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Abstract

Background Skeletal muscle atrophy manifests across numerous diseases; however, the extent of
similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent
two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most
effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic
signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and ther-
apeutic targets against, muscle atrophy in conditions of high socio-economic relevance.
Methods Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data
sets generated from young (18–35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization
or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle.
Results Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across
conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for
mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the
central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation
regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly
up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and
immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced
ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes.
Conclusions Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of
RET. Thus, themechanisms of unloading cannot be derived from studyingmuscle loading alone and provides amolecular
basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM
mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to
RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating
disuse/ageing atrophy.
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Background

As the largest tissue in the body, the functions of skeletal
muscle extend beyond locomotion and structural support,1

providing storage for glucose2 and lipids3 used for energy
production and providing the largest amino acid reservoir
for systemic release in times of organismal need.4 Thus, mus-
cle atrophy associates with increased risk of frailty-related
falls,5,6 increased incidence of metabolic disease,7 and ulti-
mately, death.8 Indeed, muscle atrophy is a prominent feature
of several of the World’s key health challenges including age-
ing, cardiovascular disease, obesity, diabetes, and cancer.7,9 As
a result, the most recently available estimates of annual cost
for age-related atrophy (sarcopenia) alone is $18.5 billion
(USA, 2000)10 and £2.5 billion (UK, 2019).11 Despite the high
socio-economic relevance of maintaining healthy muscle
mass, the mechanisms regulating muscle atrophy and,
conversely, hypertrophy are incompletely understood. There
is, therefore, a need to establish robust molecular features
of atrophy and hypertrophy in order to efficiently promote
targeted therapeutics with efficacy across atrophying
conditions.

Two of the most prominent lifestyle-associated atrophic
factors include muscle disuse and ageing. For example, muscle
atrophy has been reproducibly detected during periods of
disuse lasting ≥7 days, as occurs with acute hospitalization, in-
jury, illness, and inactivity.12–14 Thus, despite being relatively
understudied, the health consequences of disuse places inac-
tivity as one of the top five causes of death globally.15 Slower
atrophy also occurs as an inevitable consequence of the
ageing process, with muscle mass declining at rates of ~0.5–
1.2% per year from the age of 50.16 Disuse and ageing, there-
fore, represent phenotypically and aetiologically interlinked
atrophic stimuli, with repeated periods of disuse likely serving
a central causative role in age-related muscle decline.13

Resistance exercise training (RET) remains the most
effective non-pharmacological intervention to mitigate and
recover from disuse17,18 and to attenuate progression of
age-related muscle atrophy.19 Teleologically, the central
molecular drivers of RET-induced hypertrophy might be the
direct inverse of those governing disuse-atrophy; indeed, mi-
tochondrial and extracellular matrix (ECM) gene signatures
display opposing expression during RET vs. disuse.20–22 Simi-
larly, key regulators of the well-established blunted ageing
hypertrophic response to RET23 might exactly oppose ‘normal’
RET responses in younger people and/or cluster to entirely
distinct molecular pathways. Nonetheless, few studies
have directly examined the muscle transcriptome of RET in
comparison with either disuse or ageing RET responses,24–26

precluding a consensus on robust molecular features.

Contributing to this modest progress is certainly the signifi-
cant technical and financial difficulty associated with
performing sufficiently controlled human disuse/ageing/RET
clinical trials from which cause-and-effect can be inferred.27

However, the emergence of OMIC technologies has advanced
the mechanistic insight possible from human randomized con-
trolled trials. Indeed, recent meta-analysis of differential gene
expression found a ‘mRNA metabolism’ signature inverted be-
tween disuse and RET, as well as distinct profiles characteriz-
ing RET (increased ECM remodelling) and disuse (reduced
mitochondrial pathways and increased ubiquitination) in
young-middle aged adults.28 Exploiting big data can thus be-
gin to identify robust transcriptional patterns characterizing
atrophic and hypertrophic adaptations.

Disuse and RET transcriptomic studies are also often
characterized by differing methodologies (e.g. baseline vol-
unteer characteristics and experimental protocol employed),
variable control of key confounders (e.g. diet and activity
status), and an individual lack of statistical power, hindering
the discovery of robust biosignatures. As such,
transcriptomic meta-analysis offers a judicious strategy to
overcome these limitations and aid biomarker discovery
within disuse/(ageing) RET muscle adaptation. Indeed, the
integration of multiple related transcriptomic data sets into
a single analysis has improved the power to confirm/detect
novel biosignatures in other societally important pathophys-
iological scenarios such as cancer and diabetes29,30 and
recently, to identify global transcriptional responses to
exercise and inactivity28 and genes that correlate with
exercise-induced changes in muscle mass.26 As a statistical
approach, transcriptomic meta-analysis has been routinely
applied to identify robust gene-level expression changes.
Nevertheless, the utility of meta-analysis can be further ex-
tended to the network-level, where molecular complexity is
accounted for by modelling gene–gene interactions in the
form of a co-expression network, allowing the identification
of concordant patterns of gene co-regulation associated
with physiological phenotypes.31 Network-level meta-analy-
sis therefore offers a more holistic, biologically-driven view
of conserved molecular mechanisms regulating physiological
phenomena, while gene-level meta-analysis remains valu-
able in the selection process of candidate genes.32 Thus,
combining gene-level and network-level meta-analyses
should present a powerful framework for identifying the
most biologically relevant and robust candidate targets.32

To this end, we applied an integrated transcriptomic
meta-analysis framework to publicly available data with
the aim of identifying robust molecular pathways and gene
candidates driving: (i) divergent responses to RET vs. disuse
and (ii) age-related responses to RET.
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Methods

