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ABSTRACT
Bayesian optimisation methods have been widely used to solve

problems with computationally expensive objective functions. In

the multi-objective case, these methods have been successfully

applied to maximise the expected hypervolume improvement of

individual solutions. However, the hypervolume, and other unary

quality indicators such as multiplicative 𝜖-indicator, measure the

quality of an approximation set and the overall goal is to find the

set with the best indicator value. Unfortunately, the literature on

Bayesian optimisation over sets is scarce. This work uses a recent

set-based kernel in Gaussian processes and applies it to maximise

hypervolume and minimise 𝜖-indicators in Bayesian optimisation

over sets. The results on benchmark problems show that maximis-

ing hypervolume using Bayesian optimisation over sets gives a

similar performance than non-set based methods. The performance

of using 𝜖 indicator in Bayesian optimisation over sets needs to be

investigated further. The set-based method is computationally more

expensive than the non-set-based ones, but the overall time may

be still negligible in practice compared to the expensive objective

functions.
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1 INTRODUCTION
Many real-world optimisation problems have conflicting objectives

and use computationally expensive models or costly experiments.

Optimisation of expensive optimisation problems, including sin-

gle and multi-objective, has seen significant advances in the last

decade thanks to the adoption of techniques from Bayesian Opti-

misation [22]. These algorithms have seen successful applications

in simulation-based and data-driven [12] problems and are being

increasingly adopted by practitioners. We define a multi-objective

optimisation problem (MOP) as:

minimise (𝑓1 (x), . . . , 𝑓𝑚 (x)) subject to x ∈ 𝑆 (1)

with𝑚 ≥ 2 objective functions 𝑓𝑖 (x) : 𝑆 → R. The vector of objec-
tive function values is denoted by 𝑓 (x) = (𝑓1 (x), . . . , 𝑓𝑚 (x))𝑇 . The
(nonempty) feasible space 𝑆 is a subset of the decision space R𝑛

and consists of decision vectors x = (𝑥1, . . . , 𝑥𝑛)𝑇 that satisfy all

the constraints.

When no information is available about the preferences of a

decision-maker, the goal is to approximate the Pareto front. Evalu-

ating the quality of approximation sets is a difficult task and many

evaluation metrics have been proposed in the literature. The hy-

pervolume metric is among the few Pareto-compliant metrics that

never contradict Pareto optimality. In addition, the hypervolume

is the only (known) unary metric that is able to report that one

approximation set is better than another for every case in which

this is true in terms of Pareto optimality [27]. Moreover, the hyper-

volume measures qualitative aspects that include closeness to the

Pareto front and diversity along the Pareto front. It has also been

used as the selection criterion in Evolutionary Multi-Objective Opti-

misation Algorithms (EMOAs), with the most prominent examples

being SMS-EMOA [1] and IBEA [26]. Detailed benchmarks show

that both SMS-EMOA and IBEA are among the best performing

MOEAs, often outperforming other more popular algorithms [2].

Another widespread quality metric is the multiplicative unary

𝜖-indicator [27]. The 𝜖-indicator measures the factor by which the

objective vectors of a given approximation set must be multiplied

in order to weakly dominate a reference set. Lower values are

preferred. Values smaller than 1 mean that the approximation set

is better than the reference set. Although the 𝜖-indicator is also

Pareto-compliant, it is weaker than hypervolume because two ap-

proximation fronts may have the same 𝜖-indicator value even if

one is clearly better than the other in terms of Pareto optimality.

Nevertheless, there is empirical evidence that the search landscapes

https://doi.org/10.1145/3449726.3463178
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of hypervolume and 𝜖 are significantly different [18] and optimis-

ing them leads to different approximations of the Pareto front [11].

Therefore, we decided to consider both in this study.

Bayesian optimisation (BO) using expected improvement as ac-

quisition function was first used in [19] for single-objective optimi-

sation problems. Later, Emmerich et al. [7] extended it to expected

hypervolume improvement to handle problems with expensive mul-

tiple objectives. Later works in the literature have increased the

efficiency of this acquisition function by finding its gradients and

adapting it for parallel evaluations [5]. A different formulation of

the hypervolume improvement as the scalarising function was used

in [20]. All of these works predict the improvement of a solution to

the hypervolume of a reference set (i.e., hypervolume contribution)

and not the exact hypervolume of a set. This is due to the reason

that hypervolume relies on sets and Bayesian optimisation using

sets has not received much attention.

