Gumtow et al., 2018). This technique was 

successful and allowed the creation of transformants, from which transgenes could be 

amplified from gDNA, and that maintain normal virulence. However there are a few 

negative aspects to this technique. It requires the creation of bespoke plasmids with 

T-DNA borders that are necessary for the machinery of Agrobacterium to transfer the 

genes into the target’s genome. It is a fairly labour intensive and complex 

methodology, and often only produces a few transformants. In addition to these pitfalls, 

it was found that in the majority of cases, the sgRNA transcripts were not detectable 

in P. capsici transformants. Indeed, whereas protoplast transformation often results in 

several transgene integration events, AMT usually only results in one or two (Vijn and 

Govers, 2003), thus affecting possible expression levels. It was decided therefore to 

utilise a simpler methodology for further experiments with CRISPR Cas9.  

Protoplast-PEG transformation was the 2nd transformation technique that was used to 

attempt to implement the CRISPR Cas9 system in P. capsici. Recent publications had 
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displayed its utility in implementing CRISPR in P. capsici, and as such a published 

plasmid was available (Fang et al., 2017). This plasmid and the new transformation 

technique together proved to be a more robust transformation method. Although both 

methodologies are fairly labour intensive and both result in low numbers of 

transformants, the protoplast transformation method seemed repeatable. Importantly, 

protoplast transformation generated transformants that  expressed the transcripts of 

the Cas9 and sgRNA, raising the prospect that this approach can be used for gene 

editing experiments. However, critically and despite the availability of appropriate 

components of the CRIPSR system, no mutations or deletion events in the target 

genes were observed in these experiments.  

5.4.1 Possible issues in CRISPR/Cas9 in P. capsici 
 

Whilst it was expected that it would be possible to implement the CRISPR system in 

P. capsici, as other groups have shown (Wang et al., 2019, Miao et al., 2018), as well 

as in the other Phytophthora species (Fang and Tyler, 2016, Pettongkhao et al., 2020), 

implementing the system proved challenging. In fact other species of Phytophthora 

species appear recalcitrant to CRISPR gene editing, despite exhaustive testing (van 

den Hoogen and Govers, 2018). There are a number of possible reasons that these 

experiments, using the CRISPR system described, were unable to produce mutations 

in the target genes. While some of these issues may be resolved by troubleshooting 

exercises, others may mean that the CRISPR system has no utility in P. capsici. 

However, this study has been by no means exhaustive in our testing of the CRISPR 

system in P. capsici, and indeed further work is required to evaluate and draw 

conclusions on the ability and utility of CRISPR based gene editing in P. capsici  
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One possible reason that no mutations occurred could be the low or no efficacy in the 

sgRNA, and therefore inefficient targeting of the target genes. There is a test for 

sgRNA efficiency beyond the computer predicted sgRNA generating software that was 

utilised in the sgRNAs design, this being in vitro cleavage assays. These can be used 

to test the efficiency of the sgRNA before transformation, however due to the lack of 

any good positive controls, and inconclusive results it is unclear if the sgRNAs that 

were designed for this study were able to cleave their target genes with sufficient 

efficacy and specificity. 

However, there is also some evidence, suggesting that the Cas9 protein is truncated 

or being degraded in P. capsici. The presence of a full size Cas9 protein by Western 

blot was never detected in these experiments.  Only bands corresponding to truncated 

or degraded Cas9 protein could be detected in the transformants. It is unclear whether 

these represent degradation products of the Cas9 protein, and that if they do, whether 

this is the cause of the lack of Cas9 mediated mutations. It could be the case that even 

if degraded the full length Cas9 in complex with the sgRNA, prior to any degradation 

event could still cause a mutation in the target gene, or it could be that the Cas9-

sgRNA complex never even reaches the nucleus (even with the presence of the NLS 

from P. sojae). Issues that relate to the integrity and localisation of the Cas9-sgRNA 

complex would be hard to troubleshoot in comparison to designing and identifying 

sgRNAswith good efficiency. Other versions of Cas9 i.e. not derived from 

Streptococcus pyogenes, or more P. capsici specific nuclear localisation signals may 

need to be constructed.  

5.4.2 Future work 
 



213 
 

 

Initially, further work requires the troubleshooting of the in vitro cleavage assay to 

confirm the efficacy of the designed sgRNAs. Once the effectiveness of these sgRNAs 

has been confirmed, new sgRNAs have designed and validated in vitro, other areas 

can be explored to test the CRISPR/Cas9 system in P. capsici. Thus, moving forward 

there are two main areas for exploration of gene editing in P. capsici. For the purpose 

of the study, the aim of this work was to quickly and completely knock out key genes 

that were thought to have a role in dynamic host adaptation. For this, expression of a 

single sgRNA, alongside the Cas9 protein, was required. One methodology to do this, 

is the delivery of ribonucleoproteins (RNP) directly into P. capsici. This approach 

involves the construction of the Cas9-sgRNA complex in vitro, followed by incubation 

of these complexes with P. capsici protoplasts in a manner very similar to the 

protoplast transformation methodology. The transient exposure to readymade guided 

Cas9 complexes removes some of the possible issues with the integration and 

expression of Cas9 and sgRNA, and their ability to form a complex in the P. capsici 

cell. Although there is still the issue of nuclear localisation and sgRNA effectivity, the 

approach may work in P. capsici. It should be noted however, this methodology does 

not appear to work in P. infestans, (van den Hoogen and Govers, 2018). Testing a 

wider range of methodologies across systems will help untangle the technical and 

biological reasons for failure.  

Other studies have successfully implemented the CRISPR system in P. capsici (Wang 

et al., 2019, Wang et al., 2018). The largest difference between the attempt made here 

and those already published is the fact that the aim of those studies was to introduce 

specific point mutation in a target gene (in this case PcORP1). Thus the methodology 

required two separate sgRNAs targeting the same gene, and a repair template with 

the desired point mutation that sits between and extends beyond either side of the two 
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sgRNA cut sites. The repair template is incorporated into the target gene by the cell’s 

own repair mechanisms, thus incorporating the desired mutation. The presence of two 

sgRNAs and a repair template may be desirable when conducting CRISPR 

experiments in P. capsici. Additionally, if used simply to knock out a gene the repair 

template can be used to introduce a selection gene which would aid the selection of 

successful transformants and knock outs. Although more laborious and complex than 

a single sgRNA, the introduction of a selective repair template may be necessary for 

the functioning of the CRISPR system in P. capsici. It would also require the successful 

transformation of multiple plasmids instead of one which may limit the functionality. 

5.4.3 Conclusion 
 

Although this study has been unsuccessful in introducing the CRISPR/Cas9 into P. 

capsici for the knockout of target genes. Two methodologies for the transformation of 

P. capsici were trialled and successfully implemented. This has increased the 

molecular and genetic malleability of P. capsici. This study has also made the path 

forward clearer towards the aim of implementing CRISPR/Cas9 in P. capsici in the 

future.  
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Table 5.2: Table of oligos used in this study.   
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Table 5.3: Table of sgRNAs used in the transformation.  

The whole oligos for sgRNA cassette structure are no shown here just the PAM and 
Protospacer sections.   

Table 5.4: sgRNA used in in vitro cleavage assay. 
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Chapter 6:  General Discussion 
 

6.1.1 The aims, opportunities and problems 
 

The majority of studies that investigate the molecular dynamics of plant pathogen 

interaction are done on single pathogen-hosts systems (Dong et al., 2015).  

Investigations of broad host ranged pathogens and the divergence in the molecular 

mechanics of dynamic host adaption have given insight into pathogen biology 

(Mbengue et al., 2016). Much of this research has been done on the genomic 

mechanisms by which new hosts can be incorporated into the host range, “hosts 

jumps” (Ma et al., 2010, Kellner et al., 2014, Raffaele et al., 2010). A few studies have 

profiled the gene expression of a pathogen on multiple host plants revealing suites of 

differentially expressed genes that may have a role in the dynamic adaption of a 

pathogen to a particular host plant (Yang et al., 2018, Allan et al., 2019, Harris et al., 

2016). This expands our understanding of how broad host ranged pathogens can 

maintain virulence of multiple host plants and reveals the key molecular factors in host 

specificity and host range.  

Preliminary data acquired by the Huitema lab that was explored in Chapter 1, showed 

that differential gene expression may be the key to dynamic host adaptation of the 

board ranged oomycete pathogen P. capsici to distinct host plants. The aim of this 

project, therefore, was to take an unbiased and broad approach to examining the 

molecular factors in the host specific dynamic adaption of P. capsici. As such, broad 

“omics” style examination of the effect that distinct host had on P. capsici was deemed 

to be the best approach. However, this approach introduces problems when it comes 

to examining the infectious stages of the pathogen life cycle.  As has been discussed 

in several chapters, it is problematic to isolate P. capsici tissue from infected plant 
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tissue, especially at the early stages of infection where the biomass of pathogen to 

plant is very low. Thus, one of the key aims of this project was to develop tools to 

enable the ability to either circumvent or remove this issue of excessive plant material 

contaminating P. capsici samples.  

6.1.2 The solution 
 

An elegant solution that was originally trialled, was what is termed translating 

ribosomal affinity purification followed by RNA sequencing (TRAP-SEQ). However 

multiple attempts to optimise this methodology to allow the isolation of P. capsici 

translating mRNA from infected leaf tissue met with little to no success. The root of the 

issue was never resolved; however it could be suggested that either limited biomass 

of the pathogen in infected leaf tissue, or some chemical element of the host leaves 

used meant that the isolation of mRNA from purified ribosomal protein was not 

possible in this setting. Although, it was possible to isolate translating mRNA from P. 

capsici mycelia, which could be used in future experiments to analyse the translating 

RNAs of the non-infectious lifecycles stages of P. capsici.  

