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Abstract: Aerosol optical depth (AOD) is an important atmospheric parameter for climate change
assessment, human health, and for total ecological situation studies both regionally and globally. This
study used 21-year (2000–2020) high-resolution (1 km) Multiangle Implementation of Atmospheric
Correction (MAIAC) algorithm-based AOD from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) sensor onboard the Terra and Aqua satellites. MAIAC AOD was evaluated against
Aerosol Robotic Network (AERONET) data across three sites (Xuzhou-CUMT, NUIST, and Taihu) lo-
cated in Jiangsu Province. The study also investigated the spatiotemporal distributions and variations
in AOD, with associated trends, and measured the impact of meteorology on AOD in the 13 cities of
Jiangsu Province. The evaluation results demonstrated a high correlation (r = 0.867~0.929) between
MAIAC AOD and AERONET data, with lower root mean squared error (RMSE = 0.130~0.287) and
mean absolute error (MAE = 0.091~0.198). In addition, the spatial distribution of AOD was higher
(>0.60) in most cities except the southeast of Nantong City (AOD < 0.4). Seasonally, higher AOD was
seen in summer (>0.70) than in spring, autumn, and winter, whereas monthly AOD peaked in June
(>0.9) and had a minimum in December (<0.4) for all the cities. Frequencies of 0.3 ≤ AOD < 0.4 and
0.4 ≤ AOD < 0.5 were relatively common, indicating a turbid atmosphere, which may be associated
with anthropogenic activities, increased emissions, and changes in meteorological circumstances.
Trend analysis showed significant increases in AOD during 2000–2009 for all the cities, perhaps
reflecting a booming economy and industrial development, with significant emissions of sulfur
dioxide (SO2), and primary aerosols. China’s strict air pollution control policies and control of
vehicular emissions helped to decrease AOD from 2010 to 2019, enhancing air quality throughout the
study area. A notably similar pattern was observed for AOD and meteorological parameters (LST:
land surface temperature, WV: water vapor, and P: precipitation), signifying that meteorology plays
a role in terms of increasing and decreasing AOD.

Keywords: aerosol; AERONET; MODIS; MAIAC; AOD; trend

1. Introduction

Aerosols are mixtures of tiny solid and liquid particles suspended in the atmosphere,
with a typical particle radius ranging from 0.001 to 100 µm [1]. They are generated from
many different sources across the world and released into the atmosphere as mineral dust,
volcanic dust and ash, biomass ash, mist fog, smoke, sea salt, and particulate pollution
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from both natural and anthropogenic activities [2–6]. Aerosols severely impact human
health, the climate, atmospheric visibility, air quality, and agricultural production [7–10].
They also play a significant role in the environment and climate, so that their long-term
fluctuations and trends are crucial for climate change assessment [11–13]. According to the
Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change [14],
aerosols are the main source of uncertainty in climate change modeling and assessment.
They directly lessen the amount of solar radiation that reaches the Earth’s surface by
absorbing and scattering the radiation, altering the balance of the Earth–atmosphere
energy budget [15–17]. The IPCC [14] reported that absorption of radiant energy by
aerosols leads to warming of the troposphere and cooling of the surface, potentially altering
atmospheric visibility and the relative humidity, thereby affecting precipitation and cloud
formation. In addition, aerosols indirectly affect climate change through aerosol–cloud
interactions [18,19].

Aerosol optical properties are significant factors affecting atmospheric radiation and
climate change; therefore, studies of long-term variations in these properties with the high
spectral and temporal resolution are necessary. Such studies could explore important infor-
mation for climate change prediction and estimation [14,20,21]. In this regard, extensive
efforts have already been devoted to monitoring atmospheric aerosols with aerosol optical
depth (AOD) globally. AOD is the key optical parameter used to estimate aerosol loading
in the atmosphere [22]. Aerosols from natural and anthropogenic sources and transported
by meteorological circumstances can sharply impact AOD distribution, which can form the
basis for investigations of regional aerosol loading to show its effect on climate change and
radiation [23,24].

Ground-based networks such as the Aerosol Robotic Network (AERONET) and the
China Aerosol Remote Sensing Network (CARSNET) have been widely used to obtain
the long-term measurements of national, regional, and global aerosol optical properties
around the world [25,26]. These networks provide an accurate and detailed description of
atmospheric aerosols, offering insights into the temporal distributions of aerosol optical
properties and their effect on the climate [27–30]. However, the limitations of the ground-
based networks are the sparse station cover and scantiness of AOD spatial distributions [29].

