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Abstract 

Objects can be described in terms of low-level (e.g., boundaries) and high-level 

properties (e.g., object semantics). While recent behavioral findings suggest that the influence of 

semantic relatedness between objects on attentional allocation can be independent of task-

relevance, the underlying neural substrate of semantic influences on attention remains ill-

defined. Here, we employ behavioral and functional magnetic resonance imaging (fMRI) 

measures to uncover the mechanism by which semantic information increases visual processing 

efficiency. We demonstrate that the strength of the semantic relatedness signal decoded from the 

left inferior frontal gyrus (IFG): (i) influences attention, producing behavioral semantic benefits; 

(ii) biases spatial attention maps in the intraparietal sulcus (IPS), subsequently modulating early 

visual cortex (EVC) activity; (iii) directly predicts the magnitude of behavioral semantic benefit. 

Together, these results identify a specific mechanism driving task-independent semantic 

influences on attention. 
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The visual system extracts high-level semantic information from complex scenes early in 

the information processing stream (Potter, 1976; Potter, Wyble, Hagmann, & McCourt, 2014; 

Thorpe, Fize, & Marlot, 1996) and attentional allocation is then guided by more detailed 

semantic signal such as object and scene layout (Brockmole, Castelhano, & Henderson, 2006; 

Castelhano & Henderson, 2007; Loftus & Mackworth, 1978), the relationship between a scene 

and object (Malcolm & Henderson, 2010; Spotorno, Malcolm, & Tatler, 2014; Võ & Henderson, 

2010), and the co-occurrence and spatial dependency between objects in scenes (Bar, 2004; 

Mack & Eckstein, 2011; Oliva & Torralba, 2007). Additionally, behavioral findings indicate that 

semantic relatedness of objects guides attention when task-relevant (Belke, Humphreys, Watson, 

Meyer, & Telling, 2008; Castelhano & Heaven, 2010; de Groot, Huettig, & Olivers, 2016; 

Moores, Laiti, & Chelazzi, 2003). Taken altogether knowledge-based information plays a crucial 

role in attentional guidance.  

Despite repeated demonstrations that task-relevant information guides selective attention, 

most of the information in the environment is task-irrelevant. For instance, when stopped at the 

intersection, the color of the traffic light, vehicles, and pedestrians are immediately relevant. 

However, these task-relevant details of the scene explain only a fraction of the environment. 

Buildings, benches, mailboxes, etc., are all processed perceptually, while irrelevant to the task of 

driving. Whether these task-irrelevant aspects exert similar influence on attention, is unclear. If 

relevant and irrelevant semantic information guides attention, it suggests an automatic nature of 

such influence. Thus, once objects are processed, we are aware of and can be influenced by their 

high-level properties whether that information is directly relevant (Shomstein, Malcolm, & Nah, 

2019). Recent evidence posits an influence of high-level properties of objects on attentional 

allocation when task-irrelevant. For instance, semantic relationships between objects bias spatial 
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attentional allocation (Malcolm, Rattinger, & Shomstein, 2016), out-of-place objects (e.g., 

toothbrush on desk) are fixated for longer than control items (Cornelissen & Võ, 2017), and 

meaningful regions within a scene are fixated more than salient regions (Peacock, Hayes, & 

Henderson, 2018). Combined with the speed at which high-level information is processed 

(Potter, 1976; Potter & Levy, 1969; Potter et al., 2014; Thorpe et al., 1996), these results 

demonstrate that semantic information has a continuous, and likely automatic, influence on 

attention (Shomstein et al., 2019).  

In order to posit that object semantics influence attention, such information has to be 

computed and available. Recent neuropsychological and neuroimaging literature provides 

evidence that semantic information is derived by a broadly distributed neural network, lateralized 

towards the left hemisphere (Binder, Desai, Graves, & Conant, 2009). Specifically, the left 

inferior frontal gyrus (IFG) has been demonstrated to be crucial in the control of semantic 

information, including the retrieval and evaluation of meaning (Fiez, 1997; Gabrieli et al., 1996; 

Thompson-Schill, D'Esposito, Aguirre, & Farah, 1997; Wagner, Desmond, Demb, Glover, & 

Gabrieli, 1997; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001) and as a key region that 

computes semantic similarity (Carota, Kriegeskorte, Nili, & Pulvermuller, 2017). Additionally, 

the left posterior temporal lobe is implicated in storing object representations (Martin, 2007) with 

some claiming that the temporal lobe is the “hub” for semantic representations (Patterson, 

Nestor, & Rogers, 2007). Additionally, several recent studies point to the pervasiveness of task-

relevant semantic information within the perceptual system (Bar & Aminoff, 2003; Binder et al., 

2009; Brady & Oliva, 2008; Greene & Fei-Fei, 2014; Livne & Bar, 2016; Lupyan, Thompson-

Schill, & Swingley, 2010; Thompson-Schill et al., 1997) with direct evidence of semantic 
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representations decoded throughout the ventral visual cortex, from the occipital to temporal pole 

(Çukur, Nishimoto, Huth, & Gallant, 2013). 

While prior investigations identified brain regions sensitive to semantics and that 

semantics influence behavior, these two types of observations remained largely independent. 