Following this, a simpler methodology that involved in vivo inoculation of host leaf 

extracts was devised. Although, it was assumed that this would represent less 

resemblance to the infection of plants, validation experiments showed similar 

differential gene expression to that shown in Chapter 1, data gained from Microarray 

analysis of P. capsici gene expression in 4 host plants. Based on these results two 

omics style experiments using this extracts inoculation technique were conducted.   
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6.1.3 The findings and context 
 

From these experiments, insights into the molecular characteristics of dynamic 

adaption have been gained. For the purposes of comparisons between hosts, two host 

plants from two different taxonomic families that the Microarray experiments in 

Chapter 1 had shown to be most different, were used, tomato and cucumber. Both 

transcriptomics and proteomics were conducted on P. capsici inoculated in these host 

extracts (TE and CE). It had been hypothesised that the key event, especially the 

regulation events of dynamic host adaption would take place in the early stages of 

infection, therefore sample from P. capsici inoculated TE and CE were taken at 2, 4 

and 8 hpi. For these experiments GC at 2hpi were used as a control.  

Both proteomics and transcriptomics studies found that inoculation in host extract had 

an effect on the gene/protein expression, it was also found that the two different hosts 

had had a different effect when it came to protein intensity or transcript expression, on 

P. capsici. Although the specific genes that both studies highlighted were not similar, 

the broad patterns of expression remained the same. It was shown that challenging P. 

capsici with TE induced fewer genes than challenge with CE, but what gene/ proteins 

that are differentially up-regulated in TE happen at early time points. Those proteins 

that were found with increased intensity in the early time points in TE seemed to have 

a role in regulation and structural changes. Another of the main finding, that is backed 

up by the literature, shows that a great deal of DE genes/proteins involved in 

oxidoreductase activity, in both host extracts (Srivastava et al., 2013, Kellner et al., 

2014, Ma et al., 2010). And it has been suggested that these are to deal with innate 

toxins and ROS found in host tissues (Yang et al., 2018, Pang et al., 2016, 

Giannakopoulou et al., 2014). It was also found that transporter and membrane 

proteins play a key role in dynamic host adaption. Proteomics also revealed that there 
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is a dramatic metabolic and respiratory shift that occurs in GC, similar to previous 

phenotypes of Phytophthora cyst germination reported in the literature (Grenville-

Briggs et al., 2005, Pang et al., 2017, Hosseini et al., 2015). Interestingly though we 

found a similar metabolic and respiratory focused protein shift in the CE, this was not 

found in TE. These gene families may be of interest to explore as determinates of host 

range, however whether these genes are host specific or just a broader mechanism 

of necessary adaption to the host environment is unclear. Although oxidoreductase 

proteins have been proposed a possible host specificity factors (Li et al., 2020) and 

frequently found upregulate in omics experiments in pathogen – host interactions 

(Srivastava et al., 2013, Kellner et al., 2014, Ma et al., 2010) in this study they were 

also found upregulated in many GC samples, hinting and their utility in spore 

germination.   

The study, especially the data received from the proteomics study in Chapter 4 also 

had utility in revealing the mechanisms of cyst germination in water. Much of what was 

observed hinted towards a starvation phenotype. Changes in metabolism, 

proteasomal subunits, stress response proteins, and changes in amino acid synthesis 

all hint as a starvation phenotype, and indeed other studies of cyst germination hint at 

a similar phenotype (Resjö et al., 2017, Grenville-Briggs et al., 2005). This suggests 

that a single zoospore upon contact with a host has to have the ability to bootstrap the 

infection and perhaps the initial stages of colonisation and ETS, prior to its ability to 

receive nutrients from the host plant. In both Chapters 3 and 4, it was shown that CE 

had a marked similarity to the GC samples, a similarity not found in TE, and that TE 

was marked by a down regulation event. It could be suggested therefore that if the 

difference between the two hosts and GC is one of access to nutrients, and that P. 
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capsici is, therefore, better able, perhaps adapted to receive nutrients from TE than 

CE, explaining the potential partial starvation phenotype shown in CE. 

Further evidence to support the alternative hypothesis that host dependant difference 

in gene and protein expression found in P. capsici cysts germinating in CE and TE is 

due to the difference in nutrient availability, is the lack of substantial gene upregulation 

in TE samples. Although the distinction here is perhaps more between direct host 

perception and a host perception model based on nutrient availability. It has been 

stated in previous chapters that in the lab the constantly grown on media largely 

derived from tomato fruit juice. Previous studies have evaluated the mechanism of 

epigenetic changes in Phytophthora species (Whisson et al., 2012, Chen et al., 2018, 

van West et al., 2008) and have shown their effectiveness in effector expression 

(Tzelepis et al., 2020, Kasuga and Gijzen, 2013). Epigenetic adaptation from long term 

growth on a tomato based media could account for the lack of response to inoculation 

in TE relative to the response to CE and GC.  Some studies suggest that epigenetics, 

or perhaps some other mechanism could represent a more medium term mechanism 

for adaptation environment and indeed to distinct host plants (Kasuga and Gijzen, 

2013). Sudden epigenetic modifications in Phytophthora species have been shown to 

accompany the adaptation of a pathogen to a novel environment or presentation with 

novel host plant (Bossdorf et al., 2008), such movement and novel host presentation 

is commonplace in a global agriculture system (Kasuga and Gijzen, 2013). 

In essence, however both these hypotheses, whether extract can induce differences 

in expression by direct perception of host elements, or by indirect perception of the 

nutrients available in the environment, host perception by the pathogen is taking place. 

An alternative hypothesis would surround the adaptability of large very heterogeneous 

populations, that upon confrontation to with the new host environment those 
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zoospores better adapted to the new environment survive. Dynamic adaption via 

natural selection of a broad heterogeneous population (Gilbert and Whitlock, 2017). 

However, despite the apparent logic of this hypothesis, this was not tested in this 

study.  Although the longer-term shift in population makeup has been found to 

represent evolutionary adaptation in plant pathogens (Susi et al., 2020) what effect 

this kind of shift has in dynamic short term adaptation is unclear, and perhaps 

understudied.     

The second main aim of this project was to develop tools for the investigation of P. 

capsici to aid omic style investigation and increase the genetic tractability. It was 

shown that TRAP-SEQ as it is at the moment is not a viable technology for the 

investigation of P. capsici translateome during leaf infection, so the alternative in vivo 

extract inoculation assay was developed to allow transcriptomic and proteomic 

studies. As discussed here and in Chapters 3 and 4 these identified many genes of 

interest that may have a role in host specific virulence and dynamic adaption. To aid 

in the characterisation of these genes therefore this project attempted to develop the 

CRISPR/Cas9 gene editing technology. This was to be used to quickly and efficiently 

totally knockdown genes of interest. During the development of the CRISPR system 

in P. capsici two separate transformation methods (AMT, and PEG/CaCl2) were 

optimized and used to insert the CRISPR system transgenes, although these 

methodologies were successful, the CRISPR system seemed to not be functional in 

P. capsici. This is despite publications stating the opposite (Wang et al., 2019, Miao 

et al., 2018). here it was found that no mutation occurred even with the expression of 

sgRNA and Cas9. One potential problem was the lack of a full size Cas9 protein 

identifiable by western blot, instead multiple smaller fragments were identified. No data 

was collected by there seemed to be no growth deficiencies in those strains 
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expressing Cas9, however recently it was suggested that the active nuclease is toxic 

to P. infestans (Ah-Fong et al., 2021). They were able to utilise the Cas12a nuclease 

as a replacement for Cas9 in the CRISPR system in order to induce mutations in P. 

infestans, presumably Cas12a is not toxic to P. infestans and perhaps other 

Phytophthora species {Ah-Fong, 2021 #255}. The utility of the CRISPR system in 

Phytophthora species is still an open question, and implementation in certain strains 

and species may require considerable troubleshooting. Going forward, further 

optimisation of the CRISPR/system in P. capsici would likely enable gene knockout 

and gene editing; whether this is simply the design of new sgRNAs, the use of dual 

sgRNAs and a repair template, or the use of the Cas12a protein as an alternative,  

remains to be determined. Other methods of delivery such as RNP could also be 

trialled.  

This would allow for the characterisation of the genes identified in the experiments of 

Chapters 3 and 4. Particularly the investigation of key differentially expressed 

oxidoreductase activity genes, transporter genes (especially ABC transporter). The 

RAP-GTPAses that were found uniquely induced in TE would also be worth 

investigating in this fashion. We also found a series of effectors (RXLRs and CRN) 

expressed differentially in the host extracts which would be of interested when 

investigating host specific virulence strategies.  

6.1.4 Conclusion and Further work 
 

 As stated, this project had two overarching aims, 1) develop tools for the examination 

of P. capsici, and 2) to investigate host specific virulence and dynamic adaption. In 

both these aims this project was partially successful. Two transformation methods 

where optimised. In addition a methodology that allows the isolation of translating 
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mRNA from non-infectious stages of P. capsici was developed. Head way was also 

made into optimising the CRISPR/Cas9 system although more work in this area is 

needed.  

Insights into potential mechanisms of dynamic adaption were gained. This project has 

highlighted many exciting new angles, and specific gene and proteins for future studies 

into host specific virulence and dynamic adaption. Whether the differences in host 

gene/protein expression are due to a direct host perception event, due to the 

differences in available nutrients, temporal differences due to the suitability of the 

environment, or some effect of selection on a heterogeneous population is still unclear. 

However all of these represent a system by which P. capsici can dynamically adapt to 

a host. A more open question is whether the difference in P. capsici response to the 

host extracts represents an actual adaptive mechanism that would also be observed 

in leaf infection, or whether confrontation of zoospores with the internal environment 

of the leaf, and leaf cells induces a natural response or a response that is an artefact 

of inoculation in a plant extract. That being GC would represent a starvation state, TE 

would represent adequate nutrients and a vegetative state, and CE perhaps some 

middle ground between starvation and adequate nutrients availability. Expansion of 

the extract experiment to include a known nutrient broth that is used for P. capsici lab 

growth such as Pea broth, or V8 vegetable juice, as well as the inclusion of extracts 

from non-plants may be of interest to try to parse out the effect nutrient availability has 

on cyst germination.  

