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Abstract

In this paper, the temporal stability of multiple similarity solutions (flow pat-

terns) for the incompressible laminar fluid flow along a uniformly porous channel

with expanding or contracting walls is analyzed. This work extends the recen-

t results of similarity perturbations of [1] by examining the temporal stability

with perturbations of general form (including similarity and non-similarity form-

s). Based on the linear stability theory, two-dimensional eigenvalue problems

associated with the flow equations are formulated and numerically solved by a

finite difference method on staggered grids. The linear stability analysis reveals

that the stability of the solutions is same with that under perturbations of a

similarity form within the range of wall expansion ratio α (−5 ≤ α ≤ 3 as in

[1]). Further, it is found that the expansion ratio α has a great influence on the

stability of type I flows: in the case of wall contraction (α < 0), the stability

region of the cross-flow Reynolds number (R) increases as the contraction ratio

(|α|) increases; in the case of wall expansion and 0 < α ≤ 1, the stability region

increases as the expansion ratio (α) increases; in the case of 1 ≤ α ≤ 3, type
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I flows are stable for all R where they exist. The flows of other types (types

II and III with −5 ≤ α ≤ 3 and type IV with α = 3) are always unstable.

As a nonlinear stability analysis or a validation of the linear stability analysis,

the original nonlinear two-dimensional time dependent problem with an initial

perturbation of general form over those flow patterns is solved directly. It is

found that the stability with the non-linear analysis is consistent to the linear

stability analysis.

Keywords: laminar flow, similarity solutions, expansion ratio, temporal

stability, perturbations of general form

1. Introduction

The laminar flow in a porous channel with expanding or contracting wall-

s has attracted much attention due to its wide applications in engineering

and biomedicine, including transpiration cooling, phase sublimation, propel-

lant burning, filtration, and blood transport in organisms. For example, the

sublimation process of carbon dioxide, during which the walls expanded ([2]);

propellant burning in a rocket motor with regressing walls ([3]); and fluid trans-

port produced by expansion and contraction of a blood vessel ([4]).

The earliest investigations of steady flows across permeable and station-

ary walls can be traced back to Berman [5]. In his study, the laminar, two-

dimensional flow of a viscous incompressible fluid in a porous channel with

uniform injection (or suction) was considered. By assuming that the transverse

velocity component was independent of the streamwise coordinate, the Navier-

Stokes equations were reduced to a nonlinear ordinary differential equation with

appropriate boundary conditions. Then Berman obtained an asymptotic ex-

pression for a small Reynolds number R by a perturbation method. A number

of studies of porous channel flow followed. For example, Terrill [6] extend-

ed Berman’s small R case and obtained series solutions for large R (for large

suction), and Proudman [7] investigated the case of large R using an integral

approach. Using the method of averages, Morduchow [8] obtained an analytical
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solution for the entire injection range. Yuan [9] provided a perturbation solu-

tion for high injection case, and later, Terrill [10] modified the work of Yuan

and provided a more accurate solution.

The earliest studies for moving walls can be traced back to Brady and Acrivos

[11]. In their study, an exact solution to the Navier-Stokes equations for the

flow in a channel with an accelerating surface velocity was presented. Along

similar lines, Dauenhauer and Majdalani [2] obtained a self-similar solution

for a porous channel flow with expanding or contracting walls. They assumed

that the wall expansion ratio α was a constant and reduced the Navier-Stokes

equations to a boundary value problem of a fourth-order nonlinear ordinary

differential equation that could be solved by a shooting method. In a later

study, asymptotic solutions for this problem were presented by Majdalani et

al. [4] for small R and by Majdalani and Zhou [12] for moderate-to-large R.

Zhou and Majdalani [3] also provided an analytical solution for slab rocket

motors with regressing walls. Recently, Xu et al. [13] investigated multiple

solutions of the case for which the wall expansion ratio α may be varied from α0

to α1 through some given functions, and concluded that the solutions quickly

reached the steady state. More recently, Majdalani and Xuan [14] improved

the results in [12] and obtained a complete asymptotic solution for the problem

of channel flow with moving walls. In their work, a viscous boundary layer

correction was provided to overcome the singular pressure distribution and its

normal gradients near the midsection plane of the expanding porous channel.

Later, a wavelet-homotopy method was developed by Chen and Xu [15] to give

solutions to this problem. For a porous tube with an expanding or contracting

sidewall, analytical solutions for both large and small Reynolds number with

small-to-moderate α were obtained by Saad and Majdalani [16] recently.

As for the stability of the solutions, Durlofsky and Brady [17] investigated

the spatial stability of the solutions for two-dimensional porous wall channel

and accelerating-wall channel flows under linear symmetric perturbations. For

the same porous wall problem, Ferro and Gnavi [18] extended the results of

Durlofsky and Brady to symmetric and asymmetric solutions, and analyzed the
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spatial stability of small perturbations of arbitrary shape. The temporal sta-

bility of these flows was examined by Zaturska et al. [19]. They proved that

most of these flows were temporally unstable to two-dimensional antisymmetric

perturbations. Later, Taylor et al. [20] generalized the work of Zaturska to

three-dimensional flows. Watson et al. [21] investigated the temporal stability

of asymmetric flows arising from a channel with porous and accelerating wall-

s. For porous channel flows with expanding or contracting walls, the temporal

stability analysis was presented in [1]. It is noted that all the perturbations

used in the above temporal stability analysis are constrained to the form of the

similarity transformation. We would also like to mention a few other recent

work on linear stability analysis of relevant channel or duct flow problems. For

flows in solid rocket motors, the stability was investigated in [22, 23, 24]. The

temporal stability analysis of pressure-driven flows in channels patterned with

superhydrophobic surfaces containing periodic grooves and ribs aligned longitu-

dinally to the flow direction was performed by Yu et al. [25], and the stability of

a pressure driven flow in a duct heated from below and subjected to a vertical

magnetic field was studied by Qi et al. [26].

From both physical and mathematical points of view, the perturbation of a

flow solution (no matter whether it is a similarity solution or not) is not neces-

sarily in the similarity form. So to study the stability properly and accurately

we have to consider the perturbation in a general form (including similarity and

non-similarity forms). This is the purpose of this paper, that is, to investigate

the temporal stability of similarity solutions (for flows in a channel with ex-

panding or contracting walls) under perturbations of general form. The basic

equations of the problem and the multiple solutions are described in Section 2.

The linear stability analysis of these solutions by numerical means is carried out

in Section 3. The linear stability theory is based on linear approximation of the

nonlinear equations, which does not cover the nonlinear temporal development

of an initial perturbation. So in Section 4 a non-linear analysis is conducted

by directly solving the nonlinear Navier-Stokes equations with small-amplitude

initial perturbations of general form. Section 5 is devoted to the conclusions.
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2. Mathematical formulation of the flow problem

0
x̄

ȳ

d(t̄)

−d(t̄)
ḋ(t̄)

ḋ(t̄)

Figure 1: Diagram of the two-dimensional channel with expanding or contracting porous walls.

The plotted streamlines correspond to a symmetric steady flow pattern.

