
1. Introduction
Transboundary air pollution (TAP) is considered as one of the main sources of urban air pollution ep-
isodes (Gu & Yim,  2016; Hou et  al.,  2019; Luo et  al.,  2018; Shi et  al.,  2020; Tong et  al.,  2018; Yim, Gu, 
et al., 2019; Yim, Hou, et al., 2019). In the atmospheric boundary layer (ABL), transboundary aerosols inter-
act with clouds, turbulence, and local emissions, hence substantially affect local weather and aerosol pat-
terns (Arya, 1995, 1999; Garratt, 1994; Li et al., 2017; Stull, 1988). Transboundary-local aerosols interaction, 
which is one of sub-grid-scale (SGS) processes in ABL, is significantly influenced by complex topography 
and the heterogeneity of thermal and dynamic conditions in the ABL. Despite its significant effect on air 
quality and regional climate, transboundary-local aerosols interaction has yet to be fully understood (X. 
Huang et al., 2020; Lolli et al., 2019; Qin et al., 2016), thus inducing large uncertainties in climate projection 
and weather forecasts (Bretherton et al., 2019; Schmidt et al., 2015).

Abstract Transboundary-local aerosols interaction requires to be comprehensively understood in 
urban air quality research. A year-long intensive observation of the atmospheric boundary layer (ABL) at 
multiple sites in Hong Kong was conducted using a four-Doppler Light Detection and Ranging (LiDAR) 
network with different scanning modes. Results show that heterogeneity of the ABL in terms of mixing 
layer height and wind shear was induced by orographic topography. Interaction between local and 
advected aerosol layers during a transboundary air pollution (TAP) episode was identified by the network. 
During TAP episode, downward transport of transboundary aerosol relied on small scale eddies with weak 
wind speed in nighttime, while the transport of surface local aerosol to upper level was the dominated 
process in daytime, but the heterogeneity of the ABL affected by terrain determined the capacity of the 
mixing, eventually resulting in the opposite transport direction of aerosols in the transboundary-local 
aerosols interaction.

Plain Language Summary Upper level aerosol transported from remote places brings 
difficulties to urban air quality forecast. To identify the advected aerosol in the atmospheric boundary 
layer (ABL) and assess the further impacts after its occurrence, a four-Doppler LiDAR network in Hong 
Kong was implemented. Upper level advected aerosol layer was captured by the network, and our results 
show that complex terrain can lead to the spatial differences in the mixing layer height and wind shear, 
which stand for the characteristics of the ABL. After the advected aerosol arrived at the upper level over 
Hong Kong, small eddies in the weak wind condition can help to move the aerosol downward to the 
ground at night. After sunrise, surface accumulated aerosol was driven upward by the turbulent mixing, 
which was mainly caused by buoyancy. However, the differences in the ABL characteristics affect this 
upward transport, and finally resulted in two different transport patterns.
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Turbulent transport is a key mechanism in transboundary-local aerosols interaction. Turbulence within 
ABL is typically generated from buoyancy and wind shear (Stull, 1988). Strong surface heating generates 
buoyancy that drives surface aerosols up to higher altitudes (Berg et  al.,  2017; Hogan et  al.,  2009; Lolli 
et al., 2019). This process is particularly strong in daytime. Mixing layer height (MLH) is usually utilized 
to reveal the magnitude of the buoyant transport (Geiß et al., 2017; Y. Liu et al., 2019; Tang et al., 2016; Y. 
Yang et al., 2019; Zhu et al., 2018). Dynamically, wind shear plays a substantial role in the regulation of 
aerosol concentration and convective systems (Q. Chen et al., 2015; J. Fan et al., 2009). Weak wind, which is 
frequently associated with air stagnation, can serve as a critical driving factor to accumulate aerosols near 
the ground level (Y. Chen et al., 2018; Y. Yang et al., 2019). Meanwhile, if strong wind shear occurs at upper 
levels, the induced downward transport of momentum can also cause ground-level air pollution (Zhang 
et al., 2020). Nevertheless, the effects of MLH and wind shear on vertical distribution of aerosols remain 
unclear.