Transcriptomic data mining

Relevant transcriptomic data sets were sought via data mining
of the Gene Expression Omnibus and ArrayExpress public re-
positories: up to and including September 2019. To compare
disuse-related and RET-related transcriptional responses in
the context of age, our search implemented the following
inclusion criteria: (i) recruitment of healthy (i.e. uninjured
and non-diseased) volunteers aged either 18–35 years
(young) and/or ≥60 years (older); (ii) employment of a disuse
intervention (unilateral limb immobilization or bed rest) last-
ing ≥7 days and/or a RET protocol lasting ≥3 weeks; (iii) a
within-person study design in which rested (i.e. not acutely
exercised) m. vastus lateralis samples were obtained both
pre-intervention and post-intervention; and (iv) expression
profiling undertaken using a non-customized microarray (re-
fer to original publications for RNA handling procedures).
We chose to include only microarray data sets herein to limit
the potential for technological bias(es) upon aggregating mi-
croarray and RNA-sequencing data (particularly in the context
of meta-network analyses)33,34 and because there was an in-
sufficient number of RNA-sequencing data sets available to
conduct meta-analyses on at the time of searching (one RET
and one disuse).25,35 In order to establish universal gene sig-
natures of RET/disuse muscle adaptation, we did not exclude
studies based on the type of disuse intervention (i.e. unilateral
limb immobilization and bed rest) or RET protocol (i.e. inten-
sity, frequency) employed. Our implemented minimum cut-
offs for the duration of disuse/RET intervention were chosen
because disuse-induced muscle atrophy is reproducibly de-
tectable at ≥7 days,12,14 while RET-induced hypertrophic gains
(and not swelling-associated muscle hypertrophy)36 are de-
tectable after 3 weeks in both young and older
individuals.37,38 In total, 11 data sets (3 × disuse21,39,40;
3 × young RET20,23,24; 5 × older RET23,24,41–43) across nine dis-
tinct studies were included in downstream analyses (Table 1).

Data pre-processing

Arrays were processed on a data set-by-data set basis in line
with procedures as standard for their corresponding plat-
form, using the limma and oligo R packages where
appropriate.44,45 Specifically, all data sets generated using
an Illumina array platform were normalized using the ‘neqc’
algorithm,46 in which background correction was performed
using negative control probes and between-array quantile
normalization performed using both negative and positive
controls, with values consequently represented on the log2
scale. For data sets generated using an Agilent array plat-
form, arrays were background corrected using the ‘normexp’

method46 and normalized across one another using quantile
normalization, before values were transformed to be on the
log2 scale. All data sets generated using an Affymetrix array
platform were normalized using the Robust Multichip Aver-
age algorithm,47 of which comprised background correction
via subtraction, quantile normalization, and probe-level sum-
marization via median-polishing—with the net result being
intensity values on the log2 scale. This was with the excep-
tion of the data set GSE14901, which was generated using
the Affymetrix Human Genome U133 Plus 2.0 array platform
(Table 1) but only available as MAS5-calculated signal intensi-
ties. In which case, arrays were transformed to be repre-
sented on the log2 scale. For each data set, control probes
and probes without a corresponding Entrez Gene ID were
consequently removed and the expression of probes corre-
sponding to the same Entrez Gene ID then averaged. Finally,
data sets were filtered for the intersection of each of their re-
maining Entrez Gene ID’s, with the net result being a consis-
tent set of 8244 genes present in all data sets for use in
downstream analyses.

Gene-level meta-analysis of global expression
changes

Differential expression pre-intervention vs. post-intervention
was first estimated per gene within each separate data set
using empirical Bayes-moderated paired t-tests, as imple-
mented in the limma package for R.45 For each gene, individ-
ual (right-tailed) P values were then aggregated using the
Stouffer’s method48 to obtain a single meta-analysis P value
of its differential expression for each of the following data
set combinations: (i) the three disuse data sets; (ii) the three
young RET data sets, and (iii) the five older RET data sets. In
all cases, meta P values were corrected using the Benjamini–
Hochberg method to control for false discovery rate (FDR)
and genes defined as significantly differentially expressed
(DE) if they met all of the following criteria: (i) a corrected
meta P value ≤ 0.1, (ii) an absolute meta (mean) log fold-
change > 0.1, and (iii) a common direction of gene log
fold-change across all pertinent data sets. This strict overall
criterion for differential expression was applied to ensure
the robust detection of concordant gene expression changes
across individual data sets within each condition.

Network-level meta-analysis to identify universal
gene patterns

To gain a more holistic understanding of universal gene regu-
lation in each condition, we complemented the gene-level
meta-analysis with network-level meta-analysis. In particular,
we employed a ‘consensus’ network approach using the
weighted gene co-expression network analysis package
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implemented in R.49 Consensus networks comprise distinct
gene clusters (‘modules’) that are commonly present in
multiple independent data sets.31 Modules that compose a
consensus network therefore represent reproducible
co-expression relationships in a given scenario that are reflec-
tive of the underlying biology rather than technical
artefacts.31 Consensus networks were constructed for each
of the following data set combinations: (i) the three disuse
data sets, (ii) the three young RET data sets, and (iii) the five
older RET data sets.