Consequently, the precise mechanism of how this information influences attentional distribution 

remains ill-defined. In service of this question, we directly tested whether attentional benefit 

from task-irrelevant semantic information modulates sensory representations of objects in the 

early visual cortex (EVC) through facilitation of spatial representations in spatially-selective 

intraparietal sulcus (IPS) (Bisley & Goldberg, 2010; Shomstein & Gottlieb, 2016; Todd & 

Manaligod, 2017), or object representations derived in the object-selective lateral occipital 

complex (LOC), or possibly both (Figure 1). Thus, the present report: (i) establishes that 

semantic information influences behavior automatically, independent of task-relevance, and (ii) 

elucidates the neural mechanism through which task-irrelevant semantic information influences 

attentional selection.  

Materials and Methods  

Participants. Sample size was determined by adopting similar sample sizes used in 

previous neuroimaging studies (Bar & Aminoff, 2003; Livne & Bar, 2016; Walther, Caddigan, 

Fei-Fei, & Beck, 2009) combined with multiple trials (many observations, multiple scanning 

sessions) per experimental run for each participant. Twelve (four females; mean age 25.1, range 

20–33) with normal or corrected-to-normal vision, and no history of neurological problems, 

participated in Experiment 1. One participant was removed from data analysis (chance level 

accuracy). Fourteen (ten females; mean age: 23.7, range: 19–29) with normal or corrected-to-

normal vision, and no history of neurological problems, participated in Experiment 2. One 
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participant was removed from data analysis due to excessive head motion within the scanner. 

Four participants took part in both Experiment 1 and 2. All participants gave informed consent 

and the study was approved by the Institutional Review Board of The George Washington and 

Georgetown Universities.  

Statistical analysis. All statistical analyses were performed in SPSS or MATLAB using 

custom code. Behavioral data within the manuscript are presented as the mean or accuracy ± 1 

standard error of the mean (SEM) corrected for within-subjects variance (Cousineau (2005)), 

unless otherwise noted. Since the current experiment had a specific directional hypothesis based 

on a previous study, behavioral data obtained from the scanner were analyzed using a paired 

sample t-test. Unless otherwise noted, all fMRI analyses were corrected for multiple comparisons 

by using whole-brain False Discovery Rate (FDR) of q < 0.05. 

Experimental Procedure. Experiment 1. Each trial began with a reference object 

presented just above the central fixation cross (Figure 2A). After 1,000 ms, two objects appeared 

in each periphery below the midline creating a triangle, or “triad.” Critically, one of the 

peripheral objects was always semantically-related (SR; objects that frequently co-occur in the 

real-world or functionally go together) to the central object while the other was not-related (NR) 

(e.g., if the central object was a lamp, peripheral objects were a light bulb and an envelope). 

Participants were instructed to maintain fixation and to prioritize speed of response (focusing on 

accuracy analysis). No other eye movement controls were included in Experiment 1 (but later 

controlled for in Experiment 2). After the triads remained on screen for 1,000 ms, a target letter 

(T or L) along with two distractor characters (T/L hybrids) were superimposed on top of the 

objects (one on each object). The long object exposure was intended to allow sufficient time to 

fully process the object information as well as any semantic association between them. The aim 
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is to test whether semantic relatedness of fully recognized yet task-irrelevant objects has 

consequences for attentional allocation. Participants then performed a target discrimination task 

while maintaining fixation on the central cross. Most importantly, the target appeared on the 

three objects with equal probability, rendering the semantic information between objects 

irrelevant to the task at hand (i.e., actively attending to the semantically related object would not 

be beneficial in performing the task). Participants had 3,000 ms to respond, after which the triad 

was removed from screen. The inter-trial stimulus interval (ISI) was jittered between 2,000 – 

6,000 ms in 250 ms steps for an average of 4,000 ms to allow for BOLD deconvolution. 

Participants completed a total of 7 experimental blocks (runs) intermixed between functional 

localizer scans.  

Experiment 2. Each trial began with two objects appearing on either side of a center 

fixation for 750 ms. A vertical Gabor patch rotated 45 horizontally in either the left or right 

direction, was then overlaid on top of each object for 100 ms followed by an ISI of 5,150 ms 

(Figure 2B). Participants were instructed to report whether the two Gabor patches were identical 

in orientation. The two objects on the screen were either semantically-related or not-related to 

one another (e.g., a makeup brush and lipstick or a makeup brush and salt shaker; Figure 2C). 

Participants performed a total of 48 trials per run, for a total of 8 runs, with an equal number of 

trials for each condition. Participants were instructed to respond as fast as possible without 

sacrificing accuracy (focusing analyses on RTs). 

fMRI Acquisition Parameters.  

