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Abstract

Very high-resolution satellite (VHR) imagery is a promising tool for estimating

the abundance of wildlife populations, especially in remote regions where tradi-

tional surveys are limited by logistical challenges. Emperor penguins Apten-

odytes forsteri were the first species to have a circumpolar population estimate

derived via VHR imagery. Here we address an untested assumption from Fret-

well et al. (2012) that a single image of an emperor penguin colony is a reason-

able representation of the colony for the year the image was taken. We

evaluated satellite-related and environmental variables that might influence the

calculated area of penguin pixels to reduce uncertainties in satellite-based esti-

mates of emperor penguin populations in the future. We focused our analysis

on multiple VHR images from three representative colonies: Atka Bay,

Stancomb-Wills (Weddell Sea sector) and Coulman Island (Ross Sea sector)

between September and December during 2011. We replicated methods in Fret-

well et al. (2012), which included using supervised classification tools in ArcGIS

10.7 software to calculate area occupied by penguins (hereafter referred to as

‘population indices’) in each image. We found that population indices varied

from 2 to nearly 6-fold, suggesting that penguin pixel areas calculated from a

single image may not provide a complete understanding of colony size for that

year. Thus, we further highlight the important roles of: (i) sun azimuth and ele-

vation through image resolution and (ii) penguin patchiness (aggregated vs.

distributed) on the calculated areas. We found an effect of wind and tempera-

ture on penguin patchiness. Despite intra-seasonal variability in population

indices, simulations indicate that reliable, robust population trends are possible

by including satellite-related and environmental covariates and aggregating

indices across time and space. Our work provides additional parameters that

should be included in future models of population size for emperor penguins.

Introduction

Very high-resolution (VHR; 0.3–0.6 m spatial resolution)

satellite imagery has been a disruptive technology for

studying wildlife populations, especially in Antarctica

(Fretwell et al., 2012; LaRue et al., 2011; Lynch & LaRue,

2014; McMahon et al., 2014; Strycker et al., 2020; Wege

et al., 2020). Emperor penguins Aptenodytes forsteri, icons

of the Antarctic, are a model species for direct, satellite-

based investigation of their distribution and numbers:

they leave a representative guano stain on the fast ice (i.e.

sea ice fastened to the coastline) that indicates colony
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presence (Barber-Meyer et al., 2007; Fretwell et al., 2012;

Fretwell & Trathan, 2009); they are available for detection

in austral spring when satellite images of the coastline are

easily acquired; and good contrast (black penguins on

white snow), makes their enumeration straight-forward.

Emperor penguins were the first species to have a

circum-Antarctic population estimate derived via VHR

imagery (Fretwell et al., 2012). Most emperor penguin

colonies are difficult to access due to their location on

remote sections of Antarctic fast ice, and very few of the

66 known colonies (Fretwell & Trathan, 2020) are avail-

able to survey using ground counts or aerial surveys

(Ancel, Gendner, et al., 1992; Barbraud & Weimerskirch,

2001; Kooyman & Ponganis, 2017; Richter, Gerum, Sch-

neider, et al., 2018). However, gaining empirical under-

standing of population change at multiple spatial scales is

critical, as modelling studies suggest that most breeding

colonies will be quasi-extinct by 2100 under ‘business as

usual’ emissions scenarios (Jenouvrier et al., 2014, 2020),

resulting in dramatic declines in the global population

size, even under optimistic dispersal scenarios (Jenouvrier

et al. 2017). The ability to apply the baseline population

provided by Fretwell et al. (2012) to monitor population

trends will improve our understanding and predictions of

emperor penguin populations at multiple spatial scales,

which is critical for conservation (Trathan et al., 2020).

Emperor penguins breed on fast ice during total dark-

ness in the winter when reproductive birds gather at the

colony to mate, and raise and feed their chicks (Ancel,

Kooyman, et al., 1992; Kirkwood & Robertson, 1997).

Strong winds (>130 km h−1) combined with low tempera-

tures (<40℃) favour huddling behaviour of the males (Gil-

bert et al., 2007) during incubation, and also to keep

chicks warm through the winter and into the spring. The

ideal time to estimate the abundance of emperor penguins

would be during austral winter, when only males are pre-

sent at the colony, making enumeration straight-forward

(counting of males in the huddle represents the number of

breeding pairs). However, optical VHR imagery of the

Antarctic coastline is only available between September and

March, and emperor penguins spend January through

April foraging away from their colonies. Thus, the only

period when emperor penguin abundance can be estimated

from VHR imagery is austral spring, during chick-rearing.