Initially, a signed weighted adjacency matrix (Adj) quantify-
ing the connection strength between each pair of genes was
derived for each data set as Adj = |0.5 × (1 + Corr)|ß, where
Corr is the matrix of Pearson’s correlation coefficients that in-
dicate the degree of similarity in expression pattern between
any two given genes of that data set. The exponent ß was
chosen per data set in accordance with the scale-free topol-
ogy criterion50 as the lowest integer for which the corre-
sponding scale-free topology fitting index metric achieved
an appropriately high value (≥0.8). Each adjacency matrix
was then converted into a topological overlap matrix
(TOM), in which each entry provides a measure of the rela-
tive interconnectedness (‘common connections’) between a
given pair of genes within a given data set. For each data
set combination, TOMs were made comparable via calibra-
tion by single quantile scaling, with a consensus TOM (cTOM)
then defined in each case by taking the component-wise
(‘parallel’) minimum of the associated calibrated TOMs.

Each cTOM was then converted into a consensus dissimi-
larity measure (dis-cTOM = 1 � cTOM), with consensus
networks consequently built for each data set combination
via hierarchical clustering of their respective dis-cTOMs using
average linkage as a distance metric. The modules of each
consensus network were subsequently determined using
the cutreeDynamic algorithm,51 with a minimum module size
of 50 genes selected so as to obtain moderately large and
distinct modules in each instance, minimizing potential
transcriptional noise that can occur when detecting gene
modules in smaller-sized data sets.52,53 Finally, the composite
expression of genes within a given consensus module was
calculated on a per data set basis by taking the first principal
component of module gene expression: herein referred to as
the module ‘eigengene’. Each data set therefore has an
eigengene per module of its associated consensus network.32

Modules within each consensus network were consequently
merged if they were highly correlated (minimum eigengene
correlation across its data sets > 0.75).

After constructing each consensus network, network-level
meta-analysis was undertaken in similar fashion to above,
but with the focus instead being on establishing differentially
regulated consensus modules within each network. As such,
differential regulation pre-intervention vs. post-intervention
was first estimated per module eigengene of each individual
data set. Then, the individual (right-tailed) P values of

differential eigengene expression in each data set were
aggregated per consensus module to calculate a single,
corrected meta-analysis P value of that module’s differential
regulation. In any case, a consensus module was defined as
being significantly differentially regulated using the same
criteria as outlined above, but with the requisite for criterion
(iii) instead being a common direction of eigengene change
across all pertinent data sets, rather than a common direction
of gene log fold-change.

Establishing concordant and discordant gene
patterns across conditions

To determine common and uniquely regulated genes
across conditions of interest, we utilized the rank–rank
hypergeometric overlap (RRHO) algorithm,54 in which genes
were ranked on sign of meta log fold-change multiplied by
the negative log10 of their corrected meta P value. Specific
comparisons made were as follows: (i) young RET vs. disuse
and (ii) young RET vs. older RET. In each case, commonly reg-
ulated genes were defined as those significantly DE in both
conditions and present within the optimal overlapping gene
set(s) between conditions. Uniquely regulated genes in each
case were then defined as those significantly DE in a single
condition and not present within the optimal overlapping
gene set(s) between conditions. When comparing between
young RET and disuse, commonly regulated genes were
further defined on the basis of concordant vs. divergent
regulation.

Inferring common and unique regulation at the
network-level is slightly more intricate than is at the individ-
ual gene-level. Indeed, because network construction and
module detection are unsupervised processes, individual net-
works are highly unlikely to be direct mirror images of one
another in terms of their precise module compositions. Even
then, module labels are arbitrary, and so, it would not neces-
sarily hold true that (e.g.) module ‘M1’ in one network would
equal module ‘M1’ of another network. There is also the po-
tential that a particular set of genes form a module in one
network but not another due to unique underlying biology
in a given condition. To therefore make individual consensus
networks more aligned to one another for comparison, we
consequently utilized the weighted gene co-expression net-
work analysis matchLabels function.55 With this function,
module gene compositions are compared between a ‘refer-
ence’ and ‘source’ network using Fisher’s exact test. Modules
in the source network are then subsequently renamed in line
with the module labels of the reference network so that
modules between networks with a significant number of
overlapping genes also then have the same label (but such
that no two modules of the source network are renamed
with the same label of the reference network). Thus, modules
with the same label in both networks have a significant
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number of overlapping genes, but not necessarily identical
gene compositions, and modules with labels unique to a sin-
gle network are not recapitulated in the other network.55

Clearly, this can be done only for two networks at any one
time. Because our aim was to compare the young RET con-
sensus network with both the disuse and older RET consen-
sus networks, the young RET consensus network was thus
used as the reference network, and modules of the disuse
and older RET consensus networks were relabelled to be in
line with those comprising the young RET consensus network.
Note, it does not necessarily then hold true that the disuse
and older RET consensus networks are comparable with one
another. However, comparing these conditions was not the
aim of this work. After this module calibration process, we
were then able to make inferences on (un)common and
unique module regulation by comparing across the differen-
tially regulated consensus modules of: (i) the young RET
and disuse networks and (ii) the young RET and older RET
networks.

Functional annotation of (un)loading-associated
gene patterns

The functional characteristics of DE genes and differentially
regulated consensus network modules were derived by test-
ing their comprising gene lists for both Gene Ontology enrich-
ment and pathway enrichment, using the Enrichr web
server.56 In the case of Gene Ontology analysis, we focused
on enrichment for Biological Process terms.57 For pathway
analysis, we focused on enrichment for terms contained
within the Reactome Pathway Database.58 In all instances,
terms with a Benjamini–Hochberg corrected P value < 0.05
were defined as being enriched.

