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ABSTRACT
In this study we aim to characterize a way of proving which can
be produced in a primary mathematics classroom and explore the
factors that influence these processes and lead to changes in the
way of proving. Assuming proving as a socially embedded activ-
ity, we conceptualize it as the interplay between ‘construction’ and
‘substantiation’ based on a well-established theoretical framework
inmathematics education: the commognitive framework. A tangible
proving task was designed, based on the idea of operative proofs,
and implemented in a fifth-grade classroom in England. We anal-
ysed the construction and substantiationwhich fairly associatedwith
discursive features (word use, visual mediator, narrative, and rou-
tine) during the proving process. The results show that the interplay
between construction and substantiation developed progressively
rather than in a straightforward manner, in which previously con-
structed narratives are reconstructed or substantiated in amore gen-
eral context. This finding is relevant to understand the factors that
might influence primary students to change the use of examples and
the way of proving when used as a communicational means in prov-
ing. Our study has implications for possible continuity to proving
activities in secondary schools, and thus contributes to advancing the
research on proving in primary schools.
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1. Introduction

Proving is an essential but challenging activity in mathematical learning. Recent curricula
in various countries require proof and proving to be taught at all levels (e.g. in the Common
Core State Standards for School Mathematics in the United States (CCSSI;, 2010) and in
the National Curriculum forMathematics from theDepartment for Education (DfE; 2013)
in England). Although research on proof and proving has been rapidly expanding in recent
decades, mathematics education researchers acknowledge that what constitutes ‘proof’ and
‘proving’ is debatable (e.g. Mariotti et al., 2018; Reid & Knipping, 2010; Stylianides et al.,
2016; Stylianides et al., 2017). This implies that themeaning of proof and provingmay vary
according to the researcher’s perspective or epistemology (Balacheff, 2008). For instance,
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Stylianides et al. (2017) state that there are three different research perspectives, which refer
to different conceptualisations of proving:1

• Proving as problem-solving: These studies aim to understand the skills, competencies,
and dispositions that students need to produce an adequate performance in proof-
related activities (e.g. Komatsu, 2016; Kosko, 2016; Reid & Zack, 2009; Selden & Selden,
2013; Stylianides & Al-Murani, 2010; Weber & Alcock, 2004).

• Proving as convincing: These studies aim to understand students’ or teachers’ standards
ofmathematical conviction and their proximity to acceptable standards in the discipline
(e.g. Balacheff, 1988; Bell, 1976; Bieda & Lepak, 2014; Flores, 2006; Harel & Sowder,
1998).

• Proving as a socially embedded activity: These studies investigate how proof is practiced
withinmathematical and classroomcommunities (e.g. Fukawa-Connelly, 2012;Hemmi,
2008; Herbst & Chazan, 2003; Mueller et al., 2012; Whitenack & Knipping, 2002).

Per Stylianides et al. (2017), the first two perspectives implicitly (or explicitly) view proving
as an individual activity for problem-solving or convincing, but the third perspective treats
proving within a broader mathematical activity, which usually occurs in a social context to
develop an acceptable proof in a given community. Although the first two perspectives have
been well developed and many theoretical constructs are commonly used within each, the
third perspective is less developed and does not yet have common theoretical constructs
(Stylianides et al., 2017).

Here, we address the research perspective of proving as a socially embedded activity to
contribute to further developing theoretical grounding within this perspective by taking a
discursive (commognitive) approach to proof and proving. Sfard’s (2008, 2012, 2020) com-
mognitive framework conceives mathematical learning as a communicative activity and
an initiation into the mathematical community’s discursive practice. Despite many com-
mognitive studies, the area of proof and proving using commognitive theory as a research
topic remains relatively unexplored. While the commognitive framework is not a domain-
specific theory of proof and proving, it provides a set of notions suitable for conceptualizing
proof and proving as a discursive activity and characterizing its process in a theoretically
coherent way.

Another issue addressed here is regarding proof and proving in primary schools.
Researchers report how primary school students can engage in proof and proving (e.g.
Ball et al., 2002; Komatsu, 2010; Maher & Martino, 1996; Reid, 2002; Reid & Zack, 2009;
Stylianides, 2007, 2016). These studies suggest, for instance, the importance of proving
tasks which enable primary students to engage in proving, and the importance of different
informal representationswhich have the potential to developmore formal proving in upper
grades. However, further investigation in this research area is needed for both theoretical
and empirical aspects.

First, Stylianides and Stylianides (2017) concluded that further research into the design
of classroom-based interventions regarding proof and proving in primary schools is
needed because of ‘the gap that exists currently in many countries between elementary
and secondary school mathematics with students’ abrupt introduction to proof in the
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secondary school’ (p. 124). Our study contributes to literature by addressing the classroom-
based research regarding proving in primary schools by focusing on the transition to proof
and proving in secondary schools. In relation to this point, Campbell et al.’s (2019) syn-
thesis implied that this gap also exists in the publications of research studies as few articles
related to proof in primary grades were identified in their literature survey, though they
note that ‘it is possible that the word search used for this review left out articles related to
proof and argumentation in the primary grades’ (Campbell et al., 2019, p. 768). In fact, the
proof-related terms used in the research article for the primary grades may be diverse (e.g.
Widjaja et al., 2020). To bridge this gap regarding the research terminologies, we introduce
some theoretical terminologies regarding proof and proving based on the commognitive
framework.

Second, Campbell et al. (2020) argued that most existing research studies targeting the
early primary grades used proving tasks that did not require a general argument, but the
students used argument ‘to communicate with their classmates and explain their thinking
across specific cases’ (p. 766). Although it is reasonable that younger students can only
engage in proving with specific examples, our study creates an opportunity for primary
students to explore a general argument in their proving activities.

Third, regarding students’ proving activities across grades, the diverse formulations
of process and outcomes of proving in primary schools must also be considered. Reid
and Knipping (2010) highlighted that previous studies discussed different types of proofs;
examples include Harel and Sowder’s (1998) conceptualization of external, empirical, and
analytical proof schemes. Although such classifications can be useful to describe and dis-
tinguish students’ understanding of proofs in different grades, researchers are still working
towards a coherent theoretical approach to how and when a type of proof can develop into
another type (e.g. Ahmadpour et al., 2019). As earlier studies reported, a certain type of
proof can be produced even by primary school students.However, it is challenging to detect
such development due to the complex or auxiliary activity of proving, especially in primary
mathematics classrooms. Our study attempts to contribute to this aspect by conceptu-
alizing different types of proofs and investigating the dynamic process in the transition
between them.