Satellite remote sensing, for its part, allows long-term aerosol observation of national,
regional, and global aerosol optical properties, overcoming the limitations of ground-based
networks in providing regular near-real-time AOD measurements as well as the long-term
aerosol variations at low-to-high spatial resolutions. Various satellite sensors such as the
Total Ozone Monitoring Instrument (TOMS) [31], the Advanced Very High Resolution Ra-
diometer (AVHRR) [32], MODIS (Moderate Resolution Imaging Spectroradiometer) [33–36],
the Ozone Monitoring Instrument (OMI) [37], the Sea-Viewing Wide-Field of View Sensor
(SeaWiFS) [38], GOES (Geostationary Operational Environmental Satellite) [39], GOCI
(Geostationary Ocean Color Image) [40], and the Visible Infrared Imaging Radiometer (VI-
IRS) [41] provide long-term spatiotemporal aerosol data, which have been extensively used
to investigate aerosol loading both regionally and globally. MODIS is the most popular
and widely used and provides continuous long-term aerosol data allowing regular aerosol
observation at national, regional, and global scales [33,42–44]. The MODIS instrument
onboard the Terra and Aqua satellites provides AOD at 10 km spectral resolution over land
using the Dark Target (DT) and Deep Blue (DB) and at 1 km using the Multiangle Imple-
mentation of atmospheric correction (MAIAC) algorithm. The DT algorithm was designed
for vegetation and moist surfaces but has limitations over bright-reflecting surfaces [45], so
Hsu et al. [46] proposed the DB algorithm to estimate AOD over bright-reflecting surfaces.
To increase AOD retrieval accuracy and coverage with high-resolution (1 km) over different
aerosol climatology and surface cover conditions, Lyapustin et al. [36,47,48] proposed the
MAIAC algorithm, which is more accurate than DT and DB over vegetation, moist surfaces,
and bright-reflecting surfaces. Even so, the effects of surface albedo, geography and eleva-
tion, and retrieval algorithms, mean that satellite datasets need continuous improvement
to achieve higher accuracy [49–53].
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Recently, aerosol products have been widely evaluated over land, including the Amer-
ican continents [54,55] and South Asia [56], using the MODIS MAIAC algorithm. Although
a few validation studies have also been conducted over China [57–59], the performance
of the MAIAC algorithm is still unclear in China due to high levels of aerosol loading,
and heterogeneity. Due to China’s rapid social and economic development in recent years,
the country is in line with serious aerosol pollution. According to China’s Environmental
Status Bulletin 2015, more than 70 prefecture-level cities of the BTH (Beijing-Tianjin-Hebei)
region had 1710 severe and above pollution days and were given 154 heavy pollution
weather warnings. Moreover, about 73 prefecture-level cities showed ambient air quality
standards, and the rest of the cities (265) failed to reach the urban environmental air quality
standards. According to the Environmental Performance Index Report (2016) announced
by Yale University, the air quality of China ranked the second last in the world, only better
than Bangladesh [60,61]. However, air quality problems are very noticeable in Jiangsu
province, an economically developed province in eastern China covering a concentrated
area of metropolises and large rural areas. This leads to the release of air pollutants from
urban constructions, transportation, industrial production, and the burning of straw in
agricultural production. This province is located in the climate transition zone between
the northern and southern regions of China. It is a buffer zone between the BTH and the
Yangtse River Delta, resulting in severe air pollution. Jiangsu’s Environmental Status Bul-
letin (2012–2015) reported that 13 cities of Jiangsu Province did not meet the second level
of national air quality standard; therefore, a study related to identifying aerosol pollution
hotspots in the Jiangsu Province of China is important. To the best of our knowledge, no
study has evaluated the MAIAC AOD against AERONET AOD at the local scale (e.g.,
Jiangsu Province), while analyzing long-term spatiotemporal distribution and variations
in AOD and calculating its trend to find out the hotspots of aerosol pollution. Accord-
ingly, evaluation of the MAIAC algorithm in Jiangsu Province is needed to investigate the
spatiotemporal distribution and variations in AOD, shedding light on aerosols’ effects on
climate and pollution meteorology. The main objectives of this study are: (1) to evaluate the
MAIAC AOD against AERONET AOD (NUIST, Taihu, and Xuzhou-CUMT); (2) to analyze
the long-term spatiotemporal distribution of and variations in AOD, while calculating its
trend; and (3) to study the relationship between AOD and meteorological parameters (LST,
WV, and P) in the 13 cities of Jiangsu Province from 2000 to 2020. This study contributes
to the literature by revealing city-level aerosol pollution distribution in Jiangsu Province
based on the MODIS high-resolution MAIAC aerosol products, offering detailed data on
the interactions between atmospheric pollutants for use in improving air quality at the
city level.

2. Materials and Methods
2.1. Study Area

China, the largest Asian country, also has the largest population of any country in the
world. It has 23 Provinces, 5 autonomous regions, 4 municipalities (Chongqing, Beijing,
Shanghai, and Tianjin), and 2 administrative regions (Hong Kong and Macau). Jiangsu
Province (116◦18′–121◦57′ E, 30◦45′–35◦20′ N), which has historically been China’s most
politically, economically, and culturally developed region, covers about 102,600 square
kilometers. Located in the east of China and encompassing much of the Yangtse River
Delta (YRD), with its many rivers and lakes, Jiangsu is the most densely populated and
agriculturally fertile region of China. About 70% of its populace of 80 million live in urban
areas. After the economic reforms in 1990, it became a hotspot for economic development
and now has the highest per-capita GDP of China’s 23 Provinces. Jiangsu is the home
of many of the world’s leading exporters of chemical, textiles, and electronic equipment,
which are located in its 13 major cities (Figure 1).
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Figure 1. Map of Jiangsu Province with major cities, China. The background image reveals the multiyear (2000–2020)
averages of MODIS NDVI, with arid surfaces (NDVI < 0.2), lighter or sparse vegetation (0.2 < NDVI < 0.4), moderate
vegetation (0.4 < NDVI < 0.5), and dark vegetation (NDVI > 0.5).

Most parts of Jiangsu Province have a humid subtropical climate that begins to transi-
tion into a humid continental climate in the far north. The annual mean temperature varies
from 13 ◦C to 16 ◦C, and precipitation from 782 mm to 1150 mm. There are four distinct
seasons: winter (December, January, February); spring (March, April, May); summer (June,
July, August); and autumn (September, October, November). In January, the average
temperature ranges from −1 ◦C to 4 ◦C, while in June this range is from 26 ◦C to 29 ◦C.
Besides, the most frequent rainfall happens in spring and summer, while rainstorms with
typhoons occur in the late summer and autumn.

2.2. MAIAC AOD

The MAIAC algorithm assumes that the surface reflectance evolves smoothly over
time and displays high variability over space, while the aerosol changes smoothly (low
variability) over space [46]. To retrieve aerosol and surface parameters: Firstly, the algo-
rithm resamples MODIS L1B radiances into a 1 km fixed grid. Then, the gridded data
are split into 1200 km titles and placed in a queue containing from 5 (over the pole) to
16 (over the equator) days. This gives a time dimension for each 1 km grid cell. The cloud
mask combined with discriminating absorbing aerosols (dust or smoke) enables MAIAC
to distinguish most aerosol emission sources at 1 km resolution, including high intensity
plumes, without masking them as clouds [46]. The MAIAC aerosol retrieval algorithm uses
minimum reflectance technique to characterize surface reflectance with spectral surface
reflectance ratios (SRC) such as 0.47/2.13 (µm) and 0.47/0.55 (µm) [46]. Notably, this
code runs dynamically and continuously updates the SRC. The angular dependence of
SRC is estimated based on three angular bins. Finally, the AOD retrieval algorithm uses
different band combinations such as 0.47, 0.55, 0.65, and 2.13 µm, depending on the sur-
face brightness and defined regional aerosol models for the MAIAC look-up table (see
Lyapustin et al. [46]). The MAIAC AOD product is a long-term dataset that offers a good
spatio-temporal resolution to monitor aerosols from local to global scale and this dataset
has been widely used by researchers [49,52,54,57]. The algorithm also provides cloud
masks and water vapor at NIR bands. In this paper, we used the MAIAC AOD (550 nm)
over Jiangsu Province to study spatio-temporal variations of AOD and its evaluation
against ground measurements from 2000 to 2020 [49]. The data were downloaded from the
NASA website (link: https://search.earthdata.nasa.gov/search?q=MCD19A2; accessed on
1 March 2021).