Complex terrain can influence transboundary-local aerosols. Numerical studies show that terrain affects 
the development of the inner boundary layer structure (Hon, 2020; H. Liu et al., 2001; Tse et al., 2020) and 
thus aerosol vertical mixing. Ning et al. (2019) revealed that heavily polluted episodes can be formed due to 
unfavorable terrain effects. For example, a 4-month observation shows mountain-plain winds had substan-
tial effects on the PM concentration at urban and suburban sites in Beijing (Y. Chen et al., 2018). In Hong 
Kong, different air motions over urban and suburban areas may result in different levels of air pollutant 
concentration during heat and polluted days (Yim, 2020). Nevertheless, how the dynamical processes due 
to terrain effects influence transboundary-local aerosols interaction was seldom explored due to the lack of 
upper level measurements (Barlow et al., 2017; T. Huang et al., 2020; National Research Council, 2009; Y. 
Yang et al., 2019; Yim, 2020).

Without upper level measurements, previous studies employed chemical transport models (CTMs) to un-
derstand transboundary aerosol effects at regional scale. For example, X. Huang et al. (2020) revealed that 
long-range transport aerosol can participate in the local aerosol-ABL feedback and eventually amplify the 
TAP in North and East China. In South China, Hou et al. (2019) applied a numerical model to assess the 
contributions of different aerosol species in TAP to Pearl River Delta (PRD). While more physical processes 
have been recently included in numerical models at much higher spatial resolutions, model accuracy has 
been substantially improved (Bony et  al.,  2015; McMichael et  al.,  2020). However, parameterizations of 
processes in the ABL in numerical models still cannot fully describe the thermal and dynamical processes 
related to turbulence at urban scale. Large model uncertainties therefore remain and need to be further 
improved. Since the processes may have significant spatial heterogeneity and are potentially influenced by 
complex topography (Bretherton et al., 2004; Lopez-Coto et al., 2020; Yuval & O’Gorman, 2020), vertical 
measurements at multiple sites are required.

This study conducted a year-long observation using a network of four Doppler Light Detection and Ranging 
(LiDARs), including two units from 3D Real-Time Atmospheric Monitoring System (3DREAMS; Yim, 2020) 
and another two units operated by the Hong Kong Observatory (HKO) with different scanning modes at 
urban and suburban areas and at the airport of Hong Kong to assess the effects of thermal and dynamical 
processes and complex topography on transboundary-local aerosols interaction in the ABL.

2. Materials and Methods
2.1. 3DREAMS and HKIA LiDAR

To understand the effects of terrain on MLH, wind shear, and the consequent impacts on air quality as well 
as the transboundary-local aerosols interaction, we analyzed the observations from 1-year long range-re-
solved profiles of aerosol and wind provided by 3DREAMS and HKO. 3DREAMS is a Doppler LiDAR net-
work located in Hong Kong since 2019. 3DREAMS network is now comprised of three 1.5-µm Doppler 
LiDARs (Halo Photonics Stream Line Scanning Doppler LiDAR system) implemented at the Physical Geog-
raphy Experimental Station of the Chinese University of Hong Kong (CUHK, 22°24′55.2″N 114°12′44.0″E), 
King’s Park Meteorological Station (KP, 22°18′42.0″N 114°10′20.9″E) and the Hung Shui Kiu Ling Liang 
Church (HSK, 22°25′41.5″N 113°59′24.8″E). The HSK LiDAR was operated from June 2020, which is out-
side the study period of this work. This study used the LiDARs at CUHK and KP only, and their locations are 
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shown in Figure S1. In addition, data from two units of long-range, coherent pulsed Doppler LIDARs (Mit-
subishi Electric with 1.5-µm laser beams) operated by HKO at the Hong Kong International Airport (HKIA) 
were analyzed in this study (Figure S1). Detailed settings are provided in the Supporting Information (SI).