Consider the two-dimensional, laminar and incompressible flow in a rectan-

gular channel with two permeable and moving walls. As shown in Fig. 1, which

depicts the cross section of the simulated domain. The channel height is 2d and

the channel length is semi-infinite. Both sidewalls have the same permeability

and expand or contract uniformly at a time-dependent rate ḋ, where ˙ means

the derivation of t̄. Additionally, with x̄ representing the streamwise direction

and ȳ the normal direction, the corresponding streamwise and normal veloci-

ty components are defined as ū and v̄, respectively. The over-bar is used to

denote dimensional variables. Under these assumptions, let the velocity vector

v̄ = (ū, v̄), the general continuity and motion equations are given as

∇ · v̄ = 0, (1)

∂v̄

∂t̄
+ v̄ · ∇v̄ = −

1

ρ
∇p̄+ ν△v̄, (2)

where ∇ is the gradient operator and △ is the Laplace operator, p̄, ρ, t̄ and ν

are the dimensional pressure, density, time and kinematic viscosity, respectively.

The boundary conditions are

ū|ȳ=d = 0, v̄|ȳ=d = −vw = −Aḋ, (3)

ū|ȳ=−d = 0, v̄|ȳ=−d = vw, (4)

ū|x̄=0 = 0, (5)
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where vw is the injection velocity at the wall, which is assumed to be independent

of position. A = vw/ḋ is a constant which is a measure of the wall permeability.

The condition (5) can be achieved by making the flow symmetrical with respect

to the plane x̄ = 0, where v̄ is left free.

Next, we introduce the following scalings:

u =
ū

vw
, v =

v̄

vw
, x =

x̄

d
, y =

ȳ

d
, t =

vw t̄

d
, p =

p̄

ρv2w
, (6)

then the following dimensionless equations are obtained.

∇ · v = 0, (7)

(1−
2αt

R
)
∂v

∂t
− (

α

R
x)

∂v

∂x
− (

α

R
y)

∂v

∂y
−

α

R
v + v · ∇v = −∇p+

1

R
△v. (8)

The original boundary conditions become

u|y=1 = 0, v|y=1 = −1, (9)

u|y=−1 = 0, v|y=−1 = 1, (10)

u|x=0 = 0. (11)

Here, v = (u, v) and

α =
ḋd

ν
(12)

is the wall expansion ratio. α > 0 implies the expansion and α < 0 the con-

traction. R is the cross-flow Reynolds number defined by R = dvw/ν. We can

infer that R > 0 is for the injection and R < 0 for the suction. In the current

study, we just consider the case for which R is time invariant. It follows that

α is constant and can be specified by its initial value ḋ0d0/ν, where d0 and ḋ0

are the initial channel half-height and expansion rate, respectively. Integrating

(12), the channel height of the present solution will vary in time according to

d =
√

d20 + 2ναt̄.

The dimensionless flow problem admits an exact similarity solution of the

form

v = (xfy(y, t),−f(y, t)). (13)
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For flows symmetric with respect to the midsection plane (ȳ = 0), the velocity

satisfies the boundary conditions (3) and

∂ū

∂ȳ
|ȳ=0 = 0, v̄|ȳ=0 = 0, (14)

which are the same as (3) and (4) in [1], respectively. Further, the dimensionless

boundary conditions become (9) and

∂u

∂y
|y=0 = 0, v|y=0 = 0. (15)

By using (13) into (7) and (8) , we obtain a differential equation for the similarity

function f ,

(1−
2αt

R
)fyyt −

1

R
fyyyy − ffyyy + fyfyy −

α

R
(yfyyy + 3fyy) = 0, (16)

the boundary conditions are

f(0) = 0, f(1) = 1, fy(1) = 0, fyy(0) = 0. (17)

In particular, there are symmetric steady solutions with

U = (xFy,−F ), (18)

where

F ′′′′ +R(FF ′′′ − F ′F ′′) + α(yF ′′′ + 3F ′′) = 0, (19)

and

F (0) = 0, F (1) = 1, F ′(1) = 0, F ′′(0) = 0. (20)

Here, a prime denotes differentiation with respect to y. Particularly, equation

(19) is Berman’s classic equation in [5] when α = 0.

Remark 1. Some researchers also consider the asymmetric solutions satisfying

the boundary conditions

F (−1) = −1, F (1) = 1, F ′(−1) = 0, F ′(1) = 0. (21)

In this paper we shall mainly consider stability of symmetric steady solutions

which satisfy the boundary conditions (20).
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The numerical solutions of (19) and (20) at some selected values of α (α = 0,

±1/2, ±1, ±2, ±3 and −5) have been investigated in [1]. Here we need to

consider these solutions again for the analysis of their stability and they are

shown in Figs. 2 and 3, which are from [1]. It can be seen that for a fixed value

of α (−5 ≤ α ≤ 3), the typical state variable −F ′′(1) is plotted as a function of

R. (The quantity −F ′′(1) is proportional to the skin friction at the upper wall.)

As described in [1], there are multiple solutions. In each case of −5 ≤ α ≤ 2,

three different types of solutions are found, which are classified as being of types

I, II and III: type I is in −∞ < R < ∞, types II and III exist in a common

semi-infinite domain, spanning over −∞ < R < Rα. Where Rα is the common

point of types II and III for the corresponding α, and R−5 = −14.486, R−3 =

−13.918, R−2 = −13.482, R−1 = −12.909, R−1/2 = −12.561, R0 = −12.165,

R1/2 = −11.724, R1 = −11.245 and R2 = −10.295. When α = 3, a new type

of solutions is found, which is marked as IV. While other types of solutions,

similar to the classification for −5 ≤ α ≤ 2, are marked as I, II and III: type

I is in R1
3 < R < ∞ and type IV is in R1

3 < R < −0.796, types II and III

exist in a common semi-infinite domain −∞ < R < R2
3. Where R1

3 = −4.25

and R2
3 = −9.545 are the common points for types I, IV and types II, III,

respectively. These results are presented in Table 1. Note that ∞ and −∞ in

this paper stand for relatively large or negatively large values, respectively.

Remark 2. We can also present the bifurcation diagram as a function of α.

For example, Fig. 4 shows bifurcation diagrams for a couple of R values. For

R = −14 (see Fig. 4(a)), there is just one symmetric solution (type I solution)

for −5 ≤ α < −3.225, and there are three symmetric solutions (types I, II and

III solutions) for −3.225 < α ≤ 2. The common point of types II and III is

α = −3.225. For R = −30 (see Fig. 4(b)), there are three types (types I, II

and III) solutions for −5 ≤ α ≤ 2. In this paper we consider the stability of

steady solutions for a range of values of α, so we will not explore this type of

bifurcation diagrams further.
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Figure 2: Values of −F ′′(1) versus R for the types I, II and III symmetric solutions. To make

it easier to distinguish, the solutions of types II and III at the same α are drawn with solid and

chain lines of the same color, respectively. Reproduced from the manuscript version available

in “https://discovery.dundee.ac.uk/ws/portalfiles/portal/37693294/final manuscript.pdf”; li-

censed under a Creative Commons Attribution (CC BY) license.
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Figure 3: Values of −F ′′(1) versus R for the types I, II, III and IV sym-

metric solutions. To make it easier to distinguish, similarly, the solutions of
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the same color, respectively. Reproduced from the manuscript version available

in “https://discovery.dundee.ac.uk/ws/portalfiles/portal/37693294/final manuscript.pdf”; li-

censed under a Creative Commons Attribution (CC BY) license.
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Table 1: Summary of multiple solutions for porous channel flows with various values of α

(−5 ≤ α ≤ 3).