In addition to further investigation of the effects of nutrient and host extracts on 

germination cysts, this study has identified a large suite of genes, and gene families 

that could be involved in dynamic adaption to the host environment. Investigation of 

these genes, especially those from transporter families and with oxidoreductase 
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activity will enable analysis of the importance of these genes to host virulence and 

adaption and thus may enable further understanding of the mechanisms that underlie 

dynamic adaptation. Especially, if these genes as hypothesised, and shown in the 

literature (Morris and Phuntumart, 2009, Judelson and Senthil, 2006, Srivastava et al., 

2013)  enable colonisation of an otherwise toxic host environment. This work has 

increased our understanding and suggested new possible routes to investigate the 

mechanism of broad host range in devastating crop pathogens.   
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Supplementary Table 1: Cross referencing DE genes in each cluster group 
with the comparison group that the are DE in. 

The number of genes from each of the 10 clusters form the hierarchical cluster 
analysis for the all gene database and the number of those gene from comparison 
group and each combination of groups where genes occur in are shown here. The 
total number of gene in each cluster in shown down the right and the total number of 
genes in each comparison group and each combination of groups are shown across 
the top. The comparison groups are separated into the three extract vs germinating 
(Extract v GC: TE 2hpi, CE 2hpi and Extract 2hpi (Ex)) and the four comparison of the 
tomato extract and cucumber extract (TOM v CUC: 2  hours post inoculation (hpi), 4 
hpi, 8hpi and All hpi), and a combination of these. For the genes in Extract vs GC 
those labelled as Down are up regulated in GC and those labelled as Up are up 
regulated in Extract. For the genes in TOM v CUC those labelled as Down are up 
regulated in CUC and those labelled as Up are up regulated in TOM. 
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Supplementary Table 2: Cross referencing DE of genes from every 
comparison group.  

The comparison groups are separated into the three extract vs germinating (Extract 
v GC: TE 2hpi, CE 2hpi and Extract 2hpi (Ex)) and the four comparison of the tomato 
extract and cucumber extract (TE v CE: 2  hours post inoculation (hpi), 4 hpi, 8hpi 
and All hpi), and a combination of these. Differentially expressed (DE) gene, are 
either thus found DE in a single or multiple (combination) of comparisons. For the 
genes in Extract vs GC those labelled as Down are up regulated in GC and those 
labelled as Up are up regulated in Extract. For the genes in TE v CE those labelled 
as Down are up regulated in CE and those labelled as Up are up regulated in TE. 
Note that not all the genes from each comparison group of TE v CE appears in 
extract v GC and vis versa. 
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Phyca 11 number Gene Ontology KOG 

Induced in EX     

Phyca11_104444 GO:0005524 ATP binding 
Molecular chaperones HSP70/HSC70, 
HSP70 superfamily 

Phyca11_113258 - 
26S proteasome regulatory complex, 
subunit RPN11 

Phyca11_21374 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006412 translation      

40S ribosomal protein S14 

Phyca11_40390 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006412 translation      

60s ribosomal protein L19 

Phyca11_502611 - 
eneurin-1 and related extracellular 
matrix proteins, contain EGF-like 
repeats 

Phyca11_503054 - 
NADH:ubiquinone oxidoreductase, 
NDUFA6/B14 subunit 

Phyca11_503551 

GO:0003824 catalytic activity, GO:0005524 ATP binding, 
GO:0016301 kinase activity, GO:0016310 phosphorylation, 
GO:0016772 transferase activity, transferring phosphorus-
containing groups, GO:0050242 pyruvate, phosphate dikinase 
activity     

- 

Phyca11_503721 - - 

Phyca11_503953 

GO:0003924 GTPase activity, GO:0005515 protein binding, 
GO:0005524 ATP binding, GO:0005525 GTP binding, 
GO:0005622 intracellular, GO:0006355 regulation of transcription, 
DNA-templated, GO:0006886 intracellular protein transport, 
GO:0006913 nucleocytoplasmic transport, GO:0007165 signal 
transduction, GO:0007264 small GTPase mediated signal 
transduction, GO:0008134 transcription factor binding, 
GO:0015031 protein transport  

GTPase Rab11/YPT3, small G protein 
superfamily 

Phyca11_503954 GO:0003676 nucleic acid binding 
Phosphoprotein/predicted coiled-coil 
protein 

Phyca11_504023 

GO:0003676 nucleic acid binding, GO:0003735 structural 
constituent of ribosome, GO:0005622 intracellular, 
GO:0005840 ribosome, GO:0006412 translation, 
GO:0006464 cellular protein modification process, 
GO:0008270 zinc ion   ,  

Ubiquitin/40S ribosomal protein S27a 
fusion 

Phyca11_504650 

GO:0003924 GTPase activity, GO:0005515 protein binding, 
GO:0005524 ATP binding, GO:0005525 GTP binding, 
GO:0005622 intracellular, GO:0006355 regulation of transcription, 
DNA-templated, GO:0006886 intracellular protein transport, 
GO:0006913 nucleocytoplasmic transport, GO:0007165 signal 
transduction, GO:0007264 small GTPase mediated signal 
transduction, GO:0008134 transcription factor binding, 
GO:0015031 protein transport  

GTPase Rab2, small G protein 
superfamily 

Phyca11_505507 
GO:0005509 calcium ion binding, GO:0005544 calcium-dependent 
phospholipid binding       

Annexin 

Phyca11_509200 
GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process     ,  

Predicted NAD-dependent 
oxidoreductase 

Phyca11_509792 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006414 translational elongation      

60S acidic ribosomal protein P2 

Phyca11_510076 GO:0006457 protein folding 
FKBP-type peptidyl-prolyl cis-trans 
isomerase 

Phyca11_510914 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006412 translation      

40S ribosomal protein S13 

Phyca11_511272 

GO:0003924 GTPase activity, GO:0005198 structural molecule 
activity, GO:0005525 GTP binding, GO:0005874 microtubule, 
GO:0007017 microtubule-based process, GO:0007018 microtubule-
based movement, GO:0043234 protein complex, 
GO:0051258 protein polymerization    

Alpha tubulin 

Phyca11_512003 
GO:0015986 ATP synthesis coupled proton transport, 
GO:0016469 proton-transporting two-sector ATPase complex, 

Mitochondrial F1F0-ATP synthase, 
subunit delta/ATP16 

Supplementary Table 3: GO terms and KOG annotations for all DE proteins 
from Extract versus GC comparisons 
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GO:0046933 proton-transporting ATP synthase activity, rotational 
mechanism, GO:0046961 proton-transporting ATPase activity, 
rotational mechanism      

Phyca11_528971 

GO:0003824 catalytic activity, GO:0005506 iron ion binding, 
GO:0006725 cellular aromatic compound metabolic process, 
GO:0008199 ferric iron binding, GO:0016702 oxidoreductase 
activity, acting on single donors with incorporation of molecular 
oxygen, incorporation of two atoms of oxygen    ,  

Dioxygenase 

Phyca11_530856 

GO:0003924 GTPase activity, GO:0005198 structural molecule 
activity, GO:0005525 GTP binding, GO:0005874 microtubule, 
GO:0007017 microtubule-based process, GO:0007018 microtubule-
based movement, GO:0043234 protein complex, 
GO:0051258 protein polymerization    

Alpha tubulin 

Phyca11_534612 

GO:0003824 catalytic activity, GO:0005975 carbohydrate metabolic 
process, GO:0006013 mannose metabolic process, 
GO:0015923 mannosidase activity, GO:0030246 carbohydrate 
binding    ,  

Glycosyl hydrolase, family 38 - alpha-
mannosidase 

Phyca11_536157 
GO:0004618 phosphoglycerate kinase activity, 
GO:0006096 glycolytic process       

3-phosphoglycerate kinase 

Phyca11_538207 

GO:0000166 nucleotide binding, GO:0003676 nucleic acid binding, 
GO:0004386 helicase activity, GO:0005524 ATP binding, 
GO:0008026 ATP-dependent helicase activity, 
GO:0017111 nucleoside-triphosphatase activity     

DEAH-box RNA helicase 

Phyca11_538675 
GO:0000786 nucleosome, GO:0003677 DNA binding, 
GO:0005634 nucleus, GO:0006334 nucleosome assembly      

Histone H4 

Phyca11_547376 
GO:0019787 ubiquitin-like protein transferase activity, 
GO:0043687 post-translational protein modification, 
GO:0051246 regulation of protein metabolic process     ,  

Ubiquitin-protein ligase 

Phyca11_547562 
GO:0019787 ubiquitin-like protein transferase activity, 
GO:0043687 post-translational protein modification, 
GO:0051246 regulation of protein metabolic process     ,  

NADH:flavin oxidoreductase/12-
oxophytodienoate reductase 

Phyca11_563203 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0008270 zinc ion binding, 
GO:0016491 oxidoreductase activity, GO:0016616 oxidoreductase 
activity, acting on the CH-OH group of donors, NAD or NADP as 
acceptor, GO:0048037 cofactor binding   ,  

Alcohol dehydrogenase, class V 

Phyca11_566774 - - 

Phyca11_569873 
GO:0000786 nucleosome, GO:0003677 DNA binding, 
GO:0005634 nucleus, GO:0006334 nucleosome assembly      

Histone 2A 

Phyca11_576734 

GO:0003924 GTPase activity, GO:0005198 structural molecule 
activity, GO:0005525 GTP binding, GO:0005874 microtubule, 
GO:0007017 microtubule-based process, GO:0007018 microtubule-
based movement, GO:0043234 protein complex, 
GO:0051258 protein polymerization    

