
A Variable Memory Length Auto Encoder
Shamahil Ibunu, Samuel Weller, Clive Cheong Took

Department of Electronic Engineering
Royal Holloway, The University of London

Egham, United Kingdom
{PHEE004, WEEE012}@live.rhul.ac.uk, Clive.CheongTook@rhul.ac.uk

Abstract—Auto-encoders typically require batch learning to
be effective. There is a lack of online learning mechanisms for
auto-encoders. To address this shortcoming in the literature, we
propose an auto-encoder that can not only learn on a sample-by-
sample basis without back-propagation but also has a memory
to benefit from past learning. The memory can be adapted to fit
the current state of the data by varying the memory length of
the auto-encoder. Simulation supports our approach, especially
when the data is nonstationary.

Index Terms—Multi channel least mean square algorithm,
auto-encoder, feed forward neural network, fractional memory
length.

I. INTRODUCTION

Feature extraction lies at the heart of auto-encoders. It is
this ability to extract useful information without labelled data
that has made auto-encoders so popular. As such, they have
been widely used in various applications ranging from image
compression [1], to pre-training of deep neural networks [2],
to denoising [3].

To maximise feature extraction, the weights of auto-encoders
are typically learned and adjusted after the presentation of all
(or some) examples in the training set. In other words, auto-
encoders are optimal when batch (or mini batch) learning is
undertaken. However, there are cases where this is not always
possible such as in streaming data or one-short learning.
Small data typically pose a problem for batch learning. To
this end, we address the problem of small data by proposing
novel online learning for auto-encoders. To achieve the online
learning of auto-encoders, we consider the multi-channel least
mean square (MLMS) algorithm proposed in [4]. However, the
MLMS algorithm is not a neural network; it can be regarded
as a single multivariate perceptron and its architecture is not
appropriate for encoding and decoding data so that feature
extraction can be performed. More appropriate architectures
are offered by the time-delay neural networks (TDNN) pro-
posed in [5] and the non-linear auto-regressive networks with
exogenous inputs (NARX) [6].

Both TDNN and NARX, however, cannot track local changes
in the training data, especially when the environment for
generating the data is non-stationary. This is due to their
inability to adapt at how much data is used to solve current
task. In other words, the recurrent use of past data is “fixed”
by the maximum delay modelled in both TDNN and NARX.
To this end, we propose a novel variable memory length auto-
encoder, which can:

1) Auto-encode its input requiring only on its current and
past samples of the current data rather than the whole
dataset. In this way, it operates in an online fashion
rather than undertakes batch learning;

2) Adapt the maximum delay on the past samples consid-
ered so that non-stationarity of the data can be accounted
for.

This paper is organised as follows. Section I sets the scene
in terms of shortcomings in the literature and the motivation
for our proposed method, whereas Section II provides the
necessary background to derive our proposed auto-encoder as
well as its details. Simulation results are provided in Section
III, followed by the conclusion in Section IV.

II. ONLINE LEARNING

To derive our proposed variable memory length auto-encoder,
we first need to revisit the MLMS algorithm and then illustrate
how the variable memory length works.

A. Multi-Channel LMS
The MLMS introduced in 1985 [4] has been particularly
successful in signal processing due to its efficacy in real-time
processing in audio applications [7]. We exploit the MLMS
algorithm to update the synaptic weights of our proposed auto-
encoder by minimising the following cost function:

J(n) =

K∑
`=1

J`(n) =

K∑
`=1

|e`(n)|2

=

K∑
`=1

|d`(n)− y`(n)|2 (1)

where e`(n), y`(n), and d`(n), denote the error, the estimated
output, and the teaching data respectively. For generality, ‘k′,
‘`′ and ‘(n)′ reflect the kth input index and the `th index output
and the time index respectively. Observe that the time index
in Eq. (1) models the instantaneous quadratic error, thereby
enabling online learning. It is noteworthy to distinguish that
the summation in (1) corresponds to summing all errors over
one example rather than summing all errors over all examples.
Thus, (1) is neither the batch nor the mini batch quadratic
error, but the instantaneous quadratic error. The kth output
yk(n) can be computed as

y`(n) =

K∑
k=1

wT
k`(n)xk(n) ` = 1, 2...K (2)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/475138481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where wk`(n) is the learning weight vector corresponding to
the input vector xk(n). More specifically,

wk`(n) = [wk`,1(n), wk`,2(n), . . . , wk`,L(n)]T (3)

xk(n) = [xk(n), xk(n− 1), ...xk(n− L+ 1)]T (4)

where the superscript (.)T denotes the transpose operator. The
memory length L dictates how much past data is used to
estimate dk(n) and models the maximum delay considered in
TDNN or NARX. Alternatively, all the outputs of the MLMS
algorithm can be calculated as

y(n) = WT (n)x(n)
y1(n)
y2(n)
.
.
.

yK(n)

 =

w11 w12 . . . w1K

w21 w22 . . . w2K

.

.