α number of solutions found type designation existence ranges

−5 3 I (−∞,∞)

II, III (−∞,R−5)

−3 3 I (−∞,∞)

II, III (−∞,R−3)

−2 3 I (−∞,∞)

II, III (−∞,R−2)

−1 3 I (−∞,∞)

II, III (−∞,R−1)

−1/2 3 I (−∞,∞)

II, III (−∞,R−1/2)

0 3 I (−∞,∞)

II, III (−∞,R0)

1/2 3 I (−∞,∞)

II, III (−∞,R1/2)

1 3 I (−∞,∞)

II, III (−∞,R1)

2 3 I (−∞,∞)

II, III (−∞,R2)

3 4 I (R1

3,∞)

II, III (−∞,R2

3)

IV (R1

3,−0.796)
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Figure 4: Values of −F ′′(1) versus α for the types I, II and III symmetric solutions. The

cross-flow Reynolds numbers are (a) R = −14 and (b) R = −30.

As described in [1], the characteristics of the four types of flows represented

by the solutions are as follows:

(1) Type I covers the flows whose axial velocity profiles have a maximum at the

center of the channel.

(2) Type II includes the flows whose axial velocity profiles have an inflection

point and a maximum between the center of the channel and the wall and

whose centerline velocity is positive for negative R far away from 0.

(3) Type III contains axial velocity profiles with the same form as type II but

with reverse flow at the center of the channel.

(4) Type IV includes the flows which have reverse flow near the wall of the

channel, and the wall velocity gradient (F ′′(1)) for these flows increases

rapidly with the increase of R.

The axial velocity profiles F ′(y) for type I solutions with some injection and

suction cross-flow Reynolds numbers over a range of wall expansion ratios are

described in Figs. 5 and 6. In each case of R, increasing wall expansion ratio

increases the axial velocity near the center of the channel and decreases near the

wall. This behaviour is reversed for the case of contracting channel. In addition,

the profiles for each case of α have a maximum at the center of the channel.
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For R > 0 (injection), they monotonically decrease to 0 at the wall, and the

velocity at the centerline (F ′(0)) is approximately equal to 1.57 as R → ∞.

For R < 0 (suction), when the expansion ratio −5 ≤ α ≤ 1/2, the profiles are

still monotonic functions of y. Further, for negative R far away from 0, the

profiles for α ≤ 0 are approximately equal to 1 everywhere except in a thin

boundary layer forming above the wall, while the profiles for α = 1/2 have a

centerline velocity approximately equal to 1.4317. When α ≥ 1, the profiles are

no longer monotonic below a negative value of R which depends on the value of

α. Instead, they pass through a minimum (which is negative) before going to 0

at the wall, this can be seen from Fig. 6(b), which indicates reverse flow occurs

near the wall.

The axial velocity profiles for type II solutions are described in Fig. 7. For

each case of α, it can be observed in Fig. 7(a) that the profiles have a minimum

at the centerline and then pass through a maximum before going to zero at the

wall. Further, for negative R far away from 0, the velocity for α ≥ 0 is close

to 1 everywhere except in a boundary layer (see Fig. 7(b)), which is similar to

that described for type I solutions with α ≤ 0. The axial velocity profiles for

type III solutions are depicted in Fig. 8. For each case of α, these profiles have

the same shape as those of type II, except that there is a region of reverse flow

near the center of the channel at any R where these solutions exist.

Fig. 9 illustrates the velocity profiles for four types of solutions at α = 3.

For types I, II and III solutions, the profiles (shown in Fig. 9(a)) have similar

characteristics with those for types I, II and III solutions at α = 2, respectively.

For type IV solutions, the profiles (shown in Fig. 9(b)) are characterized by a

rapid increase in the centerline velocity and the wall velocity gradient (F ′′(1))

as R increases, and the development of reverse flow near the wall of the channel.
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Figure 5: Axial velocity profiles F ′(y) for type I solutions over a range of wall expansion ratios

α and an injection cross-flow Reynolds number of (a) R = 1 and (b) R = 30.
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Figure 6: Axial velocity profiles F ′(y) for type I solutions over a range of wall expansion ratios

α and a suction cross-flow Reynolds number of (a) R = −5 and (b) R = −25.
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Figure 7: Axial velocity profiles F ′(y) for type II solutions over a range of wall expansion

ratios α and a suction cross-flow Reynolds number of (a) R = −14.5 and (b) R = −35.
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Figure 8: Axial velocity profiles F ′(y) for type III solutions over a range of wall expansion

ratios α and a suction cross-flow Reynolds number of (a) R = −15 and (b) R = −35.
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Figure 9: Axial velocity profiles F ′(y) for solutions of (a) types I, II and III and (b) type IV

over some values of R; α = 3.

The temporal stability analysis of above steady flows (denoted as U) under

perturbations of the similarity form (13) is given in [1]. Although the similarity

solutions are considered, from both physical and mathematical points of view,

the perturbations are not necessarily of the similarity form. So it is not complete

to examine the stability of the flows only for the perturbations of the similarity

form. In this paper we investigate the temporal stability with perturbations of

general form (including similarity and non-similarity forms). We shall adopt

the numerical means later, and for numerical study, we can only deal with finite

domain. We truncate the infinite domain to an artificial boundary at x = xr,

and develop and impose a proper boundary condition at x = xr in order for

the resulted steady solutions to be consistent with the similarity solutions and

facilitate comparison with previous analysis in [1]. The conditions read:

u|y=1 = 0, v|y=1 = −1, (22)

u|y=−1 = 0, v|y=−1 = 1, (23)

u|x=0 = 0,
∂v

∂x
|x=0 = 0, (24)

u− x
∂u

∂x
|x=xr

= 0,
∂v

∂x
|x=xr

= 0. (25)
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It is not difficult to verify that all steady state similarity solutions satisfy the

proposed condition (25) at the artificial boundary.