A recent proposal has extended the use of Gaussian processes

(GPs) over sets and applied them in Bayesian optimisation [14]. In

this paper, we apply this proposal for the set-based optimisation

of the hypervolume and 𝜖 indicators and evaluate its performance

against non set-based Bayesian optimisation methods. Our results

show that Bayesian optimisation over sets with hypervolume ob-

tained similar results to existingmethods and Bayesian optimisation

over sets with 𝜖-indicator did not perform well on some problems.

This paper is structured as follows. In the next section, we pro-

vide an overview of Bayesian optimisation. In Section 3, we explain

the use of Gaussian processes over sets. In Section 4, we explain

the approach of generating sets for training the GP model and

use them in optimising indicators with Bayesian optimisation. The

results are discussed in Section 5. Finally, we conclude and mention

the future research directions in Section 6.

2 BAYESIAN OPTIMISATION
The input to Bayesian optimisation is the data set𝐷 = {(𝑋,𝑌 ) | 𝑋 ∈
R𝑁×𝑛, 𝑌 ∈ R𝑁×𝑚}, having 𝑛 decision variables and 𝑚 objective

function values and 𝑁 is the size of the data set. We assume this

data is either available or can be obtained with some design of

experiment technique. Next we build GP model(s) on the data

set. There are typically two different ways to build GP models in

multi-objective optimisation problems. One is to build a model for

each objective function [7] and second is to build a single model

after scalarising the objective functions [3], i.e., g = 𝑔(𝑌 ) ∈ R𝑁×1.
The second method reduces the number of objectives from𝑚 to

one. The computational complexity of the first method is at most

𝑂 (𝑚𝑁 3) and of the second method is at most 𝑂 (𝑁 3).
After building the GP model(s), we optimise an acquisition

function (or infill criterion) to find potential decision vector. Both

exploitation and exploration are usually combined within the infill

criterion. Most of the methods in the literature on Bayesian optimi-

sation focus on developing an efficient infill criterion. Some of them

are expected improvement [13, 19], probability of improvement [16],

and expected hypervolume improvement [7]. Maximising the infill

criterion often requires the use of an optimisation algorithm. For in-

stance, BFGS [8], CMA-ES [9], or some evolutionary algorithm [25].

The selected decision vector (more than one if in batch mode) is

then evaluated on the true objective function (e.g. via simulator) and

Algorithm 1: Bayesian optimisation

Input: Data Set, 𝐷 = (𝑋,𝑌 )
Output: Evaluated solutions

1 repeat
2 𝑀 ← Train GP model(s) on the the data set 𝐷

// Get a sample by maximising the acquisition function:

3 x∗ ← argmax

x
𝛼 (𝑀,𝐷)

4 Evaluate x∗ and add to the data set 𝐷

5 until termination criterion is not met

added to the data set. All the solutions evaluated with the expensive

model become the final solutions after a termination criterion is

met (usually maximum number of expensive evaluations). In the

multi-objective case, the final approximation to the Pareto front

returned is the mutually non-dominated set of solutions from all

solutions ever evaluated.

3 GAUSSIAN PROCESSES OVER SETS
Gaussian processes (GPs) have advantages over other regression
methods because of their ability to provide uncertainty information

in addition to the point predictions [21]. This uncertainty can be

used in selecting efficient samples by maximising the acquisition

function and in efficient decision-making [17]. Let us denote the

function values with y which can be f𝑖 for 𝑖 = 1, . . . ,𝑚 or the

scalarising function values g.
A GP is described with a multivariate normal distribution with

mean 𝝁 and covariance matrix 𝐾 :

y ∼ N(𝝁, 𝐾) (2)

For simplicity in calculations, we assume a mean of zero. For

details about other mean functions, refer to [21]. The covariance ma-

trix elements are calculated using covariance or a kernel function,

𝑘 (x, x′). For instance, a Gaussian kernel (or squared exponential

kernel) is defined as:

𝑘 (x, x′,Θ) = 𝜎2
𝑓
exp

©­«−12
𝑛∑
𝑗=1

|𝑥 𝑗 − 𝑥 ′𝑗 |
2

𝑙2
𝑗

ª®¬ + 𝜎2𝑡 𝛿xx′, (3)

where Θ = (𝜎𝑓 , 𝑙1, . . . , 𝑙𝑛, 𝜎𝑡 ) is the set of parameters and 𝛿xx′ is the

Kronecker delta function. The |𝑥 𝑗 − 𝑥 ′𝑗 | represents the Euclidean
distance between 𝑥 𝑗 and 𝑥