MRI scanning was conducted at the Center for Functional and Molecular Imaging 

(CFMI) at the Georgetown University Medical Center on a Siemens 3-Tesla scanner equipped 

with a 12-channel head coil. All functional data during the experimental as well as localizer runs 
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were acquired in 38 transverse slices covering occipital and parietal cortices (TR: 2000 ms, TE: 

30 ms, matrix size: 64 x 64, FoV: 192 mm, acquisition voxel size: 3 x 3 x 3 mm). High-

resolution anatomical images (1 mm3) were also acquired for each participant using MPRAGE 

T1-weighted sequence (TR: 1900 ms, TE: 2.5ms, matrix size: 256 x 256, FoV: 250 mm). In both 

experiments, each participant completed a single 1.5-hour long session which included either 7 

(Experiment 1) or 8 (Experiment 2) experimental runs and functional localizers (5 runs). Custom 

E-Prime (Sharpsburg, PA) scripts were used to generate the main experimental task of 

Experiment 1 and custom python code using the PsychoPy library (Peirce, 2007, 2009) were 

used to generate Experiment 2 and for the localizer scans for both experiments. The display was 

then back projected onto a screen mounted at the rear end of the scanner, which participants 

viewed via a mirror attached to the head coil (distance from screen to mirror: 80 cm, average 

distance from participant’s face to mirror: 10 cm). 

fMRI preprocessing and analysis.  

All data were preprocessed using BrainVoyager QX (version 2.8.0, Brain Innovation, 

Maastricht, The Netherlands) along with custom MATLAB (Natick, MA) and Python scripts. All 

functional data were slice time corrected, motion corrected, and temporally high-pass filtered 

using a general linear model containing a Fourier basis set (2 sines and cosines) to remove low- 

and high-frequency noise in the functional time series. All EPI and anatomical images were then 

normalized into Talairach space (Talairach & Tournoux, 1988) and interpolated into 1 mm 

isotropic voxels. Localizer data as well as data used for univariate analysis were spatially 

smoothed with a 3 mm FWHM kernel. A segmented white matter mask generated from 

FreeSurfer (recon-all function) was imported into BrainVoyager to segment white matter from 
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gray matter. Afterwards, the cortical surface for each hemisphere was inflated and all analysis 

was conducted on the inflated surface.   

Experiment 1 - Univariate Analysis. Within each region of interest (ROI), the average 

Blood Oxygenation Level-Dependent (BOLD) response magnitude across was calculated for 

each condition (SR, NR). Triad-related activity (1TR), time-locked to the onset of the completion 

of object triads (i.e., once all three objects were presented on screen), was deconvolved to 

estimate the hemodynamic response function for each event type. The BOLD response was 

estimated at the onset of the triad and at each of the next 12 time points, 0-24s after stimulus. 

The BOLD peak response for each condition was calculated by averaging coefficients at time 

point 6.  

Preliminary analysis was conducted separately for each hemisphere, consistent with the 

experimental design. For instance, if a SR object appeared on the left side of fixation, a NR 

object would appear simultaneously on the right. Thus, the neural activity for SR was examined 

within the right hemisphere ROI while the neural activity for NR was examined within the left 

hemisphere. Semantic relationship beta coefficients were extracted separately from each ROI by 

using a general linear model and a design matrix that modeled the response.  

Experiment 2 - Multivariate Analysis. Multivariate pattern analysis was conducted to 

assess changes in the pattern of activity of each EVC ROI modulated by task-irrelevant semantic 

information. Custom MATLAB code using LIBSVM (Chang & Lin, 2011) as well as 

BrainVoyager’s MVPA module was utilized to conduct these analyses. For each individual trial 

in each condition, t-values (Misaki, Kim, Bandettini, & Kriegeskorte, 2010) were extracted by 

fitting a canonical two-gamma HRF in a standard general linear model (GLM) regression 

analysis and z-score normalized to control for differences in baseline activity (Kravitz, Peng, & 
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Baker, 2011). The resulting t-values were then used as feature vectors for that trial or block and 

used to train a linear support vector machine (SVM). To assess classification performance, the 

leave-one-run-out cross-validation was utilized. On each iteration, 7 experimental runs were used 

to train the classifier and the remaining run was used to test the classifier’s performance. The 

classification performance was then averaged across all cross-validation loops to obtain average 

classification accuracy for each ROI and condition. This accuracy was then compared with 

chance performance (25%) as well as between SR and NR conditions. 

Functional localizers and retinotopic mapping. For each participant, separate sets of 

functional localizers were conducted to define regions of interest (ROIs): 1) meridian localizer to 

delineate borders between early visual cortex dorsal regions V1, V2, and V3 (and an additional 

stimuli position localizer for Experiment 1 to identify patches of cortex responsive to the object 

locations); 2) LOC localizer to identify object-selective regions of cortex; and 3) IPS localizer to 

define spatially-selective regions of cortex (see Table 1 and Table 2 in supplementary materials 

for ROI coordinates and size). 

1. Meridian and stimuli position localizer: Retinotopic areas (V1, V2, V3) were defined 

using flashing checkerboard stimuli presented in a bowtie shape that flipped between blocks of 

vertical and horizontal meridians. Each half of the bowtie was a 16 wedge flickering at 5 Hz. 