3. Temporal stability analysis

Here we examine the linear temporal stability of above steady flows under

perturbations of general form (including similarity and non-similarity forms), in

order to determine whether such perturbations could destabilize a flow which is

stable under perturbations of the similarity form (13). We write the perturbed

velocity and pressure fields

v = U+ v1 = (xFy,−F ) + (u1, v1), p = P + p1, (26)

where P is the unperturbed pressure, v1 and p1 are infinitesimal perturbations

for the steady flow U and P , respectively. Substituting (26) into the dimen-

sionless equations (7), (8) and boundary conditions (22)-(25), and linearizing

(8) for v1, we obtain the following linearized perturbation equations

∇ · v1 = 0, (27)

(1−
2αt

R
)
∂v1

∂t
− (

α

R
x)

∂v1

∂x
− (

α

R
y)

∂v1

∂y
−

α

R
v1 + (v1 · ∇)U+ (U · ∇)v1 = −∇p1 +

1

R
△v1,

(28)

and boundary conditions

u1|y=1 = 0, v1|y=1 = 0, (29)

u1|y=−1 = 0, v1|y=−1 = 0, (30)

u1|x=0 = 0,
∂v1
∂x

|x=0 = 0, (31)

u1 − x
∂u1

∂x
|x=xr

= 0,
∂v1
∂x

|x=xr
= 0. (32)

The perturbations (v1) are of general form and include those of the similarity

form (13) considered in [1].

Based on the method of separation of variables, the perturbations v1 and

17
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p1 can be expressed in the following forms























u1 = û(x, y)est, v1 = v̂(x, y)est, p1 = p̂(x, y)est, (α = 0)

u1 = û(x, y)e−st1 , v1 = v̂(x, y)e−st1 , p1 = p̂(x, y)e−st1 , (α < 0)

u1 = û(x, y)e−st2 , v1 = v̂(x, y)e−st2 , p1 = p̂(x, y)e−st2 , (α > 0)

(33)

where










t1 = ln(1−
2αt

R
), (α < 0)

t2 = − ln(1−
2αt

R
). (α > 0)

(34)

By using the dimensionless transformation t = vw t̄/d = Rνt̄/d2 = Rνt̄/(d20+

2ναt̄) into (34), we obtain















t1 = ln(
d20
d2

), (α < 0)

t2 = − ln(
d20
d2

). (α > 0)

(35)

In (33), û(x, y), v̂(x, y) and p̂(x, y) are the amplitudes of the corresponding

perturbations, s is the complex eigenvalue. The real part of s (Re(s)) represents

the growth or decay rate of the perturbation. When α = 0, Re(s) represents

the growth rate for R > 0, while for R < 0, the sign of t becomes negative and

Re(s) represents the decay rate. When α < 0 (for contraction), t1 is positive

and Re(s) is the decay rate. When α > 0 (for expansion), we note that t is finite,

and when t → (R/2α), the channel height d has already reached infinity. Hence,

t2 is also positive and Re(s) is the decay rate. That is, for α = 0 and R > 0,

eigenvalues with positive real parts (Re(s)) indicate growing perturbations, so

the instability is implied if there is an eigenvalue such that Re(s) > 0; while for

the case of α ̸= 0 and the case of α = 0 and R < 0, eigenvalues with negative

real parts indicate growing perturbations, so the instability is implied if there is

an eigenvalue such that Re(s) < 0. Especially when α > 0 (for expansion), the

instability occurs at t → (R/2α). The imaginary part of s (Im(s)) represents

the dimensionless frequency of the corresponding perturbation. If s is real, the

perturbations either grow or decay monotonically.
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Substituting (33) into (27) and (28), we have the following eigenvalue prob-

lems:


















































− (ûxx + ûyy) +R(Fyû+ xFyy v̂) +R(xFyûx − Fûy) +Rp̂x

= −Rsû,

− (v̂xx + v̂yy) +R(−Fy v̂) +R(xFy v̂x − F v̂y) +Rp̂y

= −Rsv̂,

ûx + v̂y = 0, (α = 0)

(36)



















































− (ûxx + ûyy)− (αx)ûx − (αy)ûy − αû+R(Fyû+ xFyy v̂) +R(xFyûx − Fûy) +Rp̂x

= 2Gαsû,

− (v̂xx + v̂yy)− (αx)v̂x − (αy)v̂y − αv̂ +R(−Fy v̂) +R(xFy v̂x − F v̂y) +Rp̂y

= 2Gαsv̂,

ûx + v̂y = 0, (α ̸= 0)

(37)

where G = −1 for α < 0 and G = +1 for α > 0, all associated with the boundary

conditions






































û|y=1 = 0, v̂|y=1 = 0,

û|y=−1 = 0, v̂|y=−1 = 0,

û|x=0 = 0,
∂v̂

∂x
|x=0 = 0,

û− x
∂û

∂x
|x=xr

= 0,
∂v̂

∂x
|x=xr

= 0.

(38)

To overcome the difficulty of lacking a boundary condition for the pressure,

the discretization of the eigenvalue problem (37) (for α > 0) associated with (38)

is done on the staggered grid (Fig. 20) introduced by Harlow and Welch [27] .

The corresponding finite difference scheme is given in Appendix A. Similar finite

difference schemes have been constructed for eigenvalue problems associated

with other α.

The eigenvalue pencil of the real unsymmetric eigenvalue problem (A3) sat-

isfying (A4) contains real values and complex conjugate pairs. To detect the

flow instability, we need to seek the eigenvalues with the maximal or minimal
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real part that corresponds to the least stable eigenvalues. For the case of α ̸= 0

and the case of α = 0 and R < 0, the least stable eigenvalues are those with the

minimal real part (i.e., the minimum decay rate). For α = 0 and R > 0, the

opposite is true, and the least stable eigenvalues are those with the maximal

real part (i.e., the maximum growth rate).

We also need to determine a proper artificial boundary (the truncated chan-

nel length) x = xr for the eigenvalue computation. It should not be too large in

order to save the computational time. In the meanwhile it should not affect the

stability study. Fig. 10 shows the minimal real part of the eigenvalues (marked

by q) versus R for α = 1/2 with xr = 5, 10 and 20 and with a 10 × 800 mesh.

The figure suggests that the stability of the three types (types I, II and III) so-

lutions behaves the same for the three choices of artificial channel lengths. We

thus choose a smaller xr = 5 in all the following computations so as to reduce

the overall computational cost.

-30 -20 -10 0 10 20 30

-350

-300

-250

-200

-150

-100

-50

0

50

Figure 10: Real part (q) of the least stable eigenvalues for types I, II and III solutions with

α = 1/2.

We now numerically study the stability of symmetric steady solutions with

the wall expansion ratio −5 ≤ α ≤ 3 under the above mentioned parameter

setting. A uniform mesh (10 × 800) is used in our calculation of eigenvalues.
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The real part of the least stable eigenvalues for (36) and (37) is plotted versus

R in Figs. 11-13. We mark the minimal real part of the eigenvalues as q in the

case of α ̸= 0. When α = 0, q represents the maximal real part for R > 0 and

the minimum real part for R < 0.

-25 -15 -5 5 15 25

-80

-60

-40

-20

0

20

40

-15 -10 -5
0

1

2

Figure 11: Real part (q) of the least stable eigenvalues for types I, II and III solutions with

various values of α (−5 ≤ α ≤ −1/2) under perturbations of general form.
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Figure 12: Real part (q) of the least stable eigenvalues for types I, II and III solutions with

various values of α (0 ≤ α ≤ 2) under perturbations of general form.

Table 2: Comparison of the least stable eigenvalues for type I solutions with α = 2 and various

R (10 ≤ R ≤ 50).