Accordingly, in this study we aim to characterize a way of proving which can be pro-
duced in a primary mathematics classroom and explore the factors that influence these
processes and lead to changes in the way of proving. To achieve this, we first develop our
theoretical approach to proving based on the commognitive framework and design a prov-
ing task that can help primary students engage in proving activities; we then analyse their
classroom activities from the commognitive standpoint. By doing so, the commognitive
approach can contribute to advancing the research perspective of proving as a socially
embedded activity as well as developing methodology to characterize students’ way of
proving and their development in a theoretically coherent way.

2. Theoretical foundation

In this section, we first describe the commognitive framework’s general tenets and then
link it to the analysis of proof and proving by incorporating different types of proofs.
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2.1. Commognitive framework

In Sfard’s (2008) commognitive framework, ‘commognition’ combines ‘communication’
and ‘cognition’ because ‘these two processes are different (intrapersonal and interpersonal)
manifestations of the same phenomenon’ (Sfard, 2008, p. 296). This framework adopts
two epistemological assumptions: a participationist view of learning and non-dualist view
of knowledge. The former states that ‘mathematics learning is tantamount to becoming
a member of a mathematical community’ (Sfard, 2012, p. 2), and the latter means that
knowledge is not expressed in discourse but is itself a form of discourse.

In most commognitive research, four features of mathematical discourse are used to
analyse mathematics learning: word use (mathematical vocabulary and ordinary words
with special mathematical meanings); visual mediators (physical, diagrammatic, or sym-
bolic mediators of mathematical objects); narratives (e.g. theorems, definitions, and com-
putational rules endorsed or rejected in mathematical communities); and routines (regu-
larly employed repetitive activities and sets of meta-rules). A meta-rule (meta-discursive
rule) in routines is ‘an all-encompassing category that partially overlaps with the three for-
mer characteristics [of word use, visual mediators, and narratives]’ (Sfard, 2007, p. 576).
Accordingly, the development of mathematical discourse can be conceived at the object
level or the meta-level (Sfard, 2020):

• Object-level developments result in extending the existing sets of endorsed narratives
about already constructed mathematical objects.

• Meta-level developments involve changes in the meta-rules of the discourse.

Ameta-discursive shiftmay occurwhennewobject-level discourse is governed by different
meta-rules from those previously learned (Sfard, 2008).

2.2. Proof and proving in the commognitive framework

According to Sfard (2008), ‘exploration is a routine, whose performance counts as com-
pleted when an endorsable narrative is produced or substantiated’ (p. 224). Thus, ‘proving’
is an example of mathematical explorations in the commognitive framework. There are
three types of exploratory routines:

[C]onstruction, which is a discursive process resulting in new endorsable narratives; substan-
tiation, the action that helps mathematists decide whether to endorse previously constructed
narratives; and recall, the process one performs to be able to summon a narrative that was
endorsed in the past. (Sfard, 2008, p. 225; original emphasis)

Here, we focus on construction and substantiation, defining ‘proving’ as the process of com-
munication with oneself or others that allows for the construction and substantiation of a
narrative. This is adapted from Jeannotte and Kieran’s (2017) commognitive-framework-
based definition of mathematical reasoning, although they do not explicitly mention
construction and substantiation.2 Our definition has several connotations. The notion of
‘proof’ is conceived in relation to the substantiation of a narrative:

To substantiate, one produces a proof – a sequence of endorsed narratives, each of which is
deductively inferred from previous ones and the last of which is the narrative that is being
endorsed. [emphasis added] (Sfard, 2008, p. 232).
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This account can be considered formal proof (e.g. Blum & Kirsch, 1991), but other proof
types can also be produced to substantiate a narrative to argue whether statements are
true or false in a community. Thus, proving can be considered a process of producing a
proof, but proving is not only related to the substantiation process—it is also related to
construction because ‘in some cases, the process of construction, if correctly performed,
is already the act of substantiation’ (Sfard, 2008, p. 232). Additionally, ‘the activity of sub-
stantiation is recursive: Itmay always expand, because the substantiation itself is a narrative
that may become an object of substantiation’ (Sfard, 2008, p. 232). Furthermore, at object-
level development, both constructing (i.e. a discursive process resulting in a narrative) and
substantiating (i.e. a discursive process ensuring that a given narrative can be endorsed)
are important proving routines. In contrast, at meta-level development, when and how a
routine can change into another routine are essential. Thus, for the commognitive analysis
of proving, the study can focus on the transition between construction and substantiation
to characterize both object-level and meta-level proving.

2.3. Connection to other conceptualisations

The abovementioned definition of proving does not make it incompatible with other the-
oretical approaches. Stylianides (2007, 2016) defined proving as ‘broadly to denote the
mathematical activity associated with the search for a proof’ (Stylianides, 2016, p. 11) and
then provided a conceptualization of proof as a mathematical argument in a classroom
community, composed of a set of accepted statements,modes of argumentation, andmodes
of argument representation. Stylianides’s notion of proofs is seemingly well-defined, but
it acknowledges proving as a broader mathematical activity. For Stylianides (2016), a so-
called ‘empirical argument’ (e.g. Balacheff, 1988) is excluded from proofs due to the invalid
argumentation modes, although he viewed them as playing important roles. In contrast,
our key notion is ‘proving’, which is theoretically framed but acknowledges different types
of proofs, including empirical arguments (as we will mention later). Another of our con-
ceptualization’s characteristics is viewing proving as communicating, which can be linked
to the communicative function of proof (De Villiers, 1990; Hanna & Jahnke, 1996) as well
as change the epistemic value of a narrative (Duval, 2007). Regarding the changing of the
epistemic value, Harel and Sowder (1998) defined ‘proving’ as the process employed by an
individual to remove or create doubts about the truth of an observation. In contrast, from a
commognitive standpoint on proving, the epistemic value of determining a statement true
or false depends on the shared discourse (meta-rules and endorsed narratives) in a given
community (Jeannotte & Kieran, 2017).3 Additionally, the interplay between construction
and substantiation has much in common with what Stylianides (2008) called ‘reasoning-
and-proving’, although its conceptualization does not consider the role of social context (or
communication) as central. Thus, our definition relates to earlier studies in this area, and
what distinguishes our approach from related studies or constructs is that it allows proof
and proving to be characterized using a set of theoretical notions (e.g. the four discursive
features and two levels of proving). Hence, both individual and social processes of proving
can be described in one theoretical framework.
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2.4. A way to characterize proof and proving: an analytical framework

The analytical framework we use refers to a specialized version of the four features
of mathematical discourse, adapted for proof and proving in primary schools. The
examples are from a simple proving task, ‘What happens when you add any two odd
numbers’.4

• Word use: verbal and written keywords in the proving process (e.g. odd numbers, even
numbers, singletons)

• Visual mediators: physical, diagrammatic, and symbolic mediators according to differ-
ent proof types (e.g. concrete objects such as counters, generic examples)

• Narratives: statements subject to endorsement or rejection (e.g. the sum of any two odd
numbers is always even)

• Routines: construction and/or substantiation (e.g. activities of producing and explaining
the narrative)

Visualmediators for proving refer to different types of ‘proofs’. To clarify this, we refer to
pre-formalist categorisations of proofs (e.g. Blum&Kirsch, 1991; Brunner &Reusser, 2019;
Semadeni, 1984; Wittmann, 1996, 2009, 2019; Wittmann & Müller, 1990) which allow us
to legitimate proofs at different levels and are useful for designing a suitable proving task.
Per Reid and Knipping (2010), ‘[f]or the preformalists the nature of the premises (concrete
objects, etc.) are of central importance’ [emphasis added] (p. 130). This perspective enriches
the analysis of visual mediators in the proving process.