This allowed delineation of borders between dorsal and ventral retinotopic regions of the visual 

cortex. Concurrently, participants fixated on a central black fixation square that randomly 

dimmed to gray for variable durations. Participants were informed to hold down a button every 

time the black fixation square dimmed to gray and release it when black. Each meridian was 

presented 8 times for 12 s starting with the horizontal meridian and was bookended by 8 s 

fixations for a total scan time of 208 s. An additional stimuli position localizer was conducted to 
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define the spatial locations (bottom left and bottom right) occupied by the objects in the 

experimental task and increase the selectivity of voxels. Participants maintained fixation at the 

center of the display and pressed a button whenever a small gray dot appeared in the middle of 

the fixation cross. Concurrently, flashing checkerboard stimuli (2.7 x 2.1) flickering at 5 Hz 

was presented in one of the three possible stimuli location (above fixation, lower-left, lower-

right) for 12 s. The initial fixation duration was 10 s, and each location block lasted 12 s, with an 

8 s interblock fixation and a final fixation of 6 s for a total scan time of 256 s. The spatial 

location of the stimuli was then functionally defined with a lower-left > lower-right contrast for 

the left object and lower-right > lower-left for right object). Final EVC ROIs were determined by 

restricting the voxels to the overlapping activations from both the meridian and position 

localizer. ROIs were drawn for each participant for each hemisphere. 

2. LOC localizer: All stimuli were presented at the center of the screen, with a fixation 

overlaid on top of all objects. A stream of 16 stimuli was presented one at a time for 500 ms with 

an interstimulus interval of 500 ms for a total of 8 s per block. Participants were informed to 

maintain fixation and perform a one-back task, identifying repeated images via a button press.  

3. IPS localizer: Spatially selective regions (IPS: IPS0, IPS1, IPS2) were defined using a 

random dot movement change detection task. Two circles (3) in opposite corners (upper left & 

lower right, lower left & upper right) were displayed simultaneously with the circle pairs 

alternating each block. Within the circles were dynamic random dot stimuli (RDS) moving 

horizontally. Concurrently, participants fixate on a central cross which indicated a direction 

either up or down with a change in color in one of the arms (e.g., the upper half of the vertical 

line would change from gray to green to indicate the direction, up). After a random interval 

between 500 and 1500 ms, the RDS in one of the two circles changed directions to either up or 
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down. Participants were instructed to indicate with a button press whether the change in direction 

matched the direction displayed on the fixation cross. Contrasting the two conditions 

approximately portrays the full array of visual space. IPS0, IPS1, and IPS2 were demarcated by 

visually inspecting reversals in activation as well as anatomical guidelines. (Sheremata, 2019). 

Stimuli & low-level control analysis. Experiment 1. Stimuli were directly adopted from a 

previous study which were controlled for low-level differences (Malcolm et al., 2016). To 

quantitatively measure the semantic similarity between objects, all object relationships were 

analyzed through the linguistics-based computational method known as latent semantic analysis 

(LSA) (Landauer & Dumais, 1997). LSA extracts the contextual meaning of words by statistical 

computations applied to a large body of text and assumes that words with similar meanings occur 

more frequently together (Landauer, Foltz, & Laham, 1998). A high dimensional semantic 

matrix is then constructed from the large body of text and a technique known as singular value 

decomposition (SVD) is applied to simplify the matrix. Afterwards, the semantic similarity 

between two terms is calculated as the cosine value between the two corresponding terms in the 

semantic matrix. A cosine value closer to 1 indicates that two terms are highly semantically 

related with one another while a value closer to 0 indicates that the two terms are semantically 

non-related. For the current study, LSA was applied to the stimuli combinations represented in 

text form to compute the semantic similarity using the LSA@CU text/word latent semantic 

analysis tool developed by the University of Colorado at Boulder. The semantic similarity 

between objects in the SR condition (0.32) was significantly greater than that between objects in 

the NR condition (0.05), t(19) = 4.37, p < .001, Cohen’s d = .98. Additionally, a separate set of 

participants (n = 28) participated in a semantic rating survey. Participants were presented with 

images of all possible object pairs from both SR and NR conditions and were asked to rate how 
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related the two objects are on a scale of 1 (not related) to 6 (very related). Paired samples t-test 

revealed that the semantic relatedness between objects in the SR condition (M = 5.28) was 

significantly greater than that between objects in the NR condition (M = 1.48), t(19) = 30.98, p < 

.001, Cohen’s d = 6.93.  

Experiment 2. To rule out the possibility that any semantic influence was confounded by 

low-level factors (i.e., color and size), the feature space between the main object and their 

respective SR objects was compared with the differences between the main object and their 

respective NR objects (Malcolm et al., 2016). First, each object was converted into LAB color 

space, breaking down pixel information into luminance, green–red, and blue–yellow color 

channels. For each channel of each object, histograms were created and bin-to-bin comparisons 

were conducted by comparing the differences between the main object and its respective SR and 

NR object. Thus, low-level information in a specific location of the main object was directly 

compared to the corresponding location of the SR or NR object. Smaller differences between 

objects represented greater similarity in that specific channel. Thus, if the semantic influence was 

confounded by low-level similarities, significantly smaller differences in one or more channels 

between the main and SR objects than between the main and NR objects should be observed. 

However, paired t-tests for all three channels did not reveal any significant differences (ts < 1), 

suggesting that the observed semantic effect was not a byproduct of low-level similarities. 