R s of this paper s of [1]

10 5.25217952 + 15.23227764i 11.83190084

20 7.53177378 + 33.96909925i 27.36806892

30 9.80930566 + 52.75361865i 43.55348327

40 12.08494339 + 71.5616992i 59.49375546

50 14.36096663 + 90.38412325i 75.33930753

Table 3: The stability ranges of R of type I solutions with various values of α (−5 ≤ α ≤ 2)

under perturbations of general form.

α stability ranges of R α stability ranges of R α stability ranges of R

-5 (-14.315,∞) -1 (-6.759,∞) 1/2 (-5.905,∞)

-3 (-9.605,∞) -1/2 (-6.317,∞) 1 (−∞,∞)

-2 (-7.961,∞) 0 (-6.001,∞) 2 (−∞,∞)

For type I solutions with −5 ≤ α ≤ 2, when R > 0, we note that the real
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part of each of the eigenvalues is positive for α ̸= 0, and negative for α = 0,

namely no amplification of perturbations occurs and the injection flows are

always stable. In addition, we note that except for a small range of R > 0, the

least stable eigenvalues are not the same as that in the case of perturbations in

similarity form (13), while the stability range is the same. As an example, for

type I solutions with α = 2 and 10 ≤ R ≤ 50, the comparison of eigenvalues

with the minimum decay rate is shown in Table 2. For each case of R, the decay

rate of the present least stable perturbation is smaller than that of the least

stable perturbation of [1], implying that the present perturbation decays more

slowly. When R < 0 (that is, when there is suction), the stability of type I

solutions varies for different α. For each case of −5 ≤ α ≤ 1/2, as R decreases,

the branch q(I) representing the minimum decay rate crosses the line Re(s) = 0

at a particular value of R, which corresponds to the critical cross-flow Reynolds

number. Then the value of q becomes negative below this critical cross-flow

Reynolds number, which indicates that the perturbations are expected to grow

in time and the suction flows become unstable. For each case of 1 ≤ α ≤ 2, the

minimum decay rate for type I solutions is positive for R < 0 and hence these

type I flows are always stable in this region. The critical cross-flow Reynolds

numbers and the stability ranges of R of type I solutions with α = i (i = 0,

±1/2, ±1, ±2, −3 and −5) are shown in Table 3, which are consistent with

those in [1]. For α < 0 (in the case of wall contraction), we find that the critical

cross-flow Reynolds number decreases and the stability region increases as the

contraction ratio (|α|) increases; for α > 0 (in the case of wall expansion), the

critical R decreases and the stability region increases as the expansion ratio (α)

increases. One possible explanation for this behaviour is as follows: in the case

of wall contraction (α < 0), for larger contraction ratio (|α|), the channel half-

height d decreases faster. Combining (33) and (35), for the same least stable

eigenvalue s with positive real part, the perturbation with the larger contraction

ratio will decay more rapidly. When α > 0, for larger expansion ratio (α), the

channel half-height d increases faster. Then for the same least stable eigenvalue

s with positive real part, the perturbation with the larger expansion ratio will
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decay more rapidly. We further note that, when α is larger, i.e., α ≥ 1, and

R < 0, an inflection point (at which the acceleration changes from decrease to

increase) appears in the axial velocity profiles near the wall. We observe that

as R decreases to some point the flow reversal occurs near the wall since the

rapid volumetric expansion of the wall causes a sudden mass deficiency near

the closed head end. The incompressible fluid is thus forced to flow upstream

along the head end to occupy the space accompanying the expansion process.

Then the same fluid has to turn later and head downstream towards the suction

sites along the porous surface ([2]). This can be seen in Fig. 6 where the

axial velocity profiles of type I solutions are illustrated. In comparison with

the stability results of type I solutions with α = 1/2, where the axial velocity

profiles have no inflection points, it seems that the presence of an inflection

point (or the flow acceleration changes from decrease to increase) near the wall

may stabilize the flow.

For types II and III solutions with −5 ≤ α ≤ 2, the minimum decay rate

(q) remains negative for −∞ < R < Ri in the case of α = i (i = 0, ±1/2, ±1,

±2, −3 and −5), indicating that the perturbations are temporally amplified.

Consequently, types II and III solutions with −5 ≤ α ≤ 2 are always unstable.

Further, we note that q → −1 as R → −∞ for type II solutions with α = 0.

When α = 3, the minimum decay rate (q) for a range of R is shown in Fig. 13.

We note that the value of q for type I solutions is positive for R1
3 < R < ∞, the

least stable perturbations therefore decay with time and type I solutions (with

α = 3) are stable in this region. As opposed to type I solutions, the solutions

of types II and III for −∞ < R < R2
3 are unstable, since the perturbations are

expected to grow in time as indicated by the negative value of q. Similarly, for

type IV solutions, the value of q is negative for R1
3 < R < −0.796 and hence

type IV solutions are also unstable.
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Figure 13: Real part (q) of the least stable eigenvalues for types I, II, III and IV solutions

with α = 3 under perturbations of general form.
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R

−F ′′(1)
α = 1/2

R′

1/2
I1/2

I′1/2

I

Figure 14: Values of −F ′′(1) for the type I symmetric solutions, the asymmetric types I1/2

and I′
1/2

solutions. The point marked R′

1/2
represents the pitch-fork bifurcation. The solid

curves represent stable solutions, and the dashed curves represent unstable solutions.

Remark 3. The vanishing of q(I) suggests the existence of bifurcation. For

example, in the case of α = 1/2, the zero real eigenvalue at R = R′

1/2 = −5.905

corresponds to a “pitch-fork” bifurcation. Two types of asymmetric steady so-

lutions of (19) subject to (21) appear at R′

1/2 and form two branches of the

“pitch-fork” bifurcation. We name the types of these solutions I1/2 and I′
1/2
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(the mirror image of I1/2 in the center line of the channel), and the results are

shown in Fig. 14. The asymmetric solutions are characterized by a displacement

of the stagnation point towards one of the walls. The axial velocity increases

near this wall and decreases near the other one. This asymmetry effect increases

with the decrease of cross-flow Reynolds number. When R < −6.443 there is a

region close to one of the channel walls where the flow reverses. These asym-

metric (types I1/2 and I′
1/2) solutions are only stable for −14.299 < R < R′

1/2.

Since we consider mainly the stability of the symmetric steady solutions, we will

not expand this topic further here.

It is noted that we consider here not only perturbations of the similarity

form (13), but also perturbations of the non-similarity (general) form. Although

the linear stability (or instability) of the symmetric flows (with −5 ≤ α ≤ 3)

obtained here is the same as that under the perturbations of the similarity form

shown in [1], the least stable eigenvalues or the most unstable eigenvalues are

not all the same. For the case of α ̸= 0 and the case of α = 0 and R < 0,

the minimal real part of the eigenvalues (i.e., the minimum decay rate) of the

perturbations for some flows is smaller than that of [1]; for the case of α = 0

and R > 0, the maximal real part of the eigenvalues (i.e., the maximum growth

rate) of the perturbations for some flows is larger than that of [1]. As a result,

the least stable perturbations are expected to decay more slowly or grow faster.

A few more examples are given below.