′
𝑗
. The parameters 𝜎𝑓 , 𝑙 𝑗 and 𝜎𝑡 represent

the amplitude, length scale of 𝑗𝑡ℎ variable and noise in the data,

respectively. These parameters can be estimated by maximising

(e.g. with some gradient based algorithm) the likelihood function:

𝑝 (y | 𝑋,Θ) = 1√
|2𝜋𝐾 |

exp

(
− 1

2
y𝑇𝐾−1y

)
. (4)

The model built after estimating the parameters is used for ap-

proximating a posterior predictive distribution (also Gaussian):

𝑝
(
𝑦∗ |x∗, 𝑋, y,Θ

)
=N

(
k(x∗, 𝑋 )𝐾−1y,

𝑘 (x∗, x∗) − k(x∗, 𝑋 )𝑇𝐾−1k(𝑋, x∗)
)
.

(5)

where the posterior mean is k(x∗, 𝑋 )𝐾−1y and the variance repre-

senting the uncertainty is 𝑘 (x∗, x∗) − k(x∗, 𝑋 )𝑇𝐾−1k(𝑋, x∗).
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The GP detailed above relies on the correlation between two

decision vectors x and x′. Therefore, it is straightforward to use it

in traditional Bayesian optimisation for single or multi-objective

optimisation problems. In a recent work [14], the correlation was

extended to sets and a set kernel was proposed. Given a kernel

𝑘 (x, x′) between two decision vectors, the set kernel between two

sets 𝑋 and 𝑋 ′ is defined as:

𝑘set (𝑋,𝑋 ′) =
1

|𝑋 | |𝑋 ′ |
∑
x∈𝑋

∑
x′∈𝑋 ′

𝑘 (x, x′) , (6)

where |𝑋 | represent the cardinality of the set 𝑋 . One of the im-

portant features of this kernel is that the resulting covariance is

symmetric and positive-semi-definite. Moreover, the kernel is not

affected by the ordering of the decision vectors in the set. The

updated kernel can be used in model building by maximising the

likelihood function in (4), where X = [𝑋1, . . . , 𝑋𝐿], y ∈ R𝐿×1 and
𝐿 is the number of sets. The posterior predictive distribution of a

new set 𝑋 ∗ is:

𝑝
(
𝑦∗ |𝑋 ∗, 𝑋, y,Θ

)
=N

(
kset (𝑋 ∗, 𝑋 )𝐾−1y,

𝑘set (𝑋 ∗, 𝑋 ∗) − kset (𝑋 ∗, 𝑋 )𝑇𝐾−1kset (𝑋,𝑋 ∗)
)
.

(7)

It is worthy to mention that the computational complexity of

the set kernel is 𝑂 (𝑁 2

s
|𝑋 |2𝑛), which makes it computationally ex-

pensive compared to the traditional kernel. In [14], the authors

proposed an approximation of the set kernel to alleviate the com-

putational cost. In this work, we do not use such approximation

and assume that the computational cost of building models is sig-

nificantly lower than expensive objective evaluation.

4 OPTIMISING QUALITY INDICATORS WITH
BAYESIAN OPTIMISATION OVER SETS

We explain next how to use Bayesian optimisation over sets to

tackle expensive multi-objective black-box problems. The main

idea is to build a GP model that, given a set of decision vectors,

predicts the corresponding value of a unary quality indicator, such

as hypervolume or multiplicative-𝜖 , for the whole set, instead of

individual decision vectors. Thus, Bayesian optimisation using ac-

quisition function searches for a candidate set of decision vectors.

Once identified, decision vectors in this set are evaluated to find

their corresponding expensive objective function values, which in

turn can be used to evaluate the true unary indicator value of the set

(or any subset). There are two crucial components in this algorithm:

(1) given a data set of decision vectors and their corresponding

objective function values, how to generate training sets for building
the GP model over sets, and (2) given the trained GP model over

sets, how to identify a new candidate set for evaluation.

In this work, when computing the hypervolume, we use a prede-

fined reference point that remains constant throughout the algo-

rithm. In our experiments, the reference point is set after generating

the initial data set, by adding 1 to the worst value within the data

set for each objective. In the case of 𝜖-indicator, the reference front

corresponds to the last (worst) front after applying nondominated

sorting to the data set.