Lastly, each object image was converted into number of pixels and compared across conditions 

to test whether there was a significant difference in the retinal size of the objects. Again, a paired 

t-test did not reveal any significant difference (t < 1) between the two conditions, suggesting that 

the objects used in both conditions were of similar sizes.  
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Semantic similarity between objects were measured using both LSA and the semantic 

rating survey. The LSA analysis revealed that the semantic similarity between objects in the SR 

condition (.52) was greater than that between objects in the NR condition (.10), t(3) = 6.42, p = 

.008, Cohen’s d = 3.21. The semantic rating survey also demonstrated that the semantic 

similarity between objects in the SR condition (M = 5.17) was also significantly greater than that 

between objects in the NR condition (M = 1.41), t(3) = 20.42, p < .001, Cohen’s d = 10.21.  

 

Results 

Experiment 1: Task-irrelevant semantic relationships modulate spatial attention 

The influence of task-irrelevant semantic knowledge on selective attention was examined 

through a combination of behavioral and fMRI methods. A key feature of this design is that 

semantic relationship did not predict the location of the target letter (Fig. 2A). Considering the 

difficulty of the task based on the distance of objects from fixation, participants were instructed 

to maintain fixation and to respond without sacrificing accuracy. 

 Behavioral data acquired during the neuroimaging scan provides strong evidence for 

task-irrelevant semantic guidance of attention independent of task-relevance. Examination of 

accuracy rates revealed that participants were significantly more accurate at identifying the target 

when it appeared on a SR object than when it appeared on a NR object, t(10) = 2.21, p = .052, 

Cohen’s d = .665 (Figure 2D). These results are consistent with previous findings reported by 

our lab (Malcolm et al., 2016) as well as others (Cornelissen & Võ, 2017; Peacock et al., 2018), 

demonstrating that the task-irrelevant semantic relationship between objects influences 

attentional allocation. Examination of the response time (RT) data revealed no significant 

difference between the two conditions t < 1, p > .4, providing evidence against speed accuracy 
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tradeoffs. The presence of a behavioral effect is an important starting point for the subsequent 

neuroimaging analyses.  

 

Semantic relationship modulates IPS and EVC activity 

Having demonstrated the influence of task-irrelevant semantic relationships on 

attentional allocation, we examined the underlying neural mechanism. We hypothesized that 

semantic information either: 1) influences the spatial representations in the IPS, or 2) object 

representations in the LOC. To distinguish between these two mechanisms, we first tested 

whether semantic information modulates BOLD responses in the EVC, IPS, and LOC using 

univariate methods. If task-irrelevant semantic information facilitates neural responses in 

accordance with the behavioral profile reported above, we expect a greater target-evoked BOLD 

response for the SR than NR object.  

A three-way repeated measures ANOVA was conducted with semantic relationship (SR, 

NR), hemisphere (left, right), and externally functionally-defined ROIs (V1, V2, V3; see 

Methods) as within-subject factors to test whether task-irrelevant semantic information 

influences cortical activity in the early sensory regions. Given absence of main effects or 

interactions involving hemisphere and ROI (Fs < 1), data were collapsed over these factors. 

Consistent with effects of semantic bias, there was a significant main effect of semantic 

relationship on BOLD signal, with greater BOLD responses for SR than NR objects (F(1,10) = 

16.44 , p = .002, 
2

p   = .62; Figure 3, EVC). The robust effect of semantic information on 

cortical activity in the EVC suggests that task-irrelevant high-level information spatially biases 

attention towards the SR object, resulting in signal enhancement in the early sensory regions, 

thereby increasing efficiency of visual processing. These results corroborate the behavioral 
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findings reported above and provide strong support for an automatic influence of semantic 

processing on efficiency of perception. 

Next, to determine whether the modulation of EVC activity is accompanied by spatial 

attentional modulation or direct enhancement of object representations, we investigated whether 

semantic information modulates activity in the spatially-selective IPS and the object-selective 

LOC. First, a three-way repeated measures ANOVA with semantic relationships (SR, NR), 

hemisphere (left, right) and externally functionally defined IPS ROIs (IPS0, IPS1, IPS2; see 

Methods) was conducted. Again, no main effects or interactions involving hemisphere or ROIs 

reached significance (Fs < 1), thus data were collapsed over these factors. Similar to the results 

of the EVC, there was a significant main effect of semantic relationships with greater peak 

BOLD responses for SR than NR objects, (F(1,10) = 5.55, p = .04, 
2

p = .36; Figure 3, IPS).  

Activity in the externally functionally derived object-selective LOC was examined to 

determine whether object representations for semantically related objects were directly 

enhanced. A repeated measures ANOVA with semantic relationships (SR, NR) and hemisphere 

(left, right) as factors revealed no significant interactions or main effects (Fs < 1; Figure 3, 

LOC), offering no evidence that semantic information influences object representations in LOC.  

To test whether this difference between semantic relationships in IPS is significantly different 

from that in LOC, a repeated measures two-way ANOVA with ROIs (LOC, IPS), hemisphere 

(left, right), and semantic relationships (SR, NR) was conducted, revealing a significant 

interaction between semantic relationships and ROIs, F(1,10) = 5.47, p = . 04, 
2

p = .35. Simple 

main effects analysis indicated that the interaction was driven by the significant difference 

between SR and NR conditions in the IPS (F(1,10) = 5.48, p = . 04, 
2

p = .35). No other 

interaction or main effects were significant (Fs < 2.3, ps > .16). Combined, these results suggest 
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that the task-irrelevant semantic relationship between objects modulates neural activity in the 

EVC through attentional facilitation via the parietal cortex (IPS) rather than directly 

strengthening object representations in LOC. 