Network-driven identification of hub genes as
candidate mechanistic targets

In order to identify candidate regulatory molecules of muscle
(mal)adaptation to RET and/or disuse, we first deduced con-
sensus hub genes contained within our differentially regu-
lated consensus network modules.32,59 In line with the
overarching concept of consensus network analysis, consen-
sus hub genes represent module hub genes that are common
in multiple independent data sets, the identification of which
can be more useful than a gene-level meta-analysis P value
for identifying biologically meaningful gene lists.32 Here,
hub genes in consensus modules were derived using the con-
sensus module membership metric—a measure that is
strongly related to the ‘intramodular connectivity’ metric
(another common measure traditionally used for the pur-
poses of hub gene feature selection), but with the added
benefit of being more suitable for candidate gene screening

during network-based meta-analyses.32,60 In brief, a module
membership value for each gene was first calculated on a
per data set basis as the correlation between its individual
gene expression profile in that data set and the data
set-specific module eigengene (with associated P values be-
ing one-sided to account for the fact that signed networks
were constructed). Then, a consensus module membership
value for each gene was derived as the Z-score obtained from
aggregating its gene–eigengene correlation across each perti-
nent data set using Stouffer’s method.32 Consensus module
genes with a consensus module membership value above
the 85th percentile were then defined as consensus hub
genes. Finally, we overlaid gene-level and network-level fea-
ture selections, which in the context of transcriptomic
meta-analysis may be a particularly useful approach to take
when attempting to prioritize for the most biologically rele-
vant candidate targets, because resultant genes are inher-
ently characterized by robust regulation and interlinkage.32

Visualizations were generated using Cytoscape (v3.7.1).61

Results

We first applied gene-level meta-analysis to identify robust
gene expression changes. The total numbers of DE genes iden-
tified for each condition (disuse and younger/older RET) are
shown in Table 2, with full lists of DE (plus RRHO) genes pro-
vided in Table S1. Overall, the number of DE genes observed
post-RET was considerably higher in young vs. older muscle
(Table 2). To gain a more holistic understanding of molecular
networks associated with atrophy/hypertrophy, we per-
formed consensus network construction of gene co-regula-
tion, summarized in Table 3 (gene-module assignments
shown in Table S2). We next performed meta-analysis of each
module’s eigengene (Methods). The number of differentially
regulated consensus modules under each condition were 14
during muscle disuse (7 up-regulated and 7 down-regulated),
9 in young muscle following RET (7 up-regulated and 2 down-
regulated), and 1 (down-regulated) in older muscle following
RET (Table S2). Enriched functional terms for DE (plus RRHO)
gene lists and differentially regulated consensus modules
are given in Tables S3 and S4, respectively.

Table 2 Total numbers of universally differentially expressed genes fol-
lowing RET in young and older muscle, as well as following disuse in
young muscle

Variable

RET Disuse

Young Older Young

Up-regulated 613 219 898
Down-regulated 257 207 932

RET, resistance exercise training.
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The transcriptional response to disuse is not simply
the inverse of the transcriptional response to
resistance exercise training

At the individual gene-level, we observed that (i) most gene
changes are unique to disuse or RET in isolation and (ii) genes

that do overlap are predominantly DE in the same direction,
while a limited number of overlapping genes display inverse
expression patterns between disuse and RET (Figure 1,
Table S3). Disuse was uniquely characterized by
up-regulation of genes involved in protein ubiquination and
mitotic cell cycle, while RET alone was characterized by
up-regulation of angiogenesis-related genes (Figure 1, Table
S3). Disuse and RET both resulted in up-regulation of genes
involved in immune signalling, some were the same genes
while some were unique to each condition. Similarly, certain
genes involved in ECM organization were up-regulated by
both disuse and RET, whereas others were only
up-regulated by RET (Figure 1, Table S3). Thus, while diver-
gent muscle growth responses to disuse vs. RET might be par-
tially underpinned by distinct immune system/ECM
remodelling molecular responses, some pleiotropic regula-
tion might exist within commonly regulated aspects of these
pathways. Lastly, disuse and RET induced inverted expression

Figure 1 Comparison of gene-level expression changes with RET vs. disuse. Venn diagram illustrates the degree of overlap between RET-induced and
disuse-induced transcriptomic changes for all possible permutations, as determined via rank–rank hypergeometric overlap (RRHO) analysis. Outer
boxes provide representative summaries of enriched Gene Ontology/Reactome Pathway terms for genes pertaining to each given scenario. The top
5 common and uniquely regulated genes when ranked by meta log2 fold-change (as based on RRHO results) are provided within associated segment
of the Venn diagram. Note: for concordant and discordant RRHO gene lists, only the intersection of top 5 ranking genes across each associated scenario
is provided. ECM, extracellular matrix; RET, resistance exercise training.

Table 3 Module characteristics of the consensus networks constructed
for each of the young RET, older RET, and muscle disuse data set
combinations

Characteristic

Consensus network

Young RET Older RET Disuse

Total modules 31 34 25
No. genes per module
Mean 266 242 330
Range 72–667 84–734 79–992

RET, resistance exercise training.
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profiles for 59 genes (Figure 1, Table S3). Eighteen were
genes down-regulated by disuse but up-regulated by RET,
which were heavily enriched for mitochondrial respiration
processes (Figure 1, Table S3). A further 41 genes were
up-regulated by disuse but down-regulated by RET, but these
failed to cluster to any functional terms (Figure 1, Table S3).
Interestingly, among the top five ranked DE genes in both
conditions (i.e. top 5 down-regulated by RET and top 5 up-
regulated by disuse of inverted responses) was myostatin
(MSTN), a key molecule involved in the regulation of skeletal
muscle mass62,63 (Figure 1).

