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Abstract—Deep convolutional neural networks are widely used
to learn feature spaces for image classification tasks. We propose
cam-softmax, a generalisation of the final layer activations and
softmax function, that encourages deep feature spaces to exhibit
high intra-class compactness and high inter-class separability.
We provide an algorithm to automatically adapt the method’s
main hyperparameter so that it gradually diverges from the
standard activations and softmax method during training. We
report experiments using CASIA-Webface, LFW, and YTF face
datasets demonstrating that cam-softmax leads to representations
well suited to open-set face recognition and face pair matching.
Furthermore, we provide empirical evidence that cam-softmax
provides some robustness to class labelling errors in training
data, making it of potential use for deep learning from large
datasets with poorly verified labels.

I. INTRODUCTION

Deep convolutional neural networks (DCNNs), that learn to
map images to abstract representations using local composi-
tional structure in their many layers of neurons, have domi-
nated advances in image classification tasks in recent years.
Deep representation learning can yield feature spaces useful
for discriminating between classes not directly represented in
the training data. Ideally, a deep feature space should exhibit
high intra-class compactness and high inter-class separability.
We propose a modification to the final layer activations and
softmax function that encourages such feature spaces to be
learned.

There are many applications for which acquiring reli-
ably labelled data sets for deep learning is challenging or
prohibitively expensive; the scale of the datasets used for
deep learning makes quality control challenging, resulting
in datasets with large numbers of incorrectly labelled ex-
amples [1]. The method we propose exhibits robustness to
such labelling errors, facilitating learning from large unreli-
ably labelled datasets. It does so by automatically adapting
a parameter that controls attenuation of learning gradients
for examples likely to be mislabelled, and amplification of
gradients for examples likely to be correctly labelled.

After describing and discussing the proposed method,
which we call cam-softmax, we report experiments on several
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tasks and datasets. We compare to Sphereface [2] and AM-
softmax[3] because of their competitive performance and
similarities in approach. Firstly, we evaluate performance on
two pairwise face matching benchmarks, LFW and YTF,
and obtain a substantial performance boost over the softmax
activation, reaching performance in line with the state-of-the-
art in direct comparisons. Secondly, given that performance
on the LFW pairwise matching benchmark is becoming sat-
urated, we follow the more challenging open-set protocol
described in [4] and obtain performance gains compared to
standard softmax, am-softmax [3], and sphereface [2]. Thirdly,
we demonstrate cam-softmax’s robustness to labelling errors
using the face datasets and Fashion-MNIST [5] dataset with
deliberately corrupted class labels. We investigate its ability
to preferentially attenuate learning gradients for mislabelled
examples.

In summary, the main contributions of this paper are as
follows.

1) A heuristic modification to the final layer activations
and softmax function that (i) leads to learned deep
feature spaces exhibiting high intra-class compactness
and inter-class separability, and (ii) facilitates learning
from noisily labelled training data.

2) A method to automatically tune the main hyperparame-
ter of the method, avoiding the need for time-consuming
parameter search.

3) Face recognition experiments on the LFW and YTF
pairwise benchmarks as well as on the LFW open-
set benchmark, with direct comparison of cam-softmax,
Sphereface [2], AMSoftmax [3], and the baseline stan-
dard activations with softmax.

4) Experiments, using face matching, CIFAR-10 and
Fashion-MNIST datasets, investigating the effect of
training set label noise on cam-softmax and those other
methods.

II. RELATED WORK

DCNNs are now widely used for learning discriminative im-
age representations, achieving state-of-the-art results on many
tasks such as face recognition [2, 6] and object recognition [7].
Deep representation learning has been used for scenarios in
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which classes not present in training data need to be discrim-
inated, important examples being verification on previously
unseen classes, and open-set recognition. Methods designed to
learn generalisable representations that encourage intra-class
compactness and inter-class separability, even for previously
unseen classes, include those that introduce an extra loss term
directly on the deep features [6, 8, 9, 10], and those that modify
the softmax activation function [2, 3, 11, 12, 13, 14]. We note
in passing that stochastic modifications to activations have
been proposed such as the noisy softmax used to avoid early
saturation [15]. Here we focus on deterministic modifications.