https://search.earthdata.nasa.gov/search?q=MCD19A2
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2.3. AERONET AOD

The Aerosol Robotic Network (AERONET) provides AOD that is calculated from
direct solar radiation measurements under cloud-free conditions at different wavelengths,
with high temporal resolution (15 min) and low uncertainty (~0.01–0.02) [25]. The AERONET
data holds three levels, namely Level 1 for unscreened, Level 1.5 for cloud-screened,
and Level 2.0 for quality-assured. This data network has been verified as the standard
source due to its high quality and accuracy, global range, free cost, and easy access. Data
(e.g., AOD and water vapor) from AERONET are widely used for evaluation and bias
corrections of satellite-based water vapor and aerosol products [35,62–64]. There are three
AERONET sites, namely NUIST, Taihu, and Xuzhou, located in Jiangsu Province (Figure 1
and Table 1). Due to less available data at 550 nm, the present study used both Level
1.5 and 2 AOD at 440 nm to estimate AOD at 550 nm based on the Ångström empirical
methods (Equation (1)):

AOD550 = AOD440 ×
(

550
440

)−AE440−670

. (1)

Table 1. AERONET sites information and data availability.

Sites Latitude (N) Longitude (E) Altitude (m) Period

NUIST 32.20648◦ 118.71715◦ 62 2007–2010
Taihu 31.42100◦ 120.21533◦ 20 2001–2018

Xuzhou-CUMT 34.21667◦ 117.14167◦ 59.7 2013–2019

Here, AE440–670 (nm) is the Ångström Exponent and AOD550 (nm) indicates the aerosol
optical depth at 550 nm. The data were downloaded from the NASA AERONET site (link:
https://aeronet.gsfc.nasa.gov/; accessed on 10 March 2021).

2.4. Meteorological Data

To investigate the relationship between meteorological parameters and satellite-based
MAIAC AOD, this study used meteorological parameters such as land surface temperature
(LST: MOD11C3v006 and MYD11C3v006) and Wwter vapor (WV: MOD08_M3v6.1 and
MYD08_M3v6.1) from the MODIS sensor, and precipitation from Global Precipitation Mea-
surement (GPM: GPM_3IMERGM_06). The 20 years (2000–2020) data were downloaded
from the link: https://giovanni.gsfc.nasa.gov/; accessed on 15 March 2021.

2.5. Research Methodology

In this study, several statistical methods were used to evaluate the MAIAC AOD
against AEROENT AOD. Details include the following:

• The study extracted point data from MAIAC AOD using the spatial widow of 3 × 3
pixels surrounding the AERONET sites, which were averaged if at least 2 pixels out of
the 9 pixels were available. The AERONET AOD was averaged within a ±60 minute
time window from the satellite local time (Terra: 10:30 am, Aqua: 01:30 pm).

• A reduced major axis (RMA) method was used to calculate slope and intercept be-
tween the satellite-based MAIAC and AERONET AODs [65]. The slope defines the
inaccuracy related to using an imperfect aerosol model, while the intercept implies
the inaccuracy related to incorrect surface reflectance calculation [3,66]. In RMA, the
following Equations (2) and (3) are used to calculate the slope (β) and intercept (α):

β =
σy

σx
. (2)

α = Y−
(
σy

σx

)
X (3)

https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
https://giovanni.gsfc.nasa.gov/
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where X and Y are defined as the means of X and Y, and σx and σy indicate the
standard deviation of X and Y, respectively. A perfect estimation of satellite-based
MAIAC AOD is indicated by values of β (=1) and α (=0).

• To determine the uncertainty and accuracy of the satellite-based MAIAC AOD prod-
ucts, this study used the following Equations (4)−(8) for Pearson’s correlation (r), root
mean squared error (RMSE), mean absolute error (MAE), relative mean bias (RMB),
and expected error envelope (EE) [5,27,67].

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

. (4)

RMSE =

√
1
n ∑n

i=1(AODSatellite −AODAERONET)
2. (5)

MAE =
1
n ∑n

i=1|(AODSatellite −AODAERONET)|. (6)

RMB =

∣∣∣∣ AODSatellite

AODAERONET

∣∣∣∣. (7)

EE = ±(0.05 + 0.15×AODAERONET). (8)

Here, RMB = 1 defines the normal estimation of MAIAC AOD, while RMB < 1 and > 1
indicates underestimation and overestimation, respectively.

• The Mann–Kendal test was used to calculate the significance of any AOD trends (in-
creasing or decreasing), while Sen’s slope method was used to calculate the magnitude
of AOD trends. The methods used in this study are discussed below.

If x1, x2, x3 . . . . . . xi represent n data points where xj represents the data point at time
j, then the Mann–Kendall statistic, Sen’s slope (S) is given by Mann and Kendall [68,69]

S = ∑n−1
k=1 ∑n

j=k+1 sign
(
xj − xk

)
. (9)

where

sign
(
xj − xk

)
=


1, if

(
xj − xk

)
> 0

0, if
(
xj − xk

)
= 0

−1, if
(
xj − xk

)
< 0

. (10)

S is associated with normally distributed probability and the sample size, n, were
calculated to statistically quantify the significance of AOD trends. Normalized statistics (Z)
were calculated using the following equation:

Z =


S−1√
VAR(S)

, if S > 0

0, if S = 0
S−1√
VAR(S)

, if S < 0
. (11)

At the 95% significance level, the null hypothesis of no trend is rejected if |Z| > 1.96.
Sen’s slope technique [70] was used to calculate the slope as a change in measurement

per unit change in time

Q′ =
xt′ − xt

t′ − t
. (12)

where, Q′ = slope between data points xt′ and xt
xt′ = data measurement at a time t′

xt = data measurement at time t
Sen’s estimator of the slope is attained by the median slope
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Q = Q′[N + 1/2] if N is odd
=
(

Q′ [N/2] + Q′ [(N+2)/2]

)
/2 if N is even

(13)

where N is the number of calculated slopes.

