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Abstract

A mathematical model for the COVID-19 pandemic spread, which integrates age-structured

Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data

accounting for the population mobility, is presented. The dynamical model adjustment is per-

formed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are

determined based on nonlinear model predictive control, constrained to public-health and

socio-economic factors. Through an extensive computational validation of the methodology,

it is shown that it is possible to compute robust exit strategies with realistic reduced mobility

values to inform public policy making, and we exemplify the applicability of the methodology

using datasets from England and France.

Author summary

In many countries, the COVID-19 pandemic has revealed a gap between public policy

making and the use of advanced technological tools to inform such a process. In the big

data era, decisions concerning the implementation of quarantines and travel restrictions

are still being taken based on incomplete public health data, despite the myriad of infor-

mation our society provides in real time, such as mobility data, commuting network struc-

tures, and financial patterns, to name a few. To advance towards an effective data-driven,

quantitative policy making, we propose a computational framework where a predictive

epidemiological model is fitted by feeding both public health and Google mobility data.

The resulting model is then used as a basis for designing mobility reduction strategies

which are optimised taking into account both the healthcare system capacity, and the eco-

nomic impact of an extended lockdown. For the COVID-19 pandemic in England and

France, we show that it is possible to design lockdown policies allowing a partial return to

workplaces and schools, while maintaining the epidemic under control.
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Introduction

The COVID-19 pandemic has put quantitative decision-making methods (and the lack

thereof) in the spotlight. Designing informed non-pharmaceutical intervention strategies

(NPIS) to mitigate the pandemic effects has been a controversial issue worldwide. In particular,

the planning of effective lockdown policies and their posterior lifting based on real-time data

still remains a largely open problem. A vast amount of research efforts has been dedicated to

model the COVID-19 pandemic focusing on the various aspects of the system dynamics, such

as estimating the value of the basic reproductive number [1, 2], evaluating the effect of contain-

ment measures and travel restrictions [2–6], assessing the effect of age on the transmission and

severity of the disease [1, 7] and estimating the impact on Health Services [8]. It is remarkably

hard, if not impossible, to capture every aspect of this complex phenomenon in an integrated

and computationally tractable mathematical model. With this in mind, our goal in the present

work is to study the dynamics of COVID-19 spread by integrating a dynamical epidemiologi-

cal model with mobile phone data from the population. Such an adjusted model yields an

accurate account of the real displacement of the population between different locations (e.g.

workplaces, schools, etc.) during the pandemic, and serves as the basis for determining lock-

down and exit strategies which are optimised according to public health and socio-economic

constraints. We would like to stress here that, in order to define the model dynamics, we have

considered some assumptions (on the contact matrices, the connection between mobility data

and contacts, the initialisation of the compartments and the definition of the cost functional)

which may not be easily tested in real a life scenario.

Related literature

Previous works have modelled the impact of NPIS using extensions of the classical Suscepti-

ble-Infected-Removed (SIR) model [9] with the inclusion of compartments corresponding to

asymptomatic population which are either exposed to infections but not yet infectious, or

infected and infectious [10]. Given the current knowledge of the COVID-19 disease, this con-

stitutes a complete description of the possible states.

Among the works based on the aforementioned state space representation, [5], one of the

main inspirations behind our work, uses an age-structured model to quantify the effect of con-

trol measures imposed in Wuhan, China and concludes that there exists a large potential on

the use of NPIS for mitigating the COVID-19 pandemic. Furthermore, the authors recom-

mend a gradual relaxation strategy in comparison to an early lifting of the imposed lockdown

measures to avoid possible second and third waves of the pandemic. Using a stochastic modifi-

cation of a compartmental model without age structure, [2] reaches similar conclusions and

quantifies the effectiveness of lockdown measures by estimating the reproduction number,

which decreased from a median value of 2.35 before travel restrictions were imposed, to 1.05

one week after the implementation of travel restrictions.

In the context of resorting to optimal control methods to determine a lockdown policy,

[11] compares a switching on-off strategy with a two-stage release from quarantine (with part

of the population released first, and the others later). The authors consider a threshold-based

sanitary cost functional aiming at releasing the largest possible population without exceeding

the availability of hospital beds, and their conclusion is to favour the second strategy. [12] con-

sider multiple control levers, such as the number of tests (both virologic and anti-body tests)

and the increase of ICU beds in addition to the reduction of social contacts, and uses a cost

functional involving both economic and sanitary costs. The authors suggest an optimal lock-

down policy which involves a quick and strong isolation, followed by a large increase in the

number of tests.