.
wK1 wK2 . . . wKK

T
x1(n)
x2(n)
.
.
.

xK(n)

(5)

The `th column of W can be updated as

w`(n+ 1) = w`(n)− µ∇J`
w`(n+ 1) = w`(n) + µx(n)e`(n) (6)

Notice that Eq. (5) updates a vector of weight elements,
whereby each element wk`(n) is also a vector of memory
length L, i.e. Eq. (3). To track the local changes within the data
x, we now proceed on illustrating how the optimal memory
length L can be learnt in the next section.

B. The Variable Memory Length Algorithm
The variable tap length algorithm was proposed to optimise
the memory length L of the least mean square (LMS) algo-
rithm [8]. This was achieved by minimising the instantaneous
quadratic e2(n) similar as in Eq. (1), albeit for one channel
instead of several channels as in

∑K
`=1 e

2
`(n) - as proposed in

this paper.
To guide the MLMS algorithm towards the optimal memory
length, a pair of errors are used, i.e.

e`,N (n) = d`(n)−
K∑
k=1

wT
k`,1:N (n)xk,1:N (n) (7)

e`,L(n) = d`(n)−
K∑
k=1

wT
k`,1:L(n)xk,1:L(n) (8)

where the subscript (.)1:τ means that the first τ elements of
the vector are used. Similarly, the subscript (.)τ indicates that
the error was computed based on the first τ elements of the
input vector in (4). Note that 1 ≤ N ≤ L, where L represent
the actual memory length and N = L−∆ where ∆ is small
positive integer.
These two errors in (7)-(8) can then be employed to update the
memory length in the form of the fractional memory length
ft as

ft(n+ 1) = ft(n)− β
[K∑
`=1

e2`,L(n)− e2`,N (n)

]
(9)

xK

x1

hM

h2

h1

WWT

yK

y1

●

●
●
●
●

●
●
●
●

●
●
●

Fig. 1. Structure of proposed auto-encoder without backpropagation.

where β is the learning step size. As its name indicates the
fractional memory length is not guaranteed to be an integer.
To address this issue, the memory length is instead updated as

L(n+ 1) = floor
(
ft(n)

)
if |L(n)− ft(n)| > δ

= L(n) otherwise (10)

where floor(.) rounds down its argument to the nearest integer
and δ is a small positive integer. This concludes the variable
memory length for our proposed auto-encoder, which is next
described.

C. The proposed variable memory length auto encoder

Recall that MLMS does not have the structure of a neural
network but that of a multi-channel perceptron. As such, it
lacks the depth of an auto-encoder. The lack of depth implies
that MLMS cannot auto-encode its input to its output. To this
end, our auto-encoder is designed as shown in Fig. 1. More
specifically, the weights W in (5) are optimised by MLMS as
in (6), and the same weights connect the hidden layer to the
input layer by transposing W. In this way, there is no need
to derive the back-propagation mechanism, which entails the
following advantages:
• A reduction in computational cost to better cope with

streaming data or applications that require real-time ap-
plications;

• A lower risk of overfitting the data, since there are less
parameters to be optimised;

• An enhanced adaptability (and quicker convergence) of
the auto-encoder for non-stationary data.

With the structure shown in Fig. 1, our proposed auto-encoder
can not only auto-encodes its input, but also benefit from the
online learning of MLMS. More importantly, our proposed
auto-encoder can also adapt its memory length as described
in Section II-B to track changes within the data.

III. SIMULATION

This section assesses the performance of our proposed method
on two types of machine learning problems: time series pre-
diction and image reconstruction. The nonlinear autoregressive
exogenous (NARX) algorithm was considered as benchmark in
the time series prediction, whereas a feedforward auto-encoder
with the same architecture as in Fig. 1 was considered in
the image reconstruction problem, albeit optimised with back-
propagation.

A. Time series prediction

For this particular task, a one-step ahead forecasting was
performed on two nonstationary signals, i.e 4D Saito signal
[9] in Fig. 4 and 3D Lorenz signal [10] in Fig. 5. Fig. 2
shows the sample autocorrelation for both signals. Notice that
the autocorrelation for Lorenz tends to degrade much quicker
to zero (below 20%) than Saito. In other words, the degree
of non-stationarity for the Saito signal is much stronger. As
such, we expect that our proposed auto-encoder will tend to
perform better on the Saito signal than the Lorenz signal.

1) 4D Saito Signal: The topology used for both NARX
and our proposed auto-encoder was 4 (inputs)- 2 (hidden)
- 4 (outputs). Fig. 3 shows how the memory length of the
proposed auto-encoder varies across time. Notice that when
the Saito signal has abrupt changes to high magnitudes, the
error also increases forcing the memory of our auto-encoder
to have instantaneous decrease in length. It is these abrupt
changes that pose a challenge for NARX to adapt as shown
in Fig. 4. The mean square error (MSE) also confirms the
superiority of our approach, i.e. 1.09×10−2 dB for our method
and 1.23× 10−2 dB for NARX.