Beta tubulin 

Phyca11_8318 

GO:0003924 GTPase activity, GO:0005515 protein binding, 
GO:0005524 ATP binding, GO:0005525 GTP binding, 
GO:0005622 intracellular, GO:0006355 regulation of transcription, 
DNA-templated, GO:0006886 intracellular protein transport, 
GO:0006913 nucleocytoplasmic transport, GO:0007165 signal 
transduction, GO:0007264 small GTPase mediated signal 
transduction, GO:0008134 transcription factor binding, 
GO:0015031 protein transport  

GTPase Rab1/YPT1, small G protein 
superfamily, and related GTP-binding 
proteins 

Phyca11_96761 GO:0006457 protein folding 
FKBP-type peptidyl-prolyl cis-trans 
isomerase 

Phyca11_97171 

GO:0006118 obsolete electron transport, GO:0009055 electron 
carrier activity, GO:0016491 oxidoreductase activity, 
GO:0016651 oxidoreductase activity, acting on NAD(P)H, 
GO:0051536 iron-sulfur cluster binding    ,  

NADH:ubiquinone oxidoreductase, 
NDUFS8/23 kDa subunit 

Induced in GC     

Phyca11_108059 
GO:0003676 nucleic acid binding, GO:0004518 nuclease activity, 
GO:0005515 protein binding, GO:0016246 RNA interference, 
GO:0016442 RISC complex    ,  

Transcriptional coactivator p100 

Phyca11_109772 
GO:0003824 catalytic activity, GO:0016491 oxidoreductase activity, 
GO:0050660 flavin adenine dinucleotide binding     ,  

Proteins containing the FAD binding 
domain 

Phyca11_111740 GO:0005524 ATP binding 
Molecular chaperones 
HSP105/HSP110/SSE1, HSP70 
superfamily 

Phyca11_116241 

GO:0000166 nucleotide binding, GO:0005524 ATP binding, 
GO:0005634 nucleus, GO:0005737 cytoplasm, 
GO:0016787 hydrolase activity, GO:0017111 nucleoside-
triphosphatase activity, GO:0030163 protein catabolic process   ,  

26S proteasome regulatory complex, 
ATPase RPT4 
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Phyca11_116917 
GO:0004197 cysteine-type endopeptidase activity, 
GO:0006508 proteolysis, GO:0008234 cysteine-type peptidase 
activity     ,  

Cysteine proteinase Cathepsin L 

Phyca11_119319 
GO:0003861 3-isopropylmalate dehydratase activity, 
GO:0008152 metabolic process, GO:0009098 leucine biosynthetic 
process, GO:0009316 3-isopropylmalate dehydratase complex      

Aconitase/homoaconitase (aconitase 
superfamily) 

Phyca11_120320 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004823 leucine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006429 leucyl-tRNA aminoacylation    

Leucyl-tRNA synthetase 

Phyca11_121219 

GO:0003824 catalytic activity, GO:0004637 phosphoribosylamine-
glycine ligase activity, 
GO:0004641 phosphoribosylformylglycinamidine cyclo-ligase 
activity, GO:0004644 phosphoribosylglycinamide formyltransferase 
activity, GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006188 IMP biosynthetic process, GO:0006189 'de novo' IMP 
biosynthetic process, GO:0008168 methyltransferase activity, 
GO:0009058 biosynthetic process, GO:0009113 purine nucleobase 
biosynthetic process, GO:0016742 hydroxymethyl-, formyl- and 
related transferase activity  

Glycinamide ribonucleotide synthetase 
(GARS)/Aminoimidazole ribonucleotide 
synthetase (AIRS) 

Phyca11_122536 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004831 tyrosine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006437 tyrosyl-tRNA aminoacylation    

Tyrosyl-tRNA synthetase, cytoplasmic 

Phyca11_132044 

GO:0004585 ornithine carbamoyltransferase activity, 
GO:0006520 cellular amino acid metabolic process, 
GO:0009348 ornithine carbamoyltransferase complex, 
GO:0016597 amino acid binding, GO:0016743 carboxyl- or 
carbamoyltransferase activity    ,  

Ornithine carbamoyltransferase 
OTC/ARG3 

Phyca11_13754 - 
WD40 repeat stress protein/actin 
interacting protein 

Phyca11_17928 

GO:0004351 glutamate decarboxylase activity, 
GO:0006536 glutamate metabolic process, GO:0016831 carboxy-
lyase activity, GO:0019752 carboxylic acid metabolic process, 
GO:0030170 pyridoxal phosphate binding    ,  

Glutamate decarboxylase/sphingosine 
phosphate lyase 

Phyca11_18538 
GO:0008483 transaminase activity, GO:0030170 pyridoxal 
phosphate binding       

Alanine-glyoxylate aminotransferase 
AGT2 

Phyca11_21714 
GO:0004175 endopeptidase activity, GO:0004298 threonine-type 
endopeptidase activity, GO:0005839 proteasome core complex, 
GO:0006511 ubiquitin-dependent protein catabolic process      

20S proteasome, regulatory subunit 
alpha type PSMA1/PRE5 

Phyca11_36446 
GO:0006525 arginine metabolic process, 
GO:0008483 transaminase activity, GO:0030170 pyridoxal 
phosphate binding     ,  

Acetylornithine aminotransferase 

Phyca11_502585 
GO:0009058 biosynthetic process, GO:0016769 transferase 
activity, transferring nitrogenous groups, GO:0030170 pyridoxal 
phosphate binding     ,  

Aromatic amino acid aminotransferase 
and related proteins 

Phyca11_502885 
GO:0003824 catalytic activity, GO:0004615 phosphomannomutase 
activity, GO:0005737 cytoplasm, GO:0008152 metabolic process, 
GO:0019307 mannose biosynthetic process    ,  

Phosphomannomutase 

Phyca11_502951 - Glutathione S-transferase 

Phyca11_503099 
GO:0009306 protein secretion, GO:0015450 P-P-bond-hydrolysis-
driven protein transmembrane transporter activity, 
GO:0016020 membrane     ,  

Transport protein Sec61, alpha subunit 

Phyca11_503447 
GO:0005515 protein binding, GO:0005524 ATP binding, 
GO:0006457 protein folding, GO:0044267 cellular protein metabolic 
process, GO:0051082 unfolded protein binding    ,  

Chaperonin complex component, TCP-
1 beta subunit (CCT2) 

Phyca11_503535 

GO:0003824 catalytic activity, GO:0003852 2-isopropylmalate 
synthase activity, GO:0009098 leucine biosynthetic process, 
GO:0019752 carboxylic acid metabolic process, 
GO:0046912 transferase activity, transferring acyl groups, acyl 
groups converted into alkyl on transfer    ,  

Alpha-isopropylmalate 
synthase/homocitrate synthase 

Phyca11_503562 

GO:0000166 nucleotide binding, GO:0005488 binding, 
GO:0005524 ATP binding, GO:0005634 nucleus, 
GO:0016887 ATPase activity, GO:0017111 nucleoside-
triphosphatase activity     

ATPase component of ABC 
transporters with duplicated ATPase 
domains/Translation elongation factor 
EF-3b 

Phyca11_503635 
GO:0009058 biosynthetic process, GO:0016769 transferase 
activity, transferring nitrogenous groups, GO:0030170 pyridoxal 
phosphate binding     ,  

Alanine aminotransferase 

Phyca11_503639 
GO:0003872 6-phosphofructokinase activity, GO:0005945 6-
phosphofructokinase complex, GO:0006096 glycolytic process     ,  

Pyrophosphate-dependent 
phosphofructo-1-kinase 
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Phyca11_503977 
GO:0009058 biosynthetic process, GO:0016769 transferase 
activity, transferring nitrogenous groups, GO:0030170 pyridoxal 
phosphate binding     ,  

- 

Phyca11_503984 GO:0003676 nucleic acid binding, GO:0008270 zinc ion binding       
Predicted RNA-binding protein 
containing PIN domain and invovled in 
translation or RNA processing 

Phyca11_504193 

GO:0003676 nucleic acid binding, GO:0003824 catalytic activity, 
GO:0004642 phosphoribosylformylglycinamidine synthase activity, 
GO:0005622 intracellular, GO:0006189 'de novo' IMP biosynthetic 
process, GO:0008270 zinc ion binding     

Phosphoribosylformylglycinamidine 
synthase 

Phyca11_504262 
GO:0000166 nucleotide binding, GO:0005488 binding, 
GO:0005524 ATP binding, GO:0016787 hydrolase activity, 
GO:0017111 nucleoside-triphosphatase activity    ,  

AAA+-type ATPase 

Phyca11_504517 
GO:0005737 cytoplasm, GO:0006118 obsolete electron transport, 
GO:0016491 oxidoreductase activity, GO:0045454 cell redox 
homeostasis, GO:0050660 flavin adenine dinucleotide binding    ,  

Pyridine nucleotide-disulphide 
oxidoreductase 

Phyca11_504831 

GO:0003824 catalytic activity, GO:0004412 homoserine 
dehydrogenase activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0008652 cellular amino acid 
biosynthetic process    ,  

Homoserine dehydrogenase 

Phyca11_504894 

GO:0003824 catalytic activity, GO:0003878 ATP citrate synthase 
activity, GO:0004775 succinate-CoA ligase (ADP-forming) activity, 
GO:0005488 binding, GO:0005737 cytoplasm, 
GO:0008152 metabolic process, GO:0044262 cellular carbohydrate 
metabolic process, GO:0046912 transferase activity, transferring 
acyl groups, acyl groups converted into alkyl on transfer    

ATP-citrate lyase 

Phyca11_505046 
GO:0003676 nucleic acid binding, GO:0003723 RNA binding, 
GO:0003743 translation initiation factor activity, 
GO:0006413 translational initiation      