Network-level meta-analysis revealed similar themes as
the gene-level approach. Both disuse and RET were charac-
terized by separate up-regulation of immune signalling
networks, common up-regulation of further immunity path-
ways and ECM organization networks, and inverse (down-
regulated by disuse and up-regulated by RET) regulation of
a mitochondrial function network (Figure 2A, Table S4).
Additionally, network meta-analysis revealed a divergent

disuse vs. RET profile characterized by a disuse up-regulated
‘translation-related’ molecular network (M18) that was
down-regulated by RET (Figure 2A, Table S4). Next, we de-
rived hub genes of differentially regulated consensus mod-
ules by screening for genes with robustly high intramodule
membership, returning a base list of candidate regulatory
molecules of muscle adaptation (708 and 319 hub genes in
the young disuse and RET networks, respectively) (Table
S5). For the three consensus modules with altered regulation
in the disuse and RET networks (M4, M15, and M18), we fur-
ther prioritized hub genes for those displaying a high
intramodular hub status under both conditions. All three
modules each had at least one gene with shared hub gene
status across both respective networks, with the overlap
reaching significance in two modules (M4 and M15) (Figures
2B–3D). Common hub genes identified in the divergent dis-
use vs. RET profile were as follows: COX4I1 (Cytochrome c ox-
idase subunit 4 isoform 1), ENDOG (Endonuclease G),
MRPL12 (Mitochondrial Ribosomal Protein L12), NDUFV2

Figure 2 Consensus network analysis of RET vs. disuse responses in young muscle. Panel (A): Consensus modules shown are those differentially reg-
ulated by RET and/or disuse in young muscle. Red and blue shading denote significant up-regulation and down-regulation following each condition (vs.
baseline), respectively. In all cases, functional summaries are representative of enriched Gene Ontology/Reactome Pathway terms for each given mod-
ule. Also provided is the top ranked hub gene for each module per consensus network. Panels (B)–(D): Hub gene network visualizations for consensus
modules concordantly or inversely regulated by RET and disuse in young muscle. Each visualization illustrates all corresponding hub genes of the given
consensus module on a per condition basis, with dual-coloured nodes thus representing genes that are overlapping consensus module hubs for both
given conditions. Red borders (if any) illustrate the overlapping hub genes in each case that also appear among the corresponding list of RRHO genes
for that particular scenario (e.g. up-regulated by RET but down-regulated by disuse). RET, resistance exercise training; RRHO, rank–rank
hypergeometric overlap.
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(NADH:Ubiquinone Oxidoreductase Core Subunit V2) and
GOT2 (Glutamic-Oxaloacetic Transaminase 2) for
mitochondrial responses, and ZMYND11 (Zinc Finger
MYND-Type Containing 11) for translational regulation
(Figures 2B and 3C, Table S5). We further screened our base
candidate gene lists for module hub genes contained within
the corresponding RRHO gene list (e.g. for a module up-reg-
ulated only in the RET network vs. disuse network, we consid-
ered the RRHO gene list uniquely up-regulated by RET vs.
disuse, etc.) (Table S5). For consensus modules across the dis-
use and RET networks, COX4I1, ENDOG, and GOT2 were
highlighted among inverted mitochondrial responses (Figure
2B), and COL1A1 (Collagen type 1 alpha 1), COL1A2 (Collagen
type 1 alpha 1), COL5A2 (Collagen type 5 alpha 2), CTSK (Ca-
thepsin K), DAB2 (Disabled homologue 2), EEF1A1 (Eukaryotic
translation elongation factor 1 alpha 1), HTRA1 (HtrA Serine

Peptidase 1), SPARC (Secreted protein acidic and rich in cyste-
ine), TYROBP (TYRO protein tyrosine kinase binding protein)
highlighted among the commonly regulated ECM/immune re-
sponses after disuse and RET (Figure 2D, Table S5).

Older muscle displays a blunted transcriptional
response to resistance exercise training compared
with younger muscle

Virtually all genes up-regulated by RET in older muscle were
also up-regulated in young muscle, but a substantial number
of genes (n = 140) up-regulated post-RET in younger muscle
were not similarly up-regulated in older muscle (Figure 3A,
Table S1). Genes up-regulated by RET in young and older
muscle were primarily involved in ECM organization, axon

Figure 3 Comparison of gene-level expression changes in young vs. older muscle following RET. Panel (A): Venn diagrams depicting the degree of over-
lap between up-regulated and down-regulated genes post-RET in young vs. older muscle, as based on RRHO analyses. Panel (B): Representative
enriched Gene Ontology/Reactome Pathway terms for common and uniquely regulated genes post-RET in young vs. older muscle. A number of genes
enriched in a given term are provided within associated boxes of the heatmap. Strength of colour shading depicts the magnitude of enrichment sig-
nificance, given by the negative log10 of that term’s enrichment FDR P value (with darker shading analogous with a stronger FDR P value). Panel (C):
Top 5 common and uniquely regulated genes (up-regulated and down-regulated) per age group, ranked by meta log2 fold-change (as based on RRHO
results). Lighter shading denotes differential regulation for that age group, with darker shading indicating gene is among the top 5 ranked by meta log2
fold-change for a given scenario (e.g. uniquely up-regulated post-RET in young vs. older muscle). RET, resistance exercise training.
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guidance, and the regulation of angiogenesis (Figure 3B,
Table S3). The 140 genes uniquely up-regulated post-RET in
younger muscle clustered to additional ECM organization
processes, as well as immune-related signalling pathways
(Figure 3B, Table S3). Interestingly, 11 of the 140 uniquely
up-regulated young RET genes aligned to ECM organization,
some of which have established roles in mechanical force

transmission [integrin subunits ITGAM (Integrin Subunit Al-
pha M), ITGAE (Integrin Alpha E), and ITGB2 (Integrin Subunit
Beta 2)], regenerative pathways [TNC (Tenascin C)], and colla-
gen reinforcing processes [PLOD2 (Procollagen-lysine, 2-
oxogluterate 5-dioxygenase 2)] (Figure 3B, Table S3). Addi-
tionally, 28 of the 140 genes uniquely up-regulated in young
RET muscle aligned to the immune system, including several