We summarize the types of proofs as three categories (the descriptions below are
adapted from Brunner and Reusser (2019) and Reid and Knipping (2010)). A ‘formal-
deductive proof’ can be translated into a commognitive account of proof, as cited from
Sfard (2008).

• Experimental approaches (proofs)5: verification is based on concrete examples or physi-
cal objects; the conclusion is restricted to such particular cases.

• Operative proofs: requires action, manipulation, or concrete demonstration but is not
tied to the concrete examples, yielding generally valid conclusions; this type uses little
symbolism but is formalisable in principle.

• Formal-deductive proofs: a deductive process of making statements occurs within the
rigid bounds of a set of well-defined rules and formal language; the stepwise deduction
of a statement from other statements makes logically valid conclusions.

In this study, we focus on experimental approaches and operative proofs, for which
physical and diagrammatic mediators are often used, but there is a significant differ-
ence regarding the epistemic status of their ‘examples’. Operative proofs employ so-called
‘generic examples’ (Balacheff, 1987, 1988; Healy & Hoyles, 2000; Mason & Pimm, 1984)
in which a particular case stands for all possible cases; experimental approaches lack this
characteristic (see also Brunner & Reusser, 2019). For example, in an operative proof such
as ‘Any odd number has a singleton. When two odd numbers are combined, no singleton is
preserved because the two singletons form a pair, so the result is always even’, concrete objects
(e.g. counters) can be used as generic examples (Figure 1). In our analysis, we distinguished
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Figure 1. A generic example.

a generic example from a particular example, considering whether it is used as a represen-
tative case of the narrative without relying on properties only applicable to the particular
examples. Henceforth, in this paper, we use ‘evolution (or evolve)’ to refer to the transition
from the experimental approaches to the operative proofs.

Based on these theoretical standpoints, our research hypothesis in this paper is as fol-
lows. A way of proving as a socially embedded activity can be characterized by two strands:
proof types (experimental or operative) and proving routines (construction or substantia-
tion). Accordingly, the evolution of proving can be identified asmeta-discursive shifts, that
is, when and how a proof type or proving routine can change into another. In this shift, the
communicative role of proving, linked to changing the epistemic value of a narrative, is
crucial.

Additionally, to analyse discursive processes and meta-rules, we observe students’ ges-
tures. Per Sfard (2009), ‘gesture is a body movement fulfilling communicational function’
(p. 194), and ‘gestures are invaluable means for ensuring that all the interlocutors “speaks
about the samemathematical object”’ (p. 197). Gestures can indicate a communicative role
of proving. Concerning the operations (represented by ‘arrows’) in Figure 1, combining
two odd numbers is crucial to the effectiveness of operative proofs. In the classroom, both
utterances and gestures are important indicators of a communicative role in the proving
process.

2.5. Research questions

Based on the above theoretical orientations, our analysis is guided by the following research
questions:

(1) How do construction and substantiation routines affect word use, visual mediators,
and narratives produced by primary school students in the proving process?

(2) How are different types of proofs (experimental and operative) produced through the
interplay between construction and substantiation routines?

Both questions relate to the transition between experimental approaches and operative
proofs which primary students might utilize, but they concern different levels in terms
of discursive development. Question 1 considers proving at the object-level development
(object-level proving), and Question 2 considers it at the meta-level development (meta-
level proving). We show how our analytical framework can characterize students’ proving
process and the production of different types of proofs. Below, we describe a task design to
engage primary school students in proving.
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3. Methodological considerations

3.1. Study context and task design

The study context is a teaching experiment within a classroom lesson, and its design was
oriented for investigating proving activities in primary schools. We considered explorative
proving activities at the lower secondary level (Miyazaki & Fujita, 2015), in which students
produce statements, plan and construct proofs, and review them to improve learning. Con-
sidering operative proofs, our study adapts such explorative activities for primary students
to make proving activities possible for them, allowing them to visualize abstract mathe-
matical structures or relations using suitable tangible materials and pictures. Accordingly,
our methodological approach is regarded as topic-specific design research (Gravemeijer &
Prediger, 2019) for the case of proving in a primary classroom.

We considered the following properties of operative proofs (Wittmann, 2009, p. 254) as
design principles (cf. Kieran, 2019):

(1) they arise from exploring a mathematical problem;
(2) they are based on operations with ‘quasi-real’ mathematical objects;6
(3) they are communicable in a problem-oriented language with little symbolism.

Based on the first principle, three proving tasks were developed for a series of lessons,
such as ‘always 198’, ‘ANNAnumbers (differences between 2112−1221, 3113−1331, etc.)’,
and ‘sums of consecutive numbers’. In this study, we focused on the first task, ‘always 198’,
designed to be implemented in the first lesson, introducing students to operative proofs.
Before implementing this lesson, students did not receive explicit instructions about how
to solve the task, norwas it accompanied by any formulated statement, with the expectation
that they will explore and develop different patterns, produce statements, refine them, and
then provide (operative) proofs. We considered the first lesson as suitable and sufficient
case to illustrate the proving activities in our study because students’ first encounters with a
newway of proving involved the descriptions of complex yet fruitful characteristic aspects,
compared with the subsequent lessons.

Choose a three-digit number for which the hundreds, tens, and ones are consecutive
numbers. As you can see below, you can choose ‘123’, for example.

1 2 3 4 5 6 7 8 9

Add 198 to the three-digit number you chose. What do you notice? Can you explain it?

This proving task is based on a general number pattern: ABC and CBA numbers are
pairs of three-digit integers, such as (123, 321), (124, 421), etc., and their difference is always
‘99 (C−A); C > A’. It is a specific version of an ‘if-then’ formulation: if you add 198 to the
three-digit integers for which the hundreds, tens, and ones are consecutive numbers, the sum
becomes the number for which the digits are reversed from the original integers’ digits. Here, ‘a
proving task’ does not mean that it produces a single narrative, but it may lead to different
narratives in the process and product of proving as explorative activities. Therefore, the
above task was designed as an initial proving task in the lesson.