3. Results and Discussion
3.1. Evaluations of MAIAC AOD against AERONET AOD

Figure 2 and Table S1 show the evaluation of MODIS mean (Terra and Aqua) MAIAC
AOD against ground-based AERONET data for three sites in Jiangsu Province during
2000–2020. The MODIS MAIAC and AERONET AOD showed good consistency in that at
the Xuzhou-CUMT site, they have a higher correlation (r = 0.929), more retrievals falling
within the EE envelope (75.84%), and lower errors (RMSE = 0.130, MAE = 0.091) than at
the NUIST (0.867, 62.03%, 0.287, 0.179) or Taihu (0.914, 40.22%, 0.253, 0.198) sites (Figure 2
and Table S1). Moreover, the RMB value (1.063) at the Xuzhou-CUMT site is closer to
unity compared to the NUIST (0.838) and Taihu (1.249) sites. This suggests that AOD
errors estimated by the MAIAC algorithm were smaller at the Xuzhou-CUMT site (6.3%
overestimation) than at the Taihu site (24.9% overestimation), or the NUIST site (16.2%
underestimation). Under- and overestimation of AOD occur when using imperfect aerosol
models and surface reflectance parameterizations in the look-up table, as indicated by
the slope and intercept values [3,5,66,67,71]. Seasonally, the MAIAC algorithm, as with
an annual one, produced more consistent results at the Xuzhou-CUMT site than at the
NUIST and Taihu sites (Figure 2 and Table S1). Overall, the MAIAC algorithm showed
a good agreement with AERONET data, making these data valuable for the study of
long-term spatiotemporal distributions of and variations in AOD along with associated
trends, revealing aerosol pollution distribution at a finer scale globally. However, in this
study, we used the mean (Terra and Aqua) MODIS-MAIAC AOD product for its higher
spatial and temporal coverage in Jiangsu Province.

3.2. Spatial Distributions of MAIAC AOD

Figure 3 represents the annual and seasonal spatial distribution of AOD obtained
from the mean (Terra and Aqua) MAIAC algorithm in Jiangsu Province from 2000 to 2020.
It is important to mention that due to the limitations of the MAIAC algorithm over the
body of water, we have masked the body of water from the AOD map, resulting in that
place appearing to be white (Figure 3). The spatial distribution of annual mean AOD
was high (>0.60) in most cities of Jiangsu Province except for the southeast of Nantong
city (<0.4) (Figure 3). For the 13 studied cities, the 21-year city-level annual mean AOD
was highest in Xuzhou (0.73 ± 0.10), followed by Lianyungang (0.70 ± 0.10), Suqian and
Taizhou (0.66 ± 0.09), Yangzhou (0.65 ± 0.09), Huaian (0.65 ± 0.08), Nanjing (0.63 ± 0.09),
Changzhou (0.62± 0.09), Zhenjiang (0.61± 0.10), Suzhou and Wuxi (0.61± 0.09), Yancheng
(0.61 ± 0.08), and Nantong (0.59 ± 0.08) (Figure 4 and Table 2). The AOD values for
the 13 cities were notably close to one another, indicating the presence of substantial
aerosol emissions in Jiangsu Province (0.66 ± 0.08), which are strongly influenced by
anthropogenic activities, resulting in high AOD. Che et al. [23] reported that urban areas
are strongly impacted by anthropogenic activities, leading to high AOD in northeast
China. Similar results were documented by [72]. High AOD may also result because the
geographical position of the Yellow Sea is favorable for the formation of sea–land breezes
and the associated mesoscale atmospheric circulation, which together influence the aerosol
transport, producing high AOD in the 13 cities of Jiangsu Province.
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Table 2. City averaged monthly, seasonal and annual mean AOD (± STD) obtained from mean (Terra and Aqua) MODIS MAIAC algorithm from 2000 to 2020 in 13 cities in Jiangsu Province.

Time Nanjing Wuxi Xuzhou Changzhou Suzhou Nantong Lianyungang Huaian Yancheng Yangzhou Zhenjiang Taizhou Suqian Jiangsu
Province

Jan 0.55 ± 0.11 0.52 ± 0.09 0.68 ± 0.12 0.53 ± 0.09 0.50 ± 0.09 0.57 ± 0.12 0.59 ± 0.14 0.57 ± 0.12 0.56 ± 0.09 0.55 ± 0.09 0.54 ± 0.10 0.57 ± 0.10 0.60 ± 0.13 0.63 ± 0.10
Feb 0.62 ± 0.14 0.56 ± 0.17 0.71 ± 0.18 0.59 ± 0.16 0.53 ± 0.14 0.59 ± 0.16 0.67 ± 0.15 0.62 ± 0.16 0.60 ± 0.13 0.62 ± 0.21 0.59 ± 0.15 0.61 ± 0.17 0.63 ± 0.16 0.67 ± 0.17
Mar 0.65 ± 0.14 0.62 ± 0.11 0.74 ± 0.10 0.63 ± 0.12 0.63 ± 0.12 0.64 ± 0.13 0.70 ± 0.12 0.67 ± 0.12 0.66 ± 0.12 0.67 ± 0.13 0.63 ± 0.11 0.68 ± 0.11 0.69 ± 0.16 0.70 ± 0.11
Apr 0.62 ± 0.10 0.63 ± 0.12 0.71 ± 0.13 0.64 ± 0.13 0.66 ± 0.11 0.63 ± 0.09 0.72 ± 0.13 0.65 ± 0.09 0.65 ± 0.09 0.68 ± 0.10 0.63 ± 0.12 0.69 ± 0.09 0.67 ± 0.12 0.69 ± 0.10
May 0.63 ± 0.14 0.66 ± 0.12 0.68 ± 0.16 0.65 ± 0.13 0.69 ± 0.18 0.59 ± 0.11 0.67 ± 0.12 0.66 ± 0.13 0.64 ± 0.10 0.69 ± 0.15 0.64 ± 0.15 0.70 ± 0.12 0.65 ± 0.13 0.67 ± 0.10
Jun 0.97 ± 0.32 0.88 ± 0.30 0.99 ± 0.29 0.89 ± 0.34 0.87 ± 0.27 0.86 ± 0.29 1.00 ± 0.28 0.99 ± 0.31 0.85 ± 0.27 1.07 ± 0.35 0.89 ± 0.36 1.07 ± 0.48 0.92 ± 0.25 0.92 ± 0.23
Jul 0.64 ± 0.25 0.67 ± 0.25 0.87 ± 0.23 0.67 ± 0.31 0.68 ± 0.25 0.70 ± 0.26 0.96 ± 0.28 0.83 ± 0.27 0.83 ± 0.28 0.79 ± 0.27 0.64 ± 0.29 0.81 ± 0.28 0.83 ± 0.28 0.75 ± 0.20