For type I solutions with α = −0.5 and −1 ≤ R ≤ −0.2, the compar-

ison of the least stable eigenvalues (i.e., the eigenvalues with the minimum

decay rate) with those of [1] is shown in Table 4. In addition, the real parts

of the streamwise velocity eigenfunction û(x,−0.00125) and the normal veloc-

ity eigenfunction v̂(x, 0) corresponding to the present results of the least sta-

ble eigenvalues (in Table 4) are illustrated in Fig. 15. The eigenvectors v̂

(v̂ = (û 3

2
,1, · · · , ûM−

1

2
,N , v̂1, 3

2

, · · · , v̂M,N−
1

2

)T ) are normalised by using the cor-

responding 2-norm, so that the 2-norm of the eigenvectors is 1. It can be seen

from Table 4 that the least stable eigenvalues for R = −1 and R = −0.8 are in
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good agreement with those of [1]. For each case of R = −1 and R = −0.8, we

note that the perturbation (corresponding to the least stable eigenvalue) is of the

similarity form (13), and û(x, y) of streamwise velocity perturbation and v̂(x, y)

of normal velocity perturbation are real functions. Therefore, û(x,−0.00125)

plotted in Fig. 15(a) is proportional to x, and v̂(x, 0) plotted in Fig. 15(b) is

independent of x. Nevertheless, in each case of −0.6 ≤ R ≤ −0.2, the minimum

decay rate is smaller than that of [1] (see Table 4), implying that the corre-

sponding least stable perturbation decays more slowly. Further, we note that

the perturbation is not of the similarity form, since Re(û(x,−0.00125)) plotted

in Fig. 15(a) is not linear with respect to x, and Re(v̂(x, 0)) plotted in Fig.

15(b) changes with x.

For type III solutions with α = 2 and −55 ≤ R ≤ −35, Table 5 shows

the comparison of the most unstable eigenvalues (i.e., the eigenvalues with the

minimum decay rate) with those of [1]. In addition, the real parts of the stream-

wise velocity eigenfunction û(x,−0.00125) and the normal velocity eigenfunction

v̂(x, 0) for the present results of the most unstable eigenvalues (in Table 5) are

illustrated in Fig. 16. The eigenvectors v̂ are also normalized by using the cor-

responding 2-norm, and the 2-norm of the eigenvectors is 1. The most unstable

eigenvalue for R = −35 is in good agreement with that of [1] (see Table 5).

Moreover, the perturbation corresponding to this eigenvalue is of the similari-

ty form. This is reflected in the results of the real parts of the eigenfunction

components û(x,−0.00125) (plotted in Fig. 16(a)) and v̂(x, 0) (plotted in Fig.

16(b)) for R = −35. However, for each case of −55 ≤ R ≤ −40, the real part of

the most unstable eigenvalue is smaller than that of [1] (see Table 5), indicat-

ing that the corresponding most unstable perturbation grows faster. Further,

the perturbation is not of the similarity form as indicated by the results of the

real parts of û(x,−0.00125) (plotted in Fig. 16(a)) and v̂(x, 0) (plotted in Fig.

16(b)) for −55 ≤ R ≤ −40.
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Table 4: Comparison of the least stable eigenvalues for type I solutions with α = −0.5 and

various R (−1 ≤ R ≤ −0.2).

R s of this paper s of [1]

-1 8.54592635 8.54610042

-0.8 8.94762616 8.94779785

-0.6 9.10242071 9.35756576

-0.4 9.53456425 9.77561468

-0.2 10.10359465 + 0.44475746i 10.20215326

0 1 2 3 4 5
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0

1

10-4

(a)

1 2 3 4
-15

-10
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Figure 15: Real part of components of the eigenfunction. (a) û(x,−0.00125) of streamwise

velocity perturbation and (b) v̂(x, 0) of normal velocity perturbation. The results correspond

to the least stable eigenvalues for type I solutions with α = −0.5 and various Reynolds numbers

R (−1 ≤ R ≤ −0.2) shown in Table 4.

Table 5: Comparison of the most unstable eigenvalues for type III solutions with α = 2 and

various R (−55 ≤ R ≤ −35).

R s of this paper s of [1]

-55 −143.416051 + 75.392276i -141.404753

-50 −128.696684 + 68.487956i -127.025993

-45 −114.139808 + 61.875916i -113.025351

-40 −99.705781 + 55.539635i -99.335182

-35 −85.871012 -85.871057
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Figure 16: Real part of components of the eigenfunction. (a) û(x,−0.00125) of streamwise

velocity perturbation and (b) v̂(x, 0) of normal velocity perturbation. The results correspond

to the most unstable eigenvalues for type III solutions with α = 2 and various Reynolds

numbers R (−55 ≤ R ≤ −35) shown in Table 5.

4. Non-linear analysis

The linear stability analysis is an approximate analysis but not necessarily

always correct when long-time nonlinear dynamic systems are considered. As a

validation of the linear stability results for the symmetric steady suction flow,

we directly solve the original nonlinear time dependent problem (7), (8) subject

to the boundary conditions (22)-(25). The initial condition is given as

v(x, y, 0) = (xFy + ϕ1(x, y),−F + ϕ2(x, y)), (39)

where

(ϕ1, ϕ2) = (ε1sin(ξ1x+ η1y + θ1), ε2sin(ξ2x+ η2y + θ2)) (40)

is a small initial perturbation for a given steady flow (xFy,−F ). (ε1, ε2) is the

amplitude of the perturbation. (ξ1, ξ2) and (η1, η2) are the frequencies in x and

y directions of the perturbation, respectively. We can choose different (θ1, θ2)

for a sinusoidal or a cosine perturbation.

When α ̸= 0 and R < 0, a new variable t∗ = R
2α ln(1−

2αt
R ) is introduced so

as to have a usual time interval 0 ≤ t∗ < ∞. Substituting t∗ into (7) and (8)
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yields

∇ · v = 0, (41)

−
∂v

∂t∗
− (

α

R
x)

∂v

∂x
− (

α

R
y)

∂v

∂y
−

α

R
v + v · ∇v = −∇p+

1

R
△v, (42)

with the boundary conditions (22)-(25) and the initial condition (39).

We solve (41), (42) subject to (22)-(25) (where xr = 5) and (39) by means

of a finite difference method again. The spatial discretization makes use of

the staggered mesh, and we consider a simple explicit discretization in time (see

Appendix B). For the simplification of the presentation, the numerical results for

a few selected α (i.e., α = −5, −1/2, 1/2 and 1) are provided. Other cases can all

be calculated in the same way. Also for convenience, we only show the results for

above problem with the initial perturbation ϕ1 = ϕ2 = 0.0001sin(200x+200y).

We do test for various ϕ1 and ϕ2, and obtain the same stability results.

The time evolutions of the perturbed axial velocity (u(4.5, y, t∗)/4.5) of types

I, II and III solutions (for some values of R and α) are displayed in Figs. 17,

18 and 19, respectively. The axial velocity profiles (F ′(y)) of these steady flows

are also shown (red solid lines). For type I solutions, the results are shown in

Fig. 17. When α = −5, for R = −14.3 (see Fig. 17(a)), we note that the curves

do not change significantly with time, and can not be visually distinguished

beyond t∗ = 10, indicating that the steady flow of type I is stable at R = −14.3.

