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ABSTRACT – The Late Mississippian and Pennsylvanian have been referred to as the Coal Age 13 

due to enormous paleotropical peat accumulations (coal beds). Numerous fossil floras have been 14 

collected from these coals, and their associated seatearth paleosols and roof shales, over more 15 

than two centuries, leading to the inference  of vast swampy wetlands covering the Pangean 16 

tropics during the Pennsylvanian. In contrast, the Permian tropics are characterized as more arid, 17 

with sparser and more heterogeneous vegetation than inferred for the Pennsylvanian. In the 18 

tropics, the Pennsylvanian to Permian transition has been described as a changeover from a 19 

pteridophyte-dominated “Paleophytic flora”, to a seed-plant dominated “Mesophytic flora”. This 20 

view notwithstanding, floras dominated by xeromorphic seed plants also are well known from 21 

the Pennsylvanian tropics.  Some authors have characterized these plants as being occupants of 22 

uplands, , subsequently transported into basinal-lowland, preservational environments. In this 23 
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 2 

model, uplands are well drained, causing areas of drought under otherwise everwet climates. In 24 

this paper, we present an alternative interpretation: that the apparent transition in Pennsylvanian-25 

Permian tropical vegetation reflects two types of megabias. First is a taphonomic megabias, 26 

strongly favoring the vegetation of humid climates over that of seasonally dry climates. 27 

Accordingly, tropical-plant preservational potential fluctuated in concert with Late Paleozoic Ice 28 

Age glacial-interglacial oscillations, and contemporaneous sea-level and climatic changes. 29 

Second is an analytical megabias, strongly favoring the discovery and collection of the wetland 30 

biome from Pennsylvanian strata, overlooking the less frequently and more poorly preserved 31 

drought-tolerant biome. By Permian times, vast wetlands, and their fossil record, had largely 32 

disappeared from central Pangea (although continuing in Cathaysia), making drought-tolerant 33 

vegetation more “visible” to searchers, without changing its preservational circumstances. We 34 

demonstrate that the upland model is untenable, being inconsistent with the principles of plant 35 

biogeography and with geological aspects of the fossil record.  36 

 37 
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1. Introduction 40 

 41 

Contra negantem principia non est disputandum (Against one who denies the principles, there 42 

can be no debate).  -- Arthur Schopenhauer, Eristische Dialektik (1831) 43 

 44 

 It has long been recognized that the Pennsylvanian wetland flora of Pangea’s 45 

Euramerican tropical latitudes differed significantly from the drought-tolerant, xeromorphic flora 46 

that later typified those tropical regions during the early Permian. This change in the most 47 

commonly found types of plant fossils has been attributed, we believe correctly, to a long-term 48 

drying trend in the tropics, which began at the end of the Early Pennsylvanian and continued, in 49 

a long-wavelength, oscillatory manner, into the Permian (e.g., McKee and Crosby, 1975; Cecil et 50 

al., 1985; Joeckel, 1995; Roscher and Schneider, 2006; Schneider et al., 2006; Schneider and 51 

Romer, 2010; Rosenau et al., 2013; DiMichele et al. 2011; Opluštil et al., 2013a; Martino, 2017). 52 

For many years, there has been a sense that these long-term climatic changes were accompanied 53 

by the rise of a distinctive kind of vegetation, the so-called Mesophytic Flora (e.g. Gothan, 1912; 54 

Gothan and Gimm, 1930; von Bülow, 1942; Fredericksen, 1972; DiMichele et al., 2008; Cleal 55 

and Cascales‐ Miñana, 2014) that typified the Permian, an emergence that could be used as a 56 

biostratigraphic guide. The line of reasoning is that even if the exact Pennsylvanian-Permian 57 

boundary were fuzzy in terms of lithological and biotic composition, one could discern the 58 

difference between these time periods by the on-average compositional aspects of their floras. 59 

This argument can be found in discussions about the age of floras dominated by more 60 

xeromorphic elements, such as conifers, callipterids, Taeniopteris, and others (e.g., Fredericksen, 61 

1972; Bode comments following Gillespie et al., in Barlow, 1975; Wagner and Lyons, 1997; 62 
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DiMichele et al., 2008; van Hoof et al., 2013), which differ greatly from the wetland floras found 63 

in association with coal beds, primarily from partings, roof-shales, seat-earths, and fossils from 64 

the coal beds themselves (palynomorphs and coal-balls). 65 

 Kerp (1996, 2000) and later DiMichele et al. (2008) argued that these terms had 66 

significant problems, noting that there was a major conceptual change between their original 67 

definitions and subsequent use. In essence, the terms had moved from representing 68 

stratigraphically-diagnostic floras to representing distinct biomes.  With that shift, although the 69 

new concept filled a clear need, it also conflicted with the original sense of the terms, which 70 

were now largely incongruent. 71 

 Before going further in our exploration of this matter, some terms that we use in this 72 

paper must be defined. We broadly demarcate the different regions of equatorial (or, 73 

interchangeably, tropical) Pangea into its western, central, and eastern parts.  The areas 74 

envisioned do not have formal, latitudinal boundaries, and are outlined both spatially, and in 75 

terms of prevailing aspects of their environment, particularly climate.  Western equatorial Pangea 76 

is considered to stretch from the Panthalassan coast line, present-day western United States and 77 

northern Mexico, into the regions of the western Midcontinent, approximately West Texas, and 78 

western portions of Kansas, Nebraska, and Iowa. Central equatorial Pangea encompasses those 79 

regions characterized by extensive coal-bearing strata, located in a string of basins from North-80 

Central Texas, eastern parts of Oklahoma, Kansas, Nebraska, and Iowa (the Midcontinent region 81 

of the U.S.), through the eastern U.S. (Illinois and Appalachian basins), the Maritime basins of 82 

eastern Canada, the Variscan regions of Europe, and into the Donets Basin of the Ukraine. 83 

Eastern equatorial Pangea includes regions of the Middle East, southern Russia, and China. 84 
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 We also employ various terms to describe assemblages of plants, both alone and in their 85 

environmental context. The terminology is somewhat hierarchical, reflecting the fact that 86 

ecological terminology is notoriously non-quantitative, conceptual, and often scaled to the 87 

problem being addressed. The term “vegetation” is used in a very general sense, and refers to the 88 

plants growing in an area of unspecified size, with possible consideration of their physiognomy, 89 

or relative abundances.  A “biome” means an assemblage of plants with particular physiognomic 90 

characteristics, associated with certain soil and climatic conditions. The term has broad 91 

taxonomic implications, mainly at higher taxonomic levels, such as arborescent lycopsids, 92 

conifers, tree ferns, or callipterids. By “habitat”, we refer to the physical-environmental, abiotic 93 

variables that predominate in an organism’s site of growth. Although not scale-free, the concept 94 

of habitat does depend on the size of the organisms in question. There may be a variety of 95 

different habitats and microhabitats (differentiated inexactly by spatial scale) within a biome, and 96 

they may harbor quantitatively different proportions of species from place to place, and differ 97 

compositionally from one another. The concept of “niche” is frequently used side-by-side with 98 

habitat, and captures the multidimensional life-history strategy of an organism. Thus, a niche 99 

includes biotic interactions and the physical environment in which an organism lives. A “flora” 100 

is taxonomically specific, but non-quantitative, and refers to the plant taxa, at the finest 101 

resolution possible, for a particular area, or within a biome. A “species pool” refers to the suite of 102 

species in a particular geographic area that potentially could colonize any portion of that region, 103 

even if the plants might not be able to survive under the particular local conditions at any given 104 

moment; in other words, these are the species for which there is no dispersal limitation. A 105 

“community” is an assemblage of species living under a common set of physical and climatic 106 

conditions, and is characterized quantitatively by a particular dominance-diversity profile. We 107 
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use “ecosystem” to include both plants and animals in an expanded version of the community 108 

concept, recognizing both internal factors such as nutrient cycling, soil chemistry and 109 

microbiome, organism interactions, and external factors such as climate. A “landscape” is a 110 

dynamic mixture of variably interconnected populations, communities, and/or ecosystems over 111 

an unspecified area. 112 

 In order to understand the spatio-temporal patterns of the equatorial vegetation during the 113 

Pennsylvanian and early Permian,, it is necessary first to understand the environmental 114 

conditions experienced by the Earth’s tropical regions during this time interval. For much of the 115 

late Paleozoic, the Earth experienced a millions-of-years long, complex, cool-climate mode that 116 

is now termed the Late Paleozoic Ice Age (LPIA), the basic physical attributes of which are well 117 

documented (e.g., Fielding et al., 2008; Isbell et al., 2012; Montañez and Poulsen, 2013).  This 118 

interval was characterized by regular glacial-interglacial fluctuations, superimposed on longer-119 

term variations in ice volume, including times when Earth was nearly ice free. Although the 120 

LPIA encompassed a long-term, Pennsylvanian-Permian drying trend, intermediate-term 121 

fluctuations, millions of years long (e.g., Roscher and Schneider, 2006; Schneider, 2008; 122 

Fielding et al., 2008; Isbell et al., 2012), of more or less ice were superimposed on this trend, in 123 

addition to much shorter term glacial-interglacial cycles on the scale of 100,000 to 400,000 years 124 

(Heckel et al., 2007; Isbell et al., 2012). These latter, glacial-interglacial oscillations are closely 125 

linked to attendant, covariant changes in ice volume, sea-level, and global climate (Heckel, 2008; 126 

Cecil et al., 2003a; Tabor and Poulsen, 2008). The combination of paleosol studies (e.g., Joeckel, 127 

1995; Driese and Ober, 2005; Rosenau et al. 2013), coal quality analyses (Mastalerz et al., 2004; 128 

Neuzil et al., 2005), isotopic examination of plant remains (Montañez et al., 2017; Richey et al., 129 

2018), and sedimentological studies (Martino, 2017; Bashforth et al., 2016a, b; Falcon-Lang et 130 
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al., 2015) suggests that the environmental fluctuations on glacial-interglacial, and perhaps even 131 

shorter time scales may reflect the influence of orbital variations, within the spectrum of 132 

Milankovich cycles (Falcon-Lang, 2004a; van den Belt et al., 2015).   133 

Thus, the Pennsylvanian Coal-Age tropics did not exist under a uniformly humid, high-134 

rainfall, warm climate (Gastaldo, 1996; Falcon-Lang et al., 2009, 2011a). Rather, climate varied 135 

both spatially and temporally in an oscillatory manner (Cecil et al., 2003a). The Euramerican 136 

coal basins of Central Pangea, in particular, experienced fluctuations in moisture distribution and 137 

abundance, and probably also temperature (Tabor et al., 2013), on time scales of approximately 138 

100,000 and 400,000 years (Heckel, 2008; Cecil et al., 2014). These time frames are of much 139 

high-frequency (shorter wave-length) than the longer-term decline in average tropical moisture 140 

through the Pennsylvanian and into the Permian. In the central regions of the Pangean tropics, it 141 

appears that, the longer-term drying pattern was expressed on glacial-interglacial time frames by 142 

the wet intervals becoming less wet, and the dry intervals becoming more dry (e.g., Schutter and 143 

Heckel, 1985; Joeckel, 1999; Roscher and Schneider, 2006).  144 

As more data have emerged, both from western equatorial Pangea and from those strata 145 

in coal basins not directly associated with (i.e., between, but not in contact with) the coals, it has 146 

become clear that plant biogeographic patterns and environmental events of the time were 147 

complex, and that climate was not ever-wet throughout the tropical regions of central Pangea. In 148 

brief, it appears that the western regions of Euramerican Pangea were drier, on average, than the 149 

central parts of the continent throughout all of the Pennsylvanian, and harbored permanently 150 

resident drought-tolerant plant populations (White, 1912; Arnold, 1941; Rothwell and Mapes, 151 

1988; Mamay and Mapes, 1992; Tidwell and Ash, 2003; DiMichele et al., 2017; Tabor et al., 152 

2013; Falcon-Lang et al., 2015).  Populations of drought-tolerant plants also existed in portions 153 
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of the Variscan/Appalachian mountain complex, also known as the Central Pangean or the 154 

Trans-Pangean Mountains (e.g., Roscher and Schneider, 2006; Peyser and Poulsen, 2008), 155 

where, at times, there may have been rain-shadow effects (Broutin et al., 1990; Kerp, 2000; van 156 

Hoof et al., 2013). The iconic swampy wetlands that have come to symbolize the Pennsylvanian 157 

were primarily located in the central parts of the continent, which today are the Midcontinent 158 

through Appalachian regions of North America, the Canadian Maritimes, and much of Europe. 159 

These wetlands persisted as periodic, widespread environments in the eastern part of Pangea, 160 

present-day China, continuing in the Permian (e.g., Guo, 1990; Hilton and Cleal, 2007; 161 

Pfefferkorn and Wang, 2007).  However, central Pangea, and later eastern Pangea, experienced 162 

strong swings in climate from humid/perhumid to subhumid/semi-arid, on glacial-interglacial-163 

orbital time frames of hundreds of thousands of years (e.g., Cecil et al., 2003a). Consequently, 164 

the wetland biome was periodically fragmented and reduced to survival in refugial areas (Falcon-165 

Lang et al. 2009; Looy et al., 2014b).  Climate models (e.g., Poulsen et al., 2007; Peyser and 166 

Poulsen, 2008; Horton et al., 2012) suggest that there were no permanently widespread wet belts 167 

within or peripheral to the equatorial regions, within which large expanses of such vegetation 168 

resided permanently, nor did such areas appear during times of spreading aridity to which such 169 

vegetation might have dispersed en masse (DiMichele et al., 2010; Falcon-Lang and DiMichele, 170 

2010; Wilson et al., 2017). Thus, it is possible that the Pennsylvanian tropics were dominated by 171 

drought-tolerant plants for longer periods of time than they were dominated by peat-forming and 172 

associated wetland vegetation (Falcon-Lang et al., 2009). However, the much lower likelihood of 173 

preservation of the drought-tolerant vegetation (Gastaldo and Demko, 2011) leaves us with a 174 

strongly biased impression of the Pennsylvanian tropical region.  175 



 9 

In this paper, we examine various aspects of plant taphonomy in the late Paleozoic 176 

tropical region.  We argue that the diminished fossil record of wetland vegetation, and the 177 

coincident increase in the proportional representation of xeromorphic, drought-tolerant 178 

vegetation at the Pennsylvanian-Permian transition does not coincide with the origin of drought-179 

tolerant vegetation. Rather, one or more xeromorphic, drought-tolerant biomes existed long 180 

beforehand and covered vast areas of tropical Pangea. during the Pennsylvanian The perceived 181 

rise to dominance of drought-tolerant vegetation in the tropics near the Pennsylvanian--Permian 182 

boundary reflects a series of taphonomic factors that, in combination, constitute what 183 

Behrensmeyer et al. (2000) term a “ preservational megabias” and an “analytical megabias”. In 184 

undertaking this analysis, we also consider an assertion, which may be unique to the literature 185 

involving late Paleozoic paleobotany, that elevation results in drainage, and that drainage causes 186 

drought. This assertion clearly assumes, either implicitly or explicitly, an unchanging humid, 187 

high-rainfall “tropical” climate; thus the occurrence of xeromorphic floral elements is simply 188 

considered to be an indicator of nearby uplands, even of modest elevation (Cridland and Morris, 189 

1963; Pfefferkorn, 1980). 190 

 191 

2. The Late Paleozoic Ice Age 192 

 193 

 The late Paleozoic Era was the last extensive period of polar glaciation experienced by 194 

the Earth prior to the late Cenozoic (Gastaldo et al., 1996). The so-called Late Paleozoic Ice Age 195 