Concerning the second principle, our task design represented abstract mathemati-
cal relations with physical mediators (i.e. manipulatives such as place-value tables and
counters; Figure 2) to enable primary school students to explore operative proofs.
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Figure 2. Operations with place-value table and counters.

Concerning the third principle, our task was designed to be communicable with ordi-
nary words, for example, ‘taking counters’, ‘adding counters’, and ‘reverse (swap over)’.
Although some mathematical words (e.g. ‘three-digit number’, ‘addition’, and ‘multiples’)
are inevitable, the task does not require algebraic symbols or formulas. Thus, our task
design covers all properties of operative proofs.

The data were collected in a small classroom with seven students (Grade 5; 9–10 year
olds) in England inDecember 2014. The school agreed to implement lessons with the three
designed tasks as enrichment activities with ethical permission from University of Exeter.
The students were selected because the class teacher (CT) recognized them as possess-
ing ‘relatively higher abilities in mathematics’. The CT chose the student group to fit the
school’s busy timetable, in consultationwith the second author. The second author led each
lesson (45–60min), introducing the problem, supporting the formulation of reasoning,
and summarizing the findings, but the CT also provided support. Accordingly, the lessons
can be considered as teaching (or design) experiment lessons rather than ordinary class-
room teaching. However, the teaching was conducted in themathematics classroomwhere
the students usually work rather than in a laboratory setting. Although the lessons can also
be considered an intervention, we aimed to investigate how well the approach worked for
this age group rather than seeking to improve participants’mathematical attainments. Each
lesson was video-recorded, focusing on students’ activities.

3.2. Method of analysis

Our analytical method consisted of three phases. First, we divided the video data transcript
into episodes, identified according to the narratives constructed or substantiated therein.
The following four narratives (NA1–4) were reconstructed and labelled by the authors to
clarify the episodes. Each episode consists of ‘line’, ‘time (min/sec)’, ‘what is said’, and ‘what
is done’. Wemainly analysed the transcribed episode, but the video data were important to
understand students’ actions (manipulations) on concrete objects. Therefore, some snap-
shots from the video data have been included in this paper as references to supplement our
interpretations.

• [NA1: Consecutive digit numbers] If you add 198 to the three-digit integers for which
the hundreds, tens, and ones are consecutive numbers (e.g. 123, 234, 345 . . . ), the sum
becomes the number for which the digits are reversed from the original integers’ digits
(321, 432, 543, etc.).

• [NA2: Difference between hundreds and ones is two] If you add 198 to the three-digit
integers for which the difference of hundreds and ones is two (e.g. 143, 204, 436 . . . ),
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the sum becomes the number for which the digits are reversed from the order of the
original integers’ digits (341, 402, 634, etc.).

• [NA3: Differences between hundreds and ones are one, two, three . . . ] If you add 99, 198,
297 . . . to the three-digit integers for which the differences between hundreds and ones
are one, two, three . . . , the sum becomes the number for which the digits are reversed
from the original integers’ digits.

• [NA4: Multiples of 99] The difference between two three-digit integers for which the
hundreds and ones digits are reversed makes multiples of 99.

Second, episodes were interpreted to identify whether the episode concerns construc-
tion or substantiation of the narrative, and then each episode was analysed to reveal four
characteristic aspects of proving discourse (word use, visualmediators, narratives, and rou-
tines) and their relations. For example, we interpreted an episode as construction routine
if the teacher or students shifted their foci from a narrative to another (new) narrative (e.g.
NA1 to NA2). We also interpreted an episode as substantiation routine if the teacher or
students provided a justification of the given narrative to endorse.

Finally, we analysed more deeply when and how different proof types are produced
and evolve to characterize the meta-discursive shift. Students’ use of examples was key
to this analysis because the experimental approach relies more on the particular examples,
while the operative proof is not tied to the particular examples but focuses on the generic
examples.

4. Findings

Table 1 lists episodes identified according to the four narratives and routines (construction
or substantiation) in proving as a socially embedded activity. Each narrative was inter-
actively constructed and substantiated (e.g. NA1 was substantiated after NA2 had been
constructed). For a comprehensive analysis, we divided episodes into two phases. Phase I
focuses on initial stages of students’ proving based on an experimental approach to substan-
tiation, while phase II reveals the evolution from experimental to operative proofs through
the interplay of narrative construction and substantiation. We then summarize our main
results and provide additional analysis of the discursive development.

Table 1. A list of identified episodes, routines, and narratives.

Phase of analysis Episodes Routines Narratives

Phase I - Construction NA1: Consecutive digit numbers
1 Substantiation
2a Construction NA2: Difference between hundreds and ones is

two
Phase II 2b Substantiation

3a Construction NA3: Differences between hundreds and ones
are one, two, three . . .

3b Substantiation
4 Construction NA4: Multiples of 99



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 11

4.1. Phase I

4.1.1. Construction of NA1
First, we describe students’ activities inNA1 (we did not include an episode for its construc-
tion since it was involved in the problem implicitly and then becamemore explicit through
exploration). Initially, students were not allowed to use physicalmanipulatives (place-value
table and counters) but needed to perform calculations to find a pattern. This activity
(adding 198 to the three-digit number) gradually developed into a routine performed to
construct NA1, when students became aware that ‘123+ 198 = 321, 234+ 198 = 432,
345+ 198 = 543 . . . ’ and of the patterns students called ‘swap over’. The teacher then
asked them to explore ‘why the hundreds and ones are reversed’. Students were encour-
aged to use physical manipulatives to find and explain the pattern (the place-value table’s
format on their worksheet is similar to Figure 2).

4.1.2. Construction of NA2
Episode 2a shows how a student’s (S5) construction of NA2 relied on written calculation
to find the sum of 204 and 198 (line 97), but another student (S7) used physical manipula-
tives to show the difference between 204 and 402 (line 101). The teacher gave the example
‘204+ 198 = 402’, hoping S7 might see that hundreds, tens, and ones do not have to be
consecutive numbers and that the pattern can be generalized. At first, he did not see why
the teacher gave the number 204 instead of 234. Nevertheless, after manipulating the coun-
ters, he clapped his hands and expressed his realization (line 101), which was linked to
constructing NA2. For him, ‘204+ 198 = 402’ was a particular but crucial example for
noticing that ‘the difference between two numbers [the ones and the hundreds] is two’,
which is key to constructing NA2. However, the other students were not aware of what S7
had noticed, which was limited to his individual process.

Episode 2a.