Methods that introduce an extra loss term can create difficul-
ties during training. Multiple loss terms need careful weight-
ing to balance their contributions correctly. Facenet [6] is
trained on triplets of examples, however the selection of these
is not straightforward. The exponential relationship between
dataset size and the number of possible triplets necessitates a
carefully defined policy for triplet selection. Centre loss [8]
and contrastive loss [10] augment cross-entropy loss with
terms computed directly on feature space. Centre loss requires
a mechanism to track every class centre in feature space
as the model is trained. Contrastive loss considers pairs of
training examples, encouraging their feature represenations
to be similar if they are in the same class and dissimilar
otherwise.

Large margin softmax loss modifies softmax by introducing
an angular margin between classes and uses cosine similar-
ity [11]. SphereFace [2] takes this idea further by incorporating
weight vector normalization. However, both use an activation
function that has multiple discontinuities in its first derivative
and multiple zero-crossing in its second derivative which leads
to convergence problems. This is eased somewhat by using a
linear combination of the standard softmax with their modified
activation; a free parameter λ controls the relative weights of
these two terms and is kept high enough that the standard
softmax dominates. However, even after the introduction of
this weighting parameter, the authors’ published code nor-
malizes the gradient to further tackle the issue. We would
like to highlight that our method is considerably less involved
and easier to implement while not suffering from convergence
problems. Furthermore, whereas the margin parameter in [2]
is unbounded and constrained to be integer, the c parameter in
our method is bounded and continuous, enabling more precise
control.

Other studies introduce additive margins to the softmax
activation function [3, 12]. This is equivalent to adding a
constant bias to the output of the last fully connected layer
that represents the expected label. Additive margin shifts the
range of the cosine function by a constant. Unlike cam-softmax
this lacks the ability to control the magnitude of the gradient
based on the appropriateness of the extracted deep features.

Methods modifying the softmax activation function [2, 3,
11, 12, 13, 14] commonly introduce a margin parameter. Some
studies [2, 11] introduce an extra parameter to control the rate
with which the margin parameter is changed towards its final
value during training. Performing grid-search on the final value

Fig. 1. A deep neural network trained to map input images to class labels
via a hidden representation, z. The bottleneck and FC components are fully
connected layers

and the rate of change is computationally expensive. In III-D
we suggest a dynamic approach to reduce the number of free
parameters. In our method, the main parameter is bounded
and automatically adjusted during training without requiring
its final value to be determined beforehand.

III. CAM-SOFTMAX

A. Softmax and cross-entropy

Fig. 1 shows a typical deep image classifier set-up; a
network maps input images x to deep feature vectors z ∈ Rd,
and a final layer performs classification in this feature space.
Given a training set of N examples, where t(n) is the target
class for the nth example, the cross-entropy loss is often used:

L = − 1

N

N∑
n=1

K∑
k=1

1(t(n) = k) log yk (1)

Here yk is the probability of class k, computed using a softmax
activation function:

yk =
ew

T
k z∑

j e
wT

j z
(2)

If both the deep feature vector and the weight vectors are
normalised, a neuron’s activation is the cosine of the angle,
θ, that its weight vector makes with the feature vector, i.e.,
wT
j z = cos θj . In what follows we will assume these vectors

have been normalised.

