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Abstract— Olfactory perceptual degradation refers to the 

inability of people to recognize the variation in concentration 

levels of olfactory stimuli. The paper attempts to assess the 

degree of olfactory perceptual degradation of subjects from 

their hemodynamic response to olfactory stimuli. This is done in 

2 phases. In the first (training) phase, a regression model is 

developed to assess the degree of concentration levels of an 

olfactory stimulus by a subject from her hemodynamic response 

to the stimulus. In the second (test) phase, the model is employed 

to predict the possible concentration level experienced by the 

subject in [0, 100] scale. The difference between the model-

predicted response and the oral response (the center value of the 

qualitative grades) of the subject about her perceived 

concentration level is regarded as the quantitative measure of 

the degree of subject's olfactory degradation. The novelty of the 

present research lies in the design of a General Type-2 fuzzy 

regression model, which is capable of handling uncertainty due 

to the presence of intra- and inter-session variations in the brain 

responses to olfactory stimuli. The attractive feature of the 

paper lies in adaptive tuning of secondary membership 

functions to reduce model prediction error in an evolutionary 

optimization setting. The effect of such adaptation in secondary 

measures is utilized to adjust the corresponding primary 

memberships in order to reduce the uncertainty involved in the 

regression process. The proposed regression model has good 

prediction accuracy and high time-efficiency as evident from 

average percentage success rate (PSR) and run-time complexity 

analysis respectively. The Friedman test undertaken also 

confirms the superior performance of the proposed technique 

with other competitive techniques at 95% confidence level. 

 
Index Terms— Olfactory perceptual degradation, Hemodynamic 

analysis by Functional near-infrared spectroscopy (f-NIRs), 

Type-2 fuzzy reasoning and regression. 

I. INTRODUCTION 

erception, which usually refers to the process of 

understanding and interpreting stimuli [1], has diversity 

in the context of reference of specific sensory modalities [2]. 

Olfaction is one of the primitive modalities of perception for 

both the humans and other living creatures [3], [4]. In 

humans, olfaction plays a vital role in food selection [5], and 

security-awareness of the workers in mines and chemical 

industries [6], [7]. Olfactory perceptual degradation is often 

found as an early symptom of the Alzheimer's disease and 

olfactory disorders [8], [9]. Degradation in olfactory 

perceptual-ability of humans often is noticed in both 

recognizing the odors and also their intensity [10]. As 

recognizing the odors require prior familiarity of the subject 

with the odors, in this paper, emphasis is given to determine 

the subjective ability to detect the concentration levels of the 

stimuli (aromatic substances) presented to assess their 

olfactory degradation characteristics. 

      Degradation in olfactory perceptual-ability can be 

assessed either by analyzing the subjective judgment (in the 

form of oral response [11]) about her perception on odor 

concentration or by measuring the oxygen consumption by 

the brain during the phase of perceiving the olfactory stimuli. 

It is noted that the oxygenated blood concentration level in 

the brain increases with an increase in the concentration level 

of a given olfactory stimulus [12], [13].  Fortunately, the 

changes in oxygenated blood concentration in the brain can 

be accurately measured by non-invasive means using a 

functional Near Infrared spectroscopy (f-NIRs) device. 

Additionally, the f-NIRs device has better spatial resolution 

and low computational overhead than the widely used non-

invasive brain signal acquisition devices, such as 

electroencephalography (EEG) [14], justifying its selection 

for the present application. 

     Although there is hardly any work of olfactory perceptual 

degradation studies, there exist traces of works on olfactory 

perceptual ability studies for human subjects.  For instance, in 

[15] and [16], the authors make attempts to experimentally 

determine the threshold parameters of concentration levels, 

representing the ranges of recognizable olfactory stimuli. A 

couple of recent studies [17], [18] indicate that patients 

suffering from the Alzheimer's disease exhibit significant 

differences in epidemiological, patho-physiological and 

clinical measures of olfactory features with respect to healthy 

subjects. These studies raise fundamental question: can early 

Alzheimer's disease be predicted from certain measures of 

olfactory dysfunction? Recently, researchers are taking keen 

interest to examine olfactory recognition ability of 

pleasant/unpleasant odors using brain signals (EEG) [19], 

[20]. A couple of studies [21], [22] further envisage that pre-

frontal and temporal lobes are respectively responsible for 

odor recognition and encoding in Long-Term Memory 

(LTM) [23]. Importance of odor intensities/concentrations is 

also examined on different living creatures [3], [4] to 

detect/discriminate natural odorants for their survival.  

      This paper attempts to assess the degradation in olfactory 

perception for both healthy and (olfactory) diseased subjects. 

A (fuzzy) regression model is developed with the acquired 

hemodynamic response of the subject to selected olfactory 

stimuli as the input and subject's perception about the relative 

concentration of the stimulus presented as the output. The 

regression model developed is utilized later to predict the 

subject's qualitative degree of perception about the olfactory 

stimuli samples of selected concentrations, and the same 
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Fig.1. Block diagram of the complete system  
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stimulus is also presented to the subject again to obtain 

his/her current qualitative degree of perception about the 

concentration. The difference between the subject's current 

degree of perception and the model-predicted degree is used 

to estimate the measure of his/her perceptual degradation in 

olfactory processing power of the subject. The idea of 

assessing degradation in subjective olfactory perception is 

novel, and useful to check possible olfactory ailments in 

healthy as well as diseased subjects at early stage of olfactory 

diseases. 

   The f-NIRs response obtained from a given source is not 

free from intra- and inter-session variations because of 

undesirable parallel thoughts, and artifacts due to eye-

blinking and/or non-voluntary motor activations by the 

subject [24]. Fortunately, the logic of fuzzy sets and in 

particular type-2 fuzzy counterpart has shown remarkable 

performance in the past in handling the intra- and inter-

session variations [20], [25]. This inspired the present authors 

to employ type-2 fuzzy sets for the selected application. 

Relative merits/demerits of type-2 fuzzy sets over classical 

fuzzy sets are briefly presented below. 

   A type-1 fuzzy set (FS) represents the degree of precision                                                                                   

of a linguistic variable based on the judgment of a single 

expert in the membership scale of the [0, 1]. So, membership 

assignment in type-1 FS is crisp [26]. A General Type-2 

Fuzzy Set (GT2FS) [27], on the other hand, is a 3-tuple, 

containing i) a linguistic variable, ii) primary membership of 

the variable, and iii) a secondary membership grade, 

representing the degree of precision (certainty) of the primary 

membership assignment for a given value of the linguistic 

variable [62]. Here, both the primary and secondary 

memberships lie in the scale [0, 1]. An Interval Type-2 Fuzzy 

Set (IT2FS) can be regarded as a special form of GT2FS with 

secondary membership equal to one for all feasible values of 

the primary memberships > 0 [28], [29]. The space of 

primary memberships with secondary grade of membership > 

0 is called the footprint of uncertainty (FOU) [30]. The FOU 

is segregated from the rest in the plane of linguistic variable 

and primary membership by two boundaries, called the Upper 

and the Lower Membership functions (UMF and LMF), 

where the UMF ≥ the LMF for all values of the linguistic 

variable.  

    Although both IT2FS and GT2FS include subjective 

opinion of several experts in primary membership 

assignment, the former lacks the power of representing 

precision in the degree of primary memberships due to 

uniformity in secondary memberships over the FOU. 