(LPIA) consisted of several, distinct 106-year periods of more intense glaciation separated by 196 

similarly long intervals of warmth (Fielding et al. 2008; Isbell et al., 2012).  Arguably, the LPIA 197 

began with a short period of glaciation during the latest Devonian (Brezinski et al., 2008, 2010; 198 
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Isaacson et al., 2008) that may have continued at a variable intensity through the Early 199 

Mississippian (Mii et al. 1999; Buggisch et al., 2008; Kammer and Matchen, 2008). A long 200 

warm period intervened and was terminated by renewed glaciation, which persisted from the 201 

Late Mississippian (e.g., Roscher and Schneider, 2006; Gastaldo et al., 2009a), through the 202 

Pennsylvanian (e.g., Falcon-Lang, 2004a; Heckel et al., 2007; Heckel, 2008; Montañez and 203 

Cecil, 2013; Cecil et al., 2014), and into the early Permian (e.g., Beerbower, 1961; Miller et al., 204 

1996; Olszewski and Patzkowsky, 2003; Montañez and Poulsen, 2013). As noted above, this 205 

long interval witnessed 106-year oscillations in ice volume, and attendant fluctuations of sea-206 

level and climate. Furthermore, superimposed on these fluctuations was a long-term drying trend 207 

in the Pangean tropics that extended from the Early Pennsylvanian, perhaps Late Mississippian, 208 

into the Permian (Schutter and Heckel, 1985; Roscher and Schneider, 2003; Tabor and Poulsen, 209 

2008; DiMichele et al., 2011; Opluštil et al., 2013a). This trend was accompanied by significant 210 

changes in the vegetation (Kerp and Fichter, 1985; Šimůnek and Martínek, 2009; Opluštil et al., 211 

2013a; Wagner and Álvarez-Vázquez, 2010), particularly that of the tropical peat-forming 212 

wetlands (e.g., Phillips et al., 1974; Pfefferkorn and Thomson, 1982; Phillips and Peppers, 1984; 213 

Kosanke and Cecil, 1996; Montañez, 2016).  214 

The tropical wetland biome of the Carboniferous is one of the best known and most 215 

intensely studied plant assemblages of the Phanerozoic, due to the association of the plant fossils 216 

with coal, where, for more than two centuries, they have been exposed by mining operations 217 

(DiMichele and Falcon-Lang 2011). Thus, wetland plant fossils, collected mostly in active mines 218 

from roof-shales and seat-earths, and sometimes from the coal bed itself, dominate the late 219 

Paleozoic paleobotanical collections in many museums in Europe and North America. The plant 220 

fossils form the basis of thousands of scientific books and papers, and underpin the conventional 221 
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viewpoint of the Pennsylvanian terrestrial tropics. Indeed, the image of the Carboniferous world 222 

as an omnipresent wet, tropical jungle began with some of the earliest paleobotanical studies in 223 

the 1800s. This firmly entrenched perspective of the Coal Age is reflective of the abundance and 224 

excellence of preservation of wetland plant fossils, and frequent encounters with them by 225 

paleobotanists, made possible by an Industrial Revolution fueled by coal mining. 226 

 The geologic record of Pennsylvanian strata in the Euramerican regions of tropical 227 

Pangea provides an enormous amount of evidence for glacial-interglacial cycles, reflected in 228 

regular oscillations of sea-level and climate. These oscillations have a periodicity of roughly 229 

100,000 to 400,000 years or less (e.g., Heckel et al., 2007; van den Belt et al., 2015), broadly 230 

similar to those seen in the Pleistocene and Holocene world. The oscillations are recorded in 231 

parts of the Euramerican tropics by stratigraphic sequences described as “cyclothems” (see 232 

Langenheim and Nelson, 1992, for a full history of the concept), particularly from where the 233 

landscape was broad and flat over millions of hectares. In the central United States, where the 234 

concept originated (Shepard and Wanless, 1935; Wanless and Shepard, 1936), the term 235 

cyclothem describes a package of strata that usually contains a marine and a terrestrial phase 236 

(Figure 1). The degree to which these phases are developed depends on the regional topography, 237 

distance from the contemporaneous shelf edge, and the extent of accommodation space created 238 

by a combination of regional tectonism, sea-level dynamics, and sediment compaction (e.g., 239 

Kvale et al., 2004; Opluštil et al., 2013b).  In some parts of the Pangean tropics, such cycles are 240 

preserved in almost entirely marine successions, with the terrestrial phases represented only by 241 

exposure surfaces (e.g., Elrick and Scott, 2010). In other regions, cyclothems consist of mixed 242 

marine and terrestrial successions, including the arid parts of western Pangea (the Paradox Basin 243 

of Utah; Jordan and Mountney, 2012), and the American Midcontinent and Illinois Basin 244 
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(Heckel et al., 2007; Heckel, 2008; Falcon-Lang et al. 2018). In regions relatively distant from 245 

the continental margin, such as the Appalachian Basin, largely terrestrial successions are 246 

characteristic, with only occasional marine beds (Klein and Willard, 1989; Heckel et al., 1998; 247 

Greb et al., 2008).  In Europe, within what were mountainous regions of Central Pangea, such 248 

successions are less well developed, although cyclic sequences have been identified (Gastaldo et 249 

al., 2009a, b; Opluštil et al., 2013b; Opluštil and Sýkorová, 2018), recording changes in climate 250 

and associated sedimentation patterns. 251 

 For our purposes, it is important to recognize the nature of Late Mississippian through 252 

early Permian changes in the amount and nature of environmental complexity, which had a 253 

major effect on the changing vegetational patterns in the paleo-equatorial region. Climatic 254 

changes on many different spatio-temporal scales occurred throughout the Pangean tropics, 255 

causing repeated changes in physical conditions, frequently over vast areas of thousands of 256 

kilometers, and on a variety of time scales.  The Pennsylvanian and Permian were not times of 257 

environmental quiescence. The Pennsylvanian was not simply “wet”, nor was the Permian “dry”. 258 

Rather, during the Pennsylvanian long intervals of nearly aseasonal rainfall, on time scales 259 

ranging from roughly 1000 to 10,000 years, regularly transitioned to similarly long or longer 260 

intervals of seasonal aridity. As noted above, the balance between these two extremes trended, 261 

on average, toward greater aridity in a time-transgressive, west-to-east direction across the 262 

Pangean supercontinent (Schutter and Heckel, 1985; Roscher and Schneider, 2006; Cecil et al. 263 

2003a). By the Permian, although fluctuations on various time scales still occurred, the balance 264 

in Euramerica had shifted to less rainfall overall. Such environmental change was an important 265 

driver of ecological changes on the broad scale of the Euramerican tropical landscape. 266 

 267 
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3. The preservation of terrestrial organic matter 268 

 269 

 In order to interpret the plant fossil record in evolutionary or ecological terms, it is 270 

necessary to understand the variables that affect the preservation of plant remains, as organic 271 

compressions, impressions, or trace fossils, encompassed by the discipline of taphonomy (see, 272 

for summary, Behrensmeyer et al., 2000). The most important observation is that most plant 273 

remains have almost no chance of preservation, or of leaving even a trace of their former 274 

existence. To be preserved, either as an organic compression, or as an impression from which the 275 

organic matter has decayed, plant remains must be buried under conditions that inhibit decay, are 276 

unlikely to be disturbed by bioturbation, and, ultimately, are unlikely to be removed by erosion 277 

too quickly. 278 

 279 

3.1 A model for terrestrial organic matter preservation  280 

 281 

 One of the most cogent analyses of the preservational biases affecting the plant fossil 282 

record is that of Gastaldo and Demko (2011), as further modified by Looy et al. (2014). The 283 

discussion below primarily is drawn from these two sources. Mainly focused on the preservation 284 

of organic matter, this model applies to most forms of preservation, and thus can be generalized.  285 

We consider there to be three stages of preservation in order for plant remains to become part of 286 

the geological record (Figure 2).  287 

The first condition is short-term preservation, usually on the time scale of hours to 288 

months, but of years in some instances.  Organic matter will be destroyed rapidly if not removed 289 

from the zone of oxidation, and particularly away from the activities of microorganisms (fungi 290 
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and bacteria) and detritivorous arthropods. This requirement can be achieved through burial 291 

under dysoxic to anoxic conditions, either in oxygen-depleted parts of the water column, or 292 

below the vadose zone. Such preservation also may be facilitated by ash falls or other 293 

volcanogenic sediments (e.g., Burnham, 1993; Wang et al., 2012; Opluštil et al., 2014), but these 294 

instances still must conform with the strictures requiring non-oxidative conditions. 295 

The second stage, intermediate-term preservation, entails conditions that remove organic 296 

matter from the effects of erosion, or from other destructive effects resulting from changes in 297 

landscape hydrological features. Spanning hundreds to thousands of years, this intermediate 298 

stage requires the creation of accommodation space. This process can be accomplished by sea-299 

level rise that drowns coastal areas, including the areas that flank rivers/estuaries or lakes, 300 

accompanied by the accumulation of siliciclastic or carbonate sediments (e.g. Falcon-Lang and 301 

DiMichele, 2010; Cecil et al., 2014; Falcon-Lang et al, 2016; Nelson et al., 2020). Preservation 302 

may be further facilitated by the compaction of sediment or peat, which also can create 303 

intermediate-term accommodation space (e.g., Kvale and Archer, 1990). 304 

The final stage is long-term preservation.  This phase relies on the plant-bearing deposit 305 

being located in an area that is undergoing subsidence (i.e., in a depositional basin). Thus, there 306 

are very few documented examples of anything other than basinal, lowland, often coastal settings 307 

preserved in the Paleozoic fossil record.  In the younger geological record, there are examples of 308 

floras preserved in fully terrestrial, intracontinental basins. In the context of upper Paleozoic 309 

deposits, however, there has been ample time for erosion to do its work, and hence inland or 310 

high-elevation basins are unlikely to be preserved. Exceptions are noteworthy, and, for the 311 

Pennsylvanian and Permian equatorial zone, come primarily from the mountainous regions of 312 

Central Pangea (Roscher and Schneider, 2006; Opluštil and Cleal, 2007) where complex 313 
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tectonics ocassionally created conditions that enabled the preservation of vegetation that grew in 314 

elevated areas; under most circumstances, the record of vegetation from such settings has little 315 

chance of preservation in the long-term geological record. The first, and by far the most 316 

common, instance occurs when plant remains are transported to the floor of a narrow valley from 317 

the surrounding slopes, and buried there (e.g., Opluštil and Cleal, 2007, p. 237; Stárková et al., 318 

2016; Libertín et al., 2009; Cleal et al., 2017). Very rarely, true upland areas may be buried 319 

below the zone of erosion, due to particular tectonic circumstances. Opluštil (2005) provided one 320 

such example, from the Czech Republic, where sediments were deposited in a network of 321 

relatively narrow valleys that were bounded by ridges up to 200 m high, and incorporated plant 322 

remains that originated from the valley walls. More importantly, the intramontane setting was 323 

interpreted to have been initially at an elevation of ca. 1000 m within the Variscan mountains. 324 

The end result of this series of short-, intermediate-, and long-term preservational events, 325 

is a highly biased paleobotanical record, one that favors the preservation of plants that lived 326 

under humid climates, near a body of water, and in lowland, actively subsiding basins. 327 

Preservation is enhanced if the plant-bearing deposits were proximate to shorelines, either in 328 

coastal areas subject to flooding during sea-level rise, in peri-marine areas, or in off-shore 329 

brackish to shallow marine coastal waters or lagoons (e.g., the famous Middle Pennsylvanian 330 

Mazon Creek biota – Schellenberg, 2002; Clements et al., 2018). If burial occurred in areas that 331 

were not proximate to marine conditions, such as in intracratonic basins or basins within 332 

mountainous regions, active tectonic subsidence and thick sedimentary accumulations were 333 

essential for the preservation of plant fossils. 334 

 335 

3.1.1 A climate modifier  336 
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 337 

 In those areas of central Pangea with extensive coal deposits, the concept of the 338 

Pennsylvanian tropics being ever-wet with a persistent humid-to-perhumid climate (sensu Cecil, 339 

2003) has been the default interpretation for most of the history of its study. This presumption is 340 

revealed by reading the last 200 years of paleobotanical literature on Pennsylvanian plants, 341 

supplemented by peat/coal formation models from much of the last 50 years. However, as 342 

recognized nearly a century ago (e.g., Elias 1933; Elias in Moore, 1936), and as a large amount 343 

of evidence from physical geology indicates, equatorial coal basins of central and western 344 

Pangea alternated between “wet” and “dry” conditions, reflecting climatic fluctuations tied to 345 

glacial-interglacial cycles on a scale of 104 - 105 years. During the drier parts of these cycles, the 346 

short-term preservational potential of organic matter was severely curtailed.  347 

Within the context of an ever-wet Pennsylvanian tropics, basinal areas are envisioned as 348 

having been perpetually water-saturated lowlands, thus always favorable to the short-term 349 

preservation of organic matter. Soil-moisture deficits are considered to be have been induced by 350 

elevation. Thus, it is hypothesized that only in upland regions, which are purported to have been 351 

much drier due to elevation-induced drainage, was a distinct biome to be found, composed of 352 

xeromorphic, drought-tolerant plants. However,, even a cursory examination of modern tropical 353 

rainforest areas demonstrates the falsity of this model. Where high, nearly aseasonal rainfall 354 

exceeds evapotranspiration for 10-12 months a year, areas of even several hundred meters of 355 

elevation harbor much the same species pool as those at lower elevations (e.g., Voromisto et al., 356 

2004; Kenfack et al., 2014); differences in species composition under such conditions are 357 

primarily quantitative rather than qualitative.  This does not to imply that elevation has no effect 358 

on the water table and species composition in tropical rainforest areas, as elevation certainly can 359 
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play a role (e.g. Rennó et al, 2008), and we do not wish to overstate the case. We assert, 360 

however, that wholesale differences in species pools sufficient to distinguish unique biomes are 361 

not caused by topographic differences in rainforest landscapes under humid-to-perhumid 362 

climates. If there are major species pool changes caused by elevational effects within a tropical 363 

region characterized mainly by rainforest, those effects may reflect temperature changes with 364 

altitude, slope instability, etc. Biome scale differences thus tend to be caused by significant 365 

climatic differences within or between regions, or by climatic changes within a given region over 366 

time.  367 

The controls on plant preservation, in conformance with the Gastaldo and Demko (2011) 368 

and Looy et al., 2014) models, indicate that climatic fluctuations dictated the contents of the 369 

species pools that occupied lowland, subsiding basins, rather than local, small scale elevational 370 

changes of 10s of meters. Furthermore, even if conditions for intermediate- and long-term 371 

preservation were present, the likelihood of short-term preservation was greatly reduced during 372 

intervals of seasonal drought, especially where the water table fell below the level of the buried 373 

plant remains during the dry season. 374 

 375 

3.1.2 A sedimentology-by-climate modifier  376 

 377 

Comment is warranted about sedimentation in tropical environments, and its relationship to 378 

climate. It is obvious that for macroscopic plant remains to be preserved, even in the short term, 379 

they must be buried in a sediment catchment. Actualistic studies of various modern sedimentary 380 

environments provide insight into the dynamics of such accumulations of plant remains (e.g., 381 