B. Attenuating the target neuron’s activation

We aim to modify computation of the final layer softmax
and activations so that the learned deep feature representation,
z, will exhibit better intra-class compactness and inter-class
separability. This is achieved by encouraging reduced angles
between z and target neuron weight vectors. The modification
we propose has the target class neuron compute its activation
differently from other output neurons during training. A soft-
max activation function (3) is applied to activations computed
according to (4) where the neuron for the target class computes
its activation using (5). Here t denotes the target for the current
example (and superscript n has been omitted).

yk =
eak∑
j e
aj

(3)

ak = 1(k 6= t)(wT
k z) + 1(k = t)(f(z,wk; c)) (4)

f(z,wk; c) =
(cos θk + 1)g(c)

2(g(c)−1)
− 1 (5)



The parameter c ∈ [0, π] can be considered to be a free
parameter. For convenience we parameterise c such that
f(z,wk; c) = 0 when θk = c,

g(c) = − 1

log2(cos c + 1)− 1
(6)

In particular, setting c = π
2 recovers the standard activations

normally used with softmax (Equation (2)). Setting c < π
2

reduces the target neuron’s activation and therefore encourages
the network to reduce the angle between the feature vector and
the neuron’s weight vector. Fig. 2(a) plots the activation as a
function of θk for three different values of c. Note that these
activations are always bounded by 1 and −1.

Equations (7) and (8) give partial derivatives required for
backprop for the case k = t.

∂ak
∂z

= g(c)wT
k (1− z2)(cos θk + 1)g(c)−1

1

2g(c)−1

+
z(cos θk + 1)g(c)−1 − 2g(c)−1z

2g(c)−1

(7)

∂ak
∂w

= g(c)zTk (1−w2)(cos θk + 1)g(c)−1
1

2g(c)−1

+
w(cos θk + 1)g(c)−1 − 2g(c)−1w

2g(c)−1

(8)

Fig. 2(b) plots the relationship between the partial derivative
∂at
∂wt

and the angle θt for three different values of the parameter
c. The derivative has a simple form compared to Sphereface [2]
where the second derivative has multiple zero crossings.

Finally, a scale parameter, s, and an offset parameter, m, can
be added in a similar manner to the angular margin proposed
in [3]. Equation (9) shows the resulting activation for k = t.
We refer to the use of softmax with this activation as cam-
softmax. The use of scale and offset is discussed elsewhere [3,
16, 17, 18]. Accordingly we fix their values to s = 30 and
m = 0.25 and do not study their effect further here.

fcam(z,wk; c) =
s((cos θk + 1)g(c) −m)

2(g(c)−1)
− 1 (9)

C. Discussion of cam-softmax

Cam-softmax can be used to obtain deep feature space
representations with improved intra-class compactness and
inter-class separation (see Section IV). When trained on a
sufficiently large dataset, the feature space then provides a
good representation for discriminating between previously
unseen classes from the same domain. As can be seen in
Fig. 2(a), reducing c below π/2 reduces the activation of the
target neuron, decreasing the probability computed by softmax
for the target class. Achieving a low loss then requires the use
a feature space in which feature vectors for the target class
are concentrated closer to the target neuron’s weight vector.

Consider a toy setting in which z is two-dimensional (d =
2) and there are just two output neurons corresponding to two
classes. Fig. 3(a) shows a function that could be computed by
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Fig. 2. (a) Target activation ak versus θk and (b) derivative of ak with respect
to θk , for three different values of c. (The activation and its derivative from
[2, 11] are also shown for m = 4, λ = 5).
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Fig. 3. The effect of c in the case of two classes and two-dimensional feature
space. A function computed by a neuron with (a) a standard softmax activation
(c = π

2
), (b) and (c) a modified softmax (c = π

3
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one of these output neurons with standard softmax activations.
Notice that the decision boundary is wT

1 z − wT
2 z = 0. The

loss function encourages feature vectors for class k to have
larger signed distances from their corresponding discriminant
(orthogonal to wk) than from other discriminants, since larger
distance results in larger posterior probability. Spreading out
the features computed for a class in directions orthogonal
to wk will not alter the neuron’s output and thus will not
affect this neuron’s contribution to the loss. However, the
contribution of other output neurons to the loss is likely to
be affected by such a change. Rather than relying on other
class distributions to prevent a class’s feature vectors from
being unnecessarily spread out, our modification encourages
this behaviour more directly. Returning to our two-dimensional
example, Figs. 3(b) and 3(c) show functions that could be
computed by an output neuron by setting f as suggested in (5)
or (9).