Undoubtedly, GT2FS offers better performance in reasoning 

in presence of intra- and inter-session uncertainty (variations 

in measurements) in comparison to classical fuzzy and 

IT2FS, however, at the cost of additional computational 

overhead. The motivation of the present work is to undertake 

GT2FS regression with limited computational overhead.  

   Novelty of the present work lies in the design of a new 

GT2FS-reasoning based regression model with an aim to 

reduce uncertainty in the reasoning space by adoption of the 

following steps. First, a new intuitively selected mapping 

function is employed to refine the primary memberships 

based on the measure of both the secondary grade and the 

primary membership at a given value of the linguistic 

variable. The proposed mapping function enhances the 

primary memberships with high secondary grades (i.e., 

central region of FOU with low uncertainty), but reduces 

primary memberships lying on the neighborhood bounds of 

the existing LMF and UMF (i.e., regions of high uncertainty). 

Consequently, the re-constructed LMF is leveled up, and the 

reconstructed UMF, produced from the central span of the 

original FOU, is reduced. Second, the Greatest Lower Bound 

(GLB) of the refined LMFs and the least upper bound (LUB) 

of the refined UMFs at the given measurement points are 

evaluated to compute the upper and lower firing strengths 

(UFS and LFS) of the fired rules. The introduction of the 

GLB and the LUB ensures a further reduction in the span of 

uncertainty of the type-2 fuzzy inference. 

         Additionally, a corrective feedback to the Gaussian type 

secondary membership functions of the antecedent variables 

is given to adjust its variance parameter based on the model 

produced error with respect to subject's perception about 

concentration of the stimulus. Besides the above, the fuzzy 

regression model parameters are optimized using a grid 

search algorithm [31].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

       The paper is divided into six sections. In Section II, a 

schematic overview of the proposed principles of olfactory 

perceptual-degradation assessment is introduced. Section III 

is concerned with GT2FS based type-2 fuzzy regression 

model for perceptual-degradation assessment. Experimental 

details are covered in Section IV. Performance analysis is 
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undertaken in Section V. Conclusions are listed in Section 

VI.  

II. PRINCIPLES AND METHODOLOGY  

The paper introduces a novel technique for the assessment of 

olfactory perceptual-degradation of the subjects. This is done 

in 2 phases. In the first (training) phase, a new computational 

model of type-2 fuzzy regression (reasoning followed by de-

fuzzification) is developed to fit the brain (hemodynamic) 

response of the subject to an aromatic stimulus as the input, 

and the oral response of the subject about the qualitative 

degree of concentration perceived by him/her in the form: 

Very Low, Low, Medium, High and Very High as the output. 

For convenience of realization, each qualitative grade is 

defined as sub-intervals of [0, 100], such as [1, 20) for Very 

Low, [20, 40) for Low, [40, 60) for Medium, [60, 80) for 

High, and [80, 100] for Very High. Intervals of width 20, 

instead of absolute value in [0, 100] is utilized to express 

subject's perceptual response to avoid extensive subject's 

training for each degree of concentration in [0, 100]. 

        In the test phase, the model response and the subject's 

(actual) oral response to a known stimulus of selected 

concentration are extracted, and the difference between these 

is used as the measure of olfactory degradation of the subject 

during the period between the training and test phase. For 

computation of the measure of olfactory degradation, both the 

subject's oral response and model response should have a 

uniform representation. Here, the model response being a real 

scalar, and subject's response being an interval, the subject's 

response needs to be transformed to a scalar. This is adopted 

here by taking the centre value of the interval selected by the 

subject. Fig. 1(a) and (b) respectively represent the schematic 

overview of the training and test phases.     

A. Normalization of the Stimuli  

Normalization of the concentration is needed to express the 

absolute concentration (in mg/L) of the aromatic substance in 

a fixed interval of [0, 100]. This is done by employing a 

mapping function ,: yxf → where x and y denote the 

actual and normalized concentration. Let minx and maxx be 

the minimum and maximum values of the measured 

concentration of the aroma in mg/L. Then for a given 

concentration ,x   we define 

.)(
100

 min
minmax














−

−
= xx

xx
Qy
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where Q(.) denotes quantized upper ceiling value of the 

argument.  

B. Time-Windowing for Stimulus Presentation and Data 

Acquisition 

The f-NIRs data acquisition in the present set-up is carried 

out over distinct time-windows across trials. A trial includes 

presentation of a stimulus of a fixed concentration for 3S, 

acquisition of f-NIRs data in response to the stimulus over 

9S, and acquisition of oral response (OR) of the subject about 

the possible qualitative degree of concentration level of the 

stimulus in the next 3S. A trial thus has duration of 15S 

(Fig.2). A session includes 5 trials for each stimulus of fixed 

concentration with a rest interval of 3 seconds between two 

successive trials, thus requiring (15 × 5)S for 5 trials and (3 × 

4)S for 4 rest periods with a total duration of 87S (Fig. 2). 5 

sessions, each of which represents f-NIRs data collection 

with distinct concentration of a selected stimulus, are 

accommodated in a day (Fig.2). To capture the diurnal 

variations in the f-NIRs response, the data collection process 

of 5 sessions is repeated over 10 consecutive days (Fig. 3). 

The above process of stimuli presentation and f-NIRs data 

and oral response collection is repeated for 10 different 

olfactory stimuli (Fig.3). Thus for each olfactory stimulus, a 

set of 10 days × 5 sessions/day × 5 trials/session = 250 trials 

are employed for each subject. The choice of 9S time 

interval, preceded by 3S stimulus presentation ensures 

sufficient elicitation of the neurons to obtain measurable 

response with appreciable resolution [32]. 

C. Normalization of Acquired Raw f-NIRs data  

To normalize the acquired f-NIRs data, the following 

principle is adopted. Let )(tCHbO
 and )(tCHbR

 be the 

oxygenated and de-oxygenated blood response at the  -th 

channel of the pre-frontal lobe to an olfactory stimulus at 

time point t. It is known that )()( tCtC HbOHbR 
  for all t, 

from a selected brain region [33], [34]. Thus to normalize 

)(tCHbO
and )(tCHbR

 for a given channel, the following 2 

parameters are first evaluated: 

   
),:)(( 00 


+=− TttttCMaxC HbOtMaxHbO

         (2) 

        ),:)(( 00 


+=− TttttCMinC HbRtMinHbR
          

(3) 

where 0t  
and 0t +T respectively denote the beginning and the 

end time of an experimental trial for a given stimulus on a 

selected subject. It is apparent from Fig. 2 that T = 9 seconds. 

The normalized value of the difference signal  

 ),()()( tCtCtd HbRHbO  −=                    (4) 

is obtained as 

                            .
))()((

)(ˆ

MinHbRMaxHbO

HbRHbO

CC

tCtC
td

−− −

−
=




               

(5) 

in the interval [0, 1]. The sampling rate of the f-NIRs device 

is 7.892 samples/sec.    