Spicer, 1981; Scheihing and Pfefferkorn, 1984; Gastaldo, 1986b; Spicer and Greer, 1986; Rich, 382 
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1989; Ricardi-Branco et al., 2009, 2020). Importantly, however, virtually all of these studies 383 

were performed in environments where active transport and deposition of siliciclastic sediments 384 

was taking place. There are, however, other riverine settings where streams carry little or no 385 

sediment.  Both kinds of environments have direct relationships to climate.  386 

Cecil and Dulong (2003) specifically examined the relationship between sediment 387 

transport from terrestrial environments into streams and rivers, and thence into downstream 388 

depositional settings. They found (Figure 3A) that sediment transport is greatest under subhumid 389 

to semi-arid, seasonal climate regimes, and declines significantly under both humid-to-perhumid 390 

and arid climates. In very wet habitats, plant canopy cover and rooting combine to reduce soil 391 

erosion. The more dense and closed the canopy, the greater the interception of rain and reduction 392 

of its impact on the soil surface (e.g., Brandt, 1988); and the more dense the root, and associated 393 

mycorrhizal, network, the greater the coherence of the soil (Gyssels et al., 2005; Baets et al., 394 

2007; Li et al., 2017). Canopy cover and density of rooting are expected to be higher in humid 395 

terra firma forests than in seasonally dry forested habitats (e.g., Murphy and Lugo, 1986; Green 396 

et al., 2005; Rosado et al., 2011), possibly represented by lower turnover rates of fine roots in the 397 

wetter sites (Santantonio and Hermann, 1985). At the other end of the spectrum, there is less 398 

fluvial transport of siliciclastic sediment out of arid environments due to greatly attenuated 399 

surface runoff.  The primary siliciclastic output from these environments is in the form of dust 400 

(Cecil et al., 2018) and occasional flash floods. 401 

The projections of Cecil and Dulong (2003) were tested directly by Cecil et al. (2003b; 402 

see also Harris et al., 2008), who examined sediment discharge in a selection of tropical rivers, 403 

and found a strong relationship between the distribution (seasonality) of rainfall and sediment 404 

load. A similar relationship was reported by Latrubesse et al. (2005, see particularly their fig.6, 405 
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reproduced here as Figure 3B), who examined a larger number of rivers than did Cecil et al. 406 

(2003b), and found that those in the tropics under largely aseasonal, high-rainfall climates 407 

generally carried very low sediment loads, despite often having high discharge volumes. Archer 408 

and Kvale (1994) and Nelson et al. (2020) described estuarine settings in which a similar 409 

climatic scenario was invoked to explain the development of siliciclastic tidalite deposits 410 

associated with coal beds in the Middle Pennsylvanian of the Illinois Basin, and 411 

sedimentological studies suggest this to be a general and widespread phenomenon by 412 

Pennsylvanian time (e.g., Gibling et al., 2014). An interesting modern analogue is the effect of 413 

human activities on the sediment load of rivers. In effect, deforestation and intense agriculture 414 

mimic the effects of decreased rainfall by removing tree canopies and rooting, resulting in 415 

increased sediment loads (e.g., Bruijnzeel, 2004), whereas the damming of rivers may have 416 

effects on sediment load similar to high, aseasonal rainfall.  These relationships have been 417 

documented for modern deltas (Nienhuis et al., 2020). 418 

This piece of the preservation puzzle is important because it suggests that, during the 419 

wettest periods, when peat was accumulating in lowland settings (see below), the regional 420 

drainage system likely carried a very low sediment load.  Not until climate began to shift to 421 

greater seasonality, but was still within the wet subhumid to humid range sensu Cecil (2003), did 422 

streams begin to carry more sediment.  Thus, the environmental conditions under which peat-423 

substrate floras accumulated – those represented by coal balls and coal palynology – likely were 424 

different from those under which adpression floras in siliciclastic seat-earth and roof-shale 425 

deposits formed, or those that formed offshore of coastal wetlands that developed following 426 

intervals of peat accumulation. Hence, the typical roof-shale flora above a coal bed is not 427 

entombed in flood-deposited sediments laid down during high-intensity, periodic storms under 428 
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an otherwise unchanging climate (e.g., Thomas and Cleal, 2015). Rather, most roof-shales record 429 

larger scale events that involved a change in environmental conditions toward greater seasonality 430 

of rainfall, and thus less favorable conditions for peat accumulation, concomitant with increased 431 

sediment transport and rising sea-level in paralic regions (e.g., Kvale et al., 1994; Archer et al., 432 

2016; Elrick et al., 2017a). 433 

 434 

3.1.3 A peat formation-by-climate modifier  435 

 436 

In assessing the environment of Pennsylvanian and Permian landscapes, coal is understood to be 437 

the “wet” end member of a wet-dry gradient. Representing a former peat swamp, a coal bed is 438 

presumed, for the reasons outlined in the Gastaldo-Demko/Looy et al. model, to indicate the 439 

most extreme example of the convergence of short-, intermediate-, and long-term preservational 440 

conditions. There remain, however, matters regarding peat accumulation and coal formation that 441 

require additional comment, based on observations of modern-day physical settings, or the 442 

physical and chemical conditions attending various kinds of environments.  443 

 We begin with the caveat that when discussing “peat”, we are referring to widespread 444 

blanket peats that are low in ash content. As peat compaction and the processes that attend 445 

coalification take place, the ash content of the original peat will become magnified and rise 446 

proportionally relative to the percentage of fixed carbon (e.g., Shearer and Moore, 1996). If the 447 

siliciclastic content of the original peat is too high an organic-rich shale will result, rather than a 448 

coal.. For example, the U.S. Geological Survey excludes from its coal resource estimates organic 449 

rich rocks with ash weight-% ash content of > 33% (Wood et al., 1983). The objective here, 450 
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therefore, is to consider those modern environments in which peat of coal-grade quality is 451 

accumulating, and in that aspect are analogues for Pennsylvanian and Permian peat swamps. 452 

It is often presumed that peat formation is driven by rising sea-level, which causes coastal 453 

paludification, and the conversion of large, formerly well drained coastal areas to wetlands (e.g., 454 

Bohacs and Suter, 1997).  Modern data indicate, rather, that peat formation is driven by climate, 455 

particularly by humid to perhumid conditions (terminology of Cecil, 2003), which, in the tropics, 456 

translates to 10-12 months per year during which rainfall exceeds evapotranspiration. Modern 457 

peat swamps, whether tropical, temperate, or boreal, are found only under these climatic 458 

conditions. In the tropics, some of the best examples of such peats are found in coastal Sumatra 459 

(possibly initiated by sea-level damming along river courses, but not by turning the coastal 460 

landscapes into vast wetlands) (Takahashi, 2002; Page et al., 2004; Domaine et al., 2010), 461 

intermontane Malaysia (where sea-level is not a factor) (Wüst and Bustin, 2001), or the Cuvette 462 

Centrale, an elevated inland region of the Congo (again, where sea-level is not a factor) (Dargie 463 

et al., 2017). To our knowledge, there are no extensive peat bodies today that appear to have 464 

formed as time transgressive belts advancing landward ahead of rising sea-level; there are 465 

abundant peaty, clastic-rich deposits forming in many coastal areas around the world, but these 466 

are not precursors to coal.  Consider, if sea-level rise were the driver of peat formation, given the 467 

sustained sea-level increase since the last glaciation, coastal regions of the modern world should 468 

be blanketed in thick, low-ash peat, not by the thin organic mucks or banded high and low ash 469 

peats that occur only locally today.  470 

If further proof is needed of the inefficacy of sea-level rise as the primary driver of peat 471 

formation, one also may turn to the geological record. Were rising sea level the cause of peat 472 

formation, then coal beds should be found throughout the Pennsylvanian geological record in 473 
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western Pangea.  They are not. Yet numerous episodes of sea-level rise and fall, accompanied by 474 

surface exposure, are documented in the western reaches of Pangea (e.g., Goldhammer et al., 475 

1994; Cecil et al., 2003a; Elrick and Scott, 2010; Brand et al., 2012), and elsewhere in the world 476 

(e.g. Liu et al., 2017). Furthermore, given that sea-level has risen and fallen throughout 477 

geological history, one should expect coal beds to be associated with every event in the 478 

geological record recording a transgression of the sea over the land surface. This clearly is not 479 

the case. 480 

There have been, and still are, widely promulgated and influential, models that place peat 481 

accumulation in environments close to areas of active siliciclastic sedimentation, such as in high-482 

constructive deltas, and even lateral to carbonate lakes (e.g., Horne and Ferm, 1978; Valero 483 

Garcés et al, 1997; Thomas and Cleal, 2015) (Figure 4). In order for such landscapes to exist, the 484 

peat swamp and the carbonate lakes would foremost need to be protected from siliciclastic input. 485 

Second, the swamp would need to be forming in an environment with a climate that was equally 486 

favorable to the movement and transport of siliciclastics, the accumulation of peat, and the 487 

precipitation of carbonate, all in close proximity. And third, the pH distributions across the 488 

landscape would need to vary abruptly in order for peat and carbonate to be forming side-by-489 

side. We cannot rule out that two or all three of these conditions could, in fact, sometimes 490 

coincide and permit low-ash peat to accumulate on a landscape with nearby significant 491 

siliciclastic deposition, and even carbonate lakes. In our opinion, however, such hypothetical 492 

environmental situations fail to account for the full range of data from sedimentology, 493 

geochemistry, and the known conditions promoting peat accumulation.   494 

There also are suggestions that the siliciclastics between any two coal beds represent 495 

short-term flood deposits, from which the peat swamp rapidly recovered to recolonize the 496 



 23 

landscape, with most of the time in a coal-bearing section thus being represented by the coal (e.g. 497 

Thomas and Cleal, 2015; Thomas et al., 2019). However, the siliciclastic intervals between coal 498 

beds, however, rarely can be characterized as solitary floods, or even sequential floods over a 499 

brief time interval. Rather, the siliciclastic successions frequently contain paleosols, including 500 

Calcisols and Vertisols that take thousands of years to form, and both siliciclastic and carbonate 501 

marine strata, and it is not uncommon for some inter-coal siliciclastic deposits, or parts of them, 502 

to evidence strong overprinting by tidal forces (Kvale and Archer, 1990), all of which indicate 503 

dramatic environmental changes between one coal bed and the next. Furthermore, the thickness 504 

of strata between coal beds is not an indicator of the time encapsulated between those coals. 505 

Importantly, the siliciclastic portions of strata separating coal beds are most frequently 506 

characterized by numerous hiatuses (including paleosols), which account for the great majority 507 

of the time (Miall, 2014; Scott and Stephens, 2015).  508 

Siliciclastic and carbonate deposits between coals are potentially very different in their 509 

significance than siliciclastic partings within  single coal beds. Partings in coal beds may result 510 

from a wide variety of processes, from effectively instantaneous volcanic ash deposits (e.g., Greb 511 

et al., 1999a; Opluštil et al., 2007; Wang et al., 2012), to hiatuses of relatively short duration 512 

(e.g., Gresley, 1894; Fisher, 1925). Some thin layers of clay or siltstone separating two distinct 513 

benches of coal, when followed laterally for many kilometers, thicken and become fully 514 

developed intervals of siliciclastic, marine, and pedogenically altered strata (e.g., Jacobson, 515 

1987, 1993).  516 

 In summary, it is imperative to consider climate as a variable when interpreting the 517 

sedimentological conditions under which peat accumulation and coal formation took place. 518 

There are conflicts in the conditions needed for peat to form and persist, for rivers to carry high 519 



 24 

sediment loads, and for carbonates to form. These incompatibilities may be resolved when 520 

climatic conditions favorable to those particular physical and chemical conditions are considered. 521 

 522 

3.2 Modern environments as models for vegetational distribution 523 

 524 

 Modern tropical environments provide analogues for understanding the past and should 525 

be consulted to formulate models for the organization of ancient landscapes, ecosystems, and 526 

habitats. However, modern tropical landscapes can be extremely complex, with significant 527 

habitat heterogeneity, tracked by vegetation, as indicated for tropical rainforests (e.g., Salovaara 528 

et al., 2004, 2005) and rainforest wetlands (Junk et al., 2011). Similarly, tropical dry forest can 529 

demonstrate an even greater amount of habitat heterogeneity, with the differences between flats, 530 

slopes, and ridge crests accentuated by drainage effects (e.g., Roy and Singh, 1994; Balvanera et 531 

al., 2002; Balvanera and Aguirre, 2006; Ferreira-Nunes eet al., 2014). We emphasize that these 532 

drought-tolerant forests are known from areas of distinctly seasonal climate (Sanchez-Azofeifa, 533 

2003; Santos et al., 2011; Dryflor, 2016), not from elevated areas in the midst of rainforests.  534 

There are significant differences in the composition, biodiversity, and prevailing life 535 

histories between floras of the modern tropical world and those of the late Paleozoic. Despite 536 

these differences, however, many of the most basic patterns of plant distribution, and the factors 537 

controlling them, would have been the same: soil-moisture levels and changes in those levels 538 

throughout the year, temperature, especially the lowest temperature encountered, light regime, 539 

and the nature and frequency of disturbance agents, such as wind, floods, fire. All of these 540 

factors will be affected to some degree by elevation, slope, and aspect, but the nature of those 541 

effects will be strongly controlled by the prevailing climate. Important to our purposes here, the 542 
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effects of slope and aspect also should have been much the same in the Pennsylvanian and 543 

Permian as they are today.  544 

A major factor affecting comparisons between the Paleozoic and modern worlds is the 545 

difference in biodiversity and the variables that underlie that disparity. The much lower  546 

vegetational biodiversity of late Paleozoic may have resulted in sharper demarcations in species-547 

by-environment segregation than in the modern world, leading to clearer boundaries between 548 

species pools, and to more obvious mapping of phylogenetic lineages onto habitat and niche 549 

spaces. Close mapping between phylogenetic lineages and ecological preferences has been 550 

labelled “phylogenetic niche conservatism” in modern ecological studies (e.g., Webb, 2000; 551 

Prinzing et al., 2001; Webb et al., 2004; Wiens and Donoghue, 2004; Losos, 2008; Wiens et al., 552 

2010; Crisp and Cook, 2012; Prinzing et al., 2017; Saupe et al., 2018), and also has been 553 

examined in the geological record (e.g., DiMichele and Phillips, 1996; Hotton et al., 2001; 554 

Holland and Zaffos, 2011; Stigall, 2012; Brett et al., 2016). Pennsylvanian and Permian 555 

ecosystems appear to have been composed of significantly fewer plant species than compose 556 

modern ecosystems under similar climates and physical conditions; late Paleozoic plant 557 

diversities are at least an order of magnitude lower (Cleal et al., 2012; Moore et al., 2014). This 558 

lower diversity may reflect the predominant wind pollination and/or dispersal of the vast 559 

majority of species, permitting large, interconnected populations to exist, even where habitat 560 

space was fragmented (DiMichele, 2014, and citations therein). As a consequence, one might 561 

expect to find less variation in community-level composition across space because there were 562 

fewer possible component combinations. In effect, within any one Paleozoic species pool there 563 

were fewer species to divide up the resources than one would find in a modern ecosystem.  One 564 

prediction, therefore, is that the niche-breadth of late Paleozoic plants would have been greater 565 
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than that of plants in similar environments today. Alternatively, there may have been significant 566 

types of physical conditions that Paleozoic plants did not, or could not, occupy, including many 567 

in lowland, humid climate, basinal areas, where Paleozoic diversity is best documented and is 568 

strikingly lower than in similar modern settings.  However, to our knowledge, no evidence 569 

supports this latter, alternative, hypothesis. Finally, the great extent of coastal areas occupied by 570 

lowland wetland habitats immediately prior to and during periods of peat accumulation in many 571 

parts of Euramerican Pangea may have no parallel in the modern world. If these were 572 

environments of considerable physical uniformity, they may have presented strong selective 573 

barriers to evolutionary innovation by virtue of the power of large-population incumbency 574 

effects (Knoll, 1985). Furthermore, distinctive microhabitats surrounding the basin margins (e.g., 575 