Furthermore, satellite-based estimates of emperor pen-

guins during spring may be influenced by factors related

directly to penguin behaviour and by features of the satel-

lite platform itself (i.e. the observation process). Breeding

failure and foraging trips by adult penguins introduce vari-

ation into the number of birds available for detection by

the satellite sensor at a colony (see an analogous discussion

of this issue for surveys on King Penguins Aptenodytes

patagonicus in Foley et al. (2020)). Additionally, huddling

behaviour fluctuates during chick-rearing period and can

introduce variation into satellite-based counts (Richter,

Gerum, Winterl, et al., 2018), particularly if birds are so

densely huddled that the ability to distinguish individual

birds becomes difficult (i.e. because multiple birds can

potentially fit within a single VHR pixel). Additional varia-

tion in satellite-derived counts could be introduced by

imprecision in the supervised classification, or by differ-

ences in the quality of images among successive counts

(i.e. owing to differences in spatial resolution or sun

angle). Given the remoteness of most emperor penguin

colonies, satellite-based monitoring of population trends is

currently the only viable method for monitoring this spe-

cies across the species range and could play a central role

in determining its conservation status. Thus, generating

precise indices of annual abundance at individual colonies,

and in turn, estimates of population trends, could heavily

depend upon an ability to remove this ‘noise’ in satellite-

derived indices (i.e. observation error that is caused by the

within-season huddling behaviour, satellite-related covari-

ates, or other factors described above). Conversely, an

inability to sufficiently remove spurious observation error

at individual emperor penguin colonies would suggest that

either colonies must be monitored for many years to

derive reliable trend estimates, or that satellite-based moni-

toring will only be useful for estimating regional popula-

tion trends in the short term (i.e. where observation error

will ‘average out’ across many colonies).

Here, we addressed an untested assumption from Fret-

well et al. (2012) that a single VHR image of an emperor

penguin colony would reasonably represent colony size

for that year (calculated as number of breeding pairs;

Fretwell et al., 2012). Specifically, we aimed to understand

satellite-related and environmental variables that might

influence the calculated area of penguin pixels (hereafter

referred to as the population indices) to reduce potential

uncertainties associated with using only one image per

year to assess colony size. We use the term ‘population

indices’ to refer to the calculated area of penguin pixels

from each VHR image because the penguins available for

detection on each image are a benchmark for colony sta-

tus in that year. While our goals are not to complete the

process of estimating populations, it is critical we test the

representativeness of population indices calculated from a

single VHR image because we already know that only one

image per colony per year is available over the course of

~10 years; (see available imagery via Maxar Technologies:

discover.digitalglobe.com).

Finally, we conducted a series of simulations to evalu-

ate the potential for covariates to improve estimates of

population trends at a range of scales (i.e. from local

populations to regional aggregations) and across different

time horizons.
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We hypothesized:

1 Satellite platform, for example spatial resolution of the

panchromatic band, will influence the area occupied by

penguins in each image (i.e. population index) calcu-

lated from VHR images (i.e. lower resolution imagery

will result in a greater area of penguins, which could

be interpreted as a higher population index);

2 Sun elevation angle and sun azimuth will influence the

population index (i.e. lower sun elevation will cast

more shadows resulting in greater area of penguins;

and sun azimuth could result in shadows being cast

from surrounding features like ice cliffs would obscure

penguins). Moreover, sun elevation is correlated with

the day of the year and may integrate seasonal changes

in penguin movements.

3 The spatial patchiness of penguins within a colony dur-

ing a satellite survey (i.e. compactly huddled vs. widely

spread) will influence the population index given the

variation in density of birds; areas calculated from

compact aggregations will be smaller than areas calcu-

lated from spread aggregations of birds.

4 Wind speed and temperature during the satellite survey

will influence the population index, owing to the hud-

dling behaviour of emperor penguins during cold/

windy conditions, which would result in compact

groups that may lead to smaller population indices.

5 Population trends can be estimated more precisely at

the colony level, and with fewer years of monitoring if

these sources of spurious variation in counts are

accounted for and removed. This hypothesis was tested

using simulations to show how we improve population

trends with those sources of variation; however, the

translation of population indices (i.e. area of penguin

pixel) to population size is not the goal of this

research.

Materials and Methods

Study area

We focused our examination of variance in population

indices (as calculated by area of penguin pixels on VHR

images) on three emperor penguin colonies: the

Stancomb-Wills (~5455 breeding pairs) and Atka Bay

(~9657 breeding pairs) colonies in the Weddell Sea sec-

tor, and the Coulman Island colony (~25 000 breeding

pairs) in the Ross Sea sector (Fig. 1; Fretwell et al., 2012).

These three colonies were chosen because they are each

Figure 1. Time-series of the population indices (in thousand m2) for the three emperor penguin colonies (left panels), with the location of these

colonies given in the right panels (WS = Weddell Sea; RS = Ross Sea). A ‘locally weighted smoothing’ (loess) regression was applied to each time-

series (degree = 1 and default span of 0.75) using R’s loess function; vertical bars indicate the 1st and 15th day of each month between 15

September 2011 and 1 December 2011.
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larger-than-average (average colony size in 2009 was

~4300 breeding pairs; Fretwell et al., 2012), they have

been monitored by aerial or ground surveys on several

occasions, are relatively stable in their annual occupancy,

and were also unlikely to be impacted by confounding

factors such as proximity to research stations, tourism, or

pollution. Both the Weddell Sea and Ross Sea are charac-

terized by wide bathymetric continental slopes, relatively

cold waters, high primary productivity (particularly in

the case of the Ross Sea, which is home to the largest

open-ocean polynya in the Southern Ocean; Smith et al.

(2014)), relatively stable sea ice regimes, and finally, both

regions are likely to be refugia for emperor penguins in

the future (Jenouvrier et al., 2020). In other words, these

colonies represent locations where human-induced varia-

tion is likely to be minimal, but where natural, intra-

seasonal variation may be relatively high given the most-

recent colony estimates (in number of breeding pairs of

adults; Fretwell et al., 2012; Kooyman & Ponganis, 2017).