Aug 0.64 ± 0.22 0.62 ± 0.21 0.72 ± 0.20 0.61 ± 0.20 0.63 ± 0.21 0.52 ± 0.17 0.71 ± 0.25 0.60 ± 0.19 0.57 ± 0.18 0.63 ± 0.21 0.64 ± 0.25 0.60 ± 0.20 0.63 ± 0.16 0.60 ± 0.16
Sep 0.57 ± 0.16 0.57 ± 0.14 0.65 ± 0.16 0.60 ± 0.17 0.57 ± 0.16 0.42 ± 0.11 0.59 ± 0.19 0.52 ± 0.14 0.45 ± 0.11 0.50 ± 0.13 0.52 ± 0.17 0.50 ± 0.12 0.58 ± 0.16 0.58 ± 0.12
Oct 0.57 ± 0.13 0.55 ± 0.12 0.76 ± 0.22 0.56 ± 0.12 0.53 ± 0.12 0.46 ± 0.12 0.62 ± 0.17 0.57 ± 0.15 0.50 ± 0.12 0.53 ± 0.12 0.56 ± 0.10 0.55 ± 0.11 0.62 ± 0.18 0.59 ± 0.15
Nov 0.55 ± 0.09 0.55 ± 0.11 0.66 ± 0.12 0.56 ± 0.09 0.55 ± 0.10 0.56 ± 0.12 0.63 ± 0.12 0.58 ± 0.09 0.57 ± 0.10 0.57 ± 0.08 0.55 ± 0.10 0.59 ± 0.10 0.62 ± 0.09 0.61 ± 0.08
Dec 0.51 ± 0.10 0.50 ± 0.10 0.58 ± 0.11 0.52 ± 0.09 0.51 ± 0.10 0.50 ± 0.08 0.50 ± 0.08 0.51 ± 0.10 0.51 ± 0.10 0.50 ± 0.09 0.51 ± 0.10 0.52 ± 0.10 0.54 ± 0.09 0.54 ± 0.09

Winter 0.56 ± 0.08 0.52 ± 0.09 0.66 ± 0.10 0.54 ± 0.08 0.51 ± 0.08 0.55 ± 0.08 0.58 ± 0.09 0.56 ± 0.09 0.55 ± 0.08 0.56 ± 0.09 0.54 ± 0.08 0.56 ± 0.10 0.59 ± 0.10 0.61 ± 0.09
Spring 0.63 ± 0.09 0.64 ± 0.08 0.71 ± 0.09 0.64 ± 0.09 0.66 ± 0.10 0.62 ± 0.08 0.70 ± 0.08 0.66 ± 0.08 0.65 ± 0.08 0.68 ± 0.09 0.63 ± 0.10 0.69 ± 0.08 0.67 ± 0.10 0.69 ± 0.08

Summer 0.75 ± 0.21 0.72 ± 0.21 0.86 ± 0.22 0.73 ± 0.20 0.72 ± 0.18 0.70 ± 0.18 0.89 ± 0.24 0.80 ± 0.20 0.75 ± 0.19 0.83 ± 0.22 0.72 ± 0.25 0.82 ± 0.24 0.79 ± 0.18 0.76 ± 0.17
Autumn 0.56 ± 0.09 0.56 ± 0.09 0.69 ± 0.12 0.57 ± 0.09 0.55 ± 0.10 0.48 ± 0.08 0.61 ± 0.12 0.56 ± 0.08 0.51 ± 0.08 0.53 ± 0.08 0.55 ± 0.09 0.54 ± 0.08 0.60 ± 0.10 0.59 ± 0.10
Annual 0.63 ± 0.09 0.61 ± 0.09 0.73 ± 0.10 0.62 ± 0.09 0.61 ± 0.09 0.59 ± 0.08 0.70 ± 0.10 0.65 ± 0.08 0.61 ± 0.08 0.65 ± 0.09 0.61 ± 0.10 0.66 ± 0.09 0.66 ± 0.09 0.66 ± 0.08
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Seasonally, spatial AOD was highest in summer followed by spring, autumn, and
winter (Figure 3), in line with the findings of two earlier studies over China as a whole and
the Sichuan Basin in particular [73,74]. In summer, spatially high AOD (>0.7) was found
throughout Jiangsu Province except in the southeast of Nantong City (0.45). Most photo-
chemical reactions occur at higher temperatures, when plenty of water vapor and droplets
are suspended in the atmosphere, likely creating high AOD over the study area [75,76].
Furthermore, influence from the East Asian summer monsoon produces higher relative hu-
midity during the summer season, resulting in high AOD [77,78]. The higher summer AOD
may also be associated with increased emissions of anthropogenic aerosol from agricultural
waste and biomass burning [71]. The second peak in AOD (0.50~0.70) was observed during
spring in most of Jiangsu’s cities, perhaps as a result of frequent sand and dust storms
originating from the Taklamakan Desert, abundant biomass-burning activities, and lower
levels of vegetation [74,79,80]. High spring winds could also substantially pick up and
carry soil, dust, and biological particulate matter into the atmosphere, resulting in high
AOD [81,82]. Notably, all the 13 studied cities had higher AOD in summer than in spring,
autumn, and winter (Figure 4 and Table 2). Specifically, in summer, the 21-year city-level
seasonal mean AOD was highest in Lianyungang (0.89 ± 0.24) and lowest in Nantong
(0.70 ± 0.18), whereas spring city-level mean AOD was highest in Xuzhou (0.71 ± 0.09)
and lowest in Nantong (0.62 ± 0.08) (Figure 4 and Table 2). Autumn mean AOD was
highest in Xuzhou (0.69 ± 0.12) and lowest in Nantong (0.48 ± 0.08), whereas winter AOD
peaked in Xuzhou (0.66± 0.10) and reached its lowest in Suzhou (0.51± 0.08). Interestingly,
Jiangsu Province had a higher AOD in winter (0.61 ± 0.09) than in autumn (0.59 ± 0.10)
(Figure 4 and Table 2).