2.2. Vertical Distribution of Aerosol, Wind Patterns, and Turbulence

The attenuated backscatter coefficient () can be directly retrieved from Doppler LiDAR’s measurement. 
Nevertheless, considering the impact of focus length, we derived the validated   () with a known tele-
scope focus function retrieved from the same Halo Photonics StreamLine LiDAR and a synergistic ceilome-
ter measurement in Finland (Pentikäinen et al., 2020). Following this, the maximum negative gradient of  
was utilized to detect the top of the MLH (Tang et al., 2016). Vertical velocity (w) was obtained directly from 
the vertically pointing Stare mode at 1.13 s and 30 m resolution. Horizontal wind speed and direction were 
derived from velocity azimuth displays mode every 10 minutes. Measurements with the signal intensities 
lower than 1.01 were discarded (T. Huang et al., 2020). After that, vertical wind shear (VWS) intensity was 
defined within the derived MLH as:

 


1/22 2Δ Δ
VWS ,

Δ

u v

Z
 

where u and v are zonal and meridional wind components of horizontal wind, respectively. ΔZ stands for 
the difference between two adjacent layers, which is 30 m in this study. The calculation of turbulent mixing, 
dissipation rate of turbulent kinetic energy (TKE)  , and friction velocity u  can be referred in SI.

2.3. Surface Level Observation of Meteorology and Aerosol Concentration

Surface level meteorological data was obtained from the website of HKO (https://www.hko.gov.hk/en/cis/
climat.htm). All the days with rainfall in 2019 were excluded in this study. For surface aerosol concen-
tration, hourly surface PM2.5 concentration data was obtained from two air quality monitoring stations 
near our 3DREAMS LiDARs: Shatin (near CUHK) and Sham Shui Po (near KP) (https://www.aqhi.gov.
hk/en.html). To determine the low and high surface aerosol concentration days, we normalized the daily 
concentration by their monthly mean value (Wang et al., 2018). Following this, the ¼ and ¾ quantiles were 
denoted clean days and pollution episodes, respectively.

2.4. Back Trajectory

HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was applied to simulate air mass tra-
jectories for identifying the origin of the air mass. The HYSPLIT was configured to perform back trajectory 
calculations at 1,500 m above two 3DREAMS LiDAR sites: KP and CUHK for 24 h using the meteorological 
data of the Global Data Assimilation System (GDAS) at the spatial resolution of 0.25°. The specific informa-
tion of all the data utilized in this study can be found in Table S1.

3. Results
3.1. Year-Long Observation of MLH and Wind Shear Under Terrain Effects

Hourly MLHs at CUHK and KP were calculated in winter (DJF), spring (MAM), summer (JJA), and fall 
(SON) according to the maximum negative gradient of . Figure 1a shows that the highest seasonal mean 
MLH occurred in JJA (∼1,300 m), whereas the lowest mean MLH occurred in DJF (∼900 m). Meanwhile, 
despite the fact that surface air temperature at these two locations reveals that heating capacity was higher 
at KP than at CUHK (Table S2), MLHs over CUHK were always ∼70 m higher than those over KP in the 
whole year. Figure 1b shows that the magnitude of column mean wind shear at CUHK was weaker. For 
mean values, the smallest difference in wind shear between the two sites (0.01 s−1) occurred in winter, and 
the largest (0.03 s−1) occurred in spring, suggesting that VWS was not the main factor that contributed to the 
higher MLH at CUHK. Yim (2020) analyzed wind patterns in HK and reported that CUHK was dominated 
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by updrafts below ∼700 m. Overall, it is inferred that the higher MLH at CUHK was mainly due to updrafts 
generated by the surrounding valley that enhanced vertical mixing.