Leary, 1975; Leary and Pfefferkorn, 1977; Opluštil and Cleal, 2007; Stárková et al., 2016), 576 

harboring a larger species pool than that typical of basin centers, even under the same basic 577 

climatic background, have a comparatively low likelihood of survival into the geological record 578 

due to the effects of erosion. 579 

 Perhaps the most important observation to be made in the context of this article is that 580 

elevation, in and of itself, does not cause drought.  Indeed surface runoff may be greater on steep 581 

slopes than in flatter terrain, and there will be downhill movement of water both across the 582 

surface and through the soil.  However, as studies of tropical rivers show, high rainfall areas with 583 

low seasonality, and seasonally equable distributions of rainfall (humid to perhumid climates), 584 

typically have very low sediment loads, a reflection of the intense rooting and closed canopies 585 

that limit soil surface disturbance, sediment entrainment, and sediment runoff (Bruijnzeel, 2004). 586 

Elevation, by itself, does not guarantee low soil moisture, high levels of erosion, or sparse, 587 

drought-stricken vegetation (e.g., Figure 5). Furthermore, as indicated unequivocally by blanket-588 
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peat distribution in temperate regions (e.g., Gorham, 1957; Bragg and Tallis, 2001; Evans and 589 

Warburton, 2011), or, similarly, by high elevation inland-upland peat accumulations in the 590 

modern tropics (Amazon – Lähteenoja et al., 2013; Malaysia – Wüst and Bustin, 2001; Africa – 591 

Dargie et al., 2017), uplands are not necessarily, and certainly not obligately, dry. Rather, 592 

elevated areas are subject to periodic drought if the prevailing climate is seasonally dry, but they 593 

may experience little or no drought if the regional climate is aseasonally humid. As a case in 594 

point, the largest peatland on earth is found in the Cuvette Central of the Congo, in an interior, 595 

upland region (Dargie et al., 2017). 596 

 Consider also areas at temperate latitudes where there is considerable elevational change 597 

but little change in the species pool – climate is, once again, the controlling variable. For 598 

example, Figure 6 A-D illustrates both true upland and coastal lowland vegetation clothed in 599 

Eastern Deciduous Forest at various localities in east-central USA. These images show the 600 

remains of drought-tolerant species potentially being incorporated in shore-line sediments at 601 

present-day sea-level (Figure 6 A-B), under a subhumid, seasonal climate. Neither these plants, 602 

nor the other drought tolerant plants growing nearby, can be characterized as upland species. The 603 

coastal lowland region of the Chesapeake Bay (Figure 6C) affords a much greater opportunity 604 

for organic matter preservation than the upland region of the Central Appalachians in western 605 

Virginia (Figure 6D). Figure 6E illustrates a wetland at Caddo Lake, Texas, where the area 606 

immediately beyond the lake is dominated by drought-tolerant vegetation, thereby demonstrating 607 

how wetland vegetation can exist within a landscape dominated by seasonally dry plants. Note 608 

that, at 50 m surface elevation, this wetland has high short-term preservation potential, but, 609 

without significant sea-level rise or tectonically driven subsidence, likely poor prospects for 610 

intermediate or long-term preservation.  611 
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In many areas of the world today, where there is elevational change, such as in 612 

mountainous regions, there also is a broadly positive correlation between elevation and rainfall. 613 

Orographic cooling of moist air masses may result in increasing rainfall, and decreased drought, 614 

at intermediate to higher elevations. Thus, under many circumstances, uplands will receive 615 

greater volumes of rainfall than do lower elevation sites (e.g., Dhar and Rakhecha, 1981; Garcia-616 

Martino et al., 1996), or greater moisture through fog and clouds, leading to the development of 617 

cloud forests (Bruijnzeel et al., 2011). We note that the relationship between these factors can be 618 

non-linear, and can vary in complex ways, both within mountainous terrain (e.g., Fleming, 1986; 619 

Chavez and Takahashi, 2017), and over broad continental regions.  620 

Given the complexity and difficulties of making measurements and modeling rainfall in 621 

the present-day world (e.g., Goovaerts, 2000), however, when studying the Paleozoic, it is 622 

prudent to focus on the most general conclusions, and to allow for exceptions, but not to make 623 

the exceptions the rule. Perhaps the simplest generality is that regional climate is the most 624 

important variable controlling plant distribution.  Under a given climate regime, whatever it may 625 

be, uplands may be subject to greater moisture stress than regionally nearby lowlands due to 626 

drainage, but also may receive the same or perhaps even greater moisture than the adjacent lower 627 

elevation sites.  This generalization implies that, if the prevailing regional climate were humid to 628 

perhumid, the upland soils would probably also have high levels of soil moisture, including 629 

sufficient moisture to support upland swamps and lakes.  In contrast, under sub-humid to semi-630 

arid climates, the same uplands, depending on elevation, airflow patterns, nearby moisture 631 

sources, etc., may be far more heterogeneous compared to lower elevation sites, including the 632 

possibility of receiving more rainfall than the seasonally dry lowland regions. Thus, as 633 
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seasonality increases into the realm of subhumid to semi-arid, the habitat heterogeneity of the 634 

landscape also may be expected to increase. 635 

The literature on modern vegetation and its relationship to climate and habitat factors is 636 

enormous. In addition, we do not wish to oversimplify the matter – landscape slope and aspect, 637 

elevational change, winds, soil types, etc., have a great effect on vegetation in local areas. 638 

However, we are considering here whether or not elevational change of < 10 to a few hundred 639 

meters, under a regionally humid to perhumid climate, should be expected to yield completely 640 

different biomes that have few or no species in common.   641 

As an example, consider the Kenfack et al. (2014) study of a Cameroonian rain forest, 642 

whichh has a climate at the borderline between wet sub-humid and humid in the categorization 643 

of Cecil (2003). A single species pool characterizes the 50 ha study area, within which there is 644 

nearly 100 m of elevational variation. The elevation of the study area varies from 150 to 240 m. 645 

More than 60% of the species have distributional centroids related to elevation, but of 489 tree 646 

species, 101 (21%) have no significant habitat preference, and only 171 (35%) were more dense 647 

in one of the five identified habitats than expected at random. For our purposes here, the key 648 

findings of the Kenfack et al. (2014) study are that the species pool was the same throughout the 649 

elevationally variable study area, and, although there were species differences associated with 650 

habitat, those differences could not be explained by better performance of the specialists under 651 

their “home” habitat conditions.  This finding suggests that episodic droughts (caused by rainfall 652 

deficits, not by drainage per se) in this wet sub-humid environment may exert control over long-653 

term patterns of plant distribution. 654 

 655 

4. Sampling megabias of the Pennsylvanian plant fossil record 656 
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 657 

 The Euramerican plant-fossil record of the Pennsylvanian Subperiod, as is clear from 658 

examination of more than 200 years of scientific literature, is overwhelmingly typified by plants 659 

from environments with persistently high levels of soil moisture, especially from swamps and 660 

other types of wetlands. This is particularly the case in areas where coal mining exposed great 661 

quantities of easily accessible rock strata for collecting plant fossils, particularly in mainland 662 

Europe, Great Britain, the Canadian Maritimes, and the eastern half of the United States.  For the 663 

most part, the fossiliferous strata occur immediately above or below a coal bed.   664 

Floras typical of seasonally dry habitats, however, also are present in what were the 665 

Pangean tropics. Although much less common than wetland floras, such drought-tolerant plants 666 

actually are not all that rare in coal basins. Rather, these fossils tend to be found only in natural 667 

outcrops, or in strata poorly exposed in surface coal mines, or not exposed at all in underground 668 

mines.  Such floras, though uncommon, are the most frequently encountered in the 669 

Pennsylvanian and Permian strata of western Pangea, where there is little or no coal, and where 670 

the fossiliferous beds are mainly exposed on natural outcrops, road cuts, and, occasionally, in 671 

stone quarries. 672 

 673 

4.1 Why are wetland floras so common? 674 

 675 

 The abundance of wetland floras stems, in part, from the fortuitous combination of the 676 

conditions best suited for the preservation of organic matter, as detailed by Gastaldo and Demko 677 

(2011) and Looy et al. (2014a), and summarized above. In the tropics, humid climatic conditions 678 

(sensu Cecil, 2003), in which rainfall exceeds evapotranspiration for 9-11 months of the year 679 
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contribute not only to high soil moisture, but to the development of standing bodies of water in 680 

both coastal regions and floodplains, thus providing sites for short-term preservation. With only 681 

rare exceptions, virtually all floras collected from Pennsylvanian equatorial environments are 682 

from former depositional basins. Furthermore, in the absence of concrete sedimentological and 683 

structural evidence to suggest long-distance transport, it is most probable that the great majority 684 

of the plants actually lived in the basinal regions where they are found (DiMichele et al., 2010), 685 

thus increasing their likelihood of long-term preservation.  In addition, and importantly, a great 686 

number of those basins were coastal, and thus subject to periodic marine inundation, or, if 687 

intramontane, were in settings subject to periodic influx of high sediment volumes during 688 

intervals of seasonal climate, when sediment mobility was greatest (see Cecil and Dulong, 2003). 689 

These situations provide conditions that enhance intermediate-term preservation.  As a result, 690 

there is what Behrensmeyer et al. (2000) called an original “taphonomic megabias” favoring the 691 

proportional preservation of wetland plants above all others. We use the term “proportional” 692 

because we do not wish to imply that plants of seasonally dry landscapes cannot also grow in 693 

basinal lowlands, and also be preserved due to fortuitous combinations of taphonomic variables. 694 

Rather, we wish to imply that, from the perspective of likelihood, the preservation of wetland 695 

plant assemblages from certain geographic and tectonic settings is going to predominate in the 696 

plant fossil record, reflecting favorable original conditions for the burial and preservation of 697 

organic matter. 698 

Also contributing to an over-representation of wetlands in our vision of Pennsylvanian 699 

landscapes is what Behrensmeyer et al. (2000) referred to as an “analytical megabias”, a 700 

taphonomic factor that originates with the scientific procedures used, rather than necessarily 701 

resulting from original preservational conditions. For the Pennsylvanian, this megabias could be 702 



 32 

described as “seeing the world through coal-colored glasses” (Figure 7). In underground mining, 703 

the only fossiliferous beds typically seen are those immediately adjacent to the coal bed being 704 

extracted, or from mineral partings in the coal bed itself. Typically, accumulations of aerial plant 705 

remains in coal seat-earths represent early stages of swamp development (e.g., Gastaldo, 1986a; 706 

Stull et al., 2012), prior to the onset of peat formation.  In contrast, roof-shales may form in a 707 

variety of ways (Gastaldo et al., 1995), but mostly preserve the final vegetation of the peat-708 

swamp, or that of the mineral-soil swamps and wetlands that developed immediately after peat 709 

accumulation ceased. In some cases, these plants, which grew late in the wetter phase of a 710 

glacial-interglacial cycle, during coastal flooding, may have been transported from the fringing 711 

coastal plain and preserved in nearshore marine environments, where they then were preserved. 712 

One of the best examples of this process is represented by the well known Mazon Creek flora 713 

from the Francis Creek Shale, one of several roof-shale facies of the Colchester (No. 2) Coal bed 714 

of the Illinois Basin (Baird et al., 1985). 715 

Surface mining also offers access to strata between coals, deposits that are not genetically 716 

associated with peat accumulation in swamps, or in the immediately preceding or following 717 

wetlands (e.g., Winston, 1983; Carpenter et al., 2011; Bashforth et al., 2016b; DiMichele et al., 718 

2016). However, in surface mines, the plant-bearing strata between coal beds are rarely searched 719 

for, or their environmental context is lost when such fossils are collected from mine spoils.  720 

Thus, as a consequence of what might be called a “coal-mine perspective”, the image of the 721 

Pennsylvanian repeatedly presented in most illustrations and museum dioramas is that of vast 722 

wetlands, under an everwet climate (Figure 8A, B), a perspective derived from the fact that most 723 

fossils have been extracted from deposits formed during the wettest parts of glacial-interglacial 724 

cycles.  725 
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 726 

4.2 Where are floras of seasonally dry habitats found? 727 

 728 

 Within the coal fields of Europe and North America, there are deposits containing floras 729 

that are compositionally distinct from those found in or immediately above or below coals.  The 730 

discovery of these plant fossils often is fortuitous, and occurs in surface coal mines, quarries, and 731 

other natural or artificial exposures.  In these situations, plant remains tend to be found first by 732 

geologists carrying out mineral surveys, or doing stratigraphic studies or bedrock mapping.  733 

Some recent examples of these floras include discoveries in surface coal mines (McComas, 734 

1988; Falcon-Lang et al., 2009; Carpenter et al., 2011; Bashforth et al., 2016b), in sinkholes in 735 

limestone quarries (Leary, 1975; Plotnick et al., 2009), from a gas-pipeline excavation (Martino, 736 

2017), and from natural exposures (Leary and Pfefferkorn, 1977; Falcon-Lang et al., 2011a; 737 

Bashforth et al., 2014; Šimůnek, 2018, see description of Cordaites olneyensis from among 738 

several others). The elements of these floras include a variety of xeromorphic plants, typically 739 

associated with habitats that experienced periodic moisture stress (Figure 8C). Most noteworthy 740 

of these are conifers, cordaitaleans (an ecologically highly diverse group with members living in 741 

a variety of habitats, stretching from swamps to uplands), taeniopterids, certain 742 

noeggerathialeans (especially in western Pangea), and presumed seed-plants, such as Lesleya and 743 

Megalopteris. Various mesomorphic forms also characterize these floras, some of which also 744 

occur in more typical wetland assemblages, including certain odontopterids, mixoneurids, 745 

neurodontopterids, and, in some instances, callipterids. The composition of these floras varies 746 

with time and location. Furthermore, the floras frequently are what can be described as being 747 

“mixed”, meaning that they also contain wetland components to varying degrees, particularly 748 
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marattialean tree ferns and calamitalean sphenopsids, but also commonly certain medullosan 749 

pteridosperms. In our experience with late Middle and Late Pennsylvanian floras of the USA, 750 

Macroneuropteris scheuchzeri and Neuropteris ovata are the most common of these 751 

medullosans, both of which probably represent species complexes rather than single taxa. In the 752 

Late Pennsylvanian and early Permian, odontopterids, mixoneurids, Neurodontopteris, and 753 

Reticulopteris also become regularly encountered pteridosperm components of mixed 754 

assemblages. 755 

 756 

4.2.1 Drought-tolerant floras in western Pangea  757 

 758 

The western portions of tropical Pangea, in the present-day western USA, were, on-average, 759 

drier throughout the entire Pennsylvanian and Permian, meaning more seasonally dry and subject 760 

to lower overall annual precipitation, than central regions of the supercontinent.  This 761 

observation is documented by the study of paleosols, by the presence of sedimentary 762 

environments typical of arid climates, by models of atmospheric circulation and rainfall patterns 763 

(McKee, 1975; Cecil et al., 2003a; Tabor and Montañez, 2002; Tabor and Poulsen, 2008), and by 764 

the paleobotanical composition of Pennsylvanian and Permian floras.  Paleosols in western 765 

Pangea, for example, typically are Vertisols that frequently are calcic, even trending to calcretes 766 