Translation initiation factor 3, subunit b 
(eIF-3b) 

Phyca11_505109 - - 

Phyca11_505794 
GO:0004298 threonine-type endopeptidase activity, 
GO:0005839 proteasome core complex, GO:0006511 ubiquitin-
dependent protein catabolic process     ,  

20S proteasome, regulatory subunit 
alpha type PSMA2/PRE8 

Phyca11_506362 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0016616 oxidoreductase 
activity, acting on the CH-OH group of donors, NAD or NADP as 
acceptor, GO:0048037 cofactor binding, GO:0051287 NAD binding     

D-3-phosphoglycerate dehydrogenase, 
D-isomer-specific 2-hydroxy acid 
dehydrogenase superfamily 

Phyca11_506568 
GO:0006457 protein folding, GO:0031072 heat shock protein 
binding, GO:0051082 unfolded protein binding     ,  

Molecular chaperone (DnaJ 
superfamily) 

Phyca11_506596 
GO:0004066 asparagine synthase (glutamine-hydrolyzing) activity, 
GO:0006529 asparagine biosynthetic process, 
GO:0008152 metabolic process     ,  

Asparagine synthase (glutamine-
hydrolyzing) 

Phyca11_506857 
GO:0003824 catalytic activity, GO:0004802 transketolase activity, 
GO:0008152 metabolic process     ,  

Transketolase 

Phyca11_507091 
GO:0003779 actin binding, GO:0005488 binding, 
GO:0007010 cytoskeleton organization     ,  

Adenylate cyclase-associated protein 
(CAP/Srv2p) 

Phyca11_507344 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004828 serine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006434 seryl-tRNA aminoacylation    

Seryl-tRNA synthetase 

Phyca11_507390 
GO:0003984 acetolactate synthase activity, GO:0008152 metabolic 
process, GO:0009082 branched-chain amino acid biosynthetic 
process, GO:0016597 amino acid binding      

Acetolactate synthase, small subunit 

Phyca11_507479 
GO:0008152 metabolic process, GO:0016624 oxidoreductase 
activity, acting on the aldehyde or oxo group of donors, disulfide as 
acceptor       

Pyruvate dehydrogenase E1, alpha 
subunit 

Phyca11_507542 
GO:0016209 antioxidant activity, GO:0016491 oxidoreductase 
activity, GO:0045454 cell redox homeostasis     ,  

Alkyl hydroperoxide reductase, thiol 
specific antioxidant and related 
enzymes 

Phyca11_507640 

GO:0003824 catalytic activity, GO:0004455 ketol-acid 
reductoisomerase activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0009082 branched-chain 
amino acid biosynthetic process, GO:0016491 oxidoreductase 
activity     

- 

Phyca11_508386 
GO:0005093 Rab GDP-dissociation inhibitor activity, 
GO:0015031 protein transport, GO:0043087 regulation of GTPase 
activity     ,  

RAB proteins 
geranylgeranyltransferase component 
A (RAB escort protein) 

Phyca11_508572 

GO:0000166 nucleotide binding, GO:0003676 nucleic acid binding, 
GO:0004812 aminoacyl-tRNA ligase activity, GO:0004824 lysine-
tRNA ligase activity, GO:0005524 ATP binding, 
GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006418 tRNA aminoacylation for protein translation, 
GO:0006430 lysyl-tRNA aminoacylation  ,  

Lysyl-tRNA synthetase (class II) 
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Phyca11_508653 
GO:0003824 catalytic activity, GO:0003987 acetate-CoA ligase 
activity, GO:0008152 metabolic process, GO:0016208 AMP binding      

Acyl-CoA synthetase 

Phyca11_508846 
GO:0004372 glycine hydroxymethyltransferase activity, 
GO:0006544 glycine metabolic process, GO:0006563 L-serine 
metabolic process     ,  

Glycine/serine 
hydroxymethyltransferase 

Phyca11_509055 GO:0003779 actin binding, GO:0007010 cytoskeleton organization       
Actin regulatory proteins (gelsolin/villin 
family) 

Phyca11_509385 

GO:0000287 magnesium ion binding, GO:0004427 inorganic 
diphosphatase activity, GO:0005509 calcium ion binding, 
GO:0005737 cytoplasm, GO:0006796 phosphate-containing 
compound metabolic process    ,  

Inorganic 
pyrophosphatase/Nucleosome 
remodeling factor, subunit NURF38 

Phyca11_509479 

GO:0003995 acyl-CoA dehydrogenase activity, 
GO:0006118 obsolete electron transport, GO:0008152 metabolic 
process, GO:0016627 oxidoreductase activity, acting on the CH-CH 
group of donors      

Medium-chain acyl-CoA 
dehydrogenase 

Phyca11_509552 
GO:0004356 glutamate-ammonia ligase activity, 
GO:0006542 glutamine biosynthetic process, GO:0006807 nitrogen 
compound metabolic process     ,  

Glutamine synthetase 

Phyca11_509625 
GO:0003824 catalytic activity, GO:0004345 glucose-6-phosphate 
dehydrogenase activity, GO:0005488 binding, GO:0006006 glucose 
metabolic process, GO:0008152 metabolic process    ,  

Glucose-6-phosphate 1-
dehydrogenase 

Phyca11_509634 

GO:0003824 catalytic activity, GO:0004617 phosphoglycerate 
dehydrogenase activity, GO:0005215 transporter activity, 
GO:0005488 binding, GO:0006564 L-serine biosynthetic process, 
GO:0006810 transport, GO:0008152 metabolic process, 
GO:0009058 biosynthetic process, GO:0016020 membrane, 
GO:0016597 amino acid binding, GO:0016616 oxidoreductase 
activity, acting on the CH-OH group of donors, NAD or NADP as 
acceptor, GO:0048037 cofactor binding, GO:0051287 NAD binding,  

D-3-phosphoglycerate dehydrogenase, 
D-isomer-specific 2-hydroxy acid 
dehydrogenase superfamily 

Phyca11_509774 

GO:0003871 5-methyltetrahydropteroyltriglutamate-homocysteine 
S-methyltransferase activity, GO:0008270 zinc ion binding, 
GO:0008652 cellular amino acid biosynthetic process, 
GO:0009086 methionine biosynthetic process      

Methionine synthase II (cobalamin-
independent) 

Phyca11_510165 
GO:0000287 magnesium ion binding, GO:0003824 catalytic activity, 
GO:0004743 pyruvate kinase activity, GO:0006096 glycolytic 
process, GO:0030955 potassium ion binding    ,  

Pyruvate kinase 

Phyca11_510275 
GO:0003824 catalytic activity, GO:0004056 argininosuccinate lyase 
activity, GO:0042450 arginine biosynthetic process via ornithine     ,  

Argininosuccinate lyase 

Phyca11_510471 - 
Translation initiation factor 3, subunit i 
(eIF-3i)/TGF-beta receptor-interacting 
protein (TRIP-1) 

Phyca11_510618 

GO:0003824 catalytic activity, GO:0005524 ATP binding, 
GO:0006810 transport, GO:0006812 cation transport, 
GO:0008152 metabolic process, GO:0015662 ATPase activity, 
coupled to transmembrane movement of ions, phosphorylative 
mechanism, GO:0015992 proton transport, 
GO:0016020 membrane, GO:0016021 integral component of 
membrane, GO:0016820 hydrolase activity, acting on acid 
anhydrides, catalyzing transmembrane movement of substances, 
GO:0016887 ATPase activity ,  

Plasma membrane H+-transporting 
ATPase 

Phyca11_510725 GO:0003824 catalytic activity, GO:0008152 metabolic process       
Stationary phase-induced protein, 
SOR/SNZ family 

Phyca11_510858 

GO:0004368 glycerol-3-phosphate dehydrogenase activity, 
GO:0006072 glycerol-3-phosphate metabolic process, 
GO:0009331 glycerol-3-phosphate dehydrogenase complex, 
GO:0016491 oxidoreductase activity      

Glycerol-3-phosphate dehydrogenase 

Phyca11_511077 
GO:0000287 magnesium ion binding, GO:0003824 catalytic activity, 
GO:0004743 pyruvate kinase activity, GO:0006096 glycolytic 
process, GO:0030955 potassium ion binding    ,  

Pyruvate kinase 

Phyca11_511132 GO:0005634 nucleus, GO:0006334 nucleosome assembly       Nucleosome assembly protein NAP-1 

Phyca11_511318 
GO:0004348 glucosylceramidase activity, GO:0005764 lysosome, 
GO:0006665 sphingolipid metabolic process, 
GO:0007040 lysosome organization      

Beta-glucocerebrosidase 

Phyca11_511385 

GO:0005975 carbohydrate metabolic process, 
GO:0008152 metabolic process, 
GO:0016779 nucleotidyltransferase activity, 
GO:0016868 intramolecular transferase activity, 
phosphotransferases      

Phosphoglucomutase 

Phyca11_511466 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004829 threonine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006435 threonyl-tRNA aminoacylation, 

Threonyl-tRNA synthetase 
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GO:0016876 ligase activity, forming aminoacyl-tRNA and related 
compounds, GO:0043039 tRNA aminoacylation   

Phyca11_511519 
GO:0003746 translation elongation factor activity, 
GO:0003924 GTPase activity, GO:0005525 GTP binding, 
GO:0005622 intracellular, GO:0006414 translational elongation    ,  

Mitochondrial translation elongation 
factor Tu 

Phyca11_511707 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006412 translation      

40S ribosomal protein S12 

Phyca11_511793 
GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0008270 zinc ion binding, 
GO:0016491 oxidoreductase activity    ,  

Alcohol dehydrogenase, class V 

Phyca11_511870 
GO:0005741 mitochondrial outer membrane, GO:0006820 anion 
transport, GO:0008308 voltage-gated anion channel activity     ,  