Furthermore, cam-softmax exhibits robustness to training
set label noise. It can be used to a learn classifier from training
data in which some of the training examples have incorrect
class labels. Assuming that the model learns increasingly class-
compact features during training, training examples with high
angular distance between their feature vector z and target
weight vector w are likely to be incorrectly labelled (or very
hard) examples, especially towards the end of training. These
are the examples with large loss. By decreasing c, back-
propagation gradients close to correct predictions will tend
to be amplified whereas for badly incorrect predictions they
will tend to be attenuated. This can be seen in Fig. 2(b) and by
examining the derivatives in (8) and (7). Attenuating gradients
belonging to hard or mislabelled examples enables the model
to converge further on the other examples. Therefore, in
order to encourage robustness to mislabelled data, c can by
decreased during training.

D. Reducing c during training

We propose a method to automatically reduce the value of
parameter c during training that avoids the need to specify its
final value. Decreasing c encourages intra-class compactness
and inter-class separation in the learned deep feature space. We
use the ratio of within-class to between-class distance to decide
when to decrease c. We use temporal averages to estimate the
within-class and between-class distances during training. Their
ratio, Rn, is calculated at time-step n for a window of size N
using (10). The parameter c is decreased by λ at time-step n
if Rn = min{Ri}i=ni=0 . (In our experiments, λ = 0.0002 and
N = 100).

Rn =

∑N
i=0 θtn−i,n−i∑N

i=0
1
K

∑K
k 6=t θkn−i,n−1

(10)

IV. EXPERIMENTS

A. Training on CASIA-WebFace

The CASIA-WebFace [19] dataset is a widely used publicly
available dataset of images for face recognition research. It
has almost half a million images of more than ten thousand
faces downloaded from the IMDb website. It is commonly
used as a training set for the Labeled Faces in the Wild
(LFW) benchmark due to its availability and size. We used
the CASIA-Webface dataset to train our networks so that our
experiments can be repeated by other researchers. We used
the network architecture and training protocol presented in
[2], implemented in the Torch framework and running with
an NVIDIA GeForce GTX 1080 Graphics Card. We reduced
the learning rate from 0.1 to 0.0001 over 18 epochs on a
logarithmic schedule. We trained for 20 epochs. When we run
comparisons with AM-softmax and Sphereface methods, we
trained them using our implementation set-up (“our settings”)
to enable a fair and direct comparison.

Fig. 4 (a) shows the value of parameter c changing auto-
matically during training. Fig. 5 uses the t-SNE visualisation
algorithm to illustrate the ability of cam-softmax to increase
intra-class compactness. Plotted are eight sampled classes from

Fig. 4. Change in parameter c during training on CASIA-Webface

(a)

(b)
Fig. 5. t-SNE feature space visualisations using standard activations and
softmax (c = π/2) and cam-softmax (c = π/2 − 0.26). Visualisations in
feature space of (a) images of 8 faces sampled from the training set, and (b)
images of 8 faces not present in the training set (from the LFW dataset).

the training set, and eight face classes not present at all in the
training set. In both cases, examples of the same class formed
tighter clusters when using cam-softmax.

B. Face pair matching

We followed the unrestricted with labelled outside data
protocol suggested by [20] to evaluate face pair matching
performance. This protocol randomly selects pairs and defines
a 10-fold cross validation, equally balancing the same and
different samples in each fold. The aim is to maximise pair
matching accuracy on the 10 folds. The pair matching task
is to decide whether a pair of previously unseen face images
are of the same person or not. Furthermore, we evaluated pair
matching on the YTF face video dataset [21]. To match videos
in YTF we calculate distances between all face images pairs
in two videos and take an average score. There are 6,000 LFW
pairs and 10,000 YTF test pairs; in each set half are of the
same face and half are of different faces.