(e.g., Goldhammer and Elmore, 1984; Joeckel, 1989, 1991, 1994; Cecil et al., 2003a; Feldman et 767 

al., 2005; Tabor et al., 2008; Goldberg and Miller, 2019; Tanner and Lucas, 2019). In the far 768 

western regions, such as present day New Mexico, Arizona and Utah, even where plant fossils 769 

characteristic of wetland environments have been found (e.g., Tidwell, 1967; Tidwell et al., 770 

1992; Lucas et al., 2009), the fossil assemblages are not associated with coal beds, indicating that 771 
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rainfall was sufficiently seasonal to preclude peat formation (Cecil, 2003). Furthermore, 772 

sedimentary settings in western Pangea include, as climate end members, evaporites and eolian 773 

deposits (e.g., Soreghan, 1992; Soreghan et al., 2002; Cecil et al., 2003a; Scott, 2005; Falcon-774 

Lang et al., 2011a; Jordan and Mountney, 2012), which were contemporaneous with peat 775 

swamps, swampy wetlands, and seasonally wet habitats farther east in central Pangea.  776 

Mixed floras containing, enriched in, or dominated by xeromorphic plants are the 777 

prevalent Pennsylvanian assemblages encountered in western Pangea. Early Pennsylvanian age 778 

floras from Colorado, Utah, Arizona, and Oregon (Read, 1934; Mamay and Read, 1956; Tidwell, 779 

1967; Jennings, 1980; Tidwell et al., 1992; Tidwell and Ash, 2003) are not associated with coal 780 

beds; some even come from red-bed deposits.  These Early Pennsylvanian assemblages are 781 

composed predominantly of wetland-species, which conforms to the inference of McKee (1975) 782 

that the tropics of the Early Pennsylvanian (his “Interval A”) experienced widespread humidity, 783 

including in the western regions of the Pangean continent. However, several of these floras also 784 

contain unusual elements that are not typical of floras found in association with coal beds, such 785 

as the noeggerathialean Charliea, the coniferophyte Dicranophyllum, ginkgophyte-like plants, 786 

and rare sphenopsids, such as Phyllotheca. These outlier taxa indicate close proximity of 787 

periodically moisture-stressed habitats to those with more stable water tables, although not wet 788 

enough for peat accumulation. These mixed assemblages occur because the existence of climatic 789 

seasonality creates enough habitat heterogeneity to permit drought-tolerant plants in areas of 790 

periodic moissture stress to live side-by-side with areas of persistently high soil moisture. Given 791 

the great distances between these Early Pennsylvanian deposits in western Pangea, and from 792 

what is known of the tectonic regime of the region during this time, there is little reason to 793 

believe that the Early Pennsylvanian drought-tolerant elements were transported from uplands. 794 
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Physical evidence indicates that the overall climate was more seasonal in the west than in more 795 

central regions of the supercontinent, creating general conditions of periodic moisture stress, 796 

within which patchy areas of higher soil moisture existed, a not-uncommon condition in many 797 

parts of the world today, including coastal regions of basins, which cannot be characterized as 798 

uplands. 799 

 From the Middle Pennsylvanian into the early Permian, the predominant kinds of floras 800 

found in western Pangea were a mixture of wetland taxa and those tolerant of seasonal drought, 801 

with the latter often dominant.  An extreme example is represented by in situ tree stumps of a 802 

conifer-dominated flora from an early Late Pennsylvanian (Missourian) arid coastal habitat in 803 

New Mexico (Figure 9), hence clearly not an upland (Falcon-Lang et al., 2016). Several similar 804 

floras have been described (e.g., Sellards, 1908; Elias in Moore, 1936; Cridland and Morris, 805 

1963; Rothwell and Mapes; 1988; Tidwell, 1988; Mamay and Mapes, 1992; Falcon-Lang et al., 806 

2015; DiMichele et al., 2017, 2019). These floras, in addition to many others, indicate that 807 

populations of drought-tolerant plants were apparently permanently resident in the western 808 

portions of Pangea throughout the Pennsylvanian.  They are found intermixed with wetland 809 

plants because it is possible, as noted above, to have wetland areas within a region subject to a 810 

sub-humid, seasonal climate. In contrast, it is improbable that large, persistent populations of 811 

drought-tolerant plants would be found in regions of widespread, persistent humid to perhumid 812 

climatic conditions. 813 

Several of these western Pangean floras have caused considerable stratigraphic confusion 814 

because the xeromorphic elements were considered to be indicative of a Permian age. The most 815 

notable example may be that from Garnett, Kansas (Figure 10), found in the Rock Lake Shale, of 816 

Late Pennsylvanian (Missourian/Kasimovian) age (Elias in Moore et al., 1936; Cridland and 817 
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Morris, 1963; Winston, 1983). This flora is found in a channel fill, demonstrably in lateral facies 818 

association with a calcic Vertisol (Joeckel, 1989; Feldman et al., 2005), and in no way represents 819 

an upland. Although embedded within the Pennsylvanian coal measures of Kansas, and with the 820 

age of the enclosing strata determined independently of the plants, disagreements about the age 821 

continued into the 1970s (see comments on the paper of Remy, 1975, p. 345-352). Such 822 

confusion also can be found elsewhere. For example, consider the assessment of an Appalachian 823 

Basin flora from the Middle-Late Pennsylvanian boundary, in the midst of the Appalachian coal 824 

measures, deemed latest Pennsylvanian or even Permian in age (Wagner and Lyons, 1997) based 825 

on its fossil flora. This interpretation prompted the assertion of a 6-million-year gap in the fossil 826 

record, for which there is no geological evidence and conflicting, independent marine 827 

biostratigraphic evidence (see commentary by Falcon-Lang et al., 2011b). 828 

 829 

4.2.2 Drought-tolerant floras within the coal measures  830 

 831 

The spatio-temporal relationships of wetland and drought-tolerant species pools in the central 832 

Pangean coal basins are different from those in western Pangea. The central regions of the 833 

supercontinent periodically hosted widespread swamps in which thick, low-ash peat 834 

accumulated, the precursor of economic coal. Such accumulations, as we have discussed above, 835 

are direct indications of humid-to-perhumid climates (sensu Cecil, 2003), those in which rainfall 836 

exceeds evapotranspiration for 10 or more months of the year, conditions necessary for peat to 837 

accumulate and persist in a relatively warm, frost-free, tropical environment. We restate that the 838 

distribution of rainfall, relative to evapotranspiration, is more important than mean annual 839 

rainfall, not only for peat to accumulate, but for it to resist complete destruction by oxidation, or 840 
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consumption by micro- and macro-organisms. Immediately before, and immediately after, 841 

intervals of peat accumulation, the tropical lowland regions also appear to have been occupied by 842 

a wetland biome composed of the well known species pool, based on allochthonous floras from 843 

nearshore settings (e.g., Mazon Creek; Wittry, 2006), and primarily parautochthonous remains 844 

from floodplains (e.g., Scott, 1977, 1979) and swamps (e.g., Gastaldo, 1987). 845 

 During the intervals of humid climate, the species pool that constituted the drought-846 

tolerant biome was mostly absent from the vast area of the central Pangean tropical lowlands.  847 

Where elements of the biome did exist in these regions, some evidence suggests survival in areas 848 

of rain shadow (e.g., van Hoof et al., 2013). In other instances, assemblages asserted to be 849 

preserved in or proximate to uplands (e.g., Lyons and Darrah, 1989; Falcon-Lang, 2004b, 2006; 850 

Falcon-Lang and Bashforth, 2004, 2005) merit reevaluation in the light of more recent finds (e.g. 851 

Martino, 2017), which suggest a climatic cause and actual occurrence in a lowland basin.  852 

Within the humid parts of glacial-interglacial cycles, both peat and clastic substrates in 853 

the lowlands supported plants with growth habits and anatomical structures indicating 854 

physiological requirements for nearly unflaggingly high soil-moisture levels (Cichan, 1986; 855 

Wilson, 2013; Wilson et al., 2017). These plant fossils represent the classic Pennsylvanian Coal 856 

Age vegetation (Figure 8A, B), which was characterized by a diversity of arborescent vegetation; 857 

the modern relatives of these plants, where there are any, generally are small and of limited 858 

ecological importance, particularly true of the pteridophyte groups. The pteridophytes included 859 

the gigantic lepidodendroid and sigillarian lycopsids, woody calamitalean sphenopsids, and 860 

marattialean tree ferns. The arborescent seed-producing plants included the medullosan 861 

pteridosperms (seed ferns), which have no close modern descendent groups, and certain sub-862 

lineages of the cordaitaleans, a coniferophytic group with broad leaves and loosely organized 863 
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strobili. The cordaitaleans have been a point of confusion that only recently appears to have been 864 

clarified, with many arguing that they were indicators of “uplands” (e.g., Chaloner, 1958).  In 865 

fact, these plants might be called “the oaks of the Paleozoic”, in that various species occurred in 866 

nearly every kind of environment, from lowland peat swamps and wetlands (e.g., Cridland, 1964; 867 

Rothwell and Warner, 1984; Costanza, 1985; Falcon-Lang, 2005; Hilton et al., 2009; Šimůnek et 868 

al., 2009; Raymond et al., 2010), in which they displayed a variety of growth habits, to 869 

seasonally dry areas, sometimes, but not necessarily, in inferred uplands (Figure 8C), where 870 

large, woody trees predominated (e.g., Falcon-Lang and Bashforth, 2004, 2005; Falcon-Lang, 871 

2006; Gibling et al., 2010; Bashforth et al., 2014; Ielpi et al., 2014; Trümper et al., 2020). In 872 

addition, there appears to have been much greater diversity among the cordaitaleans than 873 

recognized on the basis of their conservative morphology. Such diversity has been revealed by 874 

studies of leaf cuticles (e.g., Šimůnek, 2000), and is consistent with the great ecological breadth 875 

of the group. It is important to emphasize that, based on their biomass contribution to the peat, 876 

cordaitaleans were one of the dominant groups in Middle Pennsylvanian peat-forming swamps 877 

(e.g., Phillips and Peppers, 1984; Montañez, 2016). The large biomass of these plants found in 878 

coal balls clearly was not transported in from “uplands”, given both the abundance and common 879 

occurrence of cordaitalean roots (assigned to the genus Amyelon) found in permineralized peat 880 

(e.g., Cridland, 1964; Greb et al., 1999b).  881 

Despite the overwhelmingly more common occurrence of the wetland biome in basins 882 

that contain coal-rich stratigraphic successions, a different species pool also occurs in these 883 

basins. The plants of this other species pool are similar to the assemblages found in western 884 

Pangea, and are predominantly of mixed composition, often being dominated by xeromorphic 885 

plants considered by most paleobotanists to be characteristic of moisture-stressed habitats. These 886 
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mixed floras typically occur in strata between coal beds, where they frequently are preserved in 887 

channel-fill deposits (Figure 11), which in many cases record intermittent stream discharge, 888 

suggesting seasonality of flow volume (e.g., Bashforth et al., 2014; Fielding et al., 2020). In case 889 

there are doubts about the existence of thousands-of-years-long seasonally dry intervals in coal 890 

basins, there is now a large body of evidence from fossil soils that points to the predominance of 891 

such climatic periods between times of peat formation. These climatic intervals varied from sub-892 

humid to semi-arid, deduced from the presence of Vertisols and calcic Vertisols (Figure 12), 893 

some with thick, caliche-like carbonate layers or with carbonate-encrusted, vertically disposed, 894 

deeply penetrating roots (Figure 12A). These vertic soils have been reported from intervals 895 

spanning the entire Pennsylvanian in areas from the central U.S. to the Canadian Maritimes, 896 

which was on the European side of the central Pangean mountainous area (Joeckel, 1979, 1995; 897 

Tandon and Gibling, 1994; Cecil et al., 2003a; Martino, 2004; Falcon-Lang et al., 2009; 898 

Carpenter et al., 2011; Catena and Hembree, 2012; Rosenau et al., 2013; Bashforth et al., 2014). 899 

Perhaps of more interest, however, are recent descriptions of Vertisols within coal-bearing 900 

sequences from intramontane regions in the Variscan belt (Opluštil et al., 2015, 2019). These 901 

paleosols record the existence of climatic fluctuations similar to those that took place in paralic 902 

areas of Euramerica. Amplifying the paleosol data, sedimentological studies also indicate 903 

seasonality in sediment dispersion patterns (e.g., Kvale, et al.1994; Carpenter et al., 2011; Cecil 904 

et al., 2014; DiMichele, 2014, fig. 17; Opluštil et al., 2015, 2019; Bashforth et al., 2016b; 905 

Fielding et al., 2020). Sedimentological data also suggest, on a larger spatio-termporal scale, that 906 

the long-term drying trend from the Early Pennsylvanian into the Permian proceeded from west 907 

to east in a time-transgressive manner across the Euramerican portion of Pangea (e.g., Schutter 908 
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and Heckel, 1985; Roscher and Schneider, 2006; Schneider and Romer, 2010; DiMichele et al., 909 

2011). 910 

As noted below, there are a number of coal-basin floras that contain variable amounts of 911 

drought-tolerant elements. In the USA and Canada, these studies include floras from the Early 912 

Pennsylvanian (e.g., Leary, 1975; Leary and Pfefferkorn, 1977; Bashforth et al., 2014), Middle 913 

Pennsylvanian (e.g., Falcon-Lang et al., 2009; Plotnick et al., 2009; Dolby et al., 2011 – a 914 

palynofloral example; Bashforth et al., 2016b), and Late Pennsylvanian (e.g., Carpenter et al., 915 

2011; Martino, 2017), in addition to older descriptions of individual occurrences of xeromorphic, 916 

drought-tolerant species from coal measures strata (e.g., Bassler, 1916; Darrah, 1935, 1936). In 917 

Europe, such floras are numerous, and most common in the Upper Pennsylvanian (e.g. Šimůnek 918 

and Martínek, 2009), although they also are reported from Lower Pennsylvanian (e.g., Opluštil et 919 

al., 2007) and Middle Pennsylvanian deposits (e.g., van Hoof et al., 2013 – a palynoflora). 920 

The resulting pattern in the central portions of Pangea is the temporal and stratigraphic 921 

intercalation of wetland and drought-tolerant plant assemblages.  This intercalation mirrors 922 

changes in climate that are covariant with fluctuations in sea-level, driven proximately by 923 

changes in southern polar ice volume, which probably were controlled by a combination of 924 

changes in atmospheric composition (Peyser and Poulsen, 2008; Horton et al., 2012; Heavens et 925 

al., 2015) and orbital forcing (Heckel et al., 2007; van den Belt et al., 2015). Only rarely are any 926 

indications of drought-tolerant elements found in association with assemblages from coal seat-927 

earths or roof-shales. This pattern conforms with observations of modern tropical regions with a 928 

humid-to-perhumid climate, where the species pool covers a great areal extent, varying in 929 

complex ways with habitat type, but with large amounts of compositional overlap. In contrast, 930 

the floras from between coal beds are associated with paleosols that imply seasonal-drought, and 931 
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sedimentological indicators of seasonal variation in flow regimes; such floras are highly variable 932 

in composition, and most often are a mixture of xeromorphic taxa and wetland elements, the 933 

latter most commonly tree ferns and calamitaleans. The humid-climate floras are, of course, well 934 

understood when compared with those from drought-prone times and places. A detailed 935 

comparison of these two floras is almost impossible, due to the vast numbers and intense study 936 

of wetland assemblages, and the relative rarity, often fragmented condition, and relatively poor 937 

preservation of many drought-tolerant assemblages.  Furthermore, until recently, there have been 938 

few systematic searches for drought-tolerant assemblages within coal-measures strata. Thus , as a 939 

consequence, the actual abundance of such assemblages remains a quantitative mystery. 940 