Whereas for R = −14.4 (see Fig. 17(b)), the curves change into different forms

over time, so the steady flow is unstable at R = −14.4. The other cases for

R > −14.3 are also examined and the same results are obtained as that at

R = −14.3. Thus, we can infer that there is a critical R between −14.4 and

−14.3 for α = −5. When α = −1/2, for R = −6.3 (see Fig. 17(c)), the profiles

beyond t∗ = 10 become indiscernible, signifying the steady flow is stable at this

R. Whereas for R = −6.4 (see Fig. 17(d)), with the time evolution, the axial

velocity increases near the lower wall and decreases near the upper wall. When

the time exceeds t∗ = 1200, the axial velocity does not change. That is, the flow

evolves into a new asymmetric steady state. Therefore, the symmetric flow of

type I at R = −6.4 is unstable. The flows for R > −6.3 are also examined and
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appear to be stable. Thus, we can obtain that a critical R exists between −6.4

and −6.3 for α = −1/2. Similarly, when α = 1/2, it can be seen from Fig. 17(e)

that the axial velocity at R = −5.9 does not change significantly with time.

While the axial velocity at R = −6 shown in Fig. 17(f) increases near the lower

wall and decreases near the upper wall with time, and the flow finally turns into

an asymmetric steady flow (i.e., the flow of type I′
1/2). This indicates that the

stability changes between R = −6 and R = −5.9. When α = 1, the results for

R = −10 and −50 are shown in Figs. 17(g) and 17(h), respectively. As time

goes on, the curves of each solution become indistinguishable, indicating that

the two steady solutions of type I are stable.
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Figure 17: Spatial variations of the perturbed axial velocity u(4.5, y, t∗)/4.5 for some values

of t∗, and the corresponding axial velocity profiles F ′(y) of the steady solutions of type I for

some values of α and R: (a) α = −5, R = −14.3, (b) α = −5, R = −14.4, (c) α = −1/2,

R = −6.3, (d) α = −1/2, R = −6.4, (e) α = 1/2, R = −5.9, (f) α = 1/2, R = −6, (g) α = 1,

R = −10, and (h) α = 1, R = −50.

For types II and III solutions of each case of −5 ≤ α ≤ 1 (i.e., α = −5, −1/2,

1/2 and 1), the numerical simulations are performed for a certain R near which

the solutions appear, and the results are shown in Figs. 18 and 19. For α = −5
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and R = −14.5 (in Figs. 18(a) and 19(a)), we note that with the time evolution,

the profiles change constantly and tend to the profile of type I solution that we

have discussed before. For α = −1/2 and R = −12.6, as illustrated in Figs.

18(b) and 19(b), as time goes, flow reversals gradually transfer from the center

of the channel to the lower and upper walls, respectively. The flows ultimately

turn into two different asymmetric steady states (which are mirror images of

each other in the center line of the channel). For α = 1/2 and R = −11.8 (in

Figs. 18(c) and 19(c)), as time goes, the flow reversals first transfer from the

center of the channel to the upper and lower walls, and then gradually disappear

from the upper wall of the channel. The flows of types II and III eventually

become the same asymmetric steady flow (i.e., the flow of type I1/2) with flow

reversal being only near the lower wall. For α = 1 and R = −11.3 (in Figs.

18(d) and 19(d)), it can be seen that after a period of time, the flows of types

II and III turn into the symmetric steady flow of type I.
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Figure 18: Spatial variations of the perturbed axial velocity u(4.5, y, t∗)/4.5 for some values

of t∗, and the corresponding axial velocity profiles F ′(y) of the steady solutions of type II for

some values of α and R: (a) α = −5, R = −14.5, (b) α = −1/2, R = −12.6, (c) α = 1/2,

R = −11.8, and (d) α = 1, R = −11.3.
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Figure 19: Spatial variations of the perturbed axial velocity u(4.5, y, t∗)/4.5 for some values

of t∗, and the corresponding axial velocity profiles F ′(y) of the steady solutions of type III

for some values of α and R: (a) α = −5, R = −14.5, (b) α = −1/2, R = −12.6, (c) α = 1/2,

R = −11.8, and (d) α = 1, R = −11.3.

5. Conclusion

In this numerical study, the multiple symmetric similarity solutions of a flow

problem occurring in a uniformly porous channel with expanding (or contract-

ing) walls are considered in a range of the wall expansion ratios α, say, [−5, 3].

We examine the linear temporal stability of these solutions under perturbations

of general form (including similarity and non-similarity forms). Through a fi-

nite difference method on a staggered grid we solve two-dimensional eigenvalue

problems associated with the linear stability analysis and the stability of these

solutions is then obtained. That is, type I solutions in each case of −5 ≤ α ≤ 1/2

are only stable for a range of R (cross-flow Reynolds number), and type I solu-

tions with 1 ≤ α ≤ 3 are stable for all R where they exist. Further, it is found

that for α < 0 (in the case of wall contraction), the stable region of R increas-

es as the contraction ratio (|α|) increases; for 0 < α ≤ 1 (in the case of wall

expansion), the stable region increases as the expansion ratio (α) increases. So

the expansion ratio α has a great influence on the stability of the flows of type

I, and it seems that the presence of an inflection point of axial velocity (or the

flow acceleration changes from decrease to increase) near the wall may stabilize

the flow. In addition, other types of flows whose axial velocity profiles have an

inflection point near the center of the channel are always unstable, suggesting
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that these flows may transition to turbulence prior to physically attaining these

shapes. In other words, these flows may not be physically observable.

Although the stability (or instability) of these steady flows obtained here

under perturbations of general form is the same as that under the perturbations

of the similarity form shown in [1], the minimum decay rate or maximum growth

rate of the perturbations are not all the same. For the case of α ̸= 0 and the case

of α = 0 and R < 0, the minimal real part of the eigenvalues (i.e., the minimum

decay rate) of the perturbations for some flows is smaller than that of [1]; for

the case of α = 0 and R > 0, the maximal real part of the eigenvalues (i.e., the

maximum growth rate) of the perturbations for some flows is larger than that

of [1]. As a result, the least stable perturbations are expected to decay more

slowly or grow faster.

On the other hand, non-linear analysis has been carried out by directly solv-

ing the original nonlinear time dependent problem with an initial perturbation

of general form. It is found that the stability results agree well with those

obtained from the linear stability analysis.
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APPENDIX A: Discretization of eigenvalue problem

Discretization of the eigenvalue problem (37) (for α > 0) associated with

(38) is based on a finite difference method with the staggered grid (Fig. 20)
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[27]. The finite difference scheme is as following:
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F ′′

j v̂i+ 1

2
,j) +R(xi+ 1

2

F ′

j(
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where v̂i+ 1

2
,j =

1
4
(v̂i,j+ 1

2

+ v̂i+1,j+ 1

2

+ v̂i,j− 1

2

+ v̂i+1,j− 1

2

), h and k are grid sizes.