Figure 4 Consensus network analysis of RET responses in young muscle vs. older muscle. Panel (A): Consensus modules shown are those differentially
regulated by RET in young muscle and/or older muscle. Red and blue shading denote significant up-regulation and down-regulation following RET (vs.
baseline), respectively. In all cases, functional summaries are representative of enriched Gene Ontology/Reactome Pathway terms for each given mod-
ule. Also provided is the top ranked hub gene for each module per consensus network. Panel (B): Hub gene network visualization for M13; the con-
sensus modules concordantly down-regulated by RET in young and older muscle. Visualization illustrates all corresponding hub genes of the given
consensus module on a per age basis, with dual-coloured nodes thus representing genes that are overlapping consensus module hubs for both ages.
Red borders (if any) illustrate the overlapping hub genes in each case that also appear among the corresponding list of RRHO genes for that particular
scenario (i.e. commonly down-regulated by RET in both young and older muscle). RET, resistance exercise training.
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caspase proteolytic enzymes [CASP1 (Caspase 1) and CASP3
(Caspase 1)]. Within the top 5 ranked genes uniquely up-reg-
ulated in young RET muscle, the highest-ranked gene was the
myosin binding protein MYBPH and also included two inflam-
mation/immune-related transcripts [CCL8 (Chemokine ligand
8) and CXCL10 (C-X-C Motif Chemokine Ligand 10)] (Figure
3C). Despite the clear young muscle-specific ECM signature,
several collagens were also commonly regulated in both
young and older muscle following RET [COL1A1 (Collagen
Type I Alpha 1 Chain), COL1A2 (Collagen Type I Alpha 2
Chain), COL3A1 (Collagen Type III Alpha 1 Chain), and COL4A2
(Collagen Type IV Alpha 1 Chain)] (Figure 3C). Substantially,
fewer genes were down-regulated by RET in both younger
and older muscle (Figure 3A, Table S1), all of which failed to
cluster to any functional terms (Figure 3B, Table S3).

At the network-level, similar to gene-level analysis, only
young muscle displayed a post-RET up-regulation of genes
comprising several immune signalling molecular networks
and ECM organizational response (Figure 4A, Table S4). How-
ever, network analysis provided functional insight into
down-regulated RET genes, with both younger and older
RET being characterized by the down-regulation of similar
‘ubiquination/RNA processing’-related molecular networks
(M13) (Figure 4A, Table S4), the common hub genes of which
were identified to be PWP1 (Periodic Typtophan Protein 1),
PSMB1 (Proteasome 20S Subunit Beta 1) and RAF1 (c-RAF)
(Figure 4B, Table S5). Overlaying corresponding consensus
module hub gene and RRHO gene lists further identified
ARF3 (ADP-ribosylation factor 3), ARPC1B (Actin Related Pro-
tein 2/3 Complex Subunit 1B), BPHL (Biphenyl Hydrolase
Like), CAP1 (Cyclase Associated Actin Cytoskeleton Regula-
tory Protein 1), EMP1 (Epithelial Membrane Protein 1), HIF1A
(Hypoxia-Inducible Factor 1-alpha), LST1 (Leukocyte Specific
Transcript 1), RAB31 (Ras-related protein Rab31), SERPINI1
(Serpin Family I Member 1), TUFM (Tu Translation Elongation
Factor), and VIM (Vimentin) as prime candidates of
RET-induced muscle remodelling specifically in younger age
(Table S5).

Discussion

Herein, we integrated gene-level and network-level ap-
proaches into a single transcriptomic meta-analysis pipeline
to identify robust biosignatures and candidate regulatory
molecules of muscle adaptation under societally important
atrophic and hypertrophic conditions. Our findings reveal
inverted expression profiles after disuse compared with RET
and a reduced transcriptional responsiveness of older muscle
to RET. This analysis should serve as a solid foundation from
which to understand and develop targeted interventions
against disuse-related atrophy and age-related responsive-
ness to RET, with potential relevance to other diseases

characterized by muscle loss (e.g. muscular dystrophy, cancer,
and rheumatoid arthritis).

Despite largely distinct transcriptional signatures,
mitochondrial and translational regulation display
converse responses to disuse and resistance
exercise training

Disuse and RET elicit opposing muscle phenotypes (i.e. atro-
phy and hypertrophy, respectively),37,64 thus one might antic-
ipate opposing transcriptional responses. Consistent with this
notion, we illustrate that declines in a subset of mitochon-
drial genes and increases in some translational regulation
genes in response to disuse occur in a directly opposing man-
ner following RET. However, we also find that the majority of
gene changes induced by disuse and RET are entirely distinct
from one another, implying muscle adaptations to unloading
vs. loading are largely separate molecular processes. Thus, a
key finding from our meta-analysis is that the mechanisms
of disuse are not simply the converse of RET and cannot be
derived from studying muscle loading alone. These observa-
tions of RET failing to target all the molecular changes associ-
ated with disuse, might reflect reports that RET is
incompletely effective at countering disuse atrophy18 and
provides a robust molecular platform from which to deter-
mine the precise disuse-RET relationship.