 941 

5. Taphonomic megabias and the Pennsylvanian-Permian transition 942 

 943 

  944 

We have attempted to document the assertion that the apparent rise of the drought-945 

tolerant biome during the Pennsylvanian to Permian transition is an illusion created by 946 

taphonomic factors. A tropical, drought-tolerant flora existed in Euramerica at least as far back 947 

as the Mississippian, and was periodically widespread in tropical Pangea. During the Permian, 948 

the drought-tolerant biome became more continuously present on many parts of the Pangean 949 

landscape as plants with requirements for high soil-moisture became constricted in space and 950 

time.  The floristic characteristics of the transition from the Pennsylvanian to the Permian, 951 

therefore, depend upon where on the Earth this transition is observed, including where in the 952 

tropical realm.  953 
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In the western parts of Pangea, nearly all floras, even those of Early Pennsylvanian age, 954 

which was the wettest interval in the Pennsylvanian, contain drought-tolerant elements. By the 955 

Middle Pennsylvanian, these drought-tolerant plants were common components of all western 956 

Pangean assemblages, and can be found as the dominant elements in many fossil floras from the 957 

region. During the Late Pennsylvanian, and into the Permian, drought-tolerant assemblages 958 

became the most commonly encountered fossil-plant assemblages in the terrestrial, and even 959 

parts of the marine geological record of western Pangea (e.g., DiMichele et al., 2000; 960 

Baumgardner et al., 2016; Kvale et al., 2020). There was little peat accumulation in western 961 

Pangea at any time during the late Paleozoic, despite extensive evidence, from many different 962 

geographic areas, of regular sea-level fluctuations and associated climatic changes. In the 963 

extreme, consider the Paradox Basin of the southern Colorado Plateau, USA, where, near the 964 

Pennsylvanian-Permian boundary, the deposits of a meandering river system bearing a mixed 965 

floral assemblage of tree ferns, calamitaleans, and conifers (DiMichele et al., 2014) are found 966 

sandwiched between deposits of eolian dunes. The climate simply never became wet enough to 967 

support peat accumulation at most times in western Pangea, meaning that the conditions 968 

necessary to inhibit the decay of organic matter and/or preserve such accumulations in the long 969 

term were not being met (Gastaldo and Demko, 2011, as described above). The western Pangean 970 

landscape most likely harbored a widespread drought-tolerant flora with more mesic, drought-971 

intolerant elements confined to microhabitats with high soil moisture; in other words, proximate 972 

to water bodies where the preservation of organic matter was most likely. 973 

It is in the coal basins of central Pangea that the relationship between the drought-tolerant 974 

biome and the wetland biome becomes the most difficult to interpret, due to extreme taphonomic 975 

megabiases. Two prominent megabiases exist. The first, operating in the late Paleozoic, is a 976 
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fundamental difference in the likelihood of preservation. The second, operating today, is a 977 

difference in “discoverability”, and has an analytical cause. In the central portions of tropical 978 

Pangea (present day Midwestern and Eastern USA,  Eastern Canada, and Europe from Britain to 979 

the Urals), the swings in prevailing climate associated with glacial-interglacial cycles oscillated 980 

between a humid and a subhumid-to-semiarid phase (Falcon-Lang, 2004a; Cecil et al., 2003a). 981 

During a portion of any given cycle, the climate was humid-to-perhumid over vast areas of the 982 

tropics.  This type of climate led to high levels of soil moisture and the accumulation of peat in 983 

physically suitable areas (e.g., Cecil et al. 1985), and thus was characterized by the wetland 984 

species pool of the wetland biome. During other parts of any individual cycle, the climate shifted 985 

to seasonally dry (subhumid to perhaps semi-arid) and actually may have been of longer duration 986 

than the humid phase (Falcon-Lang et al., 2009); this seasonally dry climate created conditions 987 

suitable for a drought-tolerant species pool (Figures 13, 14). Because of the strong relationship 988 

between plants and climate (the famous comment of Wladimir Köppen [1936, p. 6] that 989 

vegetation is “materialized, visible climate” – see original and translation in Looy et al., 2014a), 990 

the mixing of these two species pools was complex and asymmetrical. As is the case today, the 991 

likelihood of finding taxa that require periodic soil-moisture deficits in a tropical rainforest is 992 

low. In contrast, however, the likelihood of finding taxa with an obligate requirement for high 993 

soil-moisture is relatively great, under a seasonally dry climate, due to more microhabitat and 994 

soil-moisture heterogeneity under such climatic conditions. This contrast was amplified by the 995 

much lower species diversity during the late Paleozoic, compared to that of today; resources 996 

were partitioned among fewer species, and the wind dispersal and pollination of most forms 997 

means that there would have been significant taxonomic similarity across microhabitats on the 998 

landscape scale. 999 
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As a consequence of glacial-interglacial contrasts, during the humid/perhumid portions of 1000 

cycles, the high volumes of rainfall, and more importantly, the negligible seasonality of its 1001 

distribution, created conditions suitable for the wetland species pool to blanket the Central 1002 

Pangean landscape (Figure 13). In areas where peat did not form, there nonetheless would still 1003 

have been high soil-moisture, and dense, sediment-binding and erosion-inhibiting vegetation 1004 

covering nearly all of the regional landscape.  Under such conditions, even with expected 1005 

microhabitat heterogeneity, the effects of elevational variation would have been blunted by the 1006 

generally high water tables, made so by the volume and temporal distribution of rainfall.  In 1007 

other words, the drainage effects of elevation would have been muted significantly in the central 1008 

Pangean tropics under a humid climate mode. This muting made it unlikely for large areas of 1009 

drought-tolerant vegetation to persist at lower elevations, in mountainous regions, other than in 1010 

rain-shadow areas (e.g., van Hoof et al., 2013), or perhaps as patches at higher elevation (e.g., 1011 

Broutin et al., 1990), such as occurs in parts of the modern Andes due to regional geological 1012 

effects on airflow patterns (Chavez and Takahashi, 2017). And if elevation increases enough, the 1013 

confounding effects of temperature are introduced, which may exert a considerable effect on 1014 

species-pool composition even in tropical regions if the mountain belts are high enough. 1015 

However, as studies of Variscan tectonics have indicated (Roscher and Schneider, 2006; Kroner 1016 

and Romer, 2013), there almost certainly was never, at any one time, a significant mountain 1017 

range across the entire central area of Pangea. Rather much of the eastern and central Variscan 1018 

region was eroded to low hills by the Late Pennsylvanian. 1019 

During the drier parts of cycles, when climate was subhumid to semi-arid, there would 1020 

have been months-long periods of soil-moisture deficits, the existence of which is indicated by 1021 

the characteristics of paleosols and sedimentary patterns in the strata between coal beds. The 1022 
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imposition of seasonality on a tropical landscape does not, however, increase the degree of 1023 

homogeneity to the extent that high rainfall and weak seasonality do. There are, therefore, areas 1024 

of higher soil moisture where plants requiring such conditions can survive (e.g., Looy et al., 1025 

2014b). 1026 

 We conclude, therefore, that the two megabias factors, in combination, create the illusion 1027 

of a major rise of a drought-tolerant tropical flora at the time of the Pennsylvanian-to-Permian 1028 

transition. Without question, the dry flora did become the predominant flora of the Permian 1029 

throughout much of central and western Pangea.  However, the biome also was present, and 1030 

covered large areas, during the Pennsylvanian (e.g., Gastaldo, 1996). During the transition to the 1031 

Permian, the residence time of the seasonally dry biome in the lowlands of central Pangea 1032 

increased until it became permanent, although the sedimentological conditions under which it 1033 

was preserved did not change.  1034 

The Pennsylvanian-Permian shift in floras is magnified by taphonomic biases to make it 1035 

look more dramatic than it actually was, particularly in those areas where peat accumulation 1036 

occurred during wetter climate phases; the apparent transition is less dramatic, or even minor in 1037 

areas of western Pangea, which were rich in drought-tolerant vegetation for nearly all of the 1038 

Pennsylvanian. To parse this out: (1)  Drought-tolerant floras appear to have been present in the 1039 

Pangean tropics from the earliest Carboniferous. (2) The drought-tolerant flora is most often 1040 

preserved in deposits of channels and lakes, most generally being of limited areal extent, and not 1041 

associated with economically viable coal beds. (3) Therefore, without a concerted and targeted 1042 

search, drought-tolerant floral elements usually are not likely to be found in the strata of 1043 

Pennsylvanian-age coal basins, because they are rare to start with, and becausee they occur in 1044 

strata that generally are poorly exposed. (4) In contrast, the wetland flora is found within, 1045 
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immediately above, and immediately below coal beds, and is, therefore, extensively revealed in 1046 

the course of mining activity. (5) The wetland flora is, therefore, easily found and collected. (6) 1047 

In addition, for taphonomic reasons, the wetland flora was much more likely to be preserved 1048 

where and when it occurred during the Pennsylvanian than was the drought-tolerant flora, so it 1049 

is, a priori, much more abundantly represented in the geological record. (7) A long-term drying 1050 

trend in the Euramerican Pangean tropics began in the Early Pennsylvanian, and continued, with 1051 

fluctuations, into the Permian. (8) By the Permian, the frequency of peat-swamp development 1052 

(and resulting coal beds) in Euramerica had dropped significantly, signaling the demise of vast 1053 

wetland areas, but not eliminating the wetland biome entirely. (9) The disappearance of coal beds 1054 

removes the easy access to abundant plant-fossil material via mine exposures, and it also reflects 1055 

a significant change in the predominant form of plant preservation from widespread, swampy 1056 

wetlands to smaller channel- and lake-fill sequences. (10) All that remains in the drier Permian 1057 

of Euramerica are the smaller deposits containing mixed floras, or even floras entirely composed 1058 

of drought-tolerant elements (Figure 15). These are the same kind of deposits in which the 1059 

drought- biome was preserved during the Pennsylvanian. In the Permian, however, these are the 1060 

only remaining sources of plant-fossil remains.  1061 

The result of this pattern is that the visibility of deposits that contain seasonally dry plants 1062 

increases significantly; they are all that remains, giving the false impression that drought-tolerant 1063 

vegetation took over the tropics of Euramerica. Rather, what actually took place was a shift in 1064 

the prevailing climatic spectrum, from one favoring the preservation (and later discovery) of 1065 

wetland vegetation, to one in which wetland vegetation no longer periodically dominated the 1066 

landscape, and was no longer widely preserved. Thus, the drought-tolerant biome did not take 1067 

over (neither did the whole tropical world become a well drained upland). Rather the wetland 1068 
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biome simply was removed from the equation. This change left drought-tolerant and mixed 1069 

floras as “the only game in town”, as the old saying goes.  1070 

This transition is summed up in Figure 16, a schematic illustration that attempts to 1071 

capture the complexity of this transition as it occurred in the central regions of Pangea. It is in 1072 

that region where there were regular oscillations between dominance by the wetland and 1073 

drought-tolerant biomes during the Pennsylvanian, before becoming increasingly dry at all 1074 

phases of glacial-interglacial oscillations into the early Permian. The pattern would look 1075 

considerably different were a similar representation made for western Pangea, where elements of 1076 

the drought-tolerant biome were permanently resident in basinal areas.  Our data indicated that 1077 

changes there were quantitative, with the relative proportions of wetland and drought-tolerant 1078 

plants varying in different parts of cycles (e.g. DiMichele et al.,  2017). 1079 

 1080 

6. Do uplands cause drought? 1081 

 1082 

 This paper was prompted, in part, by the need to address a long-standing belief that, 1083 

during the Pennsylvanian Coal Age, the tropics were subject to a widespread and prevailing wet 1084 

climate all of the time. A corollary to this viewpoint is that the only way to explain the 1085 

appearance of xeromorphic, presumably drought-tolerant plants, which are not found among the 1086 

plants characteristic of coal roof-shales, seat-earths, or in the coal itself, is to place them in 1087 

uplands (Figure 17).  Under this scenario, these uplands supposedly were well drained, resulting 1088 

in soil-moisture deficits, even though the prevailing tropical climate is envisioned to have been 1089 

everwet throughout the entire Pennsylvanian, even in these tropical uplands. The minimum 1090 

elevations required of such uplands have been proposed to be quite modest, sometimes just a few 1091 
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meters, with locations varying from the margins of peat-forming or mineral-substrate swamps, to 1092 

a presence on higher ground in the midst of landscapes otherwise covered by wetlands. For 1093 

example, Cridland and Morris (1963) proposed that as little as 6 m of elevation would have 1094 

caused enough drainage to induce the colonization of the envisioned (but undocumented) hills by 1095 

an entirely different suite of species from that in the supposedly surrounding, immediately 1096 

adjacent, peat-forming and siliciclastic-substrate, swampy wetland areas (Figure 10).  1097 

Tracing the literature back in time, the concept appears in various indirect forms early in 1098 

the 20th century, mainly as an assumption that extrabasinal areas would experience drier 1099 

conditions than would be found in basins (e.g., Gothan and Gimm, 1930; White, 1931), but 1100 

likely goes back even farther (Stopes and Watson, 1909). The idea appears to have been firmly 1101 

established by the mid-20th century (e.g., Chaloner, 1958; Havlena, 1961; Cridland and Morris, 1102 

1963). Pfefferkorn (1980) argued for restriction of the term “uplands” to mountainous regions, 1103 

and introduced the concept of “extrabasinal lowlands” to account for hilly elevated areas that 1104 

proximately fringed basins, and were 100-200 m above the basin floor. He envisioned such areas 1105 

as a more likely source of exotic plants than distant mountainous regions. We note that there was 1106 

no consideration of climate in this suggested solution, however. 1107 

 In elevated areas of the modern tropics, including in mountainous terrain, not all uplands 1108 

or extrabasinal lowlands are colonized by drought-tolerant plants, although where those drought-1109 

tolerant upland plants are found, the background climate is generally seasonally dry. Floristic 1110 

distribution and composition are determined far more by prevailing climate than by elevation, the 1111 

main effect of which, in the tropics, is on temperature (Figure 18). However, we recognize that 1112 

steep slopes, particularly in mountainous regions, present a special case, although these habitats 1113 

also can become stabilized by vegetational cover under very wet climates, as indicated by studies 1114 
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(cited above) that find low sediment loads in rivers draining areas of rugged terrain under high, 1115 

aseasonal rainfall regimes. Slope and elevation alone do not guarantee high rates of erosion. 1116 