Surface aerosol concentration was represented by the PM2.5 concentration measured at two air quality 
monitoring stations (SSP and ST) near the 3DREAMS LiDAR sites (Figure S1). Clean days and pollution 
episodes were classified in Section 2. Seven extreme polluted episodes (Table S3) with normalized concen-
tration higher than 90% percentile (defined as Heavy-Air-Polluted-Episode [HAPE]) were also compared to 
different polluted regimes. In Figure 1c, clean days were determined with lower mean MLH in urban and 
suburban areas, while in HAPE, the mean MLH was higher. However, the observation of wind shear shows 
that heavily polluted days were accompanied by low wind shear (Figure 1d), which is consistent with the 
statistical result that high aerosol loading in 2019 was overall related to low wind shear conditions no matter 
at which height and in which season (Figure S4). These results help us to confirm that strong wind shear is 
critical for aerosol dispersion.

3.2. Recognition of Transboundary Aerosol Layer From LiDAR Observation

Detailed long-range transport processes were captured and recognized by the four-LiDAR network. In a 
48-h continuous episode (October 1–2) during the HAPE days, upper level wind profiles from 3DREAM Li-
DARs at KP and CUHK show that an abrupt change of wind direction from northwest to northeast (0°–45°) 
took place at the altitude of 1,425 m at 18:20 Hong Kong Time (HKT) over CUHK, whereas the same wind 
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Figure 1. Year-long boxplot of (a) Seasonal variation of the MLH (m); (b) Seasonal variation of the column mean of wind shear (s−1) within the MLH (m); (c) 
Station differences of the MLH (m) during clean days, episodes and HAPE days and (d) Station differences of the column mean of wind shear (s−1) within the 
MLH (m) during clean days, episodes and HAPE days. Green dots represent the mean value. HAPE, Heavy-Air-Polluted-Episode; MLH, mixing layer height.
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pattern occurred at 19:30 HKT over KP at the same altitude (Figures 2b and 2d). The wind speed at 1,425 m 
over CUHK and KP during the time period was 2.8 and 2.1 m s−1, respectively, while the distance between 
these two sites is ∼10 km (Figure S1). The wind speed and direction, and the distance between the two sites 
suggest that air mass transported from CUHK to KP along the northeast-southwest direction. Figure S5 
shows that the result was confirmed by back trajectory analysis before 00:00 HKT October 2 at these two 
sites (W. Fan et al., 2019).

The wind patterns at the upper level provide a direct observation of the wind condition for TAP episodes 
within the ABL. To further confirm the measurements of upper level wind profiles at CUHK and KP, the 
wind measurements at HKIA were analyzed. HKIA is located at a similar latitude as KP but ∼26 km away 
from KP in the east (Figure S1). Figure 3g shows the positions and azimuths of the two LiDARs. Figure 3h 
depicts the quasi-real vertical profile of horizontal wind at the intersection retrieved from the two HKIA 
LiDARs. We note that the direct RHI scan can measure radial velocity at altitudes higher than 750 m; nev-
ertheless, the highest level of wind profile that can be retrieved at the intersection of the two HKIA LiDARs 
is 750 m (Ng & Hon, 2020). Figure 3h shows that enhanced southwesterly wind started to occur at around 
19:00 at low level on October 1, which was consistent with the low level wind profiles at KP and CUHK. 
In Figures 3a–3f, positive velocities represent that wind goes away from the LiDAR, whereas the negative 
values stand for the air parcels that come toward the LiDAR. The measurement of HKG1 (Figures 3a–3c) 
shows that the enhancement of westerly wind occurred lower than ∼1,400 m, starting from 19:00 with pos-
itive radial velocities (from west to east). However, the opposite direction of radial velocities (from east to 
west) was observed in the upper level, indicating that wind flow at upper levels came from east. The color 
shift from blue to red observed in HKG2 from 18:00 to 19:00 indicates the prevailing northerly wind at the 
upper level. Combining the results of the two LiDARs, we can confirm that wind came from northeast at 
1425 m.