Over the long-term, the monthly and spatial mean AOD rose gradually from January
and peaked in June (>0.9), then generally declined with some fluctuations until December
(low: <0.4) throughout Jiangsu Province (Figure 5). This fluctuation was attributed to varia-
tions in aerosol load and particle size originating from various source regions [82,83]. High
AOD is associated with heavy emissions caused by the burning of summer agricultural
waste [71,84]. The city-level monthly mean AOD also peaked in June and was lowest in
December for the 13 cities of Jiangsu Province (Figure S1 and Table 2).

3.3. Frequency Distribution of AOD

Figure 6 shows the annual and seasonal frequency distribution of AOD based on
daily datasets for the 13 cities of Jiangsu Province from 2000 to 2020. During the study
period, at an annual scale, AOD occurrence frequency was least for the 0.0≤ AOD < 0.1 bin,
being < 1.79% for the 13 cities of Jiangsu Province, indicating extremely clean conditions
(Figure 6). Specifically, the occurrence frequency of 0.0 ≤ AOD < 0.1 was comparatively
high in Nantong (1.79%), Zhenjiang (1.12%), and Yancheng (1.05%), but the other cities
in Jiangsu Province had AOD frequencies of less than 0.80%. Moreover, compared with
the 0.0 ≤ AOD < 0.1 bin, AOD occurrence frequencies substantially increased, peaking
in the 0.3 ≤ AOD < 0.4 bin (12.76% to 17.86%), and then gradually decreasing from the
0.4 ≤ AOD < 0.5 bin (12.41% to 15.90%), reaching their lowest in the AOD > 2.0 bin (0.97%
to 2.55%) for the 13 cities of Jiangsu Province. Specifically, the occurrence frequencies
of 0.3 ≤ AOD < 0.4 were comparatively highest in Wuxi (17.86%) and lowest in Xuzhou
(12.76%), whereas the occurrence frequencies of 0.4 ≤ AOD < 0.5 were highest in Wuxi
(15.90%) and lowest in Lianyungang (12.41%). For AOD > 2.0, the occurrence frequen-
cies were highest in Xuzhou (2.55%), and lowest in Changzhou (0.97%). Zhao et al. [72]
conducted a similar study and reported an AOD bin of 0.0 to 0.1, indicating extremely
clean conditions and the bins of 0.3 ≤ AOD < 0.4 and 0.4 ≤ AOD < 0.5, signifying severe
of aerosol extinction (scattering and absorption) in the 14 cities of Liaoning Province in
Northeast China. As with annual frequency distribution, the seasonal severity of aerosol
extinction in the 13 cities of Jiangsu Province, as indicated by bins of 0.3 ≤ AOD < 0.4 and
0.4 ≤ AOD < 0.5, exhibited the highest AOD occurrence frequencies in winter, followed by
autumn, spring, and summer (Figure 6). A few earlier studies of seasonal AOD frequency
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distribution also reported that light and heavy aerosols were loaded in winter and spring,
respectively [3,85–87]. As with the annual and seasonal frequency distributions, monthly
severity of aerosol extinction, as indicated by a bin of 0.3 ≤ AOD < 0.4, for the 13 cities of
Jiangsu Province had the highest AOD frequency occurrences in September (20.85%) and
lowest and bottommost in June (8.77%) (Figure 7). For 0.4 ≤ AOD < 0.5, the highest AOD
occurrence frequencies occurred in December (17.56%) and bottommost in June (9.49%) for
the 13 cities of Jiangsu Province. Notably, monthly extreme aerosol extinction, as indicated
by bin AOD > 2.0, was highest in June, fluctuating between 04.02% and 10.21% in the
13 cities of Jiangsu Province (Figure 7). The foregoing indicates that AOD values between
0.3 to 0.5 occurred comparatively often in the 13 cities of Jiangsu Province and that with in-
creases in AOD, occurrence frequency decreased. Tiwari et al. [88] and Filonchyk et al. [89]
conducted similar studies and reported that AOD values of 0.4−0.6 indicate a turbid atmo-
sphere, which might be linked to increases in emissions and anthropogenic activity, as well
as changes in meteorological circumstances.

3.4. AOD Trends

To gain a comprehensive understanding of changes in AOD, our study calculated
both spatial and city-level trends from 2000 to 2009 and from 2010 to 2019 for the 13 cities
of Jiangsu Province (Figures 8–12 and Tables S2 and S3). Tests of significance for AOD
trends are indicated with black dots at a 95% confidence level. Substantial spatial contrasts
in upward AOD trends were seen for the 13 cities of Jiangsu Province from 2000 to 2009
annually and seasonally (Figure 8). Upward AOD trends were also seen for all months
except May, September, November, and December, which had both upward and downward
AOD trends across the study area (Figure 9). However, annually, significant upward AOD
trends (per year) were varied between 0.016 to 0.028 for the 13 studied cities from 2000 to
2009, with the highest in Changzhou and Yangzhou and lowermost in Huaian (Figure 12).
Seasonally, both significant and insignificant upward AOD trends (per year) were evident
for all seasons in the 13 cities of Jiangsu Province from 2000 to 2009 (Table S2). Furthermore,
the significant upward AOD trends (per year) were highest in both June and July, whereas
those upward trends were lowest in December for all cities of Jiangsu Province except
Taizhou and Zhenjiang, which had downward trends. However, these AOD trends were
insignificant at a 95% confidence level. In light of the foregoing, the increases in AOD from
2000 to 2009 in the 13 cities of Jiangsu Province could have been caused by a booming
economy and industrial development, with substantial emissions of sulfur dioxide (SO2),
and primary aerosols [90,91]. In addition, Hu et al. [85] reported that rapid urbanization
and burning of biomass could increase AOD.