4.1 Generation of subsets for training
When using a GP model over sets, we first need to create a list of

sets for training the model. We use Algorithm 2 for this purpose

starting from a data set of solutions that stores both the decision x
and its objective vectors f (x). Given the desired cardinality 𝑁s of

each generated training set and the data set𝐴0
, Algorithm 2 returns

a list of subsets of 𝐴0, each of size 𝑁s (the algorithm may internally

update 𝑁s if necessary as explained in the following).

At each iteration 𝑖 , we construct a subset 𝑆𝑖 ⊆ 𝐴0
and delete

those solutions from 𝐴, which starts as a copy of 𝐴0
. Each iteration

begins by considering only the nondominated solutions that remain

in 𝐴. If there are at least 𝑁s nondominated solution, the call to

SubsetSelect(𝑆𝑖 , 𝑁s) selects exactly 𝑁s of them by removing one-

by-one the solution that contributes the least to the hypervolume

of the set. Otherwise, we have too few nondominated solutions and

we need to add more solutions to 𝑆𝑖 . In the first iteration (𝑖 = 1),

we simply reduce the value of 𝑁s and accept the subset 𝑆1 as it is.

In subsequent iterations, we search in the original data set 𝐴0
(not

in 𝐴, which may be empty at this point) for solutions that do not

dominate the ones in the current subset and we select from those

solutions the best with respect to the hypervolume contribution

(i.e., using again SubsetSelect). In this manner, we try to add a

solution that appears to be of high-quality when considered in

isolation, yet it is dominated by the current subset 𝑆𝑖 and, thus, it

has no effect in the indicator value of 𝑆𝑖 . We keep adding solutions

until we have 𝑁s or we cannot find a solution in 𝐴0 that does not

dominate any in 𝑆𝑖 . In the latter case, we complete the subset by

randomly selecting the remaining solutions from the previously

generated subset (𝑆𝑖−1), which means that some solutions in the

current subset 𝑆𝑖 may become dominated.

Once a subset 𝑆𝑖 is completed, i.e., it contains exactly𝑁s solutions,

those solutions are removed from 𝐴. The algorithm stops when 𝐴

is empty, which means that every element of 𝐴0
appears in at least

one 𝑆𝑖 .

4.2 Optimising indicators in Bayesian
optimisation using sets

After creating the training sets and calculating their corresponding

indicator values (hypervolume or 𝜖), we build a GP model over sets

as explained in Section 3. We use a genetic algorithm to estimate

the parameters of the model by maximising the marginal likelihood.

This model is then used in optimising the acquisition function to

find a potential new set. In particular, we use the following expected

improvement as the acquisition function:

𝛼𝐸𝐼 (𝑋 ) = (𝐼 (𝑋 ) − 𝐼max)Φ
( 𝐼 (𝑋 ) − 𝐼max

𝜎 (𝑋 )
)
+ 𝜎 (𝑋 )𝜙

( 𝐼 (𝑋 ) − 𝐼max

𝜎 (𝑋 )
)
,

(8)

where Φ(𝑍 ) and 𝜙 (𝑍 ) are cumulative and probability distribution

function of standard normal distribution. In the above equation, 𝐼

is the posterior mean of the GP model at 𝑋 , 𝐼max is the maximum

hypervolume or negative 𝜖-indicator value at the current iteration

and 𝜎 is the standard deviation from the GP model.

We apply the CMA-ES algorithm to maximise the acquisition

function. For simplicity, we fixed the cardinality of the set to𝑁s, thus

a set 𝑋 is represented within CMA-ES as a vector of 𝑁s ×𝑛 decision
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Algorithm 2: GenerateSets: Generate training sets.

Input: 𝐴0
: data set of evaluated solutions (decision and

objective vectors), 𝑁s: set size

Output: (𝑆1, . . . , 𝑆𝑖 ): list of sets
1 𝑖 ← 1, 𝐴← 𝐴0

// Create a copy

2 repeat
3 𝑆𝑖 ← filter dominated solutions in 𝐴

4 if |𝑆𝑖 | ≥ 𝑁s then
5 𝑆𝑖 ← SubsetSelect(𝑆𝑖 , 𝑁s)
6 else if 𝑖 > 1 then
7 repeat

// Find solutions in 𝐴0
that do not dominate 𝑆𝑖

and select the one that contributes the most to

the hypervolume

8 𝐴′ ← {𝑓 (x′) ∈ 𝐴0 | ∀𝑓 (x) ∈ 𝑆𝑖 , 𝑓 (x′) ⪯̸ 𝑓 (x)}
9 𝐴′ ← SubsetSelect(𝐴′, 1)