3.3. Transboundary-Local Aerosols Interaction and Heterogeneity of the ABLs

 patterns at CUHK and KP (Figures 2e and 2f) show that residual aerosols from the previous day were 
the primary source of pollution from 00:00 to 08:00 on October 1 (HKT). The relatively larger updrafts 
(>0.3 m s−1) at CUHK led to the intermittent occurrence of shallow clouds at ∼2,000 m. During the daytime 
on October 1, substantial convective mixing was observed at CUHK, while downdrafts were dominated at 
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Figure 2. (a–d) Upper level wind profiles of wind speed (m s−1) and direction (°) over CUHK (a–b) and KP (c–d) during the episode. Dash lines depict the 
occurrence of southeast wind (0°–45°) over CUHK and KP. (e–h) Upper level aerosol and convection patterns over CUHK and KP during the episode. Dash 
lines in (e) and (f) stand for the occurrence of transboundary aerosol over CUHK and KP. Two gray boxes in (g) and (h) represent the dramatic developing time 
(08:00 to 16:00) of the ABL. ABL, atmospheric boundary layer.
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KP, but the atmosphere was also mixed there. The aerosol patterns at this time show that the diurnal var-
iation of aerosol distribution at CUHK was more evident than that over KP, meanwhile the lower layers 
(<500 m) were cleaner at CUHK (<−5.7 log10 [m−1 sr−1]) than at KP, indicating a better dispersion capacity 
of local aerosol at CUHK. This process is the typical local aerosol dispersion characteristics in a convective 
ABL (Arya, 1999).

Substantially high aerosol loading larger than −5.2 log10 (m−1 sr−1) occurred at 18:20 on October 1 (HKT) 
over CUHK at 1,425 m above the ground level (Figure 2e), and then started to occur at KP at the same alti-
tude at 19:00 (HKT) on the same day (Figure 2f), which was similar to changes in wind profiles. Afterward, 
the transboundary aerosol layer was maintained at this altitude over Hong Kong until October 2. After sun-
rise (06:00, October 2 HKT), when the mixing layer started to develop (black triangles in Figures 2e and 2f), 
substantial differences in MLH were observed at the two sites. At CUHK, due to the intense turbulent mix-
ing during the mixing layer development period, local aerosol was driven up to over 1,500 m by buoyancy at 
12:00 (HKT), and then well mixed with upper level transboundary aerosol, which was revealed by the dis-
appearance of the boundary between two aerosol sources. However, the separation between transboundary 
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Figure 3. Wind profiles derived from two HKIA LiDARs operating in RHI mode during the episode. (a–c) are the wind profiles from HKG1 at 18:00, 19:00, and 
20:00 on October 1 HKT, respectively. Black squares represent the intersection of two scanning paths. Gray horizontal lines stand for the altitude of 1,425 m. 
Positive radial velocity means winds go away from the LiDAR. (d–f) are the wind profiles from HKG2 at 18:00, 19:00, and 20:00 on October 1 HKT, respectively. 
(g) is the intersection (black square) position derived from two HKIA LiDARs scanning paths and (h) is the quasi-real vertical profile of horizontal wind (m s−1) 
at the intersection retrieved from the two LiDARs. HKIA, Hong Kong International Airport; HKT, Hong Kong Time; LiDAR, Light Detection and Ranging.
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aerosols and local aerosols was relatively clear because the development of mixing layer over KP was not as 
dramatic as the one over CUHK. It should be noted that the MLH was much lower at KP (1,065 m) than at 
CUHK especially at 12:00 (HKT). The MLH at KP even dropped to 555 m at 14:00 (HKT), which was nearly 
3.6 times lower than that over CUHK (2,025 m). It can be summarized that at CUHK the local pollution 
from the surface mixed upwards owing to the strong diurnal cycle of MLH, while at KP the elevated trans-
boundary pollution layer transported downward after the diurnal cycle decayed. Previous study (Yim, 2020) 
found that KP was dominated by downdrafts within the whole ABL, which was also confirmed in this study. 
Considering the locations of these two sites, all the results indicate that KP has a marine ABL structure, 
while CUHK has a terrestrial ABL structure.