2) 3D Lorenz Signal: The topology used for both NARX
and our proposed auto-encoder was set to 3 (inputs)- 2 (hid-
den) - 3 (outputs). In this particular experiment, the advantage
of our proposed method is less obvious as shown in Fig. 5,
as the degree of non-stationarity of Lorenz is much weaker
than Saito. As expected, the difference in MSE was also less
prominent, i.e. 5.11×10−2 dB (our method) and 5.12×10−2

dB (NARX).

B. Image reconstruction

This experiment assessed the traditional feedfoward auto-
encoder that operates on mini batch learning compared to our
online learning of our proposed auto-encoder. To demonstrate
the efficacy of online learning, a single image was considered
from the well-known MNIST dataset (28 x 28 pixels) to under-
take one-shot learning. The topology of the neural networks
was set to 28 (inputs) - 14 (hidden) - 28 (outputs). The memory
length of our proposed method was fixed at 7 samples. For a
fair comparison, the image was partitioned into 28 x 7 pixels
and fed 4 times to the traditional autoencoder as inputs. Fig. 6
shows the images reconstructed by both methods. The Pearson
correlation coefficients between the original and reconstructed
images were 0.37 (37%) and 0.63 (63%) for the benchmark
and our method respectively.

-0.5

0

0.5

1

S
a
it
o

0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1

L
o
re

n
z

0 50 100 150 200 250 300 350 400 450 500

Lags

Fig. 2. Sample auto-correlation to illustrate the higher degree of nonstation-
arity of Saito signal [9] than Lorenz signal [10].

IV. CONCLUSION

We have proposed an auto-encoder which can learn on a
sample-by-sample basis to cope with real-time applications. To
put our auto-encoder on parity with batch-learning, we have
introduced memory for auto-encoders so that they benefit from
their past learning (albeit on limited data rather than having
access to the whole dataset). To enhance the adaptability of our
proposed method, we have borrowed the concept of variable
tap length from adaptive filtering to neural networks. Simula-
tion supports our approach for both time series prediction and
image processing.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[2] Y. Cai and Z. Cai and M. Zeng and X. Liu and J. Wu and G. Wang,
“A novel deep learning approach: Stacked evolutionary auto-encoder,”
International Joint Conference on Neural Networks (IJCNN), pp. 1–8,
2018.

[3] W. Xiong and B. Du and L. Zhang and L. Zhang and D. Tao, “Denoising
auto-encoders toward robust unsupervised feature representation,” Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 4721–4728,
2016.

[4] S. J. Elliott and P. A. Nelson, “Algorithm for multichannel lms adaptive
filtering,” Electronics Letters, vol. 21, no. 21, pp. 979–981, 1985.

[5] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37, no. 3,
pp. 328–339, 1989.

[6] E. Diaconescu, “The use of narx neural networks to predict chaotic time
series,” WSEAS Transactions on Computer Research, vol. 3, 03 2008.

[7] Y. Huang and J. Benesty, Audio Signal Processing for Next-Generation
Multimedia Communication Systems. USA: Kluwer Academic Publish-
ers, 2004.

[8] Yu Gong and C. F. N. Cowan, “An lms style variable tap-length algo-
rithm for structure adaptation,” IEEE Transactions on Signal Processing,
vol. 53, no. 7, pp. 2400–2407, 2005.

[9] P. Arena and L. Fortuna and G. Muscato and M. G. Xibilia, “Neural
networks in multidimensional domains,” Lecture Notes in Control and
Information Sciences (Springer Verlag), vol. 234, 1998.

[10] Saha, D. C. and Ray, Anirban and Chowdhury, A. Roy, “Electronic
circuit simulation of the lorenz model with general circulation,” Inter-
national Journal of Physics, vol. 2, no. 5, pp. 124–128, 2014.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-1

0

1

S
a
it
o
 S

ig
n
a
l

Saito

Autoencoder

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

M
e
m

o
ry

 L
e
n
g
th

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(Sample)

2
4
6
8

10
12
14

S
q
u
a
re

 E
rr

o
r

Fig. 3. Evolution of the memory length of our proposed method.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1
0
1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2
0
2
4

A
u

to
e

n
c
o

d
e

r

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1
0
1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-4
0
4

Saito

Autoencoder

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1
0
1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2
0
2
4

N
A

R
X

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1
0
1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(Sample)

-4
0
4

Saito

NARX

Fig. 4. Performance of proposed method against NARX on 4D Saito signal.

200 400 600 800 1000 1200 1400 1600 1800

-10
0

10

200 400 600 800 1000 1200 1400 1600 1800
-20

0

20

A
u

to
e

n
c
o

d
e

r

200 400 600 800 1000 1200 1400 1600 1800

20

40

Lorenz

Autoencoder

200 400 600 800 1000 1200 1400 1600 1800

-10
0

10

200 400 600 800 1000 1200 1400 1600 1800
-20

0

20

200 400 600 800 1000 1200 1400 1600 1800

Time(Sample)

20

40

N
A

R
X

Lorenz

NARX

Fig. 5. Performance of proposed method against NARX on 3D Lorenz signal.

Original Offline Batch Learning Proposed Online Learning

Fig. 6. Image reconstruction in one-shot learning: a traditional auto-encoder
against our method.