Porin/voltage-dependent anion-
selective channel protein 

Phyca11_511879 GO:0005737 cytoplasm 
Microtubule-binding protein 
(translationally controlled tumor 
protein) 

Phyca11_512063 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004819 glutamine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006424 glutamyl-tRNA aminoacylation, 
GO:0006425 glutaminyl-tRNA aminoacylation  ,  

Glutaminyl-tRNA synthetase 

Phyca11_525668 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0006118 obsolete electron transport, GO:0008152 metabolic 
process, GO:0016491 oxidoreductase activity, 
GO:0016616 oxidoreductase activity, acting on the CH-OH group of 
donors, NAD or NADP as acceptor, GO:0051287 NAD binding   ,  

UDP-glucose/GDP-mannose 
dehydrogenase 

Phyca11_526928 

GO:0003824 catalytic activity, GO:0004086 obsolete carbamoyl-
phosphate synthase activity, GO:0005524 ATP binding, 
GO:0006541 glutamine metabolic process, GO:0006807 nitrogen 
compound metabolic process, GO:0008152 metabolic process     

Multifunctional pyrimidine synthesis 
protein CAD (includes carbamoyl-
phophate synthetase, aspartate 
transcarbamylase, and glutamine 
amidotransferase) 

Phyca11_526964 

GO:0003735 structural constituent of ribosome, 
GO:0003824 catalytic activity, GO:0004735 pyrroline-5-carboxylate 
reductase activity, GO:0005488 binding, GO:0005622 intracellular, 
GO:0005840 ribosome, GO:0006118 obsolete electron transport, 
GO:0006412 translation, GO:0006561 proline biosynthetic process, 
GO:0008152 metabolic process   

Pyrroline-5-carboxylate reductase 

Phyca11_527152 GO:0016746 transferase activity, transferring acyl groups 
Carnitine O-acyltransferase 
CPT2/YAT1 

Phyca11_529555 

GO:0003995 acyl-CoA dehydrogenase activity, 
GO:0006118 obsolete electron transport, GO:0008152 metabolic 
process, GO:0016627 oxidoreductase activity, acting on the CH-CH 
group of donors      

Very-long-chain acyl-CoA 
dehydrogenase 

Phyca11_529861 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0006520 cellular amino acid metabolic process, 
GO:0008152 metabolic process, GO:0016491 oxidoreductase 
activity    ,  

Glutamate/leucine/phenylalanine/valin
e dehydrogenases 

Phyca11_529913 
GO:0005515 protein binding, GO:0005524 ATP binding, 
GO:0006457 protein folding, GO:0044267 cellular protein metabolic 
process, GO:0051082 unfolded protein binding    ,  

Chaperonin complex component, TCP-
1 delta subunit (CCT4) 

Phyca11_530278 
GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0006631 fatty acid metabolic process, GO:0008152 metabolic 
process, GO:0016491 oxidoreductase activity    ,  

3-hydroxyacyl-CoA dehydrogenase 

Phyca11_530893 
GO:0004096 catalase activity, GO:0004601 peroxidase activity, 
GO:0006118 obsolete electron transport, GO:0006979 response to 
oxidative stress, GO:0020037 heme binding    ,  

- 

Phyca11_532200 

GO:0000059 protein import into nucleus, docking, 
GO:0005488 binding, GO:0005634 nucleus, GO:0005643 nuclear 
pore, GO:0005737 cytoplasm, GO:0006886 intracellular protein 
transport, GO:0008565 protein transporter activity   ,  

Karyopherin (importin) beta 3 

Phyca11_532207 
GO:0003676 nucleic acid binding, GO:0003677 DNA binding, 
GO:0005524 ATP binding, GO:0005622 intracellular, 
GO:0008270 zinc ion binding    ,  

Molecular chaperones HSP70/HSC70, 
HSP70 superfamily 

Phyca11_533182 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0006520 cellular amino acid metabolic process, 
GO:0008152 metabolic process, GO:0016491 oxidoreductase 
activity    ,  

Glutamate/leucine/phenylalanine/valin
e dehydrogenases 

Phyca11_533830 
GO:0004055 argininosuccinate synthase activity, GO:0005524 ATP 
binding, GO:0006526 arginine biosynthetic process     ,  

Argininosuccinate synthase 

Phyca11_534256 
GO:0005515 protein binding, GO:0008152 metabolic process, 
GO:0016746 transferase activity, transferring acyl groups     ,  

Dihydrolipoamide acetyltransferase 
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Phyca11_534354 
GO:0003677 DNA binding, GO:0003824 catalytic activity, 
GO:0008152 metabolic process, GO:0046983 protein dimerization 
activity      

Acetyl-CoA acetyltransferase 

Phyca11_534535 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004822 isoleucine-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006428 isoleucyl-tRNA aminoacylation    

Isoleucyl-tRNA synthetase 

Phyca11_536029 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004827 proline-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006433 prolyl-tRNA aminoacylation    

Prolyl-tRNA synthetase 

Phyca11_536632 

GO:0003824 catalytic activity, GO:0003922 GMP synthase 
(glutamine-hydrolyzing) activity, GO:0004672 protein kinase activity, 
GO:0004674 protein serine/threonine kinase activity, 
GO:0004713 protein tyrosine kinase activity, GO:0004808 tRNA (5-
methylaminomethyl-2-thiouridylate)-methyltransferase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006164 purine nucleotide biosynthetic process, 
GO:0006177 GMP biosynthetic process, GO:0006468 protein 
phosphorylation, GO:0006541 glutamine metabolic process, 
GO:0008033 tRNA processing, GO:0008152 metabolic process 

GMP synthase 

Phyca11_5370 
GO:0005215 transporter activity, GO:0005488 binding, 
GO:0005509 calcium ion binding, GO:0005743 mitochondrial inner 
membrane, GO:0006810 transport, GO:0016020 membrane     

Mitochondrial 
tricarboxylate/dicarboxylate carrier 
proteins 

Phyca11_537682 
GO:0003676 nucleic acid binding, GO:0005622 intracellular, 
GO:0006810 transport     ,  

RasGAP SH3 binding protein rasputin, 
contains NTF2 and RRM domains 

Phyca11_537937 

GO:0004252 serine-type endopeptidase activity, 
GO:0004287 obsolete prolyl oligopeptidase activity, 
GO:0006508 proteolysis, GO:0008236 serine-type peptidase 
activity      

Predicted serine protease 

Phyca11_538407 

GO:0003824 catalytic activity, GO:0006520 cellular amino acid 
metabolic process, GO:0008483 transaminase activity, 
GO:0009058 biosynthetic process, GO:0016769 transferase 
activity, transferring nitrogenous groups, GO:0030170 pyridoxal 
phosphate binding     

Aspartate aminotransferase/Glutamic 
oxaloacetic transaminase AAT1/GOT2 

Phyca11_538943 

GO:0003824 catalytic activity, GO:0004086 obsolete carbamoyl-
phosphate synthase activity, GO:0005524 ATP binding, 
GO:0006541 glutamine metabolic process, GO:0006807 nitrogen 
compound metabolic process, GO:0008152 metabolic process     

Multifunctional pyrimidine synthesis 
protein CAD (includes carbamoyl-
phophate synthetase, aspartate 
transcarbamylase, and glutamine 
amidotransferase) 

Phyca11_539198 

GO:0006118 obsolete electron transport, 
GO:0006120 mitochondrial electron transport, NADH to ubiquinone, 
GO:0008137 NADH dehydrogenase (ubiquinone) activity, 
GO:0010181 FMN binding, GO:0016651 oxidoreductase activity, 
acting on NAD(P)H, GO:0051287 NAD binding, GO:0051539 4 iron, 
4 sulfur cluster binding   ,  

NADH:ubiquinone oxidoreductase, 
NDUFV1/51kDa subunit 

Phyca11_5400 - Molecular co-chaperone STI1 

Phyca11_542172 
GO:0005975 carbohydrate metabolic process, 
GO:0042578 phosphoric ester hydrolase activity       

Fructose-1,6-bisphosphatase 

Phyca11_543889 GO:0003824 catalytic activity Spermidine synthase 

Phyca11_544083 - Molecular co-chaperone STI1 

Phyca11_545598 

GO:0003676 nucleic acid binding, GO:0004813 alanine-tRNA ligase 
activity, GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006419 alanyl-tRNA aminoacylation, 
GO:0016876 ligase activity, forming aminoacyl-tRNA and related 
compounds, GO:0043039 tRNA aminoacylation    

Alanyl-tRNA synthetase 

Phyca11_548602 
GO:0003676 nucleic acid binding, GO:0004386 helicase activity, 
GO:0005524 ATP binding, GO:0008026 ATP-dependent helicase 
activity      

ATP-dependent RNA helicase 

Phyca11_548878 

GO:0000166 nucleotide binding, GO:0003723 RNA binding, 
GO:0004826 phenylalanine-tRNA ligase activity, GO:0005524 ATP 
binding, GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006432 phenylalanyl-tRNA aminoacylation   ,  

Phenylalanyl-tRNA synthetase beta 
subunit 

Phyca11_549506 
GO:0003676 nucleic acid binding, GO:0003723 RNA binding, 
GO:0016071 mRNA metabolic process     ,  

Polyadenylate-binding protein (RRM 
superfamily) 

Phyca11_549899 

GO:0003824 catalytic activity, GO:0004735 pyrroline-5-carboxylate 
reductase activity, GO:0005488 binding, GO:0006118 obsolete 
electron transport, GO:0006561 proline biosynthetic process, 
GO:0008152 metabolic process     

- 
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Phyca11_551783 - 
Histone acetyltransferase SAGA/ADA, 
catalytic subunit PCAF/GCN5 and 
related proteins 