D.  Pre-processing and Filtering of Normalized f-NIRs data 

Like EEG, f-NIRs response too suffers from various forms of 

artifacts. Three most common forms of artifacts that need 

special mention include: 1) step artifacts, 2) spike artifacts 

and 3) physiological artifacts [35]. The step artifacts come 

into play, when there is a change in the surrounding 

environment. The step artifact can be removed by minimizing 

Fig. 2 Schematic representation of a stimulus presentation over a single day 
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the variation of the external light and instrumental noise. The 

spike/motion artifacts are related to decoupling between the 

electrodes and their assigned positions due to head or muscle 

movement. They result in abrupt changes in the amplitude of 

the received signals. For example, a sudden change in the 

ambient light intensity results in a spike-like noise. Another 

important artifact is physiological artifact, which may cause 

different types of physiological noise due to eye-blinking, 

respiration, heart-beat, blood pressure fluctuations and Mayer 

wave etc. [35]. To keep the f-NIRs response free from 

artifacts, the normalized difference signal )(ˆ td for  = 1 to 

Q channels is passed through a Chebyshev type band pass 

filter [36] of order 4 with a pass-band of [0.1, 5] Hz. The 

choice of the Chebyshev band pass filter is induced by its 

sharp roll-off around the cut-off frequency [37]. Next, the 

Independent Component Analysis (ICA) [38] has been 

performed to restore the 20 independent components of the 

hemodynamic response for 20 channels of the f-NIRs device. 

E.  Feature Extraction from Filtered f-NIRs data 

The artifact-free independent components are processed to 

extract the important features. The 9 second duration of the f-

NIRS data acquisition for each trial, shown in Fig.2, is 

divided into three equal time-windows of 3 second each (Fig. 

4). Here, from each time-window, two distinct types of 

features, called static and dynamic features, are extracted. 

Over each 3 seconds time-window, 6 static features, 

including mean (M), variance ( ), signal slope (sp), 

skewness (sk), Kurtosis (ku) and average energy (E) are 

extracted at fixed time sample points zt =  for integer 

),1(  ,...,2 ,1 ,0 −= Zz  where  is the sampling interval = 

1/7.892 seconds  125 milliseconds and Z = 3seconds /125 

milliseconds = 24 samples. The dynamic features, on the 

other hand, are obtained by taking the difference of the same 

static feature over successive time-windows [39]. The 

computation of the dynamic features is explained briefly 

below. 

       Let )(ˆ
, tdi   be the filtered i-th feature of the  -th 

channel for i =1 to fN  and  =1 to Q.  Then the discrete 

features )(ˆ
, td i   

is expressed as ),(ˆ
,  zdi for 

).1( ,...,2 ,1 ,0 −= Zz  Now, for the static feature ),(ˆ
,  zdi the 

dynamic feature i from the  -th channel is obtained by 

))1((ˆ)(ˆ)(ˆ
,,,   −−= zdzdzd iii

                
(6) 

for i =1 to fN  and  =1 to Q, ).1( ,...,2 ,1 −= Zz   

   In the present application, we have 6  3=18 static features 

and 6  2=12 dynamic features (Fig. 4), taken over 3 time-

windows in a trial for a given channel. Consequently, we 

have 18+12 = 30 features for each channel, thereby providing 

20 channels  30 features/channel = total 600 features in a 

trial for an individual subject. The 600 dimensional feature 

vector obtained for each trial is denoted by ),,...,,( 60021 ggg
 

where the first 30 features: 1g through 30g
 

correspond to 

those obtained for channel 1, the next 30 for channel 2, and 

so on up to channel 20, in a fixed ordered sequence of 

features for each channel. It is important to mention here that 

Q =20 channels are taken to measure the diversity in f-NIRs 

response (and so features) across different brain regions. It is 

noted that with increase in odor concentration, the brain 

regions corresponding to maximum activation shifts from 

Orbito-frontal cortex to the Middle frontal region through the 

Dorso-lateral and Ventro-lateral pre-frontal cortex. The mean 

and average energy features taken from the channels 

Fig. 3 Stimuli presentation over 5 sessions, each containing 5 trials with same concentration of an aromatic substance, repeated over 10 odors in a day, for 

feature extraction and feature selection with the whole process repeated over 10 days following a fixed sequence of odor presentation 
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corresponding to maximum brain activation, would increase, 

while variance, signal slope, skewness and kurtosis features 

depend largely on the temporal variation of the f-NIRs 

response, acquired from individual channels. A feature 

selection algorithm is employed next to uniquely select fewer 

features from 250 trials, each of 600 dimensional features. A 

small dimensional feature is preferred as it requires fewer 

computations and thus is convenient for real-time 

applications. A reduced feature dimension of 20 serves the 

purpose as the results, as by increasing feature dimension 

above 20 does not offer any significant changes in the output 

of the reasoning algorithm undertaken after feature selection.  

F. Feature Selection 

There exist a vast literature on feature selection algorithms, 

including Principal Component Analysis (PCA) [40], 

Sequential Forward Search (SFS), Sequential Backward 

Search (SBS), and the like. The PCA algorithm suffers from 

the fundamental characteristic of selecting linearly 

independent features. The SFS and the SBS algorithms also 

suffer from one fundamental problem, well-known as Nesting 

Effect [41], [42]. Evolutionary feature selection algorithms 

have shown promising performance in selecting non-linearly 

independent features as well. This inspired the authors to 

employ evolutionary algorithm for the present feature 

selection problem. Differential Evolution (DE) [43] algorithm 

is one of the widely used evolutionary algorithms that have 

shown outstanding performance in multimodal single and 

multi-objective optimization problems. DE is selected from 

its companion swarm/evolutionary algorithms for its 

simplicity in coding, small code length and fewer control 

parameters, and above all the authors’ familiarity [44] with 

the algorithm.  

      It is already mentioned that during the experiments, same 

concentration level of a given stimulus is maintained within a 

session, while different concentration levels of the selected 

stimulus are presented across distinct sessions. The 

motivation of the feature selection technique is to identify the 

minimum set of features, such that the selected features 

should support minimum intra-session variation and 

maximum inter-session variations.  

         To develop this framework of optimization, we need to 

define certain parameters. Let i
hsd g,,  be the i-th feature at 

the h-th trial lying in session s of day d.  Similarly, let 

i
hsd g
,, denote the i-th feature at the h -th trial falling in a 

different session s  on the same day d. Let i
hsd g,, and 

i
hsd g
,, be two features lying in the s-th session. Let J1 be a 

measure of intra-session separation, and J2 be a measure of 

inter-session separation. 
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An attempt is endeavored to maximize J2 to maintain large 

inter-session separation, and minimize J1 to reduce intra-

session separation. Let J   be the composite objective 

function aiming at maximizing J2 and minimizing J1   jointly,                                                               

     , 
2

1

J

J
J

+
=


                              

(9)
 

where,   is a small positive constant. A positive value of   
in [0.01, 10] is chosen to optimize J  using a Grid-search 

optimization algorithm (See Section III). In the present 

application, the widely used version DE/rand/1/bin has been 

employed with scale-factor F = 0.7 and crossover with 

crossover rate rC = 0.8 have been required to reduce the 

huge set of features (N = 600) to 20 best features (n). Here, Nf 

and n respectively denote the total number of features, and 

the reduced number of features, i.e., .fNn    Finally, the 

resulting 20 best features out of 600, hereafter denoted by 

2021 ,...,, fff  are fed to the training instance generation.  