Results of Experiment 1 show that semantic relationships influence spatial attentional 

maps in the parietal cortex and the relative salience of the space in which a semantically-related 

but task-irrelevant object is located. In contrast, no modulation was observed in the ventral 

processing region LOC, suggesting that semantic information influences activity in the IPS 

without directly influencing object representations. This finding aligns with previous research 

demonstrating that LOC is sensitive to the overall physical features of an object (e.g., shape), 

rather than higher-level semantic information (Chouinard, Morrissey, Kohler, & Goodale, 2008; 

Grill-Spector et al., 1999; Kim, Biederman, Lescroart, & Hayworth, 2009). These data provide 

the first neuroimaging evidence of the pervasive nature of semantic information on attentional 

allocation, with its influence observed to be independent of task-relevance. Thus the attentional 

priority map within the parietal cortex is composed of a multi-dimensional priority map that 

incorporates multiple factors in the natural environment to bias attentional allocation (Shomstein 

& Gottlieb, 2016), such as semantic relatedness or category membership (Freedman & Assad, 

2006).  

 

Experiment 2: Semantic relationships facilitate attentional allocation 

Experiment 1 demonstrated that semantic information modulates a spatial attentional map 

within the parietal cortex, which in turn facilitates responses in the early sensory regions. 

Experiment 2 investigated the consequence of this spatial bias and the neural representation of 

task-irrelevant semantic relationships. The goals of Experiment 2 were to: (i) demonstrate that 
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the effects of semantic influence are not specific to a particular paradigm by internal replication 

using a different paradigm and a different neuroimaging analysis method, (ii) investigate the 

consequence of attentional bias on object representations in EVC, and (iii) examine whether 

regions sensitive to task-relevant semantic information also exhibit sensitivity when object 

meaning is task-irrelevant. The logic directly follows from Experiment 1: if spatial attention is 

biased towards the SR object, the object should receive a benefit from the increased attentional 

allocation, leading to a stronger neural representation. Thus, when two related objects are 

presented simultaneously, the added attentional benefit should support and ultimately enhance 

the representation of both objects. Comparatively, when the two objects are not related, the 

object representations should be weaker. This design is a follow-up to Experiment 1 in which 

this type of analysis was impossible, given that each object triad always contained one 

semantically related and one non-related object. Additionally, unlike the task in Experiment 1, 

where effect was focused towards accuracy, the task in Experiment 2 pushed the effect into RTs.  

In Experiment 2, participants were presented with two objects on either side of fixation 

that were either SR or NR (Figure 2B) and performed a fixation task. We predicted a behavioral 

benefit when both objects are semantically related than when not and hypothesized that the 

increased attentional allocation from task-irrelevant semantic information will facilitate the 

strength of an object’s neural representation, leading to significantly higher classification 

accuracy of the object identity. Internally replicating previous behavioral findings, participants 

were significantly faster at performing the task when both objects were SR than NR (t(12) = 

2.51, p = 0.028, Cohen’s d = .70 ; Figure 2E) suggesting that attentional facilitation is directed 

by task-irrelevant semantic relationship between objects. Accuracy data between the SR (M = 

96.8%) and NR (M = 95.6%) conditions also showed similar patterns as Experiment 1 but did 
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not reach significance, t(12) = 1.65, p = .12. These behavioral results replicate our previous 

results and demonstrates the robustness of the influence of task-irrelevant high-level semantic 

relationship between objects on attentional allocation.  

Semantic information modulates object representations in the EVC 

Using multivariate pattern analysis (MVPA), we reasoned that if semantic information 

increases attentional allocation to an object, the strength of the object’s neural representation 

should be enhanced when paired with a SR object than a NR object. To test this, a linear support 

vector machine (SVM) classifier was trained to discriminate between the 4 reference objects 

used in the experiment (Figure 4A) with the prediction that decoding accuracy would be greater 

when a reference object was paired with a SR object than with a NR object, reflecting a less 

noisy representation supported by semantic influence from the frontal cortex. Classification 

performance of the SVM was tested against chance performance of 25% within the EVC (Figure 

4B). A three-way repeated measures ANOVA was conducted with hemisphere (left, right), ROI 

(V1, V2, V3), and semantic relationships (SR, NR) as within-subjects variables. There was a 

main effect of ROI, (F(1, 24) = 5.27, p = .013, 
2

p  = .305) with post hoc tests showing 

significantly higher decoding accuracy for V1 compared to V2, t(12) = 3.62, p = .01 (Bonferroni 

corrected). When compared against chance, both the SR (t(12) = 5.65, p < .001) and the NR 

condition, (t(12) = 2.94, p  = .01) were significantly greater than chance. Critically, a significant 

main effect of semantic relationships was observed, with decoding accuracy significantly higher 

for the SR than NR condition (F(1,12) = 5.69, p = .034, 
2

p  = .332), suggesting that the benefit 

conveyed by an object’s presence to the neural representation of another object is greater when 

the objects are semantically related to one another. No other main effect or interaction reached 

significance (Fs < 1). Consistent with the previous findings, our results demonstrate that the 
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increased attentional allocation leads to a robust effect of task-irrelevant semantic information on 

the neural pattern of the objects represented in the EVC. 