Table I gives the average accuracies achieved over 10 folds.
We include LFW results reported in the literature but note that



these might not be directly comparable due to various different
factors at training and test time. Cam-softmax was more ac-
curate than using standard activations and softmax (equivalent
to cam-softmax with c fixed at π/2). Cam-softmax and AM-
softmax had similar accuracies on LFW. Cam-softmax was
more accurate than AM-softmax and sphereface on YTF.

C. Open-set face recognition

Real life applications often require discrimination between
known and unknown people as well as identification of known
identities. For open-set recognition, we follow the protocol
proposed by [4]. We summarize the protocol here for com-
pleteness. First, we divide the LFW dataset into knowns and
unknowns. The set of known identities, K, consists of those
with three or more images. The set of unknowns, U , consists
of those with only a single image. Identities with two or three
images are not considered. Let I be a set of identities in K. We
use superscript to indicate identity, i.e., Ki contains images of
the ith person, i ∈ I . We further divide the known population
into a gallery set G ∈ K and a probe set P ∈ K such
that the first three images of an identity belong to the gallery
Gi = Ki

[1,3] and the rest belong to the probe P i = Ki
(3,|Ki|].

To calculate similarity s(̇) between an identity and a query
we take the maximum of the cosine similarities between the
query and each image of that identity. For the jth probe of
identity i we calculate a ranking measure according to (11).
To calculate detection rate for a given rank r we use (12) .

rank(pij) = |{k|s(Gi, pij) <= s(Gk, pij); k ∈ I}| (11)

DR(r) =
|{pij |rank(pij) <= r; pij ∈ P}|

|P |
(12)

We evaluate identification performance at different False
Alarm Rates (FAR) where FAR is a proxy parameter for a
similarity threshold τ . First, we calculate similarity scores
between known gallery identities I and unknown examples
U and sort those in descending order according to (??).
The threshold τ for a specific FAR is computed as in [4].
Identification rate for a similarity threshold τ is calculated as;

|{pij |s(Gi, pij) ≥ τ ; pij ∈ P}|
|P |

(13)

Figs. 6 (a) and (b) show LFW detection and identification rates
at different FARs for cam-softmax, am-softmax, sphereface,
and softmax. Cam-softmax performed best.

D. Robustness to labelling errors

We built a toy example to confirm that gradients are indeed
preferentially reduced for mislabelled training examples. First,
we trained a network with standard final layer activations to
convergence on the (correctly labelled) CIFAR10 dataset. We
then mislabelled half of the dataset uniformly at random and
ran one last epoch on the trained model without weight update.
We ran this last epoch independently using the standard activa-
tions and softmax, and then using cam-softmax instead. During

cam-softmax

(a)

cam-softmax

(b)

Fig. 6. (a) Detection rates and (b) identification rates on LFW following the
open set recognition protocol.

this epoch we recorded layer-wise gradients for the correctly
labelled examples and the incorrectly labelled examples. Fig. 7
shows, as expected, that lowering the parameter c decreased
the gradients for mislabelled examples and amplified those for
correct examples.

We deliberately mislabelled examples in the Fashion-
MNIST training set [5]. This dataset contains 10 classes of
clothing. In real world scenarios classes with similar visual
properties are confused more often, e.g., it is more likely
that a pullover gets confused with a coat rather then with a
bag. To mimic this behaviour we first trained a linear kernel
SVM to obtain a confusion matrix M . For each class ci
we calculated the misclassification probability by summing
relevant entries:

∑
j 6=iMi,j . Classes were then randomly se-

lected proportional to their misclassification probability. Once
a class was selected, an example of that class was selected
for mislabelling uniformly at random without replacement. To
generate a new incorrect label for an example in ci we use
the relevant row of the confusion matrix, Mi as a probability
distribution to sample the new label while guaranteeing that the
correct label is not assigned. The mislabelling rate is denoted
r. For example, exactly 50% of examples are mislabelled when
r = 0.5 (assuming the data are perfectly labelled to start with).
Note that when r = 1.0 (i.e., every label is incorrect) the
model might learn not to assign the right label, and perform
worse than chance at test time. For Fashion-MNIST we used a
network with two convolutional layers with kernel size (2∗2),
and 16 and 32 filters, respectively, trained for 40 epochs. Fig 8
reports accuracies obtained for different mislabelling rates, r.
Cam-softmax was the most robust to mislabelling, especially
for high r.



Methods reported
(LFW)

our settings
(LFW)

our settings
(YTF)

r = 0.5
(LFW)

r = 0.5
(YTF)

Softmax 97.08% 96.50% 86.84% 95.35% 85.66%
AM-Softmax 99.17% 98.90% 90.46% 98.53% 90.12%
Sphereface 99.42% 98.30% 89.80% 97.93% 88.70%
cam-softmax 98.89% 98.89% 90.57% 98.71% 90.12%

TABLE I
ACCURACY ON LFW AND YTF PAIR MATCHING. COLUMN 2: ACCURACIES REPORTED IN LITERATURE. COLUMNS 3 AND 4: ACCURACIES UNDER OUR

SETTINGS (FOR DIRECT COMPARISONS). COLUMNS 5 AND 6: ACCURACIES WHEN HALF THE TRAINING DATA ARE INCORRECTLY LABELLED.

(a)

(b)

Fig. 7. Average gradient magnitudes of a trained model on correct and
mislabelled examples using (a) standard activations and softmax, and (b) cam-
softmax with c = 0.3

cam-softmax

Mislabelling rate

Fig. 8. Accuracy versus mislabelling rate on the Fashion-MNIST dataset

Finally, we randomly mislabelled half of the examples in
the CASIA face dataset by selecting new labels uniformly at
random from the incorrect labels. We trained the networks on
it and tested on the face benchmarks. The last two columns of
Table I report the accuracies obtained. Cam-softmax achieved

cam-softmax

(a)

cam-softmax

(b)

Fig. 9. (a) Detection rates and (b) identification rates for LFW open
set recognition when models were trained on CASIA-Webface with 50%
mislabelled examples.

the best pair matching performance on LFW, and equal best
on YTF. Figs. 9 (a) and (b) show that cam-softmax obtained
better detection rates and identification rates on the open-set
recognition task.

V. DISCUSSION AND CONCLUSION

We presented a readily implemented modification to the
final softmax layer activations and demonstrated its potential
benefits. It induces deep feature spaces in which classes are
more concentrated. It automatically attenuates gradients of
badly incorrect, or hard, examples and tends to amplify those
belonging to clean examples, allowing convergence to good
solutions even when many training examples are mislabelled.

We trained models on CASIA-Webface [19] and tested
on LFW [20] and YTF [21]. Cam-softmax performed well
in comparison experiments on open-set recognition and pair
matching tasks. We corrupted Fashion-MNIST and Casia-
WebFace training datasets by mislabelling examples and



showed that cam-softmax exhibits robustness to labelling
errors.

Unsurprisingly, increases in face recognition accuracy are
possible by using even larger (often private) training sets [6,
15, 22]. We would similarly expect cam-softmax to benefit
from larger training sets. Finally, we would emphasise that face
recognition performance also depends to a large extent on the
preceding alignment of face images. We used the cp2tform
and imtransform functions built into Matlab to align faces
according to facial landmarks determined by MTCNN [23].
Switching alignment algorithm to the one available in OpenCV
resulted in loss of test accuracy, e.g., the best pair matching
accuracy dropped to 97.6%.

The experiments in this paper mislabelled training data in an
artificial way. Future work could usefully explore cam-softmax
performance on datasets mislabelled unintentionally.
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