Furthermore, the colonies were sufficiently large, increas-

ing the probability that any intra-seasonal changes could

be detected. Changes or errors in the estimation at small

colonies are less consequential in understanding overall

population status. In other words, substantial intra-

season fluctuations at large colonies are more consequen-

tial to estimating populations than changes at smaller

colonies.

VHR imagery and image processing

We selected high-quality (i.e. cloud-free, no banding;

Barber-Meyer et al., 2007) VHR images acquired for each

of the three study colonies during spring 2011 (September

through December), the year with the highest number of

repeat images acquired by DigitalGlobe, Inc. (now Maxar

Technologies) around the Antarctic coastline. Indeed,

other than 2011, there are ~5 images at any colony per

season and in most cases, there is one only useable image

per colony. Images were primarily from WorldView-2

(~0.46 m panchromatic spatial resolution) and

QuickBird-2 (~0.65 m panchromatic spatial resolution)

satellites and were processed (e.g. pansharpened,

orthorectified, and projected to Antarctic Polar Stereo-

graphic) by the Polar Geospatial Center (PGC) at the

University of Minnesota (processing code on GitHub:

https://github.com/PolarGeospatialCenter/).

To gain a population index of emperor penguins for

each image and to test the assumption of the

representativeness of a single image per colony per year,

we replicated methods first outlined in Barber-Meyer

et al. (2007) and built upon in Fretwell et al. (2012).

Briefly, these methods involved using ArcGIS software

to first clip the image to our area of interest (the col-

ony; Fig. 2A) and then define three training classes (us-

ing a point shapefile with attribute classes of penguin,

guano, and snow, Fig. 2B and C; Barber-Meyer et al.,

2007) for a supervised classification on pansharpened

images of Antarctic fast ice. Notably, field tests of

emperor penguin reflectance from satellite imagery have

not been conducted, let alone for various environmental

scenarios (light cloud cover vs. sunny conditions) and

therefore time-consuming, human interpretation was

required in every step of the process to ensure accu-

racy.

Once the training dataset was compiled, we then con-

ducted a maximum likelihood classification resulting in

an output raster, which we converted to a polygon

shapefile. Within the polygon shapefile, we extracted

only the penguin class (based on the grid value, which

was defined as aforementioned) since we were not inter-

ested in the amount of area of guano or snow (Fig. 2D

and E). Because of the simplicity of the maximum likeli-

hood classifier, to ensure accuracy of results, and to

maintain one aim of Fretwell et al. (2012), which was to

ensure this work could occur in fairly accessible GIS

software (e.g. ArcGIS rather than ENVI), we then visu-

ally reviewed each population index on each image.

Visual inspections of the resulting polygons included a

combination of three processes: 1. Accepting the results

as-is; or 2. Retraining the supervised classification and

re-running the maximum likelihood classifier; and/or 3.

Manually editing the population indices where minor

adjustments were needed. Our final step was to then cal-

culate the areas that comprise the penguins-only polygon

to arrive at the calculated area of penguin pixels on each

image, which represents the population index we report

here, for each image date at each colony (Fig. 2E). This

population index is the response variable for our statisti-

cal modelling (below).

Although one analyst was responsible for the majority

of images analysed here (largely due to the amount of

time required for one person to conduct all analyses,

let alone more people), independent analysis of one

image per colony per year occurred, which we used as a

basis for spot-checking results (please see bold data in

Table 1).

Figure 2. Diagram outlining the method protocol for the VHR image processing using an example for the Coulman Island colony. The VHR

image is a Quickbird-02 image of Coulman Island emperor penguin colony acquired on October 24, 2011 (catalog ID: 101001000E59A900).

Imagery copyright copyright DigitalGlobe, Inc.
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Statistical modelling

We constructed a series of linear models to evaluate the

factors that influence population indices of adult emperor

penguins derived from satellites, which was our response

variable. In all models, the population index was

log-transformed to accommodate a normally distributed

error structure and to facilitate proportional comparisons

among colonies of different mean sizes (according to

Fretwell et al., 2012). We included a fixed effect of colony

in all models to account for differences in average colony

size. To evaluate our primary hypotheses and thereby

Table 1. List of the images used in the study for the three colonies and their estimated penguin areas (expressed in m2). In bold is indicated the

areas calculated from two different analysts for comparisons, the replicated images indicated with a star (*) were not used in the analysis.