Phyca11_551916 - - 

Phyca11_553648 
GO:0000287 magnesium ion binding, GO:0003824 catalytic activity, 
GO:0004743 pyruvate kinase activity, GO:0006096 glycolytic 
process, GO:0030955 potassium ion binding    ,  

Pyruvate kinase 

Phyca11_554319 
GO:0004298 threonine-type endopeptidase activity, 
GO:0005839 proteasome core complex, GO:0006511 ubiquitin-
dependent protein catabolic process     ,  

20S proteasome, regulatory subunit 
beta type PSMB2/PRE1 

Phyca11_556236 
GO:0008483 transaminase activity, GO:0030170 pyridoxal 
phosphate binding       

Ornithine aminotransferase 

Phyca11_556289 
GO:0004047 aminomethyltransferase activity, 
GO:0005737 cytoplasm, GO:0006546 glycine catabolic process     ,  

Aminomethyl transferase 

Phyca11_558677 

GO:0005488 binding, GO:0005515 protein binding, 
GO:0006461 protein complex assembly, GO:0006886 intracellular 
protein transport, GO:0008565 protein transporter activity, 
GO:0016192 vesicle-mediated transport, GO:0030117 membrane 
coat, GO:0030131 clathrin adaptor complex    

Vesicle coat complex AP-2, alpha 
subunit 

Phyca11_559116 
GO:0003994 aconitate hydratase activity, GO:0006099 tricarboxylic 
acid cycle, GO:0008152 metabolic process, GO:0051539 4 iron, 4 
sulfur cluster binding      

Aconitase/homoaconitase (aconitase 
superfamily) 

Phyca11_562095 

GO:0005198 structural molecule activity, GO:0005488 binding, 
GO:0005515 protein binding, GO:0006461 protein complex 
assembly, GO:0006886 intracellular protein transport, 
GO:0008565 protein transporter activity, GO:0016192 vesicle-
mediated transport, GO:0030130 clathrin coat of trans-Golgi 
network vesicle, GO:0030132 clathrin coat of coated pit  ,  

Vesicle coat protein clathrin, heavy 
chain 

Phyca11_562442 
GO:0008152 metabolic process, GO:0016491 oxidoreductase 
activity       

Aldehyde dehydrogenase 

Phyca11_563206 
GO:0003824 catalytic activity, GO:0005524 ATP binding, 
GO:0008152 metabolic process, GO:0009374 biotin binding, 
GO:0016874 ligase activity    ,  

3-Methylcrotonyl-CoA carboxylase, 
biotin-containing subunit/Propionyl-
CoA carboxylase, alpha chain/Acetyl-
CoA carboxylase, biotin carboxylase 
subunit 

Phyca11_564009 

GO:0004591 oxoglutarate dehydrogenase (succinyl-transferring) 
activity, GO:0006096 glycolytic process, GO:0008152 metabolic 
process, GO:0016624 oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, disulfide as acceptor, 
GO:0030976 thiamine pyrophosphate binding    ,  

2-oxoglutarate dehydrogenase, E1 
subunit 

Phyca11_567952 GO:0005525 GTP binding, GO:0005622 intracellular       
Predicted GTP-binding protein (ODN 
superfamily) 

Phyca11_569273 
GO:0005515 protein binding, GO:0005524 ATP binding, 
GO:0006457 protein folding, GO:0044267 cellular protein metabolic 
process, GO:0051082 unfolded protein binding    ,  

Chaperonin complex component, TCP-
1 alpha subunit (CCT1) 

Phyca11_569541 

GO:0003824 catalytic activity, GO:0004664 prephenate 
dehydratase activity, GO:0009058 biosynthetic process, 
GO:0009094 L-phenylalanine biosynthetic process, 
GO:0016769 transferase activity, transferring nitrogenous groups, 
GO:0016847 1-aminocyclopropane-1-carboxylate synthase activity, 
GO:0030170 pyridoxal phosphate binding   ,  

Kynurenine aminotransferase, 
glutamine transaminase K 

Phyca11_569720 
GO:0005515 protein binding, GO:0005524 ATP binding, 
GO:0006457 protein folding, GO:0044267 cellular protein metabolic 
process, GO:0051082 unfolded protein binding    ,  

Chaperonin complex component, TCP-
1 gamma subunit (CCT3) 

Phyca11_573119 

GO:0000221 vacuolar proton-transporting V-type ATPase, V1 
domain, GO:0000300 obsolete peripheral to membrane of 
membrane fraction, GO:0005488 binding, GO:0005524 ATP 
binding, GO:0046961 proton-transporting ATPase activity, rotational 
mechanism    ,  

Vacuolar H+-ATPase V1 sector, 
subunit H 

Phyca11_573714 - Uncharacterized conserved protein 

Phyca11_573963 
GO:0008152 metabolic process, GO:0016491 oxidoreductase 
activity       

Aldehyde dehydrogenase 

Phyca11_574456 
GO:0016301 kinase activity, GO:0016772 transferase activity, 
transferring phosphorus-containing groups       

Creatine kinases 

Phyca11_574695 

GO:0003824 catalytic activity, GO:0003937 IMP cyclohydrolase 
activity, GO:0004643 phosphoribosylaminoimidazolecarboxamide 
formyltransferase activity, GO:0006164 purine nucleotide 
biosynthetic process, GO:0006188 IMP biosynthetic process    ,  

AICAR transformylase/IMP 
cyclohydrolase/methylglyoxal synthase 

Phyca11_575325 

GO:0004491 methylmalonate-semialdehyde dehydrogenase 
(acylating) activity, GO:0006573 valine metabolic process, 
GO:0008152 metabolic process, GO:0016491 oxidoreductase 
activity      

Methylmalonate semialdehyde 
dehydrogenase 
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Phyca11_577084 GO:0003924 GTPase activity, GO:0005525 GTP binding       Polypeptide release factor 3 

Phyca11_577399 

GO:0000049 tRNA binding, GO:0000166 nucleotide binding, 
GO:0004812 aminoacyl-tRNA ligase activity, 
GO:0004825 methionine-tRNA ligase activity, GO:0005524 ATP 
binding, GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006418 tRNA aminoacylation for protein translation, 
GO:0006431 methionyl-tRNA aminoacylation  ,  

Methionyl-tRNA synthetase 

Phyca11_577453 - 
26S proteasome regulatory complex, 
subunit RPN3/PSMD3 

Phyca11_5784 GO:0003824 catalytic activity, GO:0008152 metabolic process       Acetyl-CoA acetyltransferase 

Phyca11_6173 GO:0005488 binding 
26S proteasome regulatory complex, 
subunit RPN2/PSMD1 

Phyca11_8284 
GO:0003824 catalytic activity, GO:0004474 malate synthase 
activity, GO:0006097 glyoxylate cycle     ,  

Malate synthase 

Phyca11_8634 - Dihydrolipoamide acetyltransferase 

Phyca11_8926 
GO:0005515 protein binding, GO:0005524 ATP binding, 
GO:0006457 protein folding, GO:0044267 cellular protein metabolic 
process, GO:0051082 unfolded protein binding    ,  

Chaperonin complex component, TCP-
1 theta subunit (CCT8) 

Phyca11_96835 - 
26S proteasome regulatory complex, 
subunit RPN5/PSMD12 

Phyca11_98041 GO:0005488 binding 
26S proteasome regulatory complex, 
subunit RPN1/PSMD2 

Phyca11_98712 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA 
ligase activity, GO:0004818 glutamate-tRNA ligase activity, 
GO:0005524 ATP binding, GO:0005737 cytoplasm, 
GO:0006412 translation, GO:0006418 tRNA aminoacylation for 
protein translation, GO:0006424 glutamyl-tRNA aminoacylation    

Glutamyl-tRNA synthetase 

Phyca11_99958 
GO:0003676 nucleic acid binding, GO:0004386 helicase activity, 
GO:0005524 ATP binding, GO:0008026 ATP-dependent helicase 
activity      

ATP-dependent RNA helicase 
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Phyca 11 
number Gene Ontology KOG 

Induced in T   

Phyca11_101373 
GO:0003735 structural constituent of ribosome, 
GO:0005622 intracellular, GO:0005840 ribosome, 
GO:0006412 translation 

40S ribosomal protein S21 

Phyca11_110703 
GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds, 
GO:0005975 carbohydrate metabolic process 

Beta-glucosidase, lactase 
phlorizinhydrolase, and related 
proteins 

Phyca11_120320 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA ligase 
activity, GO:0004823 leucine-tRNA ligase activity, GO:0005524 ATP 
binding, GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006418 tRNA aminoacylation for protein translation, 
GO:0006429 leucyl-tRNA aminoacylation 

Leucyl-tRNA synthetase 

Phyca11_503721 - - 

Phyca11_504650 

GO:0003924 GTPase activity, GO:0005515 protein binding, 
GO:0005524 ATP binding, GO:0005525 GTP binding, 
GO:0005622 intracellular, GO:0006355 regulation of transcription, DNA-
templated, GO:0006886 intracellular protein transport, 
GO:0006913 nucleocytoplasmic transport, GO:0007165 signal 
transduction, GO:0007264 small GTPase mediated signal transduction, 
GO:0008134 transcription factor binding, GO:0015031 protein transport 

GTPase Rab2, small G protein 
superfamily 

Phyca11_505974 
GO:0004427 inorganic diphosphatase activity, GO:0009678 hydrogen-
translocating pyrophosphatase activity, GO:0015992 proton transport, 
GO:0016020 membrane 

- 

Phyca11_508140 - - 

Phyca11_508411 - 
26S proteasome regulatory 
complex, subunit PSMD10 

Phyca11_510755 
GO:0000166 nucleotide binding, GO:0005515 protein binding, 
GO:0005524 ATP binding, GO:0017111 nucleoside-triphosphatase 
activity, GO:0019538 protein metabolic process   , 