10 𝑆𝑖 ← 𝑆𝑖 ∪𝐴′
11 until |𝑆𝑖 | = 𝑁s ∨𝐴′ is empty
12 if |𝑆𝑖 | < 𝑁s then
13 𝑆𝑖 ← 𝑆𝑖 ∪ SelectRandom(𝑆𝑖−1, 𝑁s − |𝑆𝑖 |)
14 else
15 𝑁s ← |𝑆𝑖 |
16 𝐴← 𝐴 \ 𝑆𝑖
17 𝑖 ← 𝑖 + 1
18 until 𝐴 is empty
19 return (𝑆1, . . . , 𝑆𝑖 )

variables. CMA-ES returns a single set, which represents𝑁s decision

vectors of the expensive problem. These decision vectors are then

evaluated with expensive objective functions and the resulting

solutions are added to the data set. The next iteration creates new

training sets from the updated data set. The algorithm is stopped

after a maximum number of expensive evaluations. The steps of

the algorithm explained above are shown in Algorithm 3.

Algorithm 3: Optimising unary indicators using Bayesian

optimisation over sets

Input: 𝐷 = (𝑋,𝑌 ): data set, 𝑁s: size of training sets

Output: Evaluated solutions

1 repeat
2 X = (𝑋1, . . . , 𝑋𝑁 ) ← GenerateSets(𝐷, 𝑁s)

// Compute the indicator value of each training set

3 I = (𝐼 (𝑋1), . . . , 𝐼 (𝑋𝑁 ))𝑇
4 𝑀 ← Train GP model over sets on (X, I)

// Get a set by maximising the acquisition function:

5 𝑋 ∗ ← argmax

𝑋

𝛼 (𝑀,X, I)

6 Evaluate solutions in 𝑋 ∗ and add them to 𝐷

7 until maximum number of expensive evaluations reached

5 RESULTS AND DISCUSSION
The resulting algorithm was applied to DTLZ problems [6] with

2 and 3 objectives and 𝑛 = 3 decision variables. We compare the

results with those obtained by ParEGO [15] and EHVI-EGO [7, 24].

ParEGO scalarises the multiobjective optimisation problem into

a single-objective one using weighted Chebyshev [23] and builds

a GP model on it. It then uses expected improvement to find the

next promising decision vector. The EHVI-EGO builds models for

each objective function and maximises the expected hypervolume

improvement to find a new promising decision vector. We used

the implementation of EHVI available at https://liacs.leidenuniv.

nl/~csmoda/index.php?page=code. In all algorithms, we used the

following parameter values: the maximum number of function

evaluations is 100, the size of the initial data set is 30 , and the

maximum size of the sets (𝑁s) is 5 (only for Bayesian optimisation

over sets). We replicated each run 11 times with different random

seeds.

Figures 1 and 2 show the evolution of the hypervolume ratio

(ratio of hypervolume of the nondominated solution at the current

iteration to the hypervolume of the Pareto front) of the data set over

number of expensive function evaluations for problems with 2 and

3 objectives respectively. We also show the IGD+ [10] with number

of exepensive function evaluations in Figures 3 and 4. In most cases,

BO over sets with hypervolume obtains similar results to ParEGO

and EHVI-EGO. On the other hand, BO over sets with 𝜖-indicator

did not performwell on DTLZ6 andDTLZ7. The similar findings can

also be observed in Figures 5 and 6, which show the nondominated

solutions in the final data set of the different algorithms.

DTLZ2 is an easy problem and all algorithms converge close

to the Pareto front. No algorithm performed well on DTLZ4. The

reason is that DTLZ4 has a dense set of solutions near the 𝑓𝑚–𝑓1
plane resulting in variable density of solutions, whichmakes finding

promising decision vectors challenging for an algorithm using GP
models. The DTLZ5 problem has a degenerated Pareto front with

a natural bias for solutions close to the Pareto front [4], which

makes the problem easy to solve and, as a result, all algorithms

converged close the Pareto front in DTLZ5. DTLZ6 is a difficult

problem to solve because of many-to-one mapping. All algorithms

found it difficult to solve DTLZ6 and BO over sets with 𝜖-indicator

performed the worst. DTLZ7 has a disconnected Pareto front but all

the objectives are separable. This makes the problem easy to solve

especially when the models are built for each objective function

as in EHVI-EGO. The performance of the 𝜖 indicator needs to be

investigated further.