G. Training instances generation  

The best 20 features, 1
,, fhsd  through n

hsd f,, along with the 

oral response yhsd ,,

 
for each trial together forms the training 

instances.  Here, for each subject, for each odor the training 

instances include 10 days × 5 sessions/day × 5 trials/session = 

250 trials, each of 20 columns representing input instances 

and one oral response ,,, yhsd  representing the output instance. 

A database for 10 odors/ subject is prepared for 22 healthy 

people and 8 brain-diseased people with 250 trials/ odor/ 

subject.  

H. Type-2 Fuzzy Regression for Perceptual-degradation  

Lastly, olfactory perceptual degradation in subjects is 

assessed using a new general type-2 fuzzy regression 

approach, the details of which are given in Section III. 

III. GT2FS-BASED PREDICTION FOR THE ASSESSMENT OF 

OLFACTORY PERCEPTUAL-DEGRADATION  

This section provides detailed design of GT2FS based 

prediction for the assessment of subjective perceptual-

degradation during the training and the test phases using 

Mamdami-like approach. The Mamdani-like formulation is 

required to utilize the consequent GT2FS MFs, which could 

not be used in case of Takagi-Sugeno-Kang (TSK) GT2FS 

model [45]. The Mamdani type GT2FS regression yields 

Fig. 4 Static and dynamic feature extraction from the f-NIRs data over each trial 
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better performance than its TSK counterpart (Appendix A.1) 

[65] with respect to percentage success rate (PSR) defined in 

Section V.  

A. Preliminaries on GT2FS 

Definition 1: Let X be the universe of discourse of a 

linguistic variable x. A classical/type-1 fuzzy set A [46], 

defined on the universe X, is a two-tuple, given by 

}))(,({ XxxxA A = 
                          

(10)      

where, ),(xA called membership of x in A, is a crisp number 

in [0, 1] for any .Xx The fuzzy set A is also expressed as  

xxA

Xx

A


= )(

                                 

(11)      

where  represents the union of all feasible .Xx  

Definition 2: A General Type-2 Fuzzy Set (GT2FS) [27] A
~

 is 

a 2-tuple, given by 

)}(),,{(
~

)(
~ uuxA

xA
=

                         
(12) 

where Xx is a linguistic variable and ]1,0[ xJu is the 

primary membership and )(
)(

~ u
xA


 

is the secondary 

membership lying in [0, 1]. 

Definition 3: For a given xx = the two-dimensional plane 

comprising u, and )(
)(

~ u
xA 

 is referred to as a vertical slice 

).(
)(

~ u
xA

 [29].
 

Definition 4: For a given universe of discourse X of a 

linguistic variable x, if Xx ,1)(
)(

~ =u
xA

 and 

[0,1],xu J   then the type-2 fuzzy set A
~

 is called an 

Interval Type-2 Fuzzy Set (IT2FS) [28]. 

Definition 5: The Footprint of Uncertainty (FOU) [30] of an 

IT2FS A
~

 represents the union of all feasible type-1 MFs, 

called embedded fuzzy ).(xAe  Formally, 


Xx

xJAFOU



=)
~

(
                               

(13)      

where }.0)(],1,0[),({
)(

~ = uuuxJ
xAx   

The FOU indicates the space of uncertainty of the primary 

membership for all .Xx  

Definition 6: The embedded fuzzy set )(xAe is an arbitrary 

selected type-1 MF lying in the FOU, i.e., ,,)( XxJxA xe 

corresponding to the upper bound of )
~

(AFOU is referred to as 

upper membership function (UMF). This is symbolized as 

)
~

(AFOU or XxxA ),(~ [47]. Analogously, the embedded 

fuzzy sets that stands for the lower bound of )
~

(AFOU are 

referred to as lower membership function (LMF). The LMF 

is generally denoted by )
~

(AFOU  or .),(~ Xxx
A

  

Mathematically,  

))((min)
~

()()
~

( ~ xAAFOUxALMF e
xA 

===           (14)      

and       )).((max)
~

()()
~

( ~ xAAFOUxAUMF e
x

A


===        (15)
  

B. Construction of General Type-2 Fuzzy Engine for 

Regression 

A General type-2 fuzzy regression engine is developed here 

to produce a fuzzy inference about the concentration level of 

a selected aromatic stimulus experienced by a subject from 

the selected hemodynamic features. 

GT2FS Construction:  Let, i
hsd f,,

 
be i-th feature extracted 

on day d of a selected concentration (Conc.) in trial h of 

session s. The mean and the variance of the feature i over a 

session s in day d of that concentration are respectively given 

by 

5/)(
5

1

, ,, 
=

=

h

i
hsd

i
sd ff

                     

(16)  

.5 / )( 2 ,
5

1

, ,2 ,
i

sd

h

i
hsd

i
sd ff −=

=



                  

(17) 

One type-1Gaussian MF ),( 2 , ,
i

sd
i

sd fG   is prepared to model 

the variation of the i-th feature extracted on day d in session 

s. Now, suppose the same experiments is repeated over d = 1 

to 10 days. Thus for d =1 to 10, we have 10 such Gaussian 

MFs ),( 2 , ,
i

sd
i

sd fG   which are used to develop an IT2FS by 

the following procedure. 

1. The primary membership space of GT2FS ,
~

iA  for feature 

,if  is modeled by taking the union of ),,( 2 , ,
i

sd
i

sd fG  over 

d=1 to 10 days.  


10

1

2 , , ).,()(
~

=

=

d

i
sd

i
sd

ii fGfA 

                 

(18) 

2. In order to maintain the convexity criteria [47] of the 

proposed GT2FS, the peaks of the constituent type-1 MFs are 

joined by a straight line of zero slopes, resulting in a flat-top 

approximation (Fig. 5(a-c)).  

3. Now, at the measurement point ,ii ff = a Gaussian type 

secondary membership is constructed with peak at the centre 

of the FOU. This effectively returns a GT2FS (Fig.6).  

        It is important to note that, the GT2FS regression engine 

presented in Fig. 7 is developed for a fixed concentration. 

Thus for 5 different concentrations, we have 5 distinct fuzzy 

regression engines. Now, for different concentration we 

would use different planes of Fig. 8.  

1f  

Fig.6. Construction of the vertical slice GT2FS   

 

1f   

1u  
2u  

4u  

2f   

iu  

)(
)(

~ u
ii fA

  

3u

 5u

 
6u

 Fig.5. Construction of IT2FS (a) Type-1 MFs for ten days, (b) Computing 
union of Type-1 MFs, (c) Flat top approximation of Fig. (b) 

if  if  if  

Curvilinear 

Top Flat-top 
)(~ iA

f
i

  

1 1 1 

(a) (b) (c) 

)(~ iA
f

i
  )(~ iA

f
i
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       To encode the subjective judgment of the perceived odor 

concentration into type-2 fuzzy sets, the following principle 

is adopted.  

1. If all the choices for 5 trials by the subject are distinctive 

and disjoint, 5 Gaussian type-1 MFS are constructed with the 

centre value of the 5 intervals as the mean and 1/10-th of the 

mean as the variance of the selected Gaussian MFs, where the 

factor 1/10 is selected heuristically. 

2. If out of 5 choices in a session, v (< 5) choices belong to a 

particular grade, then v equi-spaced values in the selected 

interval are used as the means and 1/10-th of the respective 

means as the variance of the Gaussian MF. 