Colony Image ID Date Satellite Area (m2) Analysts

Coulman Island 101001000E224A00 09/17/2011 QB02 23985.05 Lise Viollat

Coulman Island 101001000E23DB00 09/18/2011 QB02 24899.15 Lise Viollat

Coulman Island 101001000E283100 09/21/2011 QB02 15047.01 Lise Viollat

Coulman Island 101001000E311E00 09/27/2011 QB02 29729.95 Lise Viollat

Coulman Island 101001000E32A400 09/28/2011 QB02 20738.58 Lise Viollat

Coulman Island 101001000E357300 09/30/2011 WV02 14964.65 Lise Viollat

Coulman Island 101001000E36F100 10/01/2011 QB02 18488.57 Lise Viollat

Coulman Island 101001000E418600 10/08/2011 QB02 23490.58 Lise Viollat

Coulman Island 101001000E59A900 10/24/2011 QB02 23490.84 Lise Viollat

Coulman Island 101001000E59A900 10/24/2011 QB02 25274.66 Rose Foster-Dyer*

Coulman Island 101001000E686700 11/03/2011 QB02 23718.13 Lise Viollat

Coulman Island 103001000F7F8B00 11/19/2011 WV02 31005.29 Lise Viollat

Atka Bay 103001000D400A00 09/03/2011 WV02 6001.51 Lise Viollat

Atka Bay 103001000D023100 09/04/2011 WV02 6565.007 Lise Viollat

Atka Bay 103001000D5A8100 09/06/2011 WV02 2326.293 Lise Viollat

Atka Bay 103001000D295800 09/15/2011 WV02 11748.12 Lise Viollat

Atka Bay 101001000E24BD00 09/19/2011 QB02 5558.519 Lise Viollat

Atka Bay 101001000E262100 09/20/2011 QB02 8367.776 Lise Viollat

Atka Bay 103001000D63FD00 09/20/2011 WV02 8533.22 Lise Viollat

Atka Bay 103001000D63FD00 09/20/2011 WV02 8449.75 Peter Fretwell*

Atka Bay 103001000DD35500 09/21/2011 WV02 6506.849 Lise Viollat

Atka Bay 101001000E291500 09/22/2011 QB02 8774.873 Lise Viollat

Atka Bay 103001000D965F00 09/22/2011 WV02 5108.962 Lise Viollat

Atka Bay 101001000E2BBA00 09/24/2011 QB02 3450.174 Lise Viollat

Atka Bay 103001000E2B6200 09/25/2011 WV02 9401.531 Lise Viollat

Atka Bay 101001000E3F5200 10/07/2011 QB02 7760.415 Lise Viollat

Atka Bay 101001000E526C00 10/19/2011 QB02 7480.21 Lise Viollat

Atka Bay 103001000FD05F00 11/21/2011 WV02 10422.23 Lise Viollat

Stancomb-Wills 103001000DB9F900 09/13/2011 WV02 4685.562 Lise Viollat

Stancomb-Wills 103001000E7F2B00 09/14/2011 WV02 3864.594 Lise Viollat

Stancomb-Wills 101001000E21CB00 09/17/2011 QB02 8232.159 Lise Viollat

Stancomb-Wills 101001000E21CB00 09/17/2011 QB02 6132 Peter Fretwell*

Stancomb-Wills 103001000D081200 09/18/2011 WV02 4727.548 Lise Viollat

Stancomb-Wills 103001000D1DD300 09/19/2011 WV02 5626.239 Lise Viollat

Stancomb-Wills 103001000DA3AC00 09/20/2011 WV02 4895.73 Lise Viollat

Stancomb-Wills 103001000D01A900 09/25/2011 WV02 3155.904 Lise Viollat

Stancomb-Wills 101001000E2DBA00 09/25/2011 QB02 3441.86 Lise Viollat

Stancomb-Wills 103001000EC82200 10/04/2011 WV02 8727.082 Lise Viollat

Stancomb-Wills 101001000E3ACA00 10/04/2011 QB02 11141.14 Lise Viollat

Stancomb-Wills 103001000E6D7F00 10/05/2011 WV02 9964.59 Lise Viollat

Stancomb-Wills 101001000E43EE00 10/10/2011 QB02 12289.29 Lise Viollat

Stancomb-Wills 101001000E458800 10/11/2011 QB02 11540.82 Lise Viollat

Stancomb-Wills 101001000E510200 10/18/2011 QB02 9488.866 Lise Viollat

Stancomb-Wills 101001000E7D1500 11/19/2011 QB02 15267.16 Lise Viollat

Stancomb-Wills 101001000E874200 11/27/2011 QB02 9863.186 Lise Viollat

Stancomb-Wills 103001000F3B6500 12/11/2011 WV02 18724.48 Lise Viollat

Stancomb-Wills 1030010010C89E00 12/14/2011 WV02 13013.86 Lise Viollat
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evaluate the factors that account for seasonal variation in

satellite-derived estimates of penguin abundance, we con-

structed a series of alternative models containing different

explanatory covariates. We describe this suite of models

and justification for each explicit covariate below.

We were first interested in whether characteristics of

the VHR image itself would influence the population

index at each colony due to human interpretation of pix-

els classified as penguins versus other items on the land-

scape, such as shadows or guano (Hypotheses 1 and 2).

In R (R Core Team, 4.0.1, 2020), we developed a linear

model using the function lm from the package stats; our

response variable was the population index (penguin area

in metres) per image within a season (year 2011) for each

colony. Our explanatory variables were effective panchro-

matic ground resolution (the spatial size of a pixel given

the on-nadir band resolution for the platform combined

with the actual off-nadir angle of the satellite platform;

expressed in metres), the sun elevation angle, the sun azi-

muth (range: 0–360°) and colony.

While breeding, emperor penguins remain within a lar-

ger area that encompasses the whole breeding site during

a season, although the location of the actual colony at the

micro-scale changes (Richter, Gerum, Schneider, et al.,

2018). To address hypothesis 3 (effects of colony patchi-

ness on the population index), we qualitatively catego-

rized the colony patchiness on each image into ‘compact’

and ‘spread’. We defined ‘compact’ as when the birds

were observed in discrete groups with little space between

individuals (i.e. huddling behaviour), and ‘spread’ was

defined as when there was obvious space between birds

and the groups were more dispersed (Fig. 3). We devel-

oped a linear model in R with population index as the

response variable, and patchiness (spread and compact)

and colony as fixed effects.