Line Min Sec Speaker What is said What is done

96 11 2 T Yes, how about that one? The teacher wrote a number, ‘204’,
on the students’ sheet.

97 11 3 S5 204? S5 started calculating 204+ 198 in
written form. (Figure 3)

98 11 5 T Yes, if we add 198?
99 11 13 S5 One ninety-eight so has to be . . . S5 got an answer, ‘402’, from the

calculation.
100 11 31 T Yes, why is that? Because?
101 11 32 S7 [After manipulating the counters] The difference

between . . . oh [claps his hands] . . . the difference
between the two numbers has to be two!

S7 moved the counters from the
ones to the hundreds. (Figure 4)

4.1.3. Substantiation of NA1
Episode 1 describes discourse regarding 123+ 198 = 321, in which the physical manipu-
lation ‘moving two counters from ones to hundreds’ represents the arithmetic operations
‘−2’ and ‘+200’. S7’s utterances ‘taking two’ (line 113) and ‘adding 200’ are associated
with his physically mediated actions with counters, so his substantiation method is still
restricted to an experimental approach. In this initial stage, the teacher guided most of the
activities for the substantiation. Subsequently, the students and teacher confirmed that this
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Figure 3. Snapshot in episode 2a (line 97).

Figure 4. Snapshots in episode 2a (line 101).

pattern works for other cases as well: 103+ 198 = 301, etc. Then, their focus moved to
substantiating NA2.

Episode 1.7

Line Min Sec Speaker What is said

112 13 24 T What is happening? If I take from here?
113 13 27 S7 Is it taking two?
114 13 29 T Yes, taking two. Well done, taking two but also?
115 13 34 S7 Adding 200.
116 13 35 T Adding 200. So, therefore, 200 minus 2 will be?
117 13 41 SS Ah. 198.
118 13 42 T 198. That is why always we will add 198 and then these two

numbers. Now, 198, is this a magic number then?

4.2. Phase II

4.2.1. Substantiation of NA2
Episode 2b shows the discursive process of substantiating NA2, in which some students (at
least S5 and S6) grasped S7’s realization, and S5was eventually willing to explain it together
with S7, convincing other students. Their activities in this episode were a substantiation
routine showing the emergence of generic examples in the social process, in which their
discourse moved away from particular examples such as each pair of three-digit numbers.
In addition, S7 (line 148) used the gesture (two fingers up) to communicate with others. It
seems that this gesture also helped use generic examples for substantiating because, for him,
the repeated signs ‘two’ by way of his fingers pointing up might refer to all possible cases
of the narrative ‘the difference between the ones and the hundreds is two’. Although the
operative proofs based on the generic exampleswere not explicitly produced to substantiate
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NA2, his discourse, which was developing in this context, was accepted as ‘theory’ (line
144–145) or ‘mechanism’ (line 152) within the classroom.

Episode 2b.

Line Min Sec Speaker What is said What is done

143 16 53 S7 You can just try any random number if you try
to . . .

144 16 56 CT What is your theory on that?
145 17 2 S7 Theory? I would say, the difference between

the two numbers . . .
146 17 4 S5 Two numbers, the hundreds and the units,

have to be two for it to work.
147 17 7 S7 But so, the difference between 6 and 8 [in 678]

is two, the difference between 6 and 8 is two
[in 698].

Pointed at several three-digit numbers
(678, 698, etc.) to explain the
difference between the hundreds
and the ones.

148 17 10 S5, S7 The difference between 4 and 6 [in 456] is two,
the difference between 1 and 3 [in 103] is
two.

S5 and S7 kept explaining the pattern.
S7 emphasized ‘two’ with his hand
gesture (two fingers up). (Figure 5)

149 17 18 S6 Ah, right, I get it! Reacted after listening to S5 and S7.
150 17 20 S5 The idea might be . . .
151 17 21 S4 Which one?
152 17 22 S6 So, there is going to be like a two-mechanism I

will say.

Figure 5. Snapshot in episode 2b (line 148).

4.2.2. Construction of NA3
In episode 3a, NA3 was constructed differently from NA1 and NA2. NA3 was first pre-
sented as a subsequent question by the teacher, ‘If you want to reverse the hundreds
and the ones of a three-digit number, what number do you have to add?’, using ‘112’
as an example. Episode 3a (line 180) shows that physical objects shaped S7’s action to
find a product, ‘99 (by simply calculating 100–1)’, and their explanation to another stu-
dent (S5). In contrast, S5 still used written calculation (‘211−112’) to understand the
answer, including when the teacher gave another example (‘318’, line 206). S7 was able
to answer ‘495’ using the physical manipulatives (line 223). Here, these actions have been
evolving into an operative proof, in which S7’s manipulations on counters ‘813−318’ act
as generic examples because he no longer calculated ‘813−318’ to find the difference.
Instead, he mentally worked out ‘500−5’. Although his approach was produced from
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Figure 6. Snapshots in episode 3a (line 180).

his exploring to respond to the teacher’s question, it can be considered an aspect of the
operative proof by referring to a series of patterns, ‘100−1, 200−2, or 500−5’. For him,
‘813− 318 = 495’ was an example to represent the narrative ‘the difference between the
ones and the hundreds is five’, which is another case of NA2. However, it has not yet
evolved to the substantiation routine for NA3. We therefore consider that the students’
manipulations in this episode can be regarded as a trigger for evolving to the operative
proof.

Episode 3a.

Line Min Sec Speaker What is said What is done

180 23 45 S7 You are adding 99. Subtracted 1 from 100.
If you want to swap the surrounds, the
difference has to be [one].

Pointed at one counter on the ones and
moved it to the hundreds. (Figure 6)

181 23 56 S5 Calculated 211−112 in written form.
(Figure 7)

182 24 2 S7 That is 99.
206 25 40 T How about 318?
207 25 44 S7 Oh, 318.
208 25 46 T If I wanted to swap 813
223 26 23 S7 495 Moved five counters from the ones to

the hundreds, then answered ‘495’
after mental calculation. (Figure 8)

4.2.3. Substantiation of NA3
In episode 3b, S7’s discursive process changes from experimental to operative proofs (sim-
ilar to 3a but more explicitly) and undergoes further evolutions towards the substantiation
of NA3. S7 makes a generic narrative (line 239), ‘the difference between the two numbers is
what you take away’, interpreting ‘113’ and ‘318’ as generic examples. Furthermore, his
utterance ‘the difference between two numbers . . . ’ was distinct from process-oriented
operations like ‘adding’ or ‘subtracting’, focusing more on their products. Along with
his generic narrative, his repeated actions (moving counters between the ones and the
hundreds; see line 239) reveal gestures to communicate with others. In this episode, the
operative proofs with generic examples explicitly mediate concrete objects but convey that
substantiation can be generalized beyond particular cases.
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Figure 7. Snapshot in episode 3a (line 181).