3. If only one choice in a session of 5 possible choices belong 

to a given grade, then a Gaussian MF is constructed with 

mean as the centre of the selected interval and a variance = 

1/10 the of the mean is adopted. 

  As sessions involving stimulation with same concentration 

are invoked repeatedly over fixed number of d days, the 

experimental instances obtained thereof are utilized to 

construct type-1 Gaussian MF. Finally, a union of the 

constructed type-1 Gaussian MFs taken over all the d days of 

a selected session (dealing with fixed concentration of the 

stimulus) is evaluated to yield an interval type-2 fuzzy set for 

that session.  

Type-2 Fuzzy Rules: now we consider one typical rule jR

given by  

.
~

    ,
~

   ..., ,
~

   ,
~

   2211 jnn BisyThenAisfAisfAisfIf  

Here, ,
~

  ii Aisf
 
for feature i =1 to n of c-th concentration 

denotes the GT2 fuzzy antecedent propositions, the GT2 MF 

of which is given by  ))(,(),(, ~~ iAiiAi fuffuf
ii

  

where if  is the linguistic variable, )(~ iA
fu

i
is the primary 

membership function (MF) and ))(,( ~ iAi fuf
i

 is the 

secondary membership at a given if  for m discretizations 

miii uuu ,2,1, , ... , ,  along the iu -axis. The choice of m is an 

important issue to determine system performance, optimized 

later by grid-search algorithm. Theoretically, larger the value 

of m, the smaller is the objective function (J).  However, it is 

noted that for ,6m there is no further improvement in J and 

so 6=m  is chosen as the system parameter. Similarly, 

jBisy
~

  is a vertical slice based GT2FS consequent 

proposition, whose GT2 MF is given by 

.))(,(),(, ~~  jBjjBi yuyyuy
jj

  

Construction of Secondary Membership function: To 

construct the secondary membership )(
)(

~ ifA
u

ii 


 
of the 

GT2FS ,
~

iA  the following strategies are adopted. 

1. Let, )(
)(

~ ifA
u

ii 


 
be the secondary membership of the i-th 

antecedent proposition defined at the linguistic value ,ii ff =
  

and primary membership ,iu  where iu  is sampled at uniform 

interval ends: miii uuu ,2,1, ,...,, for i = 1 to n. Here, == pii uu ,

)(~
if

iAiu =   and == qii uu , )(~ iAi fu
i

=   are the two 

extremities of the FOU over .ii ff =
 
Here m is the used-

defined positive integer (optimized in the present 

application.) 

2. The secondary membership )(
)(

~ ifA
u

ii 


 
would have a peak 

at the center of ],,[ ii
uu  as the uncertainty is minimum at the 

center, where, .2/)( iii uum +=  

3. The secondary membership here defined as  

]
2

)(
exp[)(

2

2

)(
~

i

ii
ifA

mu
u

ii 


−
−=


                   (19) 

where, == ],[ ,, qipii uuu ],,[ ii
uu for ii ff = and 2

i is a user 

defined parameter. The value of 2
i is obtained by an 

optimization algorithm given in section III. 

C.  General Type-2 Fuzzy Reasoning used in the Training 

Phase 

Let nn ffffff === ,...,, 2211  be a measurement point. The 

secondary grade of membership )(
)(

~ ifA
u

ii
  at ii ff =

 
is a 

vertical slice, represented by a Gaussian MF, given by (19). 

The following steps are adopted for the assessment of 

perceptual-degradation of the olfactory stimulus.  

1. Generally, the secondary MFs in a GT2FS provide 

information about the degree of correctness of the primary 

membership assignments. Thus given a secondary MF 

)(
)(

~ ifA
u

ii 
  it can be utilized to refine the primary 

memberships value kiu ,  at ,ii ff =  for k = 1 to m and i = 1 to 

n by a suitable mapping function (illustrated in Fig. 7). 

Expression (20) provides one such mapping function from 

secondary )(
)(

~ ifA
u

ii 
 to refined primary membership values 

.,kip  Let the modified primary membership value at ),( ii uf  be 

,,kip where,  

.
)(1

,,
,)(

~ ki
ifiA

u

kiki up


−



                        (20) 

Thus for a given kiu , , we have a corresponding kip ,  along the 

ii ff = axis.  

It is noteworthy, that the refined primary membership value 

kip ,  is more strengthened by powering the original primary 

membership function (MF) by complement of the secondary 

MF at the given ).,( ii uf   The mapping function (20) ensures 

that the width of the FOU is reduced (hard line in Fig.7) in 

comparison to its pre-constructed width at given 

measurement point .ii ff =  

2. For ],,[, iiki uuu  a set },1:{ , mkpP kii =  respectively 

the refined primary membership values lying in the FOU, is 

computed. The Refined-UMF ( ReUMF ) (
max

iP ) and Refined-

LMF ( ReLMF ) (
min

iP ) of )(
~

Re ii fA  at ,ii ff = are obtained 

as 
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},{ ,
1

max
Re ki

m

k
i pPUMF

=
==

                       
(21)

 

                          
},{ ,

1

min
Re ki

m

k
i pPLMF

=
==

                        
(22) 

where, 

m

k 1=
  and 

m

k 1=
 denote the cumulative OR (max) and 

AND (min) operator operators respectively. 

3. Step 2 is repeated to obtain ReUMF :
maxmax

2
max

1 ,...,, nPPP
 

and ReLMF : 
minmin

2
min

1 ,...,, nPPP  for the refined fuzzy sets 

)(
~

),...,(
~

),(
~

ReReRe 2211 nn fAfAfA respectively. 

4. The Least Upper Bound (LUB) of the ReUMF : 

maxmax
2

max
1 ,...,, nPPP of the refined fuzzy sets is obtained by 

.P  ... P   max

1

maxmax
2

max
1 i

n

i
n PPLUB

=
==

        
(23) 

Similarly, the Greatest Lower Bound (GLB) of the ReLMF : 

minmin
2

min
1 ,...,, nPPP  of the refined fuzzy sets is obtained by 

      

 

.  ...    min

1

minmin
2

min
1 i

n

i
n PPPPGLB

=
==

          

(24) 

5. The Upper Firing Strength (UFS) and the Lower Firing 

Strength (LFS) of rule j, given by jUFS  and jLFS  are 

obtained as 

), ,( GLBLUBMinLFS j =                         
(25) 

). ,( GLBLUBMaxUFS j =                         
(26)  

D.  GT2FS Based Type-2 Fuzzy Inference Generation  

The fuzzy reasoning module attempts to derive type-2 fuzzy 

inference ,
~

 is jBy indicating the odor concentration levels 

present in the aromatic substance experienced by a subject. 
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The parameter y  is defined as the centre value of the grade 

specified by the subject in his/her oral response, after 

examining a given stimulus.  

The following steps are executed to compute the Lower firing 

strength (LFS) and upper firing strength (UFS) for rule j.  

a) Compute a set jS containing the modified primary 

membership ( )ju y
 

and the secondary MF )()( u
jj yB  at 

jj yy =
jY as its elements (Fig. 7). 