The training time of the GP model with set based and non-set

based kernel (as in ParEGO) is shown in Figure 7 (top). In this

work, we used the Gaussian kernel in both set based and non-

set based kernels. As mentioned in Section 3, the computational

complexity is more than the traditional non-set based kernel, which

can increase the training time of GP model. The training time

can also be affected by the cardinality of the sets and we plan to

investigate the sensitivity of cardinality in the performance and

training time in the future. Further, the time to generate sets for

training the GP model is shown in Figure 7 (bottom). As mentioned

in Section 4.1, we used the hypervolume contribution to generate

sets, thus it is expected that time increases with size of the data

https://liacs.leidenuniv.nl/~csmoda/index.php?page=code
https://liacs.leidenuniv.nl/~csmoda/index.php?page=code
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Figure 1: Performance of BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ problems with
two objectives

Figure 2: Performance of BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ problems with
three objectives
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Figure 3: Performance of BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ problems with
two objectives

Figure 4: Performance of BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ problems with
three objectives
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Figure 5: Nondominated solutions from BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ
problems with two objectives

Figure 6: Nondominated solutions from BO over sets with Hypervolume and 𝜖-indicators, ParEGO and EHVI-EGO on DTLZ
problems with three objectives
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Figure 7: Training time of the GP model with set and non-
set based kernel (top) and time to generate sets for train-
ing the set based GP (bottom). The cardinality of the sets
in these figures is fixed to five.

set (or number of function evaluations). However, it is important

to mention that the computation time of training the model and

generating sets is assumed to be significantly lower than evaluating

an expensive objective function.

6 CONCLUSION
In this work, we study the suitability of a set-based kernel in Gauss-

ian processes to optimise unary quality indicators in multi-objective

optimisation with expensive objective functions. We focused here

on the hypervolume and multiplicative-𝜖 indicators.

Our results show that the results of Bayesian optimisation over

sets using the hypervolume indicator are comparable to those of

exisiting Bayesian multiobjective optimisation methods with non-

set based kernel, such as ParEGO and EHVI-EGO, with no method

being the worst nor the best in all problems. On the other hand,

Bayesian optimisation over sets using the 𝜖-indicator did not per-

form well in general, being typically the worst method in all prob-

lems. This may be due to its weaker ability, compared to the hyper-

volume, to differentiate among sets. Moreover, in the computation

of 𝜖-indicator, we used as a reference set, the worst nondominated

set in the data set, instead of the best nondominated set as it is usual

in the computation of the unary 𝜖-indicator. The performance of

the 𝜖 indicator needs to be investigated further.

A set-based approach for Bayesian multi-objective optimisation

has several advantages. First, the overall goal in multi-objective

optimisation is to find a good approximation set of the Pareto front,
thus a set-based approachmore closely matches this goal. Second, in

principle, there are more ways of generating training sets than the

number of individual decision vectors in the data set, thus, in princi-

ple, one can generate more training data for a set-based model than

for a non-set based one with the same number of expensive evalua-

tions. Third, at each iteration, the set-based approach generates a

new candidate set, whose elements may be evaluated in parallel,

thus the proposed approach is suitable for batch evaluations.

Although the experiments here are preliminary and limited in

scope, they suggest that Bayesian optimisation over sets may be

a promising research direction in the context of expensive multi-

objective optimisation. There are several possible improvements to

the ideas presented here. First, our proposal for generating training

sets is limited to a fixed and relatively small maximum cardinality,

which is a user-defined parameter. Improvements in computational

complexity are possible by approximating the set-based kernel,

which would allow us to consider larger set cardinalities. The use

of a variable set cardinality is also worth studying to remove the

dependency on this user-defined parameter. Second, alternative

approaches for generating the training sets are clearly possible

and they are likely to strongly affect the performance of Bayesian

optimisation over sets. Third, extending the approach to other qual-

ity indicators over sets (or combinations thereof) would also be

interesting. Finally, a more extensive empirical analysis considering

other benchmarks and larger number of objectives and decisions

variables would help to understand the scalability of Bayesian opti-

misation over sets.

Reproducibility. Source code and data sets required to reproduce the results

presented in this paper are available at doi:10.5281/zenodo.4675569 .
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