The set of grid points in the xy plane is given by (xi, yj) = ((i− 1
2
)h,−1+ (j −

1
2
)k), where i, j are integers. ûi+ 1

2
,j , v̂i,j+ 1

2

and p̂i,j are the approximations of

û(ih,−1 + (j − 1
2
)k), v̂((i− 1

2
)h,−1 + jk) and p̂((i− 1

2
)h,−1 + (j − 1

2
)k).

To fix an arbitrary constant associated with the solution of the pressure,

without losing generality, we let p̂1,1 = 0 and ignore the first discretized conti-

35

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
5
1
8
4
6



pi,j
ui− 1

2
,j

vi,j+ 1

2

vi,j− 1

2

ui+ 1

2
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Figure 20: The staggered grid.

nuity equation with i = 1 and j = 1. Then we can write the eigenvalue problem

into the matrix vector form:

Av̂ +Bp̂ = sv̂, (A3)

W v̂ = 0, (A4)

where v̂ = (û 3

2
,1, · · · , ûM−

1

2
,N , v̂1, 3

2

, · · · , v̂M,N−
1

2

)T , p̂ = (p̂2,1, · · · , p̂M,N )T , A is

an n×nmatrix, B is an n×mmatrix of rankm andW anm×nmatrix of rankm.

Here, n = (M−1)×N+M×(N−1) andm = M×N−1. Following the approach

in [28, 29], do QR decomposition of WT : WT = QR = [Q1, Q2]R = Q1R1,

where Q is n × n orthogonal, Q1 is n × m, Q2 is n × (n − m), R is n × m

and R1 (which is composed of the first m rows of R) is m×m nonsingular and

upper triangular. Eliminating p̂ using W v̂ = 0, we thus essentially obtain the

eigenvalue problem QT
2 (A−B(QT

1 B)−1QT
1 A)Q2z = sz, where z = QT

2 v̂.

Therefore, the original eigenvalue problem has precisely n − m eigenval-

ues, which can be obtained by solving the eigenvalues of the matrix QT
2 (A −

B(QT
1 B)−1QT

1 A)Q2.

36

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
5
1
8
4
6



APPENDIX B: Discretization of original nonlinear time dependent

problem

The approximation of (41) and (42) is



























































































































































































− (
un+1

i+ 1

2
,j
− un

i+ 1

2
,j

τ
)−

α

R
(xi+ 1

2

)(
un+1

i+ 3

2
,j
− un+1

i− 1

2
,j

2h
)

−
α

R
(yj)(

un+1

i+ 1

2
,j+1

− un+1

i+ 1

2
,j−1

2k
)−

α

R
un+1

i+ 1

2
,j
+ un

i+ 1

2
,j(

un
i+ 3

2
,j
− un

i− 1

2
,j

2h
)

+ vni+ 1

2
,j(

un
i+ 1

2
,j+1

− un
i+ 1

2
,j−1

2k
) + (

pn+1
i+1,j − pn+1

i,j

h
)

−
1

R
(
un+1

i+ 3

2
,j
− 2un+1

i+ 1

2
,j
+ un+1

i− 1

2
,j

h2
+

un+1

i+ 1

2
,j+1

− 2un+1

i+ 1

2
,j
+ un+1

i+ 1

2
,j−1

k2
) = 0,

i = 1, · · · ,M − 1, j = 1, · · · , N

− (
vn+1

i,j+ 1

2

− vn
i,j+ 1

2

τ
)−

α

R
(xi)(

vn+1

i+1,j+ 1

2

− vn+1

i−1,j+ 1

2

2h
)

−
α

R
(yj+ 1

2

)(
vn+1

i,j+ 3

2

− vn+1

i,j− 1

2

2k
)−

α

R
vn+1

i,j+ 1

2

+ un
i,j+ 1

2

(
vn
i+1,j+ 1

2

− vn
i−1,j+ 1

2

2h
)

+ vni,j+ 1

2

(
vn
i,j+ 3

2

− vn
i,j− 1

2

2k
) + (

pn+1
i,j+1 − pn+1

i,j

k
)

−
1

R
(
vn+1

i+1,j+ 1

2

− 2vn+1

i,j+ 1

2

+ vn+1

i−1,j+ 1

2

h2
+

vn+1

i,j+ 3

2

− 2vn+1

i,j+ 1

2

+ vn+1

i,j− 1

2

k2
) = 0,

i = 1, · · · ,M, j = 1, · · · , N − 1

un+1

i+ 1

2
,j
− un+1

i− 1

2
,j

h
+

vn+1

i,j+ 1

2

− vn+1

i,j− 1

2

k
= 0, i = 1, · · · ,M, j = 1, · · · , N

where vn
i+ 1

2
,j

= 1
4
(vn

i,j+ 1

2

+ vn
i+1,j+ 1

2

+ vn
i,j− 1

2

+ vn
i+1,j− 1

2

), un
i,j+ 1

2

= 1
4
(un

i− 1

2
,j
+

un
i+ 1

2
,j
+un

i− 1

2
,j+1

+un
i+ 1

2
,j+1

). The boundary conditions (22)-(25) (where xr = 5)
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are interpreted as















































































un+1

i+ 1

2
,N+1

+ un+1

i+ 1

2
,N

2
= 0, vn+1

i,N+ 1

2

= −1, i = 1, · · · ,M

un+1

i+ 1

2
,1
+ un+1

i+ 1

2
,0

2
= 0, vn+1

i, 1
2

= 1, i = 1, · · · ,M

un+1
1

2
,j

= 0,
vn+1

1,j+ 1

2

− vn+1

0,j+ 1

2

h
= 0, j = 1, · · · , N

un+1

M+ 1

2
,j
− 5

un+1

M+ 1

2
,j
− un+1

M−
1

2
,j

h
= 0, j = 1, · · · , N

vn+1

M+1,j+ 1

2

− vn+1

M,j+ 1

2

h
= 0, j = 1, · · · , N

and the initial condition (39) is interpreted as











u0
i+ 1

2
,j = xi+ 1

2

F ′

j + (ϕ1)i+ 1

2
,j , i = 1, · · · ,M − 1, j = 1, · · · , N

v0i,j+ 1

2

= −Fj+ 1

2

+ (ϕ2)i,j+ 1

2

, i = 1, · · · ,M, j = 1, · · · , N − 1

where h and k are the dimensions of the grids, and τ is the time increment.

un+1

i+ 1

2
,j
, vn+1

i,j+ 1

2

and pn+1
i,j are the approximations of u(ih,−1 + (j − 1

2
)k), v((i−

1
2
)h,−1+jk) and p((i− 1

2
)h,−1+(j− 1

2
)k) at the time t∗ = (n+1)τ , where n =

0, 1, 2, · · · . We impose pn+1
1,1 = 0 as before to fix the arbitrary constant associated

with the pressure solution. In the meantime, the discretized continuity equations

for i = 1, j = 1 are ignored. Then the unknown values at time n+1 are uniquely

determined and can be solved step by step.

Data availability

The data that support the findings of this study are available from the

corresponding author upon reasonable request.
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