 

Overall semantic facilitation in left IFG predicts behavioral benefit 

Thus far, we provide evidence that task-irrelevant semantic information influences the 

efficiency of sensory processes in EVC through altering spatial priority maps in IPS. The 

consequence of which is enhanced representation of the objects in EVC. We next investigated 

how this high-level semantic information is represented in the brain. The left IFG has been 

implicated as central to the processing of task-relevant semantic information (Binder et al., 2009; 

Lupyan et al., 2010; Thompson-Schill et al., 1997; Wagner et al., 2001), with it playing a pivotal 

role in the selection of semantic knowledge. Considering the speed at which semantic 

information is processed (Potter, 1976; Potter & Levy, 1969; Potter et al., 2014; Thorpe et al., 

1996) and its ubiquitous nature (Shomstein et al., 2019), we hypothesized that semantic 

information should be represented in the brain regardless of its task relevance. Thus, if attention 

is enhanced towards the semantically related object, the left IFG mechanism will be more 

engaged in the presence of an SR object than NR object  

Given two types of trials, one in which the object pair was either SR or NR, Experiment 2 

allowed for a direct SR vs. NR whole brain contrast to identify regions in the brain selective 

towards semantic information. For all participants, a whole brain univariate SR vs. NR contrast 

was conducted, revealing the left IFG, which was then individually defined with a threshold of p 

< .05. For each individual, the strength of semantic facilitation was calculated as the difference 

between BOLD responses of SR and NR trials in the defined left IFG, with a more positive value 

representing stronger facilitation. To determine whether neural activity predicts behavior, the 
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strength of semantic facilitation was again correlated with the difference in behavioral semantic 

facilitation (RT; NR - SR) revealing a significant positive correlation (r = .595, p = .032; Figure 

4C). This result demonstrates that the strength of neural semantic facilitation is directly 

connected to the strength of behavioral semantic influence. 

Discussion 

All real-world objects in our environment are complex entities, described by basic 

physical properties and high-level semantic meaning. There has been an increasing interest to 

understand the role of semantic information in attentional guidance. Accordingly, it has been 

identified that semantic information is rapidly extracted and processed by a broadly distributed 

network (Binder et al., 2009), and that semantic relationships influence attentional allocation 

(Malcolm et al., 2016; Moores et al., 2003). However, the two types of findings remained largely 

independent, thus the mechanism of semantic influence on attentional distribution remained ill-

defined. Three key findings for the current investigation demonstrate that we have, for the first 

time, provided a potential mechanistic explanation of semantic influence on attentional 

allocation.  

First, we provide evidence that even task-irrelevant semantic information impacts visual 

processing. Target discrimination performance was significantly more accurate for targets 

embedded within an object that was semantically related to the reference object than targets 

within a non-related object. This effect was internally replicated using a different paradigm in 

which participants were tasked to discriminate the orientation of Gabor patches embedded within 

a pair of semantically related or non-related objects. Performance was modulated by semantic 

relatedness, such that task performance was significantly faster when the objects were 

semantically related, demonstrating an increased efficiency in processing of visual information. 
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Altogether, these results directly replicate findings that semantic relationships of task-irrelevant 

objects guide attention (Cornelissen & Võ, 2017; Malcolm et al., 2016; Peacock et al., 2018) and 

provide strong evidence that objects’ semantic properties continuously influence visual attention 

allocation even when the information is not task-relevant. Importantly, these findings 

demonstrate that semantic information is processed obligatory and continually influences 

attention.  

Second, this behavioral modulation is accompanied by changes in the overall response 

and strength of object representations in early visual cortices. BOLD activity in early visual 

sensory areas (V1-V3) were modulated by task-irrelevant semantic information, demonstrating 

that associative knowledge between objects modulates neural activity in the EVC. Additionally, 

using multivariate measures, we revealed that an object’s neural representation was enhanced 

when supported by a semantically-related object. These results provide the first demonstration 

that the semantic context of an object (i.e., its relationship to other non-retinotopically coincident 

objects) affects its representation at the earliest stages of visual processing. 

Finally, we show that the same regions known to mediate spatial attentional shifts (IPS) 

(Corbetta & Shulman, 2002; Serences & Yantis, 2007; Shomstein, 2012; Silver & Kastner, 2009) 

and process semantic information (left IFG) (Binder et al., 2009; Thompson-Schill et al., 1997; 

Wagner et al., 2001) are modulated by semantic relationships. In the case of left IFG, these 

modulations strongly predict the strength of semantic behavioral facilitation. BOLD response in 

spatially-selective IPS was modulated by task-irrelevant semantic information, suggesting that 

the modulation of sensory representations of objects in the early visual cortex is accomplished 

through facilitation of spatial representations. While left IFG has been demonstrated to be 

involved in processing of semantic information (Fiez, 1997; Gabrieli et al., 1996; Thompson-



Semantic influence on early visual cortex 

 23 

Schill et al., 1997; Wagner et al., 1997; Wagner et al., 2001), the current study demonstrates that 

its involvement is not restricted to task-relevant situations. Thus, the results offer evidence that 

high-level semantic influence on attentional allocation is achieved through the processing of 

semantic relationships in the left IFG, which modulates spatial priority maps in IPS, and 

ultimately influences early sensory representations. The task-irrelevant aspect of this modulation 

show that this process is not susceptible to task demands, and rather is ongoing and automatic. 