Figure 8. Snapshots in episode 3a (line 223).

Episode 3b.

Line Min Sec Speaker What is said What is done

237 27 20 T . . . You just calculated. Use that one to explain. Ask him
what he is doing.

The teacher encouraged S5 to use
the place-value table without
the written calculation as S7 did.

238 27 29 S5 What are you doing?
239 27 30 S7 Well, I think . . . , the difference between the two

numbers is what you take away. So, you know on
113, you have got the difference of two. So, you are
moving the two from there and putting it on there.
Or 318, you are taking away five from there and
putting it on there because the difference between
3 and 8 is 5.

He moved five counters from the
ones to the hundreds. (Figure 9)

He repeatedly moved five counters
from the hundreds to the ones.
(Figure 10)

240 28 1 SS Ah, right.
241 28 4 S7 And we get 813; that is how you do it.
242 28 10 S6 That is clever. That is good. Yes.

4.2.4. Construction of NA4
At the lesson’s end, the students and teacher reflected on their number pattern explorations
and constructed a new narrative (NA4). Although NA4 was not substantiated, it can be
validated because it was a generalized version of the already substantiated narratives (NA1,
NA2, NA3).



16 Y. SHINNO AND T. FUJITA

Figure 9. Snapshots in episode 3b (line 239) [1].

Figure 10. Snapshots in episode 3b (line 239) [2].

Episode 4.

Line Min Sec Speaker What is said

269 30 32 T Now well done, really, really impressed by you all,
actually. We have got 99, 198, 297, 396, 495 . . . yes it
works. What are they? It is a silly question, but what
is the relationship? Okay, let us . . .

270 31 18 SS All the 90s
271 31 22 S7 It is multiples of 99!
272 31 23 SS All multiples of 99!
273 31 24 S7 Multiples of 99!

4.3. Characterizing object-level andmeta-level proving

4.3.1. Four discursive features
Based on this analysis, we summarize ourmain results below in terms of the four discursive
aspects. These findings are regarded as characteristics of the object-level proving in the
classroom.

• Word use. The utterance ‘swap over’ indicates that what students found in the number
patterns and their different utterances to explain them evolved from being process-
oriented (e.g. ‘taking two’ and ‘adding 200’ in episode 1) to beingmore product-oriented
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Table 2. A summary of the evolution of proving.

Uses of examples Types of proofs

Episode 1(substantiation of NA1) Particular Experimental
Episode 2a(construction of NA2) Particular Not identified
Episode 2b(substantiation of NA2) Generic Quasi-operative
Episode 3a(construction of NA3) Particular and generic Experimental and quasi-operative
Episode 3b(substantiation of NA3) Generic Operative

(e.g. ‘the difference between 4 and 6 (in 456) is two, the difference between 1 and 3 (in 103)
is two’ in episode 2b). Eventually, this became a generic narrative such as ‘the difference
between the two numbers is what you take away’ (episode 3b).

• Visual mediators. Physicalmanipulatives (place-value table and counters) were themain
visual mediators, but the epistemic status of the physical objects developed over time.
Initially, these objects were used for experimental approaches referring to particular
examples (episode 2b), but later they were used for operative proofs to represent all
possible cases (episode 3b).

• Narratives. Four narratives were identified and reconstructed, originating from the ini-
tial problem, with structural relations between them (i.e. NA3 is a generalized version
of NA1 and NA2). Although NA1, NA2, and NA3 describe operations such as ‘if you
add . . . ’, NA4 refers to the number pattern’s structure.

• Routines. Written (vertical) calculating (e.g. 123+ 198 = 321) was the initial routine
in the classroom. Construction and substantiation developed recursively, and sub-
stantiation sometimes occurred after new narratives were constructed (as NA1 was
substantiated after NA2 was constructed).

4.3.2. Meta-discursive development
Table 2 shows a summary of the evolution of proving in terms of the transition between
two routines, which implies an aspect of meta-discursive development.8 To understand
meta-level proving more deeply, we must reflect on when and how operative proofs with
generic examples evolved from experimental approaches.

Generic examples were first observed in episode 2b (NA2 substantiation). The student’s
(S7) action was developed from the previous episode (episode 2a, NA2 construction),
in which S7 visualized a non-generic example, ‘204+ 198 = 402’, using counters, as in
Figure 11. This action in Figure 11 has the potential to convey a pattern such as ‘+200 and
−2 make 198’, which can be a structure beyond the particular case. It seems that S7 gained
insight into this structure in episode 2a (line 101), possibly signifying an ‘Aha! moment’
in his mind, and he noticed that ‘the difference between the ones and the hundreds is two’
using ‘204+ 198 = 402’.

Although the pattern ‘+200 and–2makes 198’ only regulated one student’s (S7) individ-
ual activity in episode 2a, this becamemore dialogic in episode 2bwhen he tried explaining
his ‘theory’ to the other students. In this phase, the student started using several examples
(e.g. 678, 698, or 456) as generic examples because these examples are considered repre-
sentative cases to substantiate a generic narrative, ‘the difference between the ones and the
hundreds is two’. This can be identified as resulting in changing (increasing) the epistemic
value of NA2 among the group of students. Gestures also mediated substantiation in the
dialogic process. In contrast, students’ use of generic examples with S7’s gestures in episode
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Figure 11. An experimental proof of NA2.

Figure 12. An operative proof of NA2.

2bwere not yet connected to the operative proofs because theway of provingwas notmedi-
ated by themanipulatives. Figure 12 shows a possible representation of the operative proof,
which was not produced by students but based on our interpretation of episode 2b. What
they called ‘two-mechanism’ (line 152) was something like this. Therefore, we call the type
of proof observed in episode 2a a quasi-operative proof.

The initial emergence of operative proofs was identified in episode 3a (NA3 construc-
tion), in which S5 was still working on the experimental approach (line 181), but S7’s
activity (line 180, 223) was considered an implicit status of operative proofs (as we called
it, a quasi-operative proof) when individually exploring the narrative. In this phase, the
numbers (e.g. 211 and 112 or 318 and 813) acted as generic examples because the differ-
ence between twonumbers can be foundby the same actions (moving counters between the
hundreds and the ones), conveying a common structure (e.g. ‘100−1, 200−2, 300−3, . . . ’).
Subsequently, in episode 3b (NA3 substantiation), the operative proofs endorsed a generic
narrative, ‘the difference between the two numbers (the hundreds and the ones) is what
you take away’, which emerged to communicate with other students. This event is also
critical for meta-discursive development because the substantiation was developed from
the previously constructed narrative and resulted in changing the epistemic value of the
narrative in the social context.