To understand the variability of population indices

related to environmental conditions (hypothesis 4), three

different environmental variables likely influencing emperor

penguins and their patchiness were tested (Richter, Gerum,

Winterl, et al., 2018): (i) the 10 m zonal wind (U wind);

(ii) the 10 m meridional wind (V wind); the 2m air tem-

perature. We obtained these data from the European Centre

for Medium-Range Weather Forecasts (ECMWF) ‘ERA5

hourly data on single levels from 1979 to present’ dataset

and computed for every hour. We extracted data from

August 1st to December 31th 2011, with an hourly tempo-

ral resolution and a 0.25° × 0.25° spatial resolution

(https://cds.climate.copernicus.eu/). We fit linear model in

R with population index as the response variable and abso-

lute wind speed derived from 10 m meridional and zonal

winds, 2 m temperature and colony as fixed effects.

For hypothesis 4, final models were developed for the

environmental window of the date of image acquisition,

and for 2 days, or 3days prior to image acquisition. We

used Akaike Information Criterion (AIC) for model selec-

tion, combining both forward and backward selection

(i.e. function stepAIC of the MASS package, R). A com-

parison of AIC allowed us to choose the best environ-

mental window. For all models, validations were checked

by plotting Pearson residuals against fitted values, and

against each explanatory variable, verifying homogeneity

and normality of residuals (Zuur et al., 2010). These

models did not take into account temporal autocorrela-

tion, but we checked temporal correlation of the residuals

by plotting the residuals of the final model versus the

Julian dates and checking the correlation (i.e. 0.0014).

Finally, to select the best covariates for accounting and

removing sources of spurious variation in population

indices, we used model selection to identify the most par-

simonious model combining all satellite-related and envi-

ronmental covariates. Two linear models combining all

three colonies were fitted: one model was fitted with ‘col-

ony’ as fixed effects and the other included the satellite-

related and environmental variables. We then calculated

the proportion of variance explained by the covariates by

comparing the R-squared from a model that included the

satellite-related and environmental covariates to one that

omitted them (but still retained the fixed effect of colo-

nies). The day of year was correlated (>0.5) with the sun

elevation and the temperature so we did not include day

of year in the models. However, we checked the absence

of correlation between the final model residuals and the

day of year.

Simulation to evaluate the effects of
observation error on precision of trend
estimates

Residual variance in our fitted models measures the mag-

nitude of observation error among repeated surveys

within a season. The null model includes the maximum

amount of residual variance in surveys, while the ‘top’

model indicates the degree to which covariates can reduce

this variance by ‘correcting’ for factors that influence the

population index during a survey (e.g. weather conditions

that cause penguins to densely huddle, resulting in a

lower than expected count). To illustrate the potential

effects of observation error on trend estimates, we focus

our remaining analysis on comparisons between residual

variance from these two models (i.e. the null and ‘top’

model).

We conducted a series of simulations in which we

introduced different magnitudes of observation error into

population time series. We then evaluated the effects of

this observation error on the resulting precision of trend

estimates at multiple temporal and spatial scales. To
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achieve this, we simulated a known log-linear population

trend of −0.037, resulting in ~30% population decline

after 10 years and ~84% population decline after 50 years.

While the magnitude of decline has no effect on estimates

of trend precision, we included this trend for illustrative

purposes and because it aligns with the IUCN Red List

Criteria for ‘Vulnerable’ Status. Parameter values for these

simulations are described in Appendix S1. Our simula-

tions assumed each colony was surveyed once per year

(i.e. with a single VHR image), and observed population

indices for each colony were subject to log-normal error

(ϵi,t) with standard deviation equal to the residual stan-

dard error estimated from the statistical models described

above. Using these simulated satellite observations as data,

we then estimated population trends and annual expected

population indices (Ni,t) independently for each of the i

simulated colonies. The trend model for each colony was

therefore:

log Counti,tð Þ∼Normal log Ni,tð Þ�1

2
σ2i , σ

2
i

� �
,

logðNi,tÞ¼ αiþβiðt�1Þ:

Accordingly, the log-linear trend for an individual col-

ony is described by the parameter βi and initial popula-

tion index is equal to exp (αi), while observed satellite

counts represent normally distributed deviations from the

(log-scale) annual expected population index, with vari-

ance σ2i . The term 1
2σ

2
i corrects for asymmetries in esti-

mating the mean of a log-normal distribution and

ensures that aggregated population indices from multiple

colonies are not artificially inflated.

(A)

(B)

Figure 3. WorldView-2 satellite image from Atka Bay emperor penguin colony for September 3rd 2011 (A), exemplifying ‘compact’ patchiness

(group of birds is circled) and WorldView-2 satellite image from Atka Bay later in the season, on September 25th 2011 (B), showing an example

of ‘spread’ patchiness (the group of birds is circled again, and the guano stain spread out over a much larger area). Image courtesy DigitalGlobe,

Inc. (Maxar Technologies) and scale bars on bottom right of each image are 500 m and 2000 feet.
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We intentionally omitted inter-annual temporal process

variance from our simulations (i.e. variance in βi from

year to year), given that we were unable to estimate this

quantity from a single year of surveys (our study), and

there are currently insufficient data to evaluate its likely

magnitude from other studies. However, we note that

process variance is a strong determinant of precision in

trend estimates and is distinct from observation error

(the focus of this study). Thus, our simulations represent

a ‘best case scenario’ that illustrate the potential improve-

ment in precision that could be attained by accounting

for environmental covariates during surveys, if process

variance is zero. In practice, improvements in precision

will be lower if process variance is high.