Furthermore, a substantial spatial contrast in downward AOD trends was evident in
Jiangsu Province both annually and seasonally from 2010 to 2019 (Figure 10). At the city-
level, annually significant downward AOD trends (per year) ranged from 0.019 to 0.033,
with the highest found in Zhenjiang and the lowest in Lianyungang and Suqian—except for
Suzhou, which presented an insignificant downward trend of 0.018 (Figure 12). Significant
and insignificant downward AOD trends (per year) were apparent in all seasons for the
13 cities of Jiangsu Province from 2010 to 2019 (Table S3). Notably, most cities in Jiangsu
Province presented both significant and insignificant downward AOD trends in all months
from 2010 to 2019 (Table S3). Significant downward AOD trends (per year) were found to
be highest in June, whereas insignificant downward AOD trends (per year) were lowest in
March for all cities of Jiangsu Province except Huaian (Figure 11). The downward AOD
trends may be attributed to several factors, such as China’s strict air pollution control poli-
cies, increased control of vehicular emissions, strict benzene measurement, and increased
use of CNG (compressed natural gas) vehicles [73,79,85,92–94]. In addition, Ma et al. [95]
and Mehta et al. [96] reported that downward AOD trends indicate a reduction in aerosol
loading, which is consistent with air quality improvement over the study area.
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3.5. Relationship between AOD and Meteorological Parameters

To understand the relationship between AOD and meteorological parameters at sea-
sonal scale, this study firstly discusses AOD with land surface temperature (LST), water
vapor (WV), and precipitation (P) for the 13 cities of Jiangsu Province (Figure 13). In
addition, the study has calculated the correlation between AOD and meteorological pa-
rameters from 2000 to 2009 and from 2010 to 2020 at a seasonal scale (Table 3). Notably,
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AOD and meteorological parameters (LST, WV, and P) showed a very similar pattern for
all the cities from 2000 to 2020 (Figure 13). AOD showed insignificant positive correla-
tions with LST in winter (0.1~0.58) and autumn (0.32~0.63) from 2000 to 2009 (Table 3),
excluding spring and summer. In spring, AOD and LST showed a correlation from 0.05 to
0.75 for most cities except for Xuzhou, Lianyungang, Yancheng, Suqian, and the whole of
Jiangsu (Table 3). In summer, AOD and LST also showed a correlation from 0.25 to 0.76
overJiangsu Province except for Xuzhou, Lianyungang, and Suqian (Table 3). During the
2010-2020 period, AOD and LST demonstrated mostly negative correlations over most
cities of Jiangsu Province. This result is comparable with [97]. Furthermore, AOD and P
(precipitation) demonstrated mostly insignificant positive correlations in all seasons over
most cities from 2000 to 2009 but a negative correlation in a few areas, signifying that
precipitation does not perform geographically consistent washout effects on the aerosol
distribution. During the 2010–2020 period, the negative correlation between AOD and
P was seen in winter and autumn over most cities, whereas both positive and negative
correlations were found in spring and summer (Table 3). Several factors might be responsi-
ble for a weak or insignificant correlation between AOD and P over the study area. For
example, atmospheric humidity leads to AOD values becoming high in summer [78,98,99].
MA and GUAN [100] reported that aerosol also influences the precipitation intensity. The
aerosol concentration and its distribution [101], the size and properties of the aerosol par-
ticles [102–104], and monsoon circulation patterns [12,105] might be responsible for the
weak correlation between AOD and precipitation. The abovementioned factors complicate
the relation between AOD and precipitation and make it uncertain in different regions of
China; thus, further investigations are needed in the future. Finally, AOD and WV demon-
strated mostly insignificant positive correlations in winter, summer, and autumn over most
cities from 2000 to 2009, whilst a negative correlation was found only in spring (Table 3).
During the 2010–2020 period, insignificant negative correlations between AOD and WV
were evident in winter and autumn for all 13 cities, and positive correlations appeared in
spring and summer (Table 3). The stronger positive correlation in summer (signifying that
the high prevalence of water vapor in summer) may boost gas-to-particle conversion and
hygroscopic growth of aerosols, leading to the assembly of secondary aerosols resulting in
high AOD [7,76,106,107]. Several researchers [108–111] reported that June is marked by the
burning of straw and the harvesting of grain across the Yangtse River Delta, including parts
of Jiangsu, which release significant amounts of aerosols, corresponding to maximum AOD
(1.07) in this month. Thus, high AOD values were observed in summer, and low values
in winter (Figure 13). In winter, low levels of precipitation, temperature, and water vapor
may lead to low AOD throughout the study area. In addition, the Asian winter monsoon
helps to reduce AOD by carrying dry and clean air into the region [73F]. Notably, AOD
was found to be more impacted by meteorological parameters (LST, WV, and P) during the
2000–2009 period than in the 2010-2020 period across the 13 cities of Jiangsu Province, in
line with the findings of Wang and Chen [13].
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Table 3. Correlation between AOD and meteorological parameters (LST, WV, and P) over the 13 cities of Jiangsu Province. The symbol asterisk (*) represents change at a
95% significance level.

LST WV P

Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn

2000–2009

Nanjing 0.38 0.57 0.25 0.32 0.22 −0.1 0.43 0.45 0.08 0.05 0.56 0.11
Wuxi 0.23 0.49 0.67 * 0.55 0.74 * −0.41 0.31 0.45 0.31 0.06 0.55 0.43

Xuzhou 0.1 −0.22 −0.53 0.35 −0.11 −0.32 0.43 0.005 −0.33 0.61 0.24 0.15
Changzhou 0.18 0.68 * 0.69 * 0.5 0.66 * −0.07 0.42 0.49 0.4 0.24 0.66 * 0.37

Suzhou 0.36 0.59 0.6 0.4 0.58 −0.004 0.11 0.26 0.22 0.4 0.08 0.4
Nantong 0.18 0.75 * 0.76 * 0.44 0.68 * −0.47 0.38 0.06 0.29 −0.02 0.13 0.27

Lianyungang 0.15 −0.1 −0.27 0.44 0.19 −0.48 0.64 * 0.34 −0.33 0.71 * −0.06 0.54
Huaian 0.49 0.05 0.52 0.43 0.37 −0.37 0.79 * 0.24 −0.25 0.6 0.22 0.44

Yancheng 0.15 −0.21 0.41 0.35 0.53 −0.39 0.70 * 0.1 −0.11 0.52 0.05 0.54
Yangzhou 0.25 0.46 0.6 0.63 0.57 −0.15 0.48 0.23 0.11 0.25 0.26 0.3
Zhenjiang 0.58 0.56 0.25 0.5 0.36 −0.18 0.53 0.24 −0.01 0.02 0.70 * 0.48
Taizhou 0.37 0.25 0.3 0.55 0.53 −0.1 0.35 0.24 0.07 0.23 0.3 0.59
Suqian 0.22 −0.26 −0.2 0.51 0.18 −0.32 0.78 * 0.21 −0.14 0.63 0.15 0.46
Jiangsu 0.18 −0.06 0.38 0.6 0.61 −0.15 0.61 0.17 0.09 0.38 0.14 0.53