5. Discussion and conclusions

Here, we briefly describe our responses to the two research questions and discuss the
study’s contributions, implications, and limitations.
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5.1. Regarding the first research question

In Section 4.3.1, the findings regarding the first research question have already been
described in light of four discursive factors that influence proving processes. Here, we
summarize only themain points. In the classroom, an endorsed narrative was subsequently
reconstructed as a more general endorsable narrative and then substantiated again in a
more general context. Thus, such discursive processes developed through classroom inter-
actions progressively rather than straightforwardly. Therefore, regarding proving routines,
our findings support Sfard’s (2008) claim that ‘the activity of substantiation is recursive:
It may always expand because the substantiation itself is a narrative that may become an
object of substantiation’ (p. 232). Characteristic words and visual mediators produced by
students were also affected by construction and substantiation routines. For example, the
words used in students’ utterances changed from process-oriented to product-oriented,
and the visual mediators often shaped students’ ways of proving. Although the teacher ini-
tially guided most of the students’ proving activities, the students played an increasingly
important role in later stages. From a discursive perspective, this is important because it
implies a process of becoming part of the classroom community.

5.2. Regarding the second research question

What distinguishes our approach from some recent studies examining proof and prov-
ing using the commognitive theory (e.g. Brown, 2018; Jeannotte & Kieran, 2017; Wang
& Kinzel, 2014) is that we centralized the interplay between construction and substantia-
tion to reveal the meta-level proving. This approach allowed us to characterize at least two
main phenomena in our analysis. First, the classroom episodes illustrated that construct-
ing a new narrative may lead to increasing the degree of generality in students’ discourse.
This may then enhance the students’ use of generic examples as well as their evolution
from experimental to operative proofs. Second, the episodes also demonstrated that sub-
stantiating the narrative is linked with increasing the epistemic value of the narrative in the
classroom (see episodes 2b and 3b). This is related to the communicative role of proving.
Referring to Table 2 (Section 4.3.2), our findings indicated that the operative proofs (and
generic examples) were first produced implicitly in individual processes, but their ways
of proving gradually develop to more explicit in the dialogic context. In our analysis, this
shift is also linked to changing the epistemic value of the narrative. This implies conditions
which allow students to change their approach from experimental to operative when using
it as a communicational means. Thus, our study illustrated how students’ engagement with
different types of proofs was developed through the interplay between constructions and
substantiations. This may answer the second research question.

5.3. Contributions and implications

5.3.1. Contribution to the perspective of proving as a socially embedded activity
This paper offered the commognitive analysis of proving activities, defining proving as a
process of communication with others or oneself that constructs and substantiates a narra-
tive. Although our analysis is derived from one lesson, we could observe similar discursive
characteristics in the subsequent lessons, that is, after the proving tasks were introduced by
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teachers, processes of evolutions of proving were characterized by interplays of narrative
construction and substantiation, as we described in the first lesson. It is probably because
that proving activities became much smoother as the students were familiar with the uses
of counters and what they were expected to do (proving)9. This implies that the students’
activities with the teacher’s support in the first lesson were effective for initiating them into
the operative proofs in the classroom community. Therefore, we believe that our approach
can offer one way to theorize students’ proving activities coherently.

Some readers might consider that the commognitive terms (e.g. ‘construction’ and
‘substantiation’) could be translated into more familiar proof-related terms (e.g. such
as ‘conjecturing’ or ‘verifying’), and they might then wonder about the benefit of this
approach. However, one impact of defining the notion of proving without using such
familiar terms is as follows. Our study adopted the perspective of proving as a socially
embedded activity, conceptualizing ‘proving’ as a broader mathematical activity in a given
community (Stylianides et al., 2017). To advance this perspective, we employed a broad
but well-established theoretical framework for research in mathematics education rather
than a domain-specific framework for research on proof and proving. In doing so, we uti-
lized commognitive terminology to characterize proving activities and operationalize the
theoretical constructs. This can also contribute to bridging the gap regarding research ter-
minologies used to describe proof and proving in different grades (Campbell et al., 2019).
On proving as a socially embedded activity, Stylianides et al. (2017) stated, ‘If explanation
and communication are to be listed as goals of presenting proofs and an analytical tool
to examine classroom behaviour, mathematics educators will need to operationalize these
constructs’ (p. 249). We hope that we have addressed this issue as the commognitive anal-
ysis allowed us to identify and explain the characteristics of complex proving processes in
a theoretically coherent way.

5.3.2. Contributions to research on proof and proving in primary schools
Here, we describe our paper’s three possible contributions to research on proof and proving
in primary schools, in the form of response to what we mentioned as research limita-
tions of previous works at the beginning of the paper. First, our study’s approach can
contribute to the investigation of the challenges of ‘continuity’ across grades (Stylianides
& Stylianides, 2017). In previous studies, the problem of the cognitive unity or rupture
between conjecture and proof (argumentation and proof) has been debated for teach-
ing mathematical proof in secondary schools (e.g. Mariotti, 2012; Pedemonte, 2007). Our
findings show how primary students can appropriately experience conjecture and proof
production and how these processes are interwoven, in which the interplay between the
construction and substantiation of narratives is essential. For realizing this activity, we
designed a task based on operative proofs (Wittmann, 2009) and investigated the task
design through a classroom-based study, which has contributed to recent developments
in this research area (Stylianides & Stylianides, 2017). Our findings demonstrated that
this proof type is highly appropriate for primary school students and can be useful for
advanced studies of mathematics in upper grades. In lower secondary schools, for exam-
ple, the operative proof of NA3 can be translated into formal-deductive proofs as follows:
(100a+10b+c)–(100c+10b+a) = 99(a–c); a > c. Operative proofs could helpmake sense
of why the tens disappeared in the result. A similar task taught with algebraic symbols in
lower secondary classrooms reportedly engaged students in proving the number pattern
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Table 3. Proof schemes and types of proofs (adapted fromReid and Knipping
(2010, p. 149)).

Category Subcategory 1 Subcategory 2 Types of proofs

Empirical Experimental
Analytical Transformational [Unrestrictive] Formal

Restrictive (generic) Operative
Axiomatic Formal

(e.g. Sasa et al., 2012; Tsujiyama et al., 2019), implying that our task design can be useful
for different types of proofs in different grades.

Second, as Campbell et al. (2019) reviewed, most previous studies on early primary
grades have paid scant attention to a general argument. We, therefore, designed a prov-
ing task which involved both specific and general arguments. For example, the original
task asked students to work with some specific arguments (narratives); for example, ‘if you
add 198 to 123, the sum becomes 321’ and ‘if you add 198 to 234, the sum becomes 432’.
Through proving activities, these arguments were developed in a broader context and then
general arguments were produced; for example., ‘if you add 198 to the three-digit numbers
for which the difference of hundreds and ones is two, the sum becomes the number for
which the digits are reversed’ (we called this argument NA2) and more general arguments
as well (e.g. NA3 andNA4). Although these general arguments are still restricted to a given
domain (i.e. the domain of three-digit integers), our findings implied an achievable degree
of generality of the arguments for primary students.