Mitochondria are critical organelles regulating muscle me-
tabolism, health, and function.65 Indeed, mitochondrial dy-
namics and/or respiratory capacity decrease during disuse66

and increase during RET.67 Our findings support and extend
recent meta-analyses reporting down-regulated mitochon-
drial profiles in disuse alone,28 by establishing an opposing
mitochondrial profile between disuse and RET and establish-
ing a putative molecular basis for divergent mitochondrial ad-
aptations. We identified COX4I1 as one of the top genes in
the divergent mitochondrial response to disuse and RET.
COX4I1 is an isoform of electron transport chain complex
IV, which is often used as a common marker of mitochondrial
content68 and mitochondrial oxidative metabolism.69 Given
that complex IV is a terminal electron acceptor for the proton
motive force driving ATP production,70 it is plausible that
COX4I1 mechanistically contributes to enhanced mitochon-
drial respiratory capacity following RET.67 GOT2, which acts
within the malate–aspartate shuttle wherein NADH electrons
are delivered to electron transport chain complex I,71–73 was
also identified as displaying a divergent response to disuse
and RET. While a paucity of data exists in healthy humans,
in type II diabetics (typically characterized by impaired
mitochondrial function),74,75 GOT2 expression is lower com-
pared with control patients, which is also increased after en-
durance exercise training.73 These observations suggest that:
(i) prominent opposing transcriptional profiles could partially
explain impaired (disuse) vs. improved (RET) mitochondrial
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respiratory function and/or dynamics; and (ii) interventions
targeting mitochondria, such as electron donors, might repro-
duce some of the beneficial health effects of RET during
disuse.

Genes involved in translational regulation were also
identified as up-regulated by disuse and down-regulated by
RET. While seemingly paradoxical given that translation is a
key process driving MPS76 and, therefore, hypertrophy,77,78

RET-induced decreases in translational regulation might
reflect increased translational efficiency, as previously
shown.25,79 Such improved translational efficiency would re-
duce dependency on up-regulation of proteins involved in
the translation machinery to optimize anabolism. Corroborat-
ing this theory, a recent meta-analysis (which had a signifi-
cantly broader inclusion criteria and focused on differential
gene analysis alone) also identified an inverted ‘mRNA me-
tabolism’ signature between disuse and RET.28 Thus, alter-
nate regulation of translational machinery presents as a
robust molecular feature of disuse vs. RET. We also identified
MSTN as one of the top genes displaying an increase in re-
sponse to disuse and a decrease in response to RET,
supporting previous findings.28 Myostatin is one of the
best-described regulators of muscle mass, playing a key role
in muscle atrophy by synergistically impairing anabolic Akt
signalling while activating the catabolic ubiquitin proteasome
pathway to promote a negative net protein balance.62

Targeted analyses have previously reported lowered
myostatin expression after RET and increased expression
post-immobilization in young, healthy volunteers.80,81 These
observations suggest that interventions targeting transla-
tional regulation might also be efficacious during disuse. No-
tably, inhibition of myostatin has very recently been shown to
ameliorate muscle loss in rodents subject to disuse in
spaceflight,82 suggesting further clinical trials are warranted,
as previously suggested.62,63

Blunted transcriptional responses to resistance
exercise training might influence age-related
anabolic resistance

Physiologically, RET can induce muscle hypertrophy in
youth37 and in older age.83 However, muscle growth re-
sponses to RET are suboptimal in older age (termed ‘anabolic
resistance’ to RET),79,84 albeit through incompletely defined
mechanisms. In line with age-related responses to loading
in rodents,85 we found the young RET response to be charac-
terized by a much more substantial transcriptional response
(i.e. 140 uniquely up-regulated genes in young vs. only 17
in older muscle), that encapsulates most of the older RET
profile. Thus, while insufficient data on protein metabolism
and/or muscle mass within our analyses precludes functional
associations between transcriptional changes and true ana-
bolic resistance (i.e. blunted RET-induced muscle protein

synthesis/growth responses), our findings suggest that ana-
bolic resistance to RET might be partly underpinned by a con-
comitant age-related insensitivity to RET at the
transcriptional level.

Remodelling of the ECM plays a pivotal role in muscle
maintenance86 and, accordingly, RET-responsive genes com-
monly regulated in both age groups included ECM-related
collagens. Therefore, ageing muscle appears to retain capac-
ity for RET-induction of some individual ECM collagens, simi-
larly to young people. However, muscular benefits of
functional ECM are not limited to maintaining physical integ-
rity via structural collagens. Indeed, mechanical forces
exerted during exercise are transduced through the ECM into
focal adhesion structures, for conversion to biochemical sig-
nals (‘mechanotransduction’86,87). In this context, several
genes uniquely up-regulated in younger muscle that map to
ECM-related pathway terms also have established roles in
mechanotransduction. These included integrin-related genes
(ITGAM, ITGB2, and ITGAE); ECM-linked transmembrane
components that mechanically mediate wide-ranging cellular
processes88–90 including muscle metabolic health, structural
integrity, and growth.91 Other mechanotransduction associ-
ated genes showing this trend included PLOD2, a collagen
crosslinking molecule providing tensile integrity and collagen
organization,92 and TNC, that supports muscle matrix
remodelling93 and displays abnormal muscle damage/repair
responses in older muscle.94 Network analysis corroborated
young RET muscle-specific mechanotransduction signatures,
including overlapping young-specific hub/RRHO features
VIM (involved in hypertrophic signalling downstream of the
integrin cascade95) and ARPC1B (an Arp2/3 subunit required
for normal integrin adhesome assembly96). Lastly, the top
up-regulated gene in young, but not older RET responses
was the myosin binding protein, MYBPH. While relatively
uncharacterized, MYBPH up-regulation is a feature of severe
myopathy,97,98 thus the reasons for increased MYBPH in
healthy muscle RET responses is unclear. However, MYBPH
also functions in the integrin associated Rho kinase
2 > cofilin2 pathway,97,99 further implicating abnormal
mechanotransduction in ageing muscle RET responses. Com-
bined, these findings suggest some older muscle collagens re-
spond appropriately to RET, but faltering ECM-connected
transmembrane components might functionally manifest as
disorganized ECM and impair mechanically mediated remod-
elling/growth pathways. Targeting this force transduction
axis might, therefore, represent a promising avenue for
targeted therapeutic strategies.