We examined how the precision of trend estimates

changed with an increasing number of survey years by

refitting the trend model to different lengths of simulated

data (t = 10 to 40 years for each colony). Additionally, to

examine the potential to improve trend precision by

aggregating annual population estimates for multiple

colonies, we selected different numbers of colonies (rang-

ing from I = 2 to 40) and summed their annual indices

to generate an estimated ‘regional’ index where

Rt ¼∑
I

i¼1

Ni,t . We calculated the temporal trend for the

regional population as logðRtÞ�logðR1Þ
t�1ð Þ . Further details of sim-

ulation and trend analyses, including model fitting proce-

dures, are described in Appendix S1. In all simulations,

we quantified the precision associated with trend esti-

mates as the width of the 95% equal-tailed credible inter-

val. We repeated this simulation exercise 100 times for

each variance scenario (residual variance based on either

the null or ‘top covariate’ model), and each combination

of monitoring length (10–40 years) and colony aggrega-

tion (1–40 colonies aggregated). We report mean trend

precision for the repeated simulations. We considered

trends to be estimated with ‘high precision’ if the width

of the confidence interval was less than 0.035 (i.e. a

change of approximately 3.5% per year). This threshold is

consistent with the high precision category for other

large-scale avian monitoring programs (e.g. Status of

Birds in Canada; Environment Canada 2019), but we note

that any categorical threshold is somewhat arbitrary and

mainly used for illustrative purposes.

Results

We analysed a total of 44 images across three colonies

during spring 2011 and found that the population index

(again, area of penguin pixels in m2) calculated by VHR

imagery within a single season varied among repeated

surveys at all three emperor penguin colonies (Tables 1

and 2; Figs. 1 and 4). Both colonies in the Weddell Sea

varied by a factor of ~5 and Coulman Island (in the Ross

Sea) varied by a maximum factor of two throughout

spring 2011. Dates of minimum population indices

occurred in September across all three colonies but the

date of maximum population indices varied (Table 2,

Fig. 1). We failed to support hypothesis 1, as satellite res-

olution during a survey was not correlated with the popu-

lation index on that survey. However, in support of

hypothesis 2, sun elevation and sun azimuth had a signifi-

cant positive effect on the population index within a sea-

son at these colonies (Table 3).

In our test of hypothesis 3, all three colonies were cate-

gorized as both ‘spread’ and ‘compact’, roughly equally

through the season, with no tendency towards one or the

other at any point (i.e. colonies were not necessarily

defined ‘compact’ in early season vs. later). We did find,

however, that patchiness (i.e. compact vs. spread) had a

significant effect on the population index across all colo-

nies (Table 4): when penguins were spread out, the popu-

lation indices were approximately 1.7% bigger (i.e.

median of 10 781 m2 for spread and 6283 m2 for com-

pact) than when the colony was categorized as ‘compact’.

Thus, colonies fluctuate between ‘compact’ and ‘spread’

patterns throughout the spring survey period (September

through December), which influences the resulting index

of the population on any given survey.

Population indices were negatively correlated with

strong wind speeds and low temperatures on the day of

the survey (hypothesis 4; Table 5). Environmental condi-

tions in the 2- and 3-day period leading up to a survey

were also correlated with population indices but received

Table 2. Range of ‘penguin estimated area’ (i.e. population index) calculated via supervised classification on VHR imagery at three emperor pen-

guin colonies in Antarctica, including the average area over the season, number of images analysed per colony, minimum area calculated (m2),

date of the image when minimum area was calculated, maximum area calculated (m2), date of the image when the maximum area was calcu-

lated, and the ratio between the maximum and minimum area calculations per colony to exemplify the magnitude of intra-season change.

Colony Name Avg area # images Min. Area Date Min. Area Max. Area Date Max. Area Max:min

Atka Bay 7200 15 2326 Sept 6, 2011 11 748 Sept 15, 2011 5.05

Coulman Island 22 687 11 14 965 Sept 30, 2011 31 005 Nov 19, 2011 2.07

Stancomb-Wills 8814 18 3156 Sept 25, 2011 18 724 Dec 11, 2011 5.93
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less support in our models than a 1-day environmental

window.

To examine the overall effect of accounting for these

covariates, we constructed a final model that included

additive combinations of the covariates from our

hypothesis tests. We again included a fixed effect of col-

ony in all models to account for differences in the mean

index among colonies. After model selection, we retained

variables: wind speed for the date of VHR image acquisi-

tion, sun elevation, sun azimuth, and satellite resolution

Figure 4. Emperor penguin estimated areas (i.e. population indices) at Coulman Island (A), Stancomb-Wills (B) and Atka Bay (C) colonies during

the breeding season. Grey shapes represent the island, ice-shelves, icebergs or glacier tongue near the colony, blue shapes the open water and

red shapes the emperor penguin estimated surface areas. All images are not represented, please see the list of images in Table 1.

10 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Variation in within-season emperor penguin indices S. Labrousse et al.



(though this effect was not significant using a P-value

threshold of 0.05). In combination, these covariates

explained 46% of the variance in population indices

among surveys within a colony (Table 6). This reflects the

variance in population indices explained among repeated

surveys within colonies, and is independent from the vari-

ance explained among colonies by the fixed colony effect.