To further assess the transboundary-local aerosols interaction from a dynamical perspective, the correla-
tion between turbulence patterns within the ABL and surface aerosol concentrations (PM2.5 concentration) 
was explored. The dissipation rate of TKE ( ) at each layer was calculated to represent the homogenous 
and isotropic turbulence with different length scales in the local-transboundary aerosol interaction, while 
turbulent mixing (   2 zw ) was utilized to represent convective transport due to the buoyancy. The R value is 
the correlation coefficient between the layer diagnostic turbulence and the surface aerosol concentration. 
Figures S6a and S6c show that before the transboundary aerosol arrived, more significant negative R values 
(<−0.5) occurred over CUHK compared to KP. The negative values show the opposite relationship between 
turbulence and surface aerosol, indicating that turbulence generated by the surrounding terrain at CUHK 
enhanced aerosol dispersion. However, after the occurrence of transboundary aerosol over Hong Kong, R 
values turned to be positive (R > 0.39) at CUHK (Figures S6b and S6d), revealing that turbulence trans-
ported the transboundary aerosol down to the ground. Figure S6b shows that at CUHK, most significantly 
positive correlation occurred between ∼750 and ∼1,100 m. The   pattern in Figure S7a shows that small 
eddies with smaller length scales at this level during nighttime contributed to the downward transport of 
the transboundary aerosol, while the stronger horizontal wind speed (>7 m s−1) at low altitude (Figure 2a) 
reduced the small eddies, making the correlation at lower level not significant. Figure S6d reveals that tur-
bulent mixing developed from the surface level was the main contributor of transporting the upper level 
aerosol to the ground, which also can be seen in Figure S7b. The more significantly negative correlation at 
KP should be due to the occurrence of updrafts from ∼200 up to ∼2,000 m between 18:00, October 1 and 
02:00, October 2 (HKT).

4. Discussion
The results of the ABL characteristics are consistent with the results derived from Micro Pulse LiDAR 
(MPL) at Yuen Long (Su et al., 2017; D. Yang et al., 2013), another residential area in the northwest part of 
Hong Kong where air pollution episodes occur frequently (Lee et al., 2002). It should be noted that MPL 
is capable of providing vertical profiles of extinction coefficient and backscatter coefficient, whereas our 
Doppler LiDARs can provide vertical profiles of both backscatter coefficient and wind. The data pair can 
support an in-depth analysis of transboundary-local aerosols interaction. It is the first time that spatial vari-
ation of ABL has been explored in Hong Kong. Although KP is located in the urban area, the characteristics 
of marine ABL structure are evident. The heterogeneity of the ABLs should be primarily due to terrain ef-
fects at CUHK, which makes the ABL structure at CUHK show terrestrial characteristics with a significant 
diurnal variation. This emphasizes that the terrain effects on the ABL cannot be ignored. Different from 
other studies that used multiple LiDARs to measure the regional-scale campaigns within the same synoptic 
background, this study concentrated on an episode but with complicated surface conditions, which may 
substantially affect the air pollution regime locally. For wind shear, even though KP has a stronger dynam-
ical mixing capacity due to surface resistance induced by its surrounding high-rise building morphology 
(Text S2; Figure S2-S3), the buoyancy-driven capacity restricts the aerosol dispersion in daytime. Y. Yang 
et al. (2019) and Zhang et al. (2020) have revealed that weak wind shear is beneficial for local aerosol ac-
cumulation while strong wind shear can help transport upper level aerosol to the ground level, but their 
studies have yet assessed the influence of the ABL characteristic on the vertical transport. By employing the 
four-LiDAR network, this study found that, in the studied episode, marine ABL cannot drive local surface 
aerosols to mix with the upper level transboundary aerosols, whereas the mixing of the surface and trans-
boundary aerosols can happen within terrestrial ABL.
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This study has captured a 48-h continuous episode with two states of atmosphere: Local aerosol only and 
transboundary-local aerosols interaction. Luo et al. (2018) investigated TAP in Hong Kong, but the direct 
observation was restricted to the ground level, while Lam et al. (2005) and Yim, Gu et al. (2019) employed 
modeling including numerical simulation and back trajectories. Even though TAP signals were identified 
using the changes of ground-level concentration and wind speed and direction from in-situ measurements 
or models, real-time monitoring of TAP still remains challenging. This study has captured the real-time up-
per level aerosol and wind changes by using four LiDARs at three different stations using different scanning 
modes. In this case, TAP took place within very short temporal and spatial scales, which cannot be easily 
captured by mesoscale modeling. Furthermore, the two 3DREAMS LiDARs were designed to be established 
at a certain path (northeast to the downtown of Hong Kong), which helps to identify the frequent occur-
rence of short-term TAP, and the upper level wind can be inter-compared at three locations. In our following 
studies, we will further pay attention to another path (northwest to the downtown) using the newly estab-
lished 3DREAMS LiDAR at Yuen Long, northwest of Hong Kong. Terrain-induced heterogeneity of the 
ABL substantially affected this process by the generated turbulence, which cannot be revealed by simple 
MLH and wind shear analysis. During nighttime, when the wind speed is weak, the downward transport 
of transboundary aerosol relies on small-scale eddies, while strong wind speed can repel this process. In 
daytime, the transport of surface local aerosol to upper level is the dominated process, but the heterogeneity 
of the ABL affected by terrain determined the capacity of the mixing. The accuracy of two key parameters 
(Dissipation rate of TKE and Turbulent mixing) relies on the high-time resolution observation of vertical 
velocity, which can be totally ensured by our 3DREAMS LiDAR network. Even though large uncertainties 
still remain as the case is relatively short in time due to only 1-year observation and the statistical method, 
the substantial difference in the aerosol profiles can also show the capability of the LiDAR network for air 
quality monitoring, especially for TAP monitoring.