     

},y for                                             

],1,0[},...,,{)({

j

21

)(1
)(

~

jjj

my

u

jj

Yyy

uuuJuyus
j

jyjB

=

==


−

(27) 

b) Select positive elements of set 
jS (by dropping zero 

elements) and call the resulting set .jS   

                           }0|{ = jjjj sSsS
                     

(28) 

c) Obtain . where,Rule of jjkkjj SsssLFS =  

d) Obtain . where,Rule of jjlljj SsssUFS =  

6. Let )(~ y
jB

 be an IT2MF representing rule j of linguistic 

variable y. The following transformation is used to obtain the 

resulting IT2MF 
jB = ],,[ ~~

jj
BB 

 where  

       min  ( , )
j j

jB B
LFS 


=

                            
(29) 

and               min  ( , )
j j

jB B
UFS 


=

                            
(30)  

7. In case there exist multiple rules, we take the union of the 

type-2 fuzzy interfaces, given by 

,~~
jB

j
B 



=  

                                    

(31) 

which is computed by the following 2 steps. 

)(max ~~
jB

j
B 



= 

                                  

(32) 

)(min ~~
jBjB 

= 

                                  

(33) 

8. Karnik-Mendel (KM) defuzzification [48] is used next to 

evaluate the left and right end point centroids. Any version of 

KM algorithm would serve the purpose. However, the 

Enhanced KM (EKM) algorithm is used here to minimize the 

computational overhead. After obtaining the left end point 

centroid ( lowerC ) and the right end point centroid ( upperC ), 

the centroid ( iC ) is computed by taking the average of 

lowerC and upperC [49]
 

2

upperlower
i

CC
C

+
=

                            
(34) 

Here, the centroid iC  is represented as the measure of odor 

concentration levels of a given smell stimulus experienced by 

the subject in [0, 100] scale.  

E. Optimal Selection of  i  

The secondary membership functions of the linguistic 

variables used in the antecedent propositions of the fuzzy 

rules are initially selected as Gaussian memberships with 

peak at the centre of the FOU. However, in order to train the 

type-2 fuzzy regression model with a list of training 

instances, including antecedent features nfff ,...,, 21  
and 

corresponding subject-produced grades of concentration, the 

secondary memberships need to be adjusted. Fig. 9 provides a 

schematic overview of standard deviation selection of 

secondary memberships by an evolutionary algorithm. The 

objective here is to optimally select the secondary 

membership standard deviations of the antecedent 

proposition to establish the antecedent variables to 

consequent regression. This is done by the following steps. 

      First, run the type-2 fuzzy regression algorithm n times 

for n set of training instances and thus to produce n error 

values 1E
 
through ,nE with ,iii CDE −=  where iD  and iC

respectively are the desired and the computed odour 

concentration provided by the subject. Second, the iE s for i 

=1 to n are buffered to compute .)( 2
1

1

2
=

=
n

i

iEJ

 

Third, a meta-

heuristic algorithm is employed to minimize J with an aim to 

judiciously select the secondary membership parameters: 

.,...,, 21 n
 
Although any meta-heuristic algorithm can be 

employed to optimize J, DE is used to serve the purpose. 

Finally, the optimal standard deviations of the secondary 

memberships thus obtained are .,...,, 21
o
n

oo   

F. Optimal Parameter Selection of GT2FS Regression 

Model 

Fig.10 provides a schematic overview of the complete system 

during the training phase with special emphasis to 2 feedback 

loops, one to adapt variance of secondary membership 

functions, and the outer feedback loop is to adapt 

discretization parameter m and one parameter   used in 

feature selection. The principles of selection of m and  are 

explained in the Grid search algorithm [31] presented in 

Table I. The algorithm attempts to vary m and   in user-

defined intervals  ],[ maxmin mm and ],[ maxmin   and increments 

m  and   respectively and compute J for each ),( m  

and then finds the optimal m and   represented as optm
 

and ,opt respectively that minimizes ).,( mJ  The optimal 

values of the overall model parameters obtained for the 

GT2FS regression are: 056.0=  and  m = 6. Fig. 2 in the 

Appendix A.4 [65] provides a 3D plot of ),( mJ against m 

and ,  indicating that an off-tune from the optimal settings 

of   and m yields a steep rise in ),,( mJ ensuring the 

Fig.8. GT2FS Regression Model for different Concentration levels of a 

single odor 

Antecedent 

GT2FS for Conc. 

c 

Consequent 

GT2FS for Conc. 

c 

GT2FS 

Regression Model 

1f  nf

 

GT2FS Regression Model for Conc. c = 1 

GT2FS Regression Model for Conc. c = 5 

iC
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optimality of ),( mJ at 056.0=  and m = 6.  

Time-complexity: The computation of the UFS and LFS is 

undertaken in 2 steps. In the first step, we compute max
iP  and 

min
iP respectively by (21) and (22), which require a 

complexity of ).(mO In the next step, we compute LUB and 

GLB by (23) and (24) respectively, that require a complexity 

of ).( nmO [50]. Here, n denotes the number of linguistic 

variables in the antecedent, and m denotes the number of 

discretization along the iu  axis. Again for computation of 

LFS and UFS respectively by (25) and (26), an additional 

complexity of )(nO  is required. Finally, for v discretization in 

the y-axis (consequent side), a total complexity of )(vO  is 

required to generate the type-2 inference. So, the overall 

complexity = ).( nmO + )(nO + ),(vO which effectively boils 

down to ).( nmO as n and v << m.n.  

G. Test phase 

The olfactory perceptual model of the subject built up in the 

training phase is used in the test phase to determine his/her 

degree of olfactory degradation. In the test phase, we need to 

extract the features nfff ,...,, 21  
from the acquired 

hemodynamic response to pre-calibrated olfactory stimuli to 

use them as the input of the perceptual model of the subject. 

The model response (that represents the subject's judgement 

about odour concentration during the training period) is now 

compared with subject's current oral response about odour 

concentration. The difference between the above 2 

concentration values represents a quantitative measure of the 

subject's possible degradation in olfactory perception. To 

avoid the possible infiltration of measurement noise in the 

features, in Fig. 11, we arranged 5 trials of stimulus 

presentation, fNIRs pre-processing, and extraction of selected 

20 features over each trial. Then the average value of features 

over 5 trials is taken as indicated in Fig. 11 and submitted to 

GT2FS regression model for evaluation of predicted oral 

response of the subject.  

         Let  
r
c  be a measure of the olfactory perceptual 

degradation of a given subject to a calibrated olfactory 

stimulus r with a given concentration c, represented as, 

Fig.11. Perceptual degradation assessment of a subject during test phase 
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1f  2f  
3f  

… 
20f  

1f  2f  
3f  … 

20f  
1f  2f  

3f  … 
20f  

Avg. Avg. Avg. 

11 ff =  22 ff =  nn ff =  

Trial 1 Trial 2 Trial 5 

GT2Fs based fuzzy regression model 

Computed response 

to the r-th stimulus 
of Conc. c 

r
cC

 
Subject’s oral response 

to the r-th stimulus of 
Conc. c 

 

r
cO  

Perceptual degradation 
assessment in scale [0 100] 

FE FE FE 

+ 
- 

r
c  

Feature Extraction 

Feature Selection by 

DE 

Optimal selection of 

i    by Evolutionary 

Algorithm 

 

Grid Search 
Optimization to 

minimize ),( mJ   

 

General Type-2 
Fuzzy Regression 

Model 

optm

 

opt

 

optm

 

opt

 o
i

 

Fig.10. Computation of optimal parameters opt and optm
 
using grid-

search algorithm 

TABLE-I PSEUDO CODE OF GRID SEARCH ALGORITHM 

Grid-search ),( m  
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1
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=
n
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3. End_For; 
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6. Print ).,( m  

 

 

Fig.9. Optimal Selection of standard deviations i  of Secondary 

Membership Function 

Training Instances 
Instanc

es 

Features Subject 

specified odor 

concentration 

levels 
1f

 

2f  … 
nf  

1            

…… … … … ….. ….. 

i      

…… … … … ….. ….. 