With regard to our simulations, residual observation

error led to uncertainty in estimates of population trend

(Appendix S1; Fig. 5). As expected, trend estimates were

more precise (95% credible interval widths smaller) when

colonies were monitored for a longer duration and when

annual estimates were aggregated for multiple colonies.

Trend precision was also considerably higher after

accounting for survey covariate effects (compare Fig. 5B

to A). On average, trends at individual colonies could be

estimated with ‘precision’ (i.e. 95% credible interval width

< 0.035) after 24 years of monitoring if survey covariates

were accounted for. In contrast, 31 years of monitoring

were required to achieve precision if survey covariates

were not accounted for. Population trends for aggrega-

tions of multiple colonies could be estimated with high

precision with fewer years of monitoring. For example

when accounting for environmental covariates, high pre-

cision in trend estimates could be achieved after only

10 years of monitoring if approximately 18 colonies were

aggregated. Conversely, without accounting for environ-

mental covariates, approximately 33 colonies must be

aggregated to achieve high precision in trend estimates

after 10 years of monitoring. Accounting for the environ-

mental and behavioural drivers of observation error can

substantially improve confidence in population trends.

Discussion

Our analysis is the first to (i) address the intra-seasonal

variability in VHR-derived population indices at three

emperor penguin colonies, and to (ii) identify covariates

that can correct for these sources’ observation error. In

the first study to estimate the global population of

emperor penguins using VHR surveys, Fretwell et al.

(2012) assumed that area of penguin pixels (our ‘popula-

tion indices’ here) derived from a single image within a

season would reasonably represent colony size for that

year. This assumption appears to be valid for coarse com-

parisons among colonies that differ substantially in size;

VHR-derived surveys can readily distinguish a colony of

many thousands of individuals (e.g. Coulman Island)

Table 3. Results of the linear model to determine whether attributes

of the satellite platform (resolution (expressed in metres), sun eleva-

tion and sun azimuth angles (expressed in degrees); hypotheses 1 and

2) influenced the emperor penguin population indices (expressed in

log scale of the area in m2) calculated from VHR imagery. Adjusted

r2 = 0.7191. The colony effect and values are not displayed on the

table. Bolded variables represent those with P < 0.05.

Value SE d.f. t-value P-value

Intercept 7.79 0.31 36 24.903 <2e-16
Panchromatic resolution 0.42 0.42 36 1.014 0.317

Sun elevation angle 0.028 0.008 36 3.622 0.000895

Sun azimuth angle 0.0078 0.002 36 3.707 0.000702

Table 4. Results of the linear model to address whether patchiness

(i.e. ‘compact’ or ‘spread’) influenced the emperor penguin popula-

tion indices calculated (expressed in log scale of the area in m2) from

VHR imagery (hypothesis 3). Adjusted r2 = 0.7647. The colony effect

and values are not displayed on the table. Bolded variables represent

those with p < 0.05.

Value SE d.f. t-value P-value

Intercept 9.62 0.16 38 60.385 <2e-16
Patchiness −0.61 0.098 38 −5.825 9.91e-07

Table 5. Results of the best linear model to address hypothesis 4;

testing the influence of environmental covariates (wind (expressed in

m s−1) and temperature (expressed in degrees Celsius)) on the

emperor penguin population indices (expressed in log scale of the

area in m2) calculated from VHR imagery.

Value SE d.f. t-value P-value

Intercept 0.71 2.68 37 0.264 0.79320

Absolute wind speed

10 m

−0.067 0.021 37 −3.258 0.00241

Surface temperature 0.034 0.011 37 3.206 0.00277

Adjusted r2 = 0.7245.

Table 6. Results of the best linear model linking survey covariates

(resolution (metres), sun elevation and sun azimuth angles (degrees)

and wind (in m s−1)) with emperor penguin population indices (ex-

pressed in log scale of the area in m2) to account for observation

error during surveys of emperor penguins using VHR imagery.

Value SE d.f. t-value P-value

Intercept 8.19 0.33 35 24.552 <2e-16
Panchromatic resolution 0.51 0.39 35 1.320 0.19527

Sun elevation angle 0.024 0.007 35 3.215 0.00280

Sun azimuth angle 0.006 0.002 35 2.955 0.00556

Absolute wind speed

10 m

−0.052 0.021 35 −2.496 0.01742

Adjusted r2 = 0.75 (compared to 0.54 for a ‘null’ model that only

included a fixed effect of colony but no survey covariates). The pro-

portion of variance within colonies explained by the survey covariates

is 46% (note this is distinct from the proportion of variance among

colonies, explained by the colony fixed effect).
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from a colony of several hundred (e.g. Beaufort Island,

Fretwell et al., 2012). However, our study revealed that

VHR-derived population indices vary substantially among

repeated surveys throughout a single season at each of

our three colonies. Furthermore, we showed that satellite-

related and environmental variables can describe intra-

season variation in area of penguin pixel at a colony,

which is essential for calculating robust estimates of pop-

ulation size and trends in the future, especially when only

one satellite image is typically available per year. This

work has major implications for the future assessment of

emperor penguin responses to climate change.

Overall, population indices range from 2326 to

11 748 m2 for Atka Bay, from 14 964 to 31 005 m2 for

Coulman Island and from 3155 to 18 724 m2 for

Stancomb-Wills. Variation in population indices among

repeated surveys arises from intrinsic behaviour of the

birds (e.g. foraging trips by adults that cause temporary

fluctuations in colony abundance throughout a season, or

huddling behaviour that obscures individuals from view)

and counting errors owing to imprecision in the observa-

tion process (e.g. differences in satellite position, or other

factors that cannot be controlled during surveys). Collec-

tively, this ‘within-season’ observation error causes surveys

to deviate from a seasonal expected count at the colony.