5. Conclusions
In this study, transboundary-local aerosols interaction was first analyzed by exploring a year-long observa-
tion of ABL at three sites (CUHK, KP, and HKIA) in Hong Kong using four Doppler LiDARs with different 
scanning modes. Our results show that the topography substantially contributed to the heterogeneity of 
the ABL. MLH at the suburban CUHK site was higher (∼70 m) than that at the urban KP site even though 
surface heating was stronger at the urban site. The orographic terrain at CUHK had substantial effect to 
generate updrafts to ∼700 m above ground, enhancing the vertical mixing, thus resulting in a higher MLH. 
In terms of wind shear, due to the higher surface resistance of the urban surface, the magnitude of wind 
shear was always higher at KP within the ABL. Low wind shear occurred when wind came from southwest 
Hong Kong because of its relatively open surroundings. During the studied TAP episode, an abrupt change 
of wind direction from northwest to northeast (0°–45°) occurred at the upper level has been considered as 
the critical wind condition for the transboundary aerosol. It took ∼70 minutes to transport the advected 
aerosols from CUHK to KP from the direction of northeast-southwest. The signal was also confirmed by two 
HKIA LiDARs performing an RHI scan. The heterogeneity of the ABLs was also confirmed at CUHK and 
KP according to aerosol and convection patterns in the episode. An aerosol stratified ABL structure at KP 
with significant downdrafts indicates a marine ABL at KP, while terrestrial ABL structure is more evident at 
CUHK. Correlations between turbulence patterns within the ABL and surface aerosol concentration show 
that downward transport of transboundary aerosol relied on small scale eddies due to weak wind speed in 
nighttime, while the transport of surface local aerosol to upper level was the dominated process in daytime, 
but the heterogeneity of the ABL affected by terrain determined the capacity of the mixing, eventually 
resulting in the opposite transport direction of aerosols in the ABL. Results indicate that terrain-induced 
heterogeneity of the ABL substantially affected transboundary-local aerosols interaction.

Data Availability Statement
Surface metrological data sets in Hong Kong are available at Hong Kong Observatory’s website: https://
www.hko.gov.hk/en/cis/climat.htm. PM2.5 concentrations data sets can be obtained from Hong Kong Envi-
ronmental Protection Department: https://www.aqhi.gov.hk/en.html. Processed 3DREAMS LiDAR data set 
and HKIA LiDAR data sets can be obtained in the repository: https://figshare.com/s/78e928f29c57ff86b5ee
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