A possible alternative explanation of the semantic benefit can be found in the 

configuration of the objects. Semantically related objects were arranged in a manner often 

encountered in the real-world (e.g., raincoat is more likely to be found next to an umbrella than a 

spoon). Studies have provided evidence that object configuration influences object perception 

and attention (Green & Hummel, 2006; Roberts & Humphreys, 2011) as well as decrease neural 

interference (Kaiser, Stein, & Peelen, 2014). However, semantic similarity can be defined as the 

repeated co-exposure of visual objects that are physically proximal and are meaningfully related 

within a specific scenario or event (in fact, the concept literature defines this as thematic 

similarity; see Mirman, Landrigan, & Britt, 2017 for review). The semantic effect observed in 

the current study is investigating the influence objects that functionally belong with each other 

and also co-occur in the real-world have on attentional allocation. Thus, frequently co-occurring 

objects in the real-world (e.g., lipstick and make-up brush, a violin and drum) are considered to 

be semantically related and is a defining feature of the two objects’ relationship. 

Our findings provide both behavioral and neural evidence uncovering a link between 

task-irrelevant conceptual information and the perceptual system (Greene & Fei-Fei, 2014). 

While recent neuroimaging studies have provided evidence that semantic and visual information 

can coexist within the same brain region (Walther et al., 2009), these studies were mainly 
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restricted to task-relevant semantic information, thus offering no insight to the important 

question of whether semantic influence on perception is automatic. There has also been a recent 

effort to understand how semantic information affects attention and perception even in task-

irrelevant situations (Cornelissen & Võ, 2017; Greene & Fei-Fei, 2014; Malcolm et al., 2016), 

given the ubiquitous nature of semantic information. In summary, we identified, and describe, a 

potential neural network through which high-level information increases efficiency within 

sensory processing regions in the brain. Task-irrelevant semantic information is processed in the 

left IFG, altering the priority weightings in the spatial attention maps within the parietal cortex, 

which in turn modulate activity in the early visual cortex. Thus, these results provide converging 

behavioral and neuroimaging evidence that the impact of task-irrelevant semantic information 

extends to the lowest and highest levels of visual processing.    
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Figure Captions 

 

Figure 1. Predicted pathway of semantic influence. If semantic information biases spatial 

attention (green path + green bordered box): the space surrounding the semantically related 

object is preferably processed. If semantic information influences object representations (red 

path + red bordered box): the semantically related object itself is preferably processed.  

Figure 2, Experiment Paradigms & Behavioral Results. A) Experiment 1 – Participants are 

presented with a reference object presented above the fixation cross. Next, two objects appeared 

in periphery below the midline creating an object triad. One of the peripheral objects is 

semantically related (SR) to the central object while the other is not (NR). After a 1s delay, a 

target letter (T or L) along with two distractor characters (T/L hybrids) appear superimposed on 

top of the objects. Participants then perform a target discrimination task. Semantic relatedness is 

not predictive of target location, thus task-irrelevant. B) Experiment 2 –  Participants were 

presented with two objects appearing on either side of fixation. The objects were either 

semantically related to one another, or not. A rotated Gabor patch was overlaid on top of either 

object, with participants tasked to report whether the two Gabor patches matched in orientation. 

C) Example of semantically related (SR) and not-related (NR) pairs in Experiment 2.  D) 

Experiment 1 Behavioral Results – Participants were significantly more accurate at identifying 

targets that appeared on top of an SR object. E) Experiment 2 Behavioral Results - Participants 

were more accurate and significantly faster at performing the task when the objects were SR (* p 

< . 05, and error bars represent  1 standard error) 

Figure 3. Experiment 1 fMRI Results. Semantic relationships significantly modulate activity in 

EVC and IPS, but not LOC. This suggests that high level semantic relationships facilitate activity 

in lower processing regions via an attentional, rather than object recognition mechanism. (* p 

< . 05, and error bars represent  1 standard error) 

Figure 4. Experiment 2 Stimuli and fMRI Results. A) Full example of the four main objects (left 

of each pair) when paired with a SR object or NR object. The object pairs in the blue background 

indicates SR condition, the object pairs in the yellow background indicates NR condition. B) 

Decoding accuracy performance of a linear classifier. Performance was only greater than chance 

(25%) in EVC. A main effect of semantic relatedness was also observed in EVC, with SR pairs 

having higher decoding accuracy than NR pairs. Small insert graph represents EVC data across 

V1, V2, V3, showing a main effect of ROIs, such that V1 decoding accuracy was greatest. C) 

Semantic facilitation in left IFG again predicted behavioral benefit (*p < . 05, and error bars 

represent  1 standard error). 

 