50      

 )( 1)(
~

11

u
fA   

1f  

1u  

1f   

2u  1u  
3u  

4u  
5u

 
6u

 
General Type-2 fuzzy 

Regression Model 

 + 
- 

iC

 iD

 

 

1E  … 
iE  … 

nE  

 

2
1

)(
1

2

=

=
n

i
iEJ

 

o
1

 

1

 
i

 

n

 

… … 

o
i

 

o
n

 

… … 

Error Buffering 
Objective Function 

Evolutionary algorithm to adapt 
 

 

  to optimize J 
 

 

Optimal selection of i  by Evolutionary Algorithm 

)(
)(

~ nfA
u

nn 
 

 

 

 

 

 

 

 

 

 

 

nf  nf   

2u  
3u  

4u  
5u

 
6u

 

1u

 nu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

|,| r
c

r
c

r
c OC −= where, 

r
cC

 
represents the model response 

in   [0, 100] and 
r
cO

 
is the centre value of the grade specified 

by the subject in her oral response. The root mean square 

error (RMSE) of 
r
c  for c = 1 to b concentration levels of 

stimulus r, is given by  

.))((
1

2 2
1


=

=
b

c

r
c

r bRMSE                            (35) 

The average value of the RMSEs across all the stimuli used is 

obtained by  

./
1

RRMSERMSE
R

r

r
=

=

                           

(36) 

Now, the Olfactory Perceptual Degradation (OPD) of a 

subject in percentage is evaluated by 

,100)

   

( 

−

=

th
Min

th
Max

RMSERMSE

RMSE
OPD

             

(37) 

where, th
Max

RMSE be the theoretical maximum value of 

RMSE  and th
Min

RMSE be the theoretical minimum value of 

.RMSE   

IV. EXPERIMENTS AND RESULTS 

This section aims at designing the following experiments of 

the prediction of olfactory perceptual-degradation using f-

NIRs device.  

A. fNIRs data acquisition and List of Odor stimulus 

The experiment has been performed in Artificial Intelligence 

laboratory of Jadavpur University, Kolkata, India [51]. Here, 

a whole brain f-NIRs (NIRScoutTM imager) system is used 

to capture the hemodynamic response of the brain. The f-

NIRs device is manufactured by NIRx Medical Technologies 

LLC, with 8 infrared (IR) sources and 8 infrared detectors are 

placed over the scalp of the subjects according to the 

international 10-10 system. Here 8 source and 8 detectors 

forms 8  8 = 64 channels, of which 20 channels are selected 

followed by nearest neighboring source-detector 

combinations according to 10-10 placement system. In the 

present application, a set of 10 distinct smell stimuli (Rose 

water, Male perfume, Phenyl, Clove oil, Lavender oil, 

Kerosene oil, Camphor oil, Eucalyptus oil, Liquid Hydrogen 

sulfide, and Ammonium Hydroxide) with 5 different 

concentration levels are used to measure the olfactory 

perceptual-degradation of a subject. 

B. Participants

30 volunteers, in the age group of 20-45 years, were allowed 

to participate in the experiment [51] after obtaining their 

written consent. Ethical issues and all other safety measures 

were maintained as per Helsinki declaration of 1970, revised 

in 2004 [52].  The participants include a healthy group of 22 

volunteers (HS1-HS22), and a diseased group of 8 

volunteers. The latter group comprises 4 patients suffering 

from Alzheimer's disease (DS1-DS4), 3 carrying Hyposmia 

(indicating reduced ability to detect odors) Olfactory 

Disorder (DS5-DS7), and one carrying Parosmia (having 

inability to detect distorted odors) Olfactory Disorder (DS8).  

Each subject is instructed to take a comfortable resting 

position to avoid possible pick-ups of muscles artifacts. 

C. Experiment 1: Subject familiarity with stimulus 

concentration 

The following steps are employed to get the subjects 

familiarized with the relative concentration levels of the 

stimuli presented for a given odor. 

1. Ask the subject to concentrate on the computer monitor on 

a fixation cross for 3S. 

2. Submit an odor of preselected concentration for 5S with a 

delay of 2 minutes. 

3. Repeat step 2 for the same odor of different concentration. 

4. After presentation of stimuli of the same odor of 5 

different concentration levels are over, ask the subject to 

qualify the 5 stimuli into one of 5 grades: Very Low, Low, 

Medium, High and Very High based on their relative 

concentration levels. 

5. Represent the actual concentrations of the stimuli 

presented in [0, 100], and obtain the measure of grades of the 

stimuli as Very Low, Low, Medium, High, Very High based 

on the measure of the estimated concentration respectively in   

[1, 20), [20, 40), [40, 60), [60, 80), [80, 100] ranges. 

6. Match the grades of 5 concentration levels presented by the 

subject in his oral response with those obtained in step 5. In 

case the labels of all the 5 concentrations are correct, stop, 

else repeat from step 1. 

        The above steps are repeated for 10 distinct odors, each 

of 5 concentration grades, indicated above, with a delay of 5 

minutes between presentations of two successive odors.  

D. Experiment 2: Identification of active brain regions for 

different concentration levels 

This experiment attempts to identify the brain regions 

responsible for decoding of concentration levels of the 

olfactory stimulus (clove oil) at best three different 

concentration levels, one falling in the very low grade, one in 

the medium and one in the very high grade. Here, nirsLAB 

software has been used to get the mean HbO concentration 

over the 22 channels respectively. It is noted that for healthy 

subjects, the oxygen consumption in pre-frontal lobe is highly 

increased during the perception of various concentration level 

of olfactory stimulus. The hemodynamic load distribution in 

the pre-frontal cortex before presenting the olfactory stimulus 

is shown in Fig. 12 (a). The maximum activation for 

concentration 1, 3 and 5 are depicted in Fig. 12 (b), 12 (c) 

and 12 (d) respectively. The corresponding changes in the 

topographic map are listed below. 

1. Initially, the hemodynamic load distribution takes place in 

the pre-frontal region during perceiving an odor stimulus 

(clove oil) with its fixed concentration. 

2. The activation shifts to the Orbito frontal cortex (OFC) 

after perceiving first (very Low) concentration level. 

Additionally, small changes in concentration level initiates 

activation in Boardmann area 10, 11 which have a functions 

in olfactory signal processing and perception [53]. 

3. The activation of the orbito frontal cortex (OFC) is reduced 

gradually with increased concentration of the aromatic 

stimulus from Conc. 1 (Very low) to Conc. 3 (Medium). 
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Moreover, the cortical activation pattern spread to Dorso 

lateral pre-frontal cortex and vento-lateral pre-frontal cortex.  