Another functional class of diminished age-related tran-
scriptional responses to RET was inflammatory pathways.
The presence of chronic low-grade inflammation is well-
established in the aetiology of ageing muscle decline,100

which would narrow the physiological inflammatory range
and manifest as a loss of RET-induced inflammation gene
signatures, as observed herein. Interrogation of individual
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inflammatory-responsive genes identified caspase activation
as a central theme. Caspases stimulate essential proteolysis,
removing non-functional myofibrillar proteins to facilitate
deposition of new proteins for hypertrophic adaptation,101

such that impaired caspase transcript activation in ageing
could hinder effective sarcomere remodelling during RET.
Moreover, two of the top up-regulated genes in young RET
muscle were inflammatory chemokine transcripts CCL8 and
CXCL10, the abnormal regulation of which associates
with ageing muscle regenerative decline (CCL8102) and
impaired macrophage > satellite-cell-mediated myogenesis
(CXCL10103). Overall, a consistent pattern emerges where fail-
ure to mount proper RET-induced inflammatory responses
could hinder ageing muscle regenerative capacity and growth
responses.104

Young muscle also exhibited consistent RET up-regulation
of genes involved in immune-related signalling, which was
absent in older muscle. It is well-established that the immune
system plays an integral role in RET-induced muscle hypertro-
phy, in part through mediating satellite-cell dependent
muscle repair and regeneration.105 These findings thus pro-
vide further support to the transcriptional theme that poorer
RET adaptation of older muscle may be underpinned, at least
in part, by age-related impairments in muscle regenerative
capacity.106 Across the three immune-specific network mod-
ules uniquely up-regulated post-RET in young muscle (M14,
M20, and M28), we identified three hub genes that were also
robustly up-regulated at the gene-level exclusively in young
muscle following RET, namely, HIF1A, SERPINI1 (both M14),
and LST1 (M20). The identification of the oxygen-sensitive
subunit of the HIF-1 transcription factor, HIF1A, is notable
for its expression in nearly all innate and adaptive immune
populations107 and its expression in most tissues including
skeletal muscle.108 HIF-1 regulates the transcription of
>100 genes, many of which promote angiogenesis to in-
crease nutrient and oxygen transport capacity to muscle. Sig-
nalling downstream of HIF1A is also proposed to facilitate
muscle regeneration/growth by driving proliferation of satel-
lite cells.109 As such, HIF1A could represent a promising can-
didate for understanding attenuated adaptations of older
muscle to RET.

Study limitations

Variability across study protocols is a common caveat of
meta-analyses and, despite strict inclusion/exclusion criteria,
the duration of the disuse and RET programmes differed be-
tween studies within our analyses. Nonetheless, a critical cri-
terion was capturing atrophic/hypertrophic phenotypes to
which transcriptional profiles could be associated. Minimum
disuse/RET duration cut-offs were, therefore, implemented
that were sufficient to obtain muscle mass changes, as op-
posed to precisely matching intervention durations. It is also

unfortunate that detailed physiological data (e.g. individual
changes in muscle mass, strength and/or metabolism) was
not sufficiently available across our analysed data sets to as-
sess for molecular markers that associate with the magnitude
of interindividual variability in physiological responses to dis-
use and RET, as previously reported for the ageing exercise
response.23,110 Achieving this would promote identification
of candidate molecules that account for the
well-established variance in adaptive responses to disuse
and/or exercise training14,111,112 to identify the most promis-
ing therapeutic targets. Towards this end, future clinical stud-
ies would benefit from complementing health outcome
measures with OMIC measurements to unlock the significant
mechanistic potential of randomized controlled trials.

Conclusions and future perspectives

In summary, we provide the first integrated gene-level and
network-level meta-analytical approach to elucidate robust
molecular signatures and candidate drivers of muscle adapta-
tion to disuse and RET in the context of age. Our findings
show that limited gene features display inverted profiles to
disuse vs. RET, but for the most part, transcriptional re-
sponses to disuse and RET are entirely distinct, suggesting
muscle loading/unloading are largely independent molecular
processes. We also identify diminished expression of
ECM-linked mechanotransduction and inflammatory path-
ways as key features of ageing muscle RET adaptations. By
overlaying gene-level and network-level feature selections,
we further identify candidate therapeutic targets character-
ized by robust regulation (gene-level) and interlinkage (net-
work-level), which may aid the mitigation of, or accelerate
recovery from, muscle disuse atrophy and potentially wider-
ranging atrophic diseases (e.g. COX4I1, GOT2, and ENDOG),
and/or optimize RET-induced hypertrophy across the lifespan
(e.g., HIF1A).
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