Chaperone HSP104 and related 
ATP-dependent Clp proteases 

Phyca11_534354 
GO:0003677 DNA binding, GO:0003824 catalytic activity, 
GO:0008152 metabolic process, GO:0046983 protein dimerization 
activity 

Acetyl-CoA acetyltransferase 

Phyca11_538207 

GO:0000166 nucleotide binding, GO:0003676 nucleic acid binding, 
GO:0004386 helicase activity, GO:0005524 ATP binding, 
GO:0008026 ATP-dependent helicase activity, GO:0017111 nucleoside-
triphosphatase activity 

DEAH-box RNA helicase 

Induced in C   

Phyca11_111740 GO:0005524 ATP binding 
Molecular chaperones 
HSP105/HSP110/SSE1, HSP70 
superfamily 

Phyca11_118794 
GO:0004089 carbonate dehydratase activity, GO:0008270 zinc ion 
binding, GO:0015976 carbon utilization 

Predicted carbonic anhydrase 
involved in protection against 
oxidative damage 

Phyca11_21714 
GO:0004175 endopeptidase activity, GO:0004298 threonine-type 
endopeptidase activity, GO:0005839 proteasome core complex, 
GO:0006511 ubiquitin-dependent protein catabolic process 

20S proteasome, regulatory subunit 
alpha type PSMA1/PRE5 

Phyca11_36446 
GO:0006525 arginine metabolic process, GO:0008483 transaminase 
activity, GO:0030170 pyridoxal phosphate binding 

Acetylornithine aminotransferase 

Phyca11_43072 
GO:0003746 translation elongation factor activity, 
GO:0005853 eukaryotic translation elongation factor 1 complex, 
GO:0006414 translational elongation 

Elongation factor 1 beta/delta chain 

Phyca11_502951 - Glutathione S-transferase 

Phyca11_503562 
GO:0000166 nucleotide binding, GO:0005488 binding, GO:0005524 ATP 
binding, GO:0005634 nucleus, GO:0016887 ATPase activity, 
GO:0017111 nucleoside-triphosphatase activity 

ATPase component of ABC 
transporters with duplicated 
ATPase domains/Translation 
elongation factor EF-3b 

Phyca11_503639 
GO:0003872 6-phosphofructokinase activity, GO:0005945 6-
phosphofructokinase complex, GO:0006096 glycolytic process 

Pyrophosphate-dependent 
phosphofructo-1-kinase 

Phyca11_504262 
GO:0000166 nucleotide binding, GO:0005488 binding, GO:0005524 ATP 
binding, GO:0016787 hydrolase activity, GO:0017111 nucleoside-
triphosphatase activity   , 

AAA+-type ATPase 

Supplementary Table 4: GO terms and KOG annotations for all DE proteins 
from TE versus CE comparisons 
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Phyca11_504839 
GO:0006813 potassium ion transport, GO:0016021 integral component 
of membrane, GO:0016491 oxidoreductase activity 

Voltage-gated shaker-like K+ 
channel, subunit beta/KCNAB 

Phyca11_505083 GO:0003824 catalytic activity, GO:0008152 metabolic process 
Long-chain acyl-CoA synthetases 
(AMP-forming) 

Phyca11_505601 
GO:0006118 obsolete electron transport, GO:0009055 electron carrier 
activity 

Electron transfer flavoprotein, beta 
subunit 

Phyca11_507344 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA ligase 
activity, GO:0004828 serine-tRNA ligase activity, GO:0005524 ATP 
binding, GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006418 tRNA aminoacylation for protein translation, 
GO:0006434 seryl-tRNA aminoacylation 

Seryl-tRNA synthetase 

Phyca11_508846 
GO:0004372 glycine hydroxymethyltransferase activity, 
GO:0006544 glycine metabolic process, GO:0006563 L-serine metabolic 
process 

Glycine/serine 
hydroxymethyltransferase 

Phyca11_509184 
GO:0004177 aminopeptidase activity, GO:0005622 intracellular, 
GO:0006508 proteolysis 

Predicted aminopeptidase of the 
M17 family 

Phyca11_509200 
GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process 

Predicted NAD-dependent 
oxidoreductase 

Phyca11_509552 
GO:0004356 glutamate-ammonia ligase activity, GO:0006542 glutamine 
biosynthetic process, GO:0006807 nitrogen compound metabolic process 

Glutamine synthetase 

Phyca11_509625 
GO:0003824 catalytic activity, GO:0004345 glucose-6-phosphate 
dehydrogenase activity, GO:0005488 binding, GO:0006006 glucose 
metabolic process, GO:0008152 metabolic process   , 

Glucose-6-phosphate 1-
dehydrogenase 

Phyca11_509774 

GO:0003871 5-methyltetrahydropteroyltriglutamate-homocysteine S-
methyltransferase activity, GO:0008270 zinc ion binding, 
GO:0008652 cellular amino acid biosynthetic process, 
GO:0009086 methionine biosynthetic process 

Methionine synthase II (cobalamin-
independent) 

Phyca11_510042 
GO:0004340 glucokinase activity, GO:0005524 ATP binding, 
GO:0006096 glycolytic process 

- 

Phyca11_511077 
GO:0000287 magnesium ion binding, GO:0003824 catalytic activity, 
GO:0004743 pyruvate kinase activity, GO:0006096 glycolytic process, 
GO:0030955 potassium ion binding   , 

Pyruvate kinase 

Phyca11_511132 GO:0005634 nucleus, GO:0006334 nucleosome assembly 
Nucleosome assembly protein 
NAP-1 

Phyca11_511385 
GO:0005975 carbohydrate metabolic process, GO:0008152 metabolic 
process, GO:0016779 nucleotidyltransferase activity, 
GO:0016868 intramolecular transferase activity, phosphotransferases 

Phosphoglucomutase 

Phyca11_511466 

GO:0000166 nucleotide binding, GO:0004812 aminoacyl-tRNA ligase 
activity, GO:0004829 threonine-tRNA ligase activity, GO:0005524 ATP 
binding, GO:0005737 cytoplasm, GO:0006412 translation, 
GO:0006418 tRNA aminoacylation for protein translation, 
GO:0006435 threonyl-tRNA aminoacylation, GO:0016876 ligase activity, 
forming aminoacyl-tRNA and related compounds, GO:0043039 tRNA 
aminoacylation 

Threonyl-tRNA synthetase 

Phyca11_511870 
GO:0005741 mitochondrial outer membrane, GO:0006820 anion 
transport, GO:0008308 voltage-gated anion channel activity 

Porin/voltage-dependent anion-
selective channel protein 

Phyca11_525668 

GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0006118 obsolete electron transport, GO:0008152 metabolic 
process, GO:0016491 oxidoreductase activity, 
GO:0016616 oxidoreductase activity, acting on the CH-OH group of 
donors, NAD or NADP as acceptor, GO:0051287 NAD binding  , 

UDP-glucose/GDP-mannose 
dehydrogenase 

Phyca11_533830 
GO:0004055 argininosuccinate synthase activity, GO:0005524 ATP 
binding, GO:0006526 arginine biosynthetic process 

Argininosuccinate synthase 

Phyca11_538675 
GO:0000786 nucleosome, GO:0003677 DNA binding, 
GO:0005634 nucleus, GO:0006334 nucleosome assembly 

Histone H4 

Phyca11_538943 

GO:0003824 catalytic activity, GO:0004086 obsolete carbamoyl-
phosphate synthase activity, GO:0005524 ATP binding, 
GO:0006541 glutamine metabolic process, GO:0006807 nitrogen 
compound metabolic process, GO:0008152 metabolic process 

Multifunctional pyrimidine synthesis 
protein CAD (includes carbamoyl-
phophate synthetase, aspartate 
transcarbamylase, and glutamine 
amidotransferase) 

Phyca11_5400 - Molecular co-chaperone STI1 

Phyca11_542172 
GO:0005975 carbohydrate metabolic process, GO:0042578 phosphoric 
ester hydrolase activity 

Fructose-1,6-bisphosphatase 

Phyca11_551325 GO:0003924 GTPase activity, GO:0005525 GTP binding 
Translation initiation factor 2, 
gamma subunit (eIF-2gamma; 
GTPase) 

Phyca11_553648 
GO:0000287 magnesium ion binding, GO:0003824 catalytic activity, 
GO:0004743 pyruvate kinase activity, GO:0006096 glycolytic process, 
GO:0030955 potassium ion binding   , 

Pyruvate kinase 

Phyca11_559116 
GO:0003994 aconitate hydratase activity, GO:0006099 tricarboxylic acid 
cycle, GO:0008152 metabolic process, GO:0051539 4 iron, 4 sulfur 
cluster binding 

Aconitase/homoaconitase 
(aconitase superfamily) 
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Phyca11_562095 

GO:0005198 structural molecule activity, GO:0005488 binding, 
GO:0005515 protein binding, GO:0006461 protein complex assembly, 
GO:0006886 intracellular protein transport, GO:0008565 protein 
transporter activity, GO:0016192 vesicle-mediated transport, 
GO:0030130 clathrin coat of trans-Golgi network vesicle, 
GO:0030132 clathrin coat of coated pit , 

Vesicle coat protein clathrin, heavy 
chain 

Phyca11_562546 
GO:0004174 electron-transferring-flavoprotein dehydrogenase activity, 
GO:0006118 obsolete electron transport 

Electron transfer flavoprotein 
ubiquinone oxidoreductase 

Phyca11_576877 
GO:0003824 catalytic activity, GO:0005488 binding, 
GO:0008152 metabolic process, GO:0016491 oxidoreductase activity 

Peroxisomal multifunctional beta-
oxidation protein and related 
enzymes 

Phyca11_8284 
GO:0003824 catalytic activity, GO:0004474 malate synthase activity, 
GO:0006097 glyoxylate cycle 

Malate synthase 
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