The relationship between sediment load in rivers and climate is important for another 1117 

reason. It has been suggested that the siliciclastic sediments between coal beds are the result of 1118 

short-duration floods, which periodically, perhaps due to the influence of catastrophic storms, 1119 

engulfed and buried peat swamps. The swamps then recovered rapidly and recolonized the 1120 

landscape (e.g., Thomas and Cleal, 2015). This explanatory model is similar to one that prevailed 1121 

in coal geology, which placed peat-forming swamps within active deltas, amidst shifting loci of 1122 

sediment deposition (Horne et al., 1978). The short-term-flood model does not take into account 1123 

the extensive evidence for the presence of paleosols among the siliciclastic deposits between 1124 

coals, most of which (the paleosols) show evidence of seasonal climates. Nor does the model 1125 

acknowledge the presence of marine beds in many coal-bearing sequences, among the strata 1126 

between coals, indicating significant, long-term changes in environmental conditions. But, 1127 

perhaps most critically, the short-term-flood model does not take into consideration the hiatuses 1128 

between various siliciclastic units, which dominate the temporal record, particularly in terrestrial 1129 

strata. Most of the time represented by a stratigraphic section is taken up by temporal gaps, not 1130 

by actual beds of rock (including coal), reflecting the dynamics of terrestrial sedimentary 1131 

systems. The evidence indicates large amounts of time, tens of thousands of years or more, tied 1132 

up in the intervals that typically separate successive coal beds. Regardless of these features, the 1133 

unlikelihood of this flood model also comes from the fact that the extrabasinal lowlands, and 1134 

perhaps even more distant uplands, surrounding the vast peat-covered landscape would have 1135 

experienced the same kind of climate, namely a humid to perhumid climate, which was favorable 1136 

for tropical peat accumulation.  Under such conditions, river sediment loads would be expected 1137 
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to be low.  This is further amplified by the fact that siliciclastic input is anathema to peat 1138 

formation, creating instead conditions for the development of organic-rich mucks, which become 1139 

organic shale beds. Various lines of evidence point to a black-water character for many rivers 1140 

passing through Pennsylvanian peat swamps, carrying low sediment loads (Gibling et al., 2014; 1141 

Elrick et al., 2017; Nelson et al., 2020), consistent with observations of modern environments in 1142 

humid-perhumid climate areas, where landscapes are densely vegetated and rivers have low 1143 

sediment loads, despite high discharge volumes. 1144 

Returning again to uplands, consider areas of peat accumulation in modern upland, inland 1145 

areas, removed from the effects of sea-level rise or coastal climates, but forming under the 1146 

effects of humid climates today. Lakes also are frequently present at high elevation; for an 1147 

extreme example there is Lake Titicaca of Peru and Bolivia at 3800 m (e.g., Paduano et al., 1148 

2003), or the many other Andean lakes, with surrounding vegetation reflective of local climate. 1149 

In fact, the Andean Altiplano has undergone repeated expansions and contractions of wetlands in 1150 

response to climate changes since the last glacial maximum (e.g., Rigsby et al., 2005). In the late 1151 

Paleozoic geological record, there also are some wetland deposits hypothesized to have formed 1152 

within the region of the Variscan mountainous areas of Central Europe, at >1000 m elevation 1153 

with >100 m of relief along the walls of river valleys (Becq-Giraudon, et al., 1996; Opluštil, 1154 

2005; Opluštil and Cleal, 2007). The generality of this inference, that of high altitude basins, has 1155 

been challenged on the combined basis of radiometric dating, and considerations of erosion and 1156 

uplift rates in the Recent (Roscher and Schneider, 2006; Schneider and Romer, 2010), and on 1157 

detailed studies of Variscan tectonics and the stratigraphic sequences in intramontane basins 1158 

(e.g., Schneider et al., 2005; Kroner and Romer, 2013; Trümper et al., 2020). That any examples 1159 
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of such higher elevation wetlands can be found directly indicates that during the Pennsylvanian, 1160 

there were upland regions that supported typical wetland vegetation. 1161 

The Late Paleozoic Ice Age was accompanied by numerous, covariant changes in sea 1162 

level and climate in the Euramerican tropical regions of Pangea. The geological evidence of this 1163 

is abundant, of a variety of types, and entirely independent of plant fossils. Plants track climate 1164 

relatively closely today, and there is no reason to believe they did not do so in the Pennsylvanian 1165 

and Permian. Wetlands, including peat-forming swamps, can be found wherever climate and 1166 

substrate conditions are suitable, both at high or low elevations. However, high-elevation peat 1167 

accumulations (coal), if they occurred during the late Paleozoic, would have had relatively low 1168 

long-term preservation potential because of the long expanses of time for erosion to do its work. 1169 

That any coals are present, even rarely, indicates that high elevation areas could be wet, and not 1170 

invariably well drained and plagued by drought.  1171 

In answer to prescient observations such as that of Wagner and Álvarez-Vázquez (2010, 1172 

p. 305), who noted: “…it seems surprising that the presence of upstanding relief with alluvial fan 1173 

deposits in the Peñarroya Basin (Westphalian) has not led to any conifer finds. There are also 1174 

very few conifer records in the Stephanian B of NW Spain, despite the evidence for 1175 

palaeovalleys associated with a rugged landscape in the near vicinity of the basin”, we respond 1176 

that elevation does not uniformly and invariably cause “drought”. The drainage effects caused by 1177 

elevational changes will be damped under humid-to-perhumid climates, and become accentuated 1178 

as climate becomes more seasonally dry. The vegetational differences and changes in time and 1179 

space, recorded in the upper Paleozoic rock record, reflect the primary influence of climate on 1180 

habitat and habitat heterogeneity, just as occurs in the modern world. 1181 

 1182 
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7. A suggested rationale for addressing the upland vs. climate question 1183 

 1184 

 Philosopher Willard V. Quine was a 20th century proponent of the idea of 1185 

“underdetermination” of scientific hypotheses.  In its simplest terms, this means that two or more 1186 

competing hypotheses might have equivalent outcomes, and thus be undifferentiable based on 1187 

empirical data. This could be restated to say that a unitary hypothesis cannot be deduced from 1188 

the observations made in nature (see further discussions of this in, e.g., Bergström, 1993, or 1189 

Stanford, 2017). Thus, in evaluating competing explanations for data, there is no “Elementary, 1190 

my dear Watson” moment, where all the observations point unwaveringly and without question 1191 

to a single conclusion.  Rather, there are competing hypotheses.  A subset of this is an idea set 1192 

forth by Macbeth (1971), the Best in Field Fallacy, which simply states that we may choose 1193 

among competing hypotheses, only to discover later that none were correct; one hypothesis with 1194 

more explanatory power may exist and be unknown to us, it may not yet have been thought of by 1195 

anyone and so will be unavailable for consideration, or it may only emerge with the addition of 1196 

new empirical evidence. Thus, when faced with patterns in nature that demand conceptual 1197 

explanation, an investigator must make an intuitive, inductive leap.  One may invent a 1198 

hypothesis, or have strong preferences for a particular existing hypothesis, based on what is 1199 

known and how it is interpreted, in combination with other factors, such as preferring the 1200 

simplest explanation. However, also important is the so-called Principle of Total Available 1201 

Evidence, which has been attributed to Carnap (1947), but originated conceptually much earlier. 1202 

This principle states that evidence relevant to the phenomenon under consideration cannot be 1203 

ignored, and that additional evidence should be sought in areas that would appear to shed light 1204 

on a problem of interest. 1205 
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 This is not a new understanding. Alfred Wegener (1966, p. vii) stated "Scientists still do 1206 

not appear to understand sufficiently that all earth sciences must contribute evidence toward 1207 

unveiling the state of our planet in earlier times, and that the truth of the matter can only be 1208 

reached by combing all this evidence. . . It is only by combing the information furnished by all 1209 

the earth sciences that we can hope to determine 'truth' here, that is to say, to find the picture that 1210 

sets out all the known facts in the best arrangement and that therefore has the highest degree of 1211 

probability. Further, we have to be prepared always for the possibility that each new discovery, 1212 

no matter what science furnishes it, may modify the conclusions we draw."  1213 

 Certainly, the geological sciences, including paleontology, face a severe problem when it 1214 

comes to total evidence.  The geological record is made up only of glimpses of the past. Missing 1215 

time vastly exceeds the time recorded by geological strata.  And, in the case of terrestrial life, we 1216 

likely see far less than 10% of the habitats on the earth at any given time, and preserve far less 1217 

than 1% of the organisms that ever lived. That we deal with so many unknowns means that we 1218 

cannot deny the matter of underdetermination of many of our hypotheses, and with that, the 1219 

problem of many possible explanations for the patterns we observe.  Thus, we must use total 1220 

available evidence to the extent we are able, and almost all studies, including the present one (!), 1221 

that are attempting to explain complex phenomena will likely fall short in this regard. This may 1222 

be especially true in the case of the patterns described and commented on in this essay; there is 1223 

an overwhelming scientific literature of observation, both of the modern world and that of the 1224 

geological past, relevant to the matter of factors controlling the distribution of plants on any 1225 

particular landscape, at varying spatial and temporal scales. Thus, it is correspondingly difficult 1226 

to find even a fraction, let alone all, of the relevant work. 1227 
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 Here, we have attempted to bring together as many different lines of evidence as we are 1228 

able, in order to evaluate the controls on the spatial distribution of vegetation in the equatorial 1229 

regions of the Pangean supercontinent during the late Paleozoic. These lines of evidence include 1230 

both patterns from the geological record, and relevant patterns from the modern record, wherein 1231 

direct measurement of environmental variables, and broader, more complete spatial observations, 1232 

are possible. We have combined these observations with considerations of taphonomy, 1233 

particularly the likelihood and nature of preservation of terrestrial plant remains, and how those 1234 

processes might have worked in the deep past. From this attempt at a synthesis, we believe the 1235 

hypothesis best supported by the data is that climate was a first-order controlling variable in the 1236 

habitat distribution of late Paleozoic plants, as it is for the plants of today. This is not to deny the 1237 

effects of variability in the elevation of the land surface, which certainly is a second-order factor 1238 

of considerable importance, but one that actually is more difficult to assess than the effects of 1239 

climate. 1240 

 Finally, we have tried to bring to bear several considerations to explain the seeming rise 1241 

of a drought-tolerant flora during the Carboniferous-Permian transition. These include: the 1242 

patterns of vegetational distribution over different spatial scales and their underlying controlling 1243 

factors, the conditions under which remains of that vegetation are most likely to be preserved in 1244 

the modern world and in the geological record, and, finally, where those remains are most likely 1245 

to be discovered today. We conclude that the rise of drought-tolerant vegetation during the 1246 

Carboniferous-Permian transition is an illusion, created by taphonomic happenstance, and that 1247 

both wetland and drought-tolerant plants, and the biomes they constituted, existed across the 1248 

Pangean interior for virtually all of the Carboniferous. The strata that enclose the drought-1249 

tolerant biome became a proportionally larger part of the fossil record during the later 1250 
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Pennsylvanian and into the Permian, as the wetland biome began to shrink and disappear from 1251 

the tropical landscape. At the same time, the drought-tolerant flora became ensconced more 1252 

permanently across much of the tropics, where previously it had oscillated in dominance with the 1253 

wetland flora. However, the actual geological abundance of deposits containing the drought-1254 

tolerant flora may have changed little through time. Rather, the loss of the strata in which 1255 

wetland floras were dominant made the deposits with plant fossils from seasonally dry settings 1256 

more “visible” to researchers, thus making it more likely for the plant remains to be found, 1257 

collected, and characterized. 1258 

 1259 

8. Summary  1260 

 1261 

The Late Paleozoic Ice Age (LPIA) was a time of orbitally forced glacial-interglacial 1262 

fluctuations, which were the proximate drivers of coincident sea-level and climatic changes. In 1263 

tropical Pangea (Euramerica, Cathaysia), vegetation tracked these periodic environmental 1264 

fluctuations, marked by changes in the spatial distributions of wetland and drought-tolerant 1265 

biomes, or floras, each of which was characterized by largely distinct species pools. The glacial-1266 

interglacial fluctuations were superimposed on a long-term drying trend in the Euramerican 1267 

portion of the Pangean tropics, which became drier (on average) during the Pennsylvanian, 1268 

continuing into the Permian. The cause of this drying trend is not fully understood. Howwever, 1269 

the process ultimately resulted in the loss of extensive wetlands as cyclically wet periods became 1270 

less wet and dry periods became drier.  1271 

The floristic changes accompanying the long-term drying trend frequently have been 1272 

characterized as the rise of a so-called Mesophytic flora. Examination of biogeographic patterns, 1273 
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climate models, and sedimentary environments suggests that drought-tolerant species pools, 1274 

collectively constituting one or more biomes, were permanently resident in western Pangea and 1275 

possibly in parts of the Variscan mountains of central Pangea long before the Permian.  During 1276 

the Pennsylvanian, coinciding with the periodic appearance of seasonally dry climates, drought-1277 

tolerant plants dispersed from these areas of stable, large populations into central Pangea, 1278 

reaching those basinal areas in which peat had been accumulating during wetter parts of glacial-1279 

interglacial cycles. In contrast to this pattern of expansion from large, stable population centers, 1280 

the wetland species pool remained centered in central Pangea, and fragmented into refugial 1281 

pockets during the periods of seasonal climate. Therefore, rather than simple range expansion 1282 

during the return of humid conditions, the wetland biome expanded from numerous disconnected 1283 

refugial areas, and repeatedly reassembled with each glacial cycle into the vast Coal-Age 1284 

wetland ecosystems. Thus, during the Pennsylvanian, drought-tolerant biome biogeography was 1285 

dominated mainly by spatial expansion from and contraction back into large geographic areas in 1286 

which populations were permanently interconnected. The wetland-biome spatial patterns, in 1287 

contrast, were characterized by dominance over vast areas during humid intervals, contraction in 1288 

place into fragmented, small, disconnected refugia during intervals of climatic seasonality, 1289 

followed by reassembly sourced from those refugia upon the return of humid conditions.  1290 

Significant taphonomic “megabiases” affect our understanding of the dynamics and 1291 

spatial distributions of these biomes: (1) The Late Mississippian through Pennsylvanian Coal 1292 

Age tropics often are misinterpreted as invariably wet. In reality, they experienced demonstrably 1293 

wet-dry oscillations, and in some areas (western Pangea, rain-shadow areas in the Central 1294 

Pangean Mountains, perhaps at very high elevation within mountainous regions) were 1295 

perpetually seasonally dry. The tropics were nowhere everwet throughout, or even for significant 1296 
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parts of, the Coal Age. (2) An ancient preservational megabias: The physical conditions under 1297 

which the wetland tropical biome thrived gave it a relatively good chance of preservation. 1298 

Consequently, the wetland biome is well represented in the rock record. In contrast, there was a 1299 

huge negative preservational bias against the drought-tolerant flora, making it much rarer than 1300 

the wetland flora in the geological record. (3) A modern analytical megabias: As a result of its 1301 

association with coal beds, and thus coal mining, the wetland flora is far more likely than the 1302 

drought-tolerant flora to be exposed and readily found today. Strata containing the drought-1303 

tolerant biome generally are not readily exposed, accessed, or searched for, especially in strata of 1304 

Pennsylvanian age, where vast amounts of wetland plant fossils are readily available, not only 1305 

due to their originally superior preservational potential, but because of their exposure  during 1306 

coal mining. (4) As the Euramerican tropics became drier into the Permian, the loss of extensive 1307 

wetlands resulted in a greatly diminished fossil record of the wetland plants, but did not result in 1308 

a significant change in the absolute abundance of plant-fossil accumulations formed under 1309 

seasonally dry conditions, or a change in the sedimentary environments in which those plant 1310 

fossils are found. Therefore:  (5) A modern search-image megabias: The largely fortuitous 1311 

pattern of drought-tolerant plant preservation changed little in mode or frequency as wetland 1312 

deposits declined, but appears to have been similar in form and likelihood during both the 1313 

Pennsylvanian and early Permian within Euramerica.  What did change, however, is the 1314 

“geologic visibility” of the drought-tolerant biome, as the strata in which it is preserved became 1315 

the only source of plant-fossil remains in much of the later Pennsylvanian and Permian.  1316 

During the Pennsylvanian, in central Pangea (Midcontinent US through the Donets 1317 