Third, our theoretical approach can contribute to advancing some related theoretical
frameworks proposed by different researchers. For example, Harel and Sowder’s (1998)
classifications of proof schemes can be applicable (but not simply identical) to different
types of proofs which were described as pre-formalist categories (see Section 2.4)10. Based
on the synthesis by Reid and Knipping (2010, p. 149), some categories of ‘empirical’ and
‘analytical proof schemes’ can be mapped onto the types of proofs as showed in Table 3,
although the ‘external proof scheme’ is not included (because this category cannot be
associated with a certain type of proofs). For ‘subcategory 2’ in Table 3, a ‘generic proof
scheme’11 can be mapped onto the operative proof in our study. The generic proof scheme
refers to ‘students’ inability to express their justification in general terms’ (Harel & Sowder,
1998, p. 271) and emphasizes the restriction of the generality of proving. However, the oper-
ative proof acknowledges the possibility of generality, even though this type of proof uses
little symbolism (Wittmann, 2019, p. 29). Additionally, ‘[Harel and Sowder’s framework
are] not the ways in which one type of understanding can develop into another’ (Ahmad-
pour et al., 2019, p. 86). We, therefore, described the transition between experimental
and operative proofs in terms of the interplay between construction and substantiation
of narratives (as summarized in Table 2).

Our findings can also support a recent study’s model of students’ ways of under-
standing a proof (Ahmadpour et al., 2019), which offered some theoretical pathways
towards formally acceptable proof; for instance, generalisation (leads to a general proce-
dure), abstraction (leads to an abstract structure), and formalisation (leads to a formulated
proof ). Although this model was examined by focusing on middle school students’ under-
standing of the process of reading a proof12, our study implied that both generalization and
abstraction are auxiliary but crucial processes to produce an operative proof by primary
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school students as well. In our analysis, as abovementioned, students began working with
specific arguments, but they progressively underwent generalizations though producing
more general arguments. For abstraction, one student’s insight of ‘the difference between
the two numbers (the hundreds and the ones) is what you take away’ (in episode 3b) can be
regarded as a critical event, referring to ‘a structure that “reifies” (Sfard, 1991) the underly-
ing idea of a general procedure’13 (Ahmadpour et al., 2019, p. 93). In this way, our approach
may advance Ahmadpour et al.’s model in the context of producing an operative proof.

5.4. Limitations for future research

Our study has three limitations. First, the role of gestures in the process of communication
could have received greater attention (Sfard, 2009). Although we described a few aspects,
the relation between gestures and other visual mediators (or other discursive aspects) was
not given much attention. In terms of recent research on the multi-modality of proving
(e.g. Campbell et al., 2020), it is worth investigating how gestures affect students’ prov-
ing activities. Second, our theoretical framing has not sufficiently considered the role of
the teacher’s pedagogy, and their interventions were limited in this study. The form of
teacher-student interaction may change over time. For instance, the teacher guided most
of the students’ activity in the first episode, but more work was done by students in later
episodes. S7 performed the task well with the teacher’s guidance and led other students’
use of the manipulatives. Teacher’s crucial role in facilitating students’ proving activity and
its evolution should be addressed theoretically and practically. Third, concerning types of
proofs, although our approach and task design based on operative proofs (Wittmann, 2009)
might apply to the secondary school level, it is important to examine how it can be effective
in secondary schools, aiming at further evolution in the understanding of mathematical
proofs.

Notes

1. The three perspectiveswere identified for use as an organising structure for the review; therefore,
there seem to be some overlaps, but this only suggests the respective view of proving for each
study may fit better than others (Stylianides et al., 2017). More recently, Campbell et al. (2019)
utilised these perspectives for a more comprehensive review.

2. Jeannotte and Kieran (2017) define mathematical reasoning as a process of communication
with others or with oneself that allows for inferring mathematical utterances from other
mathematical utterances (p. 7)

3. Although Duval (2007) highlighted the difference between the epistemic value and the logi-
cal truth value, in this study, we follow Jeannotte and Kieran (2017), who stated that ‘from a
discursive stand there is no difference between epistemic value and truth-value’ (p. 11).

4. This is a typical example that can be proven in different ways (e.g. Stylianides & Stylianides,
2008, p. 108). See also our descriptions about Figure 1.

5. Although the original literature, such as Wittman and Müller (1990), denotes experimental
‘proofs’ (the quotation marks imply a broader sense of proof), we call them experimental
approaches (but still consider them one type of ‘proof’).

6. Wittmann (2009) stated, ‘At school level informal representations of mathematical objects are
indispensable as they provide a ‘quasi-reality’ which is easily accessible. Patterns become in a
sense ‘visible’ when informal representations like counters, the number line, the place value
table, calculations with numbers and constructions of geometric figures are used’ (p. 255)
[emphasis in original]
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7. We did not include ‘what is done’ as a column in this episode as it does not seem necessary.
8. This summary was directly made from each episode, but it does not necessarily mean that a spe-

cific use of examples or type of proof has been shared in the classroom. For example, ‘particular
and generic’ in uses of examples refers to the situation such that one student works on particular
examples but another works on generic examples.

9. For example, in the second lesson (ANNA number), the students soon realized the underlying
pattern (such as the differences between 3223-2332, 6556-5665 and so on, would be always 891),
and explaining the reasons why using the manipulatives. More descriptions of operative proofs
about ANNA number are mentioned by Wittmann (2019, pp. 27–29).

10. It is noted that Harel and Sowder’s (1998) research perspective is regarded as ‘proving as
convincing’ (Stylianides et al., 2017), as mentioned at the beginning of this paper.

11. Harel and Sowder (1998) distinguished ‘restrictive proof scheme’ into further subcategories:
‘contextual’, ‘generic’, and ‘constructive’. In our interpretation, generic proof scheme is themost
suitable category to be mapped onto the operative proof.

12. Ahmadpour et al. (2019) concluded that ‘[b]ecause of this interconnection [between reading and
producing a proof], we developed our model with the expectation that it would be applicable
also to students’ understanding in the process of producing a proof. The extent to which it can
be used to describe proof production remains a question for future research’ (p. 103).

13. The notion of ‘reification’ (Sfard, 1991) has been reconceptualised within the commognitive
framework (e.g. Güçler, 2016; Sfard, 2008; Shinno, 2018)
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