4. Finally, with increase in concentration of the aromatic 

substance at Conc. 5 (Very high), the activation of the Pre-

frontal cortex is shifted to frontal region. The middle frontal 

cortex has the broader activation compared to the pre-frontal 

cortex. The quantitative measures of the above implications 

have been produce in Fig. 12 (e) to maintain the consistency 

of the data. It is also noted that subjects with olfactory 

disorder, occasionally fail to recognize the concentration of 

the given stimuli at the expected brain regions.  

E. Experiment 3: Subjective Sensitivity Analysis from the 

Hemodynamic response 

Sensitivity in engineering refers to the weakest possible 

signal that a machine can measure [54]. Here, the sensitivity 

of subjects is compared with reference to the measure of 

normalized oxygen consumption (NOC), averaged over an 

interval of time (ANOC), starting from the onset of the 

stimulus. The definition of ANOC is given in eq. (38). 

,)(ˆ /
0

0

TtdANOC

Tt

tt


+

=

= 

                               

(38) 

where, 0t and T be the starting and end time points. Fig. 13 

provides a plot of the ANOC with respect to concentration 

variation to have an idea of sensitivity of the subjects to 

stimuli of varied concentrations. It is noted from the plot that 

the persons with brain diseases have relatively lower values 

in ANOC for stimulus of very low, low and medium 

concentrations, in comparison to those of healthy individuals. 

The experiment thus ensures that subjects with olfactory 

disorder have lower sensitivity than the healthy subjects. 

F. Experiment 4: Olfactory Perceptual Degradation (OPD) 

Assessment of a subject during test phase  

The prime motivation of this experiment is to determine the 

degradation of olfactory perception for both healthy and 

diseased subject in the test phase. It is clear from Fig. 14, that 

the olfactory degradation is very high for diseased subject 3 

whereas it is least for healthy subject 3. Here, the subjects are 

ranked in the ascending order of their OPDs. The following 

conclusions are drawn from the experiment.  

 
1. The OPD results provide a clear demarcation between the 

healthy and the diseased subjects.  

2. It is noted that OPD increases for people with olfactory 

disorder. A relatively higher OPD for healthy people 

indicates a tendency towards acquiring olfactory disorder.  

G. Experiment 5: Validation of OPD by Monthly Assessment  

In order to examine the performance of the proposed GT2FS 

based regression model, a monthly assessment of olfactory 

disorder is carried out by measuring monthly OPD over one 

year after completion of subject training. It is noted that for 

healthy subjects, the monthly variation is ignorable, whereas 

for persons with olfactory disorders exhibit a gradual 

degradation in OPD measure.  Fig. 15 depicts the results of 

monthly OPD measurements for 2 healthy subjects and 5 

diseased subjects only (to avoid clumsiness). It is evident 

from Fig 15, that perceptual degradation of healthy subject 

has little variation around zero value. On the other hand, for 

olfactory diseased persons, the perceptual degradation 

measure increases over months.  

V. PERFORMANCE ANALYSIS AND STATISTICAL 

EVALUATION 

This section compares the performance of the proposed 

General Type-2 fuzzy regression with the state-of-the-art 

techniques. This is done with reference to the value of 

percentage success rate (PSR), run-time complexity and 

statistical test. Here, for each subject, there are 25 training 

instances in a session for a given odor sample of a fixed 

concentration level. Again for 10 different odor samples, we 

have 25 × 10 = 250 instances. These 250 instances together 

constitute one dataset for individual subject. Similarly, for 30 

subjects, we have 30 distinct datasets. The 30 datasets, each 

of 250 instances, are presented in separate folders in the URL 

given in [64], [65]. 

Fig.15. monthly OPD measurements for 2 healthy subjects and 5 diseased 
subjects 
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Let, iC
 

and iD
 

be the computed and desired odor 

concentration level for i-th training instance obtained from 

the oral response of the subject. Now, to calculate the success 

rate for each data set, first, we identify the successful 

instances for each dataset by satisfying the chosen inequality 

criterion: ]  %5[]  %5[ iiiii DofDCDofD +− (Appendix A.2 

[65]). Second, for all the 250 instances in each dataset 

Percentage Success rate (PSR) is evaluated by, 

 .100
250

intances successful of No
=PSR

               
 (39) 

Next, average PSR of each algorithm is obtained by taking 

the PSR obtained from 30 different datasets for the same 

algorithm. 

A. Performance Analysis of the proposed GT2FS reasoning 

methods 

To evaluate the relative performance of the proposed type-2 

fuzzy reasoning method with the existing techniques, we 

undertake PSR and the runtime complexity for comparison. 

Table-II provide the results of PSR obtained by the proposed 

type-2 fuzzy set based regression techniques against 

traditional type-1 [59], type-2 fuzzy algorithms [60]- [62] and 

non-fuzzy regression algorithm including L-th order of 

polynomial regression [58], Linear support vector machine 

(SVM) based regression [55], SVM with Gaussian kernel 

[56], Back propagation neural network (BPNN) based 

regression [57], realized and tested for the present perceptual 

task. The optimal parameter sets of all the algorithms are 

included in Table- IV (Appendix A.3 [65]). It is apparent 

from Table-II that the proposed reasoning algorithm 

outperforms its nearest competitors by a large margin. It is 

also observed form the same table that the runtime 

complexity of the proposed GT2FS algorithm is 94.7 

milliseconds, which is comparably less than the other existing 

GT2FS based techniques. 

B. Computational Complexity Analysis of the proposed 

GT2FS Method 

To determine the computational performance analysis of the 

Type-2 Fuzzy reasoning, we evaluate order of complexity in 

terms of total number of t-norm, and s-norm computations   

[50]. Table-III provides the results of run-time complexity 

analysis to demonstrate that the order of complexity of the 

proposed algorithm is significantly less than its competitors.  

In Table-III, n is the number of selected features, m is the 

number of discretization levels along the y-axis and I is the 

number of z-slices, considered in GT2FS based algorithms.  

C. Statistical validation with Friedman Test 

The Friedman test [63] is used here to statistically compare 

the performance of the proposed algorithm with respect to 8 

other well-known algorithms and 30 datasets of 250 

instances. The rank of individual algorithm for each dataset is 

evaluated using the PSR metric defined earlier. The detailed 

computation of ranking of the algorithms is given in 

Appendix A.2 [65]. The 2
F is evaluated based on the average 

rank of individual algorithms over 30 datasets. It is noted that 

the computed ,2
95.0),19(

2
− F  the value obtained from chi-sqr 

table for 8 degrees of freedom at 95% confidence level. The 

above criterion ensures that the null hypothesis, claiming that 

all the chosen algorithms have identical performance, is 

wrong, and thus rejected, thereby justifying the rank 

estimation of the algorithms by the PSR metric.   

VI. CONCLUSION 

The paper introduced a new technique for olfactory 

perceptual degradation assessment of human subjects using 

an f-NIRs device. Experimental analysis undertaken confirms 

that the proposed model can detect possible olfactory 

perceptual degradation over months, particularly for subjects 

with olfactory disorder. A run-time complexity analysis 

envisages that the proposed algorithm outperforms its 

competitors by a large margin. A Friedman test confirms 

better statistical performance of the proposed technique with 

its competitors to a confidence level 95%.                                                                                                                                                                                     
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