Basin), the wetland and drought-tolerant biomes were intercalated through time, as major climate 1318 

swings between humid/perhumid and subhumid/semi-arid occurred in conjunction with glacial-1319 
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interglacial cycles. During the humid-to-perhumid phases of these swings, when wetlands 1320 

covered vast stretches of interior Pangea, populations of seasonally dry plants did not persist in 1321 

wetland landscapes in patchy microhabitats, but rather were excluded nearly entirely. In contrast, 1322 

during the seasonal periods in the central Pangean coal basins, and in the seasonally dry areas of 1323 

western Pangea and parts of the central Pangean mountainous regions, wetland and drought-1324 

tolerant elements were mixed, with wetland patches existing in various microhabitats in 1325 

otherwise seasonally dry landscapes.  Over time, in these seasonally dry times and/or regions, as 1326 

overall aridity increased in the Euramerican tropics during the Pennsylvanian and early Permian, 1327 

the fossil floras also became increasingly dominated by xeromorphic elements, although some 1328 

wetland elements, most commonly marattialean tree ferns and calamitaleans, continued to exist 1329 

within these seasonally dry tropical landscapes.  During the early Permian, drought-tolerant 1330 

biomes, similar to and derived from those of the Pennsylvanian, dominated Euramerica. Included 1331 

within these landscapes were areas of habitat wet enough to support a suite of wetland species, 1332 

albiet much reduced in diversity from their Pennsylvanian zenith.  By that time, widespread 1333 

wetland floras had shifted to eastern Pangea (Cathaysia), where they continued to appear 1334 

intercalated with drought-tolerant floras. 1335 
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Figure 1. Cyclothem. A., Idealized Midcontinent USA cyclothem divided into a terrestrial and 2499 

marine phase reflecting a single glacial-interglacial cycle. B., Portions of a cyclothem in the 2500 

field. Strata associated with the Middle Pennsylvanian, Springfield Coal of the Illinois Basin. 2501 

 2502 

Figure 2. The Gastaldo and Demko (2011) Model modified for a peat-forming landscape, in 2503 

accordance with the model of Elrick et al. (2017a). A – B., Short-term preservation. A., Peat 2504 

forms and is preserved during the humid climate phase of a glacial-interglacial cycle. River is 2505 

black-water and no remains are preserved there. B., The river is converted to an estuary during 2506 

sea-level rise. The peat swamp is buried in areas flanking the river as mudflats form. Plant 2507 

remains also are incorporated into both the mudflat and channel sediments, where preservation is 2508 

possible below the water table. C., Intermediate-term preservation of the peat and associated 2509 

organic matter in the siliciclastic deposits occurs as sea level continues to rise, and associated 2510 

marine sediments are deposited on the former coastal lowlands. D., Long-term preservation of 2511 

the wetland landscape facilitated by basinal subsidence. E., Short-term preservation. Renewed 2512 

landscape incision occurs in association with sea-level fall under seasonally dry climatic 2513 

conditions.  Organic matter becomes entombed only in some channels and floodplain lakes, 2514 

where preservation is possible only if it remains below the water table. F., Long-term 2515 

preservation of seasonally dry floral remains depends on continued accumulation of sediment 2516 

due to sea-level rise and basinal subsidence. 2517 

 2518 

Figure 3. Sediment load as a function of rainfall regime. A., General relationship between 2519 

rainfall volume and annual distribution, and the volume of sediment transport, based on 2520 

measurements from selected tropical rivers (Originally Figure 1A of Cecil and Dulong, 2003, 2521 
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reproduced in accordance with the permissions guidelines of the Society for Sedimentary 2522 

Geology [SEPM]). B., Empirical relationship between selected rivers comparing sediment load 2523 

to drainage-basin size differentiated by climate regime (Base graph originally published in 2524 

Latrubesse et al., 2005, as Figure 6, used with permission of Elsevier Scientific Publishers 2525 

license number 4797720592053). 2526 

 2527 

Figure 4. Model that envisions a Middle Pennsylvanian landscape with contemporaneous close 2528 

proximity of peat formation, siliciclastic deposition, and non-marine carbonate lake formation. 2529 

(Modified from part of figure 2 of Valero Garcés et al., 1997). 2530 

 2531 

Figure 5. Amazonian tropical rainforest, in the vicinity of Manaus, Brazil, Amazon River Basin, 2532 

under humid climate. Images A–C taken along the Rio Negro, west of Manaus, the largest 2533 

blackwater river in the world; elevation of the river at its juncture with the Amazon is ~30 m, 2534 

reaching >200 m at its source. A., River margin with fring of flooded forest; note elevated areas 2535 

in distant background, covered with rainforest. B., River edge vegetation, some in, or falling 2536 

into, the water. C., River margin, with vegetation along bank being incorporated into river-borne 2537 

sediment. D., 70 km north of Manaus.  Local elevation 40-120 m. Photos A-C courtesy of Scott 2538 

L. Wing, Smithsonian Institution. Photo D courtesy of Robyn J. Burnham, University of 2539 

Michigan. 2540 

 2541 

Figure 6. Temperate drought-tolerant vegetation of east-central North America under seasonally 2542 

dry climate. A., Shoreline of Rhode River, a Chesapeake Bay estuary, effectively at sea-level. B., 2543 

Shoreline of Rhode River.  Drought-tolerant, deciduous hardwood tree, portions of which are 2544 
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being incorporated into shoreline sediments, without being transported from an “upland”. C., 2545 

Chesapeake Bay estuaries south of Baltimore, Maryland, high summer humidity, approximately 2546 

at sea-level, covered in drought-tolerant Eastern Deciduous Forest Biome vegetation. D., 2547 

Appalachian Mountains in western Virginia, view to east from Skyline Drive, covered in 2548 

drought-tolerant Eastern Deciduous Forest vegetation. E., Caddo Lake, the margins of which are 2549 

colonized by Taxodium distichum, inland of which the landscape is covered by drought-tolerant 2550 

vegetation.  Surface elevation of lake is ~ 50 m. All photographs by the authors. 2551 

 2552 

Figure 7. Underground and surface coal mine exposures and wetland flora. A., Roof-shales and 2553 

base of lycopsid tree rooted in the top of the Springfield Coal, Middle Pennsylvanian, Indiana. 2554 

B., Sigillaria tree stump rooted in thin, unnamed Middle Pennsylvanian coal, Indiana, for 2555 

contrast with stump seen in underground exposure. C., Large lycopsid tree trunk (measured at 2 2556 

m diameter and 30 m length with minimal taper, and no crown or roots), Herrin Coal, Illinois. 2557 

D., Rare example of coal seat-earth containing adpression fossils, Murphysboro Coal, Illinois. E., 2558 

The difficulties of surface mine collecting, Winslow-Henderson Channel above Baker Coal, 2559 

Indiana. F., Coal balls, which are permineralized peat-stages of the coal, formed early in peat 2560 

diagenesis, prior to peat compaction and coalification. Coal balls preserve the vegetation that 2561 

grew during peat formation under a humid-to-perhumid climate; Herrin Coal, Illinois. All 2562 

photographs by the authors. 2563 

 2564 

Figure 8. Pennsylvanian landscape reconstructions. A., Late Pennsylvanian wetland landscape, 2565 

Calhoun Coal, Illinois. B., Middle Pennsylvanian wetland landscape, Herrin Coal, Illinois. C., 2566 

Middle Pennsylvanian seasonally dry landscape, idealized, Illinois Basin. All reconstructions 2567 
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created by Mary Parrish, Smithsonian Institution. Image A originally published in Willard et al. 2568 

(2007) used with permission of Elsevier Scientific Publishers license number 4798850608829. 2569 

Image C originally published in DiMichele (2014), open access. 2570 

 2571 

Figure 9. Upper Pennsylvanian (Missourian) exposure, interpreted as coastal environment, in 2572 

central New Mexico. Carbonate-gypsum dunes entomb a forest of coniferophytes rooted in a 2573 

micritic mudstone. A., Carbonate-gypsum dune exposure. B., Upright tree trunk (T, to right of 2574 

staff, scale in 1 foot increments), buried in carbonate-gypsum dune deposit (G); LS = micritic 2575 

limestone at base of exposure into which the tree is rooted. C., Exumed large coniferophyte tree 2576 

stump, rooted in micritic mudstone. For details see Falcon-Lang et al., 2011a, 2015; Elrick et al., 2577 

2017b. 2578 

 2579 

Figure 10. The “upland” model of Cridland and Morris (1963), which proved influential in 2580 

promoting the idea that a few meters of elevation, within a landscape otherwise dominated by 2581 

swampy wetlands, could support a species pool entirely distinct from that of the surrounding 2582 

vegetation. The figure has been modified to be in accordance with their text; elevation is shown 2583 

as 6 m and the elevated area is shown as surrounded by swamps. Figure modified from Cridland 2584 

and Morris (1963) (Copyright (c) 1963. University of Kansas. Museum of Natural History. Used 2585 

with permission). 2586 

 2587 

Figure 11. Channel cut-and-fill features between coal beds. A., Channel below Baker Coal, upper 2588 

Middle Pennsylvanian, Indiana. White arrow marks channel axis. Note truncated horizontal beds 2589 

on flanks. Described in Falcon-Lang et al. (2009). B., Channel below Cottage Coal, upper 2590 
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Middle Pennsylvanian, Indiana. White arrow marks channel axis. Note truncated horizontal beds 2591 

on flanks. Described in DiMichele (2014, fig. 17), and Fielding et al. (2020, fig. 10). C., Upright 2592 

stump of Sigillaria (white arrow) preserved in the channel illustrated in (B). Several additional 2593 

channels of this kind are illustrated and described in Fielding et al. (2020). All photographs by 2594 

the authors. 2595 

 2596 

Figure 12. Paleosols below coal beds, recording seasonally dry climatic conditions, distinctly 2597 

different from those under which peat accumulated. A., Stacked calcic Vertisols below the 2598 

Harlem Coal and Ames Marine Zone, lower Upper Pennsylvanian, West Virginia.  Note vertical 2599 

root casts, encased in CaCO3, in lower paleosol. The stacking of these paleosols also indicates 2600 

significant “missing time” in the hiatus between them. B., Calcic Vertisol below the Cohn Coal, 2601 

lower Upper Pennsylvanian, Illinois. Photograph A by authors. Photograph B by Scott Elrick, 2602 

Illinois State Geological Survey, used with permission. 2603 

 2604 

Figure 13. Spatial oscillation of the equatorial wetland (green) and drought-tolerant (red) biomes 2605 

during glacial-interglacial cycles, tracking climatic changes. A-D represent changes in the 2606 

central, Euramerican portion of Pangea. During the humid phase (A & D), the wetland biome 2607 

dominates vast areas of the central continent; the drought-tolerant biome is resident in western 2608 

Pangea and in portions of the mountainous regions of central Pangea. During the onset of 2609 

seasonal drought (B), the drought-tolerant biome expands and the wetland biome contracts into 2610 

patchy, isolated refugia; mixed drought-tolerant floras dominate central Pangea. With the onset 2611 

of the next humid cycle, the wetlands reassemble from isolated refugia, and the drought-tolerant 2612 
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flora contracts into areas where it is permanently resident. Base map created by Ron Blakey, 2613 

used with permission. 2614 

 2615 

Figure 14. Central Pangean coal basins: Coordinated oscillations in sea-level and climate, 2616 

tracked by vegetation during a single glacial-interglacial cycle. A., Basin under marine high-2617 

stand, seasonal climate, drought-tolerant vegetation dominant. Low preservation potential. B., 2618 

Basin during marine regression, climate remains seasonal, channel incision initiated, drought-2619 

tolerant vegetation dominant. Low to moderate preservation potential. C., Late glacial and early 2620 

interglacial, sea-level near lowstand, craton broadly exposed, high humidity and peat formation, 2621 

wetland vegetation dominant. High short-term preservation potential. D., Marine transgression of 2622 

low lying cratonic regions, burying wetland deposits. High intermediate-term preservation 2623 

potential. 2624 

 2625 

Figure 15. Lower Permian channel fill formed under semi-arid conditions, north-central Texas, 2626 

described by Simon et al. (2018). A., View down channel axis. A mixed flora including conifers, 2627 

gigantopterids, and tree ferns occurred within the channel fill. Channel is incised into and 2628 

flanked by a vertic paleosol, indicating climatic seasonality. Photograph by the authors. B., 2629 

Reconstruction of the channel. [A = Vertic paleosol overprinting floodplain mudstone; B = 2630 

Channel-lag deposits; C = Point bar deposits with inclined strata accumulating by lateral and 2631 

oblique accretion; D = Abandoned channel deposits (massive and weakly laminated mudstone); 2632 

E = Plant remains (foliage, seeds), bivalves, fish(?) coprolites]. Modified from Simon et al. 2633 

(2018). 2634 

 2635 
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Figure 16. Taphonomic megabias and the Pennsylvanian-Permian vegetational transition.  2636 

During the Pennsylvanian, plants of the wetland biome (green) were abundantly preserved in 2637 

association with peat formation and generally widespread in landscapes with high soil moisture. 2638 

In between periods of peat formation, when climate shifted to seasonally dry the preservation 2639 

potential of organic matter dropped precipitously. During these periods, the drought-tolerant 2640 

biome (red) appeared in basins, but was mixed to varying degrees with elements of the wetland 2641 

biome, living in refugial pockets (green between red stripes). In the transition to and during the 2642 

early Permian, the wettest intervals became seasonally dry and preserved mainly drought-tolerant 2643 

vegetation, with variable numbers of wetland species, dominantly marattialean tree ferns and 2644 

calamitalean sphenopsids. The drier intervals during the early Permian had effectively no short-2645 

term preservation potential. During the Pennsylvanian, the great predominance of wetland 2646 

vegetation, exposed during coal mining, permits large collections of such plants to be made; at 2647 

the same time, there is much less exposure of deposits containing drought-tolerant plants, and 2648 

neither are such deposits actively searched for. During the Permian, the small, more isolated, 2649 

mainly channel-fill deposits bearing plant fossils are more actively searched for, leading to the 2650 

false appearance of the “rise” of a drought-tolerant flora at that time. In fact, the drought-tolerant 2651 

flora had been there all along, during the entire Pennsylvanian, but becomes much more apparent 2652 

or “visible” during the Permian. 2653 

 2654 

Figure 17. The Upland Model. The basic assumptions of this model: (1) Pennsylvanian climate 2655 

was everwet, all the time. (2) Elevation causes drainage, which causes drought, which brings 2656 

with it xeromorphic vegetation tolerant of moisture deficits. (3) Preservation of organic matter 2657 
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occurs in basinal lowlands, but not in the upland, elevated regions. There is no temporal 2658 

component in this model. 2659 

 2660 

Figure 18. The Climate Model. This model has significantly more moving parts than the Upland 2661 

Model and, thus, is more difficult to present simplistically. (1) It explicitly recognizes climate as 2662 

the most important factor controlling the distribution of vegetation and the preservation 2663 

likelihood of organic matter. (2) It acknowledges that the Pennsylvanian was an ice age and that 2664 

tropical climate and sea-level fluctuated in concert with glacial-interglacial cycles. (3) It 2665 

recognizes that the effects of climate will be differentially expressed on landscapes of different 2666 

elevational complexity. (4) It recognizes that climate will be different across the Pangean 2667 

landscape, leading to different patterns in different basins, but that climatic oscillation still can be 2668 

recognized. A. The expression of climate change where mountainous terrain adjoins a 2669 

sedimentary basin. B. The effects of change in climate across the central portion of Euramerica, 2670 

west to east, in separate, widely separated basins.  The areas to the left of the margin of each 2671 

depositional basin can be considered extrabasinal lowlands (sensu Pfefferkorn, 1980). 2672 
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