Encouragingly, our study demonstrates that covariates can

be used to ‘correct’ for several important drivers of obser-

vation error, such as sun angles and weather during a sur-

vey. Large-scale monitoring programs routinely correct for

variables known to influence counts during surveys. For

example the North American Breeding Bird Survey corrects

for observer experience (Sauer et al., 1994), and numerous

covariates are used to correct for phenological and envi-

ronmental effects during harbor seal Phoca vitulina surveys

(Hoef, 2003). Recently, Foley et al. (2020) developed a

phenological correction model for King Penguins that

accounts for the seasonal timing of surveys and corrects

for attrition of multiple life cycle stages. This was a neces-

sary step to ‘standardize’ surveys collected in many differ-

ent years, often in different stages of the species’ life cycle.

In this study, a large proportion of observation error

remains to be explained, and some may in fact be unex-

plainable (i.e. controlled by a combination of factors that

are irreducibly complex, for example the movements of

Figure 5. Precision associated with trend estimates resulting from

simulations that incorporate residual variance in annual population

indices from a null model (A) and a model that accounts for the

effects of environmental drivers on daily population indices (B). X-axis

denotes the number of colonies that are aggregated; Y-axis denotes

the number of years each colony is monitored for. Shading indicates

the resulting precision of the estimated log-linear trend, measured as

the width of the 95% equal-tailed credible interval associated with

the trend estimate. Solid and dashed contour lines in each panel

denote the boundary at which trends can be estimated with ‘high

precision’ (using a threshold where credible interval width is equal to

0.035). (C) represents the comparison of (A and B).
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adults to and from the colony on foraging trips). Neverthe-

less, improvements to VHR-derived population indices

described here are an important step towards any future

research and monitoring and are therefore critical for the

conservation of the species (Trathan et al., 2020).

Emperor penguin colonies are highly dynamic within a

season (Figs. 1, 3 and 4). Depending upon the prevailing

conditions, penguins may disperse and spread out, or

they may cluster and aggregate forming compact groups

in response to local weather conditions (Richter, Gerum,

Winterl, et al., 2018). Our results confirmed that compact

huddling behaviour was detectable with VHR imagery

and was more likely to occur in cold and windy condi-

tions. This makes sense because penguins form huddles to

conserve energy (Gilbert et al., 2009; Le Maho, 1977), and

huddling increases with colder temperatures and stronger

wind speed (Gilbert et al., 2006, 2007). Importantly, this

behaviour affected the resulting population index during

a survey. Cold and windy conditions resulted in fewer

pixels classified as ‘penguin’, likely because multiple hud-

dling individuals fit within a single pixel. As a result, pop-

ulation indices were ~0.6% smaller (i.e. based on

medians) when colonies were categorized as ‘compact’.

Future application of these satellite- and

environmental-based corrections will need to account for

sources of observation error that are likely to differ

among colonies. Some sites may be less exposed to winds

and cold temperatures (e.g. sheltered colonies located in

the lee of islands or peninsulas, or within ice creeks),

which could affect the probability a colony will be densely

huddled during a survey. Factors that affect the super-

vised classification process may also differ among colo-

nies. Clouds, shadows and dense guano stains make

images more difficult to interpret (Barber-Meyer et al.,

2007), resulting in a less precise classification and a

potential overestimate of abundance. Here we showed

that lower sun elevation will cast more shadows and

increase the number of pixels classified as ‘penguin’. Simi-

larly, sun azimuth values that result in shadows being cast

from surrounding features like ice cliffs could obscure

penguins that would otherwise be visible. Unfortunately,

in practice, we do not have the option to choose which

date range(s) have the highest quality cloud-free images

at a colony. In the rare cases where multiple high-quality

images exist within a season, we strongly advocate for the

approach we adopted in this study (i.e. leveraging infor-

mation from all available images and statistically account-

ing for factors that introduce sampling variation).

Ongoing efforts to identify these sources of spurious vari-

ation (and bias) in surveys are required for improved

monitoring of this species.

The application of these methods and use of future

results have implications for Research and Monitoring

Plans, which are a prerequisite for marine-protected areas

(MPA) designated by the Commission on the Conserva-

tion of Antarctic Marine Living Resources (CCAMLR).

To advance our understanding of emperor penguins sta-

tus within current MPAs (e.g. the largest MPA in the

world, Ross Sea) and future MPAs, our work would facil-

itate the development of such a framework. Our simula-

tions found that several emperor penguins’ colonies need

to be aggregated to detect real metapopulation changes as

detailed in Kooyman and Ponganis (2017); this suggests

the need for a regional network of monitoring and is

instructive in the context of the creation of marine-

protected areas based on ecoregions (Brooks et al., 2020).

Given that a primary tenet of the CAMLR Convention is

to ensure ‘maintenance of the ecological relationships

between harvested, dependent and related populations of

Antarctic marine living resources’—and that emperor

penguins are dependent and related populations—it is

possible that we would not be able to detect alterations to

the ecosystem with monitoring tools at present. Our

results, therefore, support a regional network of emperor

penguin colony monitoring, which could take the form of

a network of MPAs.
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