2010–2020

Nanjing 0.07 −0.34 −0.34 −0.38 −0.11 0.4 −0.13 −0.42 −0.72 * 0.04 0.1 −0.04
Wuxi −0.09 −0.15 −0.49 −0.48 −0.25 0.26 0.19 −0.28 −0.64 * −0.16 0.36 −0.37

Xuzhou −0.36 −0.1 −0.60 * −0.62* −0.5 0.1 −0.07 −0.23 −0.57 −0.22 −0.58 0.05
Changzhou 0.08 −0.16 −0.75 * −0.44 0.001 0.004 0.25 −0.45 −0.69 * −0.12 0.47 −0.21

Suzhou −0.25 0.04 −0.56 −0.36 −0.2 0.33 0.14 −0.31 −0.59 −0.5 0.46 −0.53
Nantong −0.12 −0.15 −0.77 * −0.25 −0.3 −0.06 0.42 −0.52 −0.44 −0.11 0.36 −0.4

Lianyungang −0.34 0.28 −0.43 −0.71 * −0.59 0.24 0.06 −0.13 −0.60 * −0.001 −0.19 0.38
Huaian −0.13 0.03 −0.73 * −0.59 −0.31 0.37 0.08 −0.23 −0.62 * 0.25 0.02 −0.13

Yancheng −0.16 −0.09 −0.59 −0.70 * −0.48 0.22 0.36 −0.13 −0.76 * 0.18 −0.08 −0.11
Yangzhou −0.1 0.05 −0.48 −0.47 −0.09 0.27 0.43 −0.38 −0.61 * −0.05 0.14 −0.04
Zhenjiang 0.09 −0.04 0.29 −0.27 −0.29 0.31 0.27 −0.31 −0.73 * 0.09 0.15 0.08
Taizhou −0.36 −0.25 −0.6 −0.77 * −0.36 0.2 0.42 −0.24 −0.67 * 0.01 0.28 −0.2
Suqian 0.15 −0.02 −0.34 −0.68 * −0.3 0.54 0.05 −0.31 −0.62 * 0.09 −0.1 −0.11
Jiangsu −0.39 −0.02 −0.58 −0.71 * −0.58 0.27 0.11 −0.35 −0.59 0.06 0.08 −0.23
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4. Conclusions

We based this paper on MODIS level 2 high-resolution (1 km) MAIAC AOD (550 nm)
from the Terra and Aqua satellites for 2000–2020, evaluated against ground-based AERONET
data across three sites (Xuzhou-CUMT, NUIST, and Taihu) in Jiangsu Province. We also
examined the spatiotemporal distributions of and variations in AOD, frequency distribu-
tions, and trends, while exploring the impact of meteorology on AOD in the 13 cities of
Jiangsu Province. Our major findings are as follows:

• The evaluation study showed a consistent result between the MAIAC AOD and
AERONET AOD with a high Pearson’s correlation coefficient (r: 0.867~0.929), and
lower RMSE (0.130~0.287) and MAE (0.091~0.198). These findings indicate that
MODIS high-resolution MAIAC aerosol products can effectively reveal city-level
aerosol pollution scenarios.

• The spatial distribution of annual mean AOD showed high values (over 0.60) in most
cities, excluding the southeast of Nantong City, which was characterized by a low
AOD value (<0.40). Moreover, the 21-year city-level annual mean AOD was highest in
Xuzhou (0.73 ± 0.10) and lowest in Nantong (0.59 ± 0.08).

• The spatial distribution of seasonal mean AOD showed higher values in summer
(>0.70) than in spring, autumn, and winter for most cities. In particular, the 21-year
city-level summer mean AOD was highest in Lianyungang (0.89 ± 0.24) and lowest
in Nantong (0.70 ± 0.18), whereas the spring mean AOD was highest in Xuzhou
(0.71 ± 0.09) and lowest in Nantong (0.62 ± 0.08). The autumn mean AOD was
also highest in Xuzhou (0.69 ± 0.12) and lowest in Nantong (0.48 ± 0.08), whereas
winter AOD was highest in Xuzhou (0.66 ± 0.10) and lowest in Suzhou (0.51 ± 0.08).
Furthermore, the spatial mean AOD peaked in June (>0.9) and was lowest in December
(<0.4) throughout Jiangsu Province.

• The occurrence frequencies of 0.3 ≤ AOD < 0.4 and 0.4 ≤ AOD < 0.5 were commonly
observed, indicating a turbid atmosphere, perhaps associated with anthropogenic
activities, increased emissions, and changes in meteorological circumstances.

• Annually, significant upward AOD trends ranged from 0.016 to 0.028 (per year) in all
the 13 cities during 2000–2009, being highest in Changzhou and Yangzhou and lowest
in Huaian. Moreover, for 2010–2019, annually, significant downward AOD trends (per
year) varied between 0.020 and 0.033, being highest in Zhenjiang and lowermost in
Lianyungang and Suqian. These downward trends indicate the enhancement of air
quality throughout the study area, perhaps because of implementing China’s strict air
pollution control policies and proper control of vehicular emissions.

• The AOD and meteorological parameters (LST, WV, and P) presented a very similar
pattern, signifying that meteorology plays a role in AOD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13142842/s1, Figure S1: Monthly variations of high-resolution MODIS MAIAC AOD in
13 cities in Jiangsu Province from 2000 to 2020. Table S1: Evaluation of high-resolution (1 km) MODIS
MAIAC AOD against AERONET AOD over NUIST, Taihu, and Xuzhou-CUMT sites located in
Jiangsu Province from 2000 to 2020. Table S2: City-level trends of high-resolution MODIS MAIAC
AOD in Jiangsu province from 2000 to 2009. The symbol asterisk (*) represents change at a 95%
significant level. Table S3: City-level trends of high-resolution MODIS MAIAC AOD in Jiangsu
province from 2010 to 2019. The symbol asterisk (*) represents change at a 95% significant level.
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