PLOS COMPUTATIONAL BIOLOGY Optimal lockdown using mobility data: COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009236 August 12, 2021 2 / 25

publications/slides-and-datasets-to-accompany-

coronavirus-press-conference-25-may-2020),
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Our contribution

While the qualitative modelling and control concepts of the aforementioned works are aligned

with the epidemiological literature, we remark that most of these papers use parameter values

collected from previous works or estimated using either different models or from clinical

knowledge. Hence, they cannot be directly applied to populations with different spatio-tempo-

ral patterns. In contrast, the main goal of this paper is to propose a framework which calibrates

the model using epidemiological and real-time mobility data from a specific population, mea-

sured by Google Mobility through Android devices, and computes an optimal lockdown strat-

egy for that population at any point of the pandemic. To achieve this, we combine parameter

estimation for an epidemiological model with a subsequent optimal control step. Secondly,

our framework includes the computation of the optimal lockdown policy in a nonlinear model

predictive control framework, leading to a robust feedback protocol which allows not only

real-time adaptation of the release strategy but also a partial lockdown, as opposed to a switch-

ing on/off strategy which can be too restrictive.

Methodological summary

Our epidemiological model simulates the transmission dynamics of COVID-19 spread in the

English and French populations using anonymised data on the reduction of the population

mobility collected through smartphones and released by Google. Further, exploiting Approxi-

mate Bayesian Computation (ABC) [13], we calibrate this model using data on daily deaths

and the number of people in hospitals with COVID-19 released from public health authorities

(Public Health England (PHE) and the National Health Service (NHS) in England, and Santé

publique France (SpF) in France) [14–17]. In ABC, we assume a prior distribution for each

parameter value and, given a dataset with an inherent observation noise, we obtain a non-

parametric estimate of the joint probability distribution of the parameter values. This allows us

to estimate parameters of our model for the specific cases of England and France, as opposed

to inheriting parameters from epidemiological models from other countries. Some key attri-

butes of our model are the inclusion of age-dependent transition probabilities between the dif-

ferent compartments which are also estimated from data, as well as age-dependent social

distancing, and the use of Google mobility data to quantify the effect of social distancing mea-

sures in reality. Having calibrated our model, we design a lockdown strategy which is differen-

tiated according to social contact categories including schools, work, and others. This allows

us to assign a different economic penalty for each one of them. Borrowing a leaf from optimal

control theory, we synthesize an optimised lockdown and exit strategy which minimizes the

number of COVID-19-related casualties in the population, but also takes into account eco-

nomic constraints. In order to perform this task, we quantify the relation between the decrease

in social contacts with the reduction in the population mobility and optimise with respect to

the latter, which is an effectively measurable quantity compared to an abstract decrease in

social contacts. A methodological summary is depicted in Fig 1, illustrating the interaction

among the different building blocks of our approach. It is important to note that the proposed

methodology transcends the design of lockdown strategies for the COVID-19 pandemic, and

can be applied for more general epidemiological models, different datasets, and a variety of

control objectives. What is fundamental in our approach is the existence of a dynamical

model, the assimilation of data for the optimal estimation of model parameters and uncertain-

ties, and the optimization of an external input action to control the system towards a desired

state.
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Fig 1. Flow diagram of the data-driven approach for the synthesis of optimal lockdown policies. The initial step consists of a policy maker defining

a performance measure based on sanitary and economic objectives, and a modeller selecting a consistent generic epidemiological model. Then, public

healthcare/mobility data is used in conjunction with Approximate Bayesian Computation to calibrate the dynamical model and determine the degree of

uncertainty in the model parameters. This assists the formulation of an optimal control problem where the original sanitary + economic performance

measure is optimized constrained to the calibrated epidemiological model. An optimal lockdown policy is then computed via global optimization

techniques, and the final output is an optimal lockdown policy. The optimised lockdown is then applied and its real-time effects can be sensed through

public data, which fed back into the learning and optimization framework for re-computation and update.

https://doi.org/10.1371/journal.pcbi.1009236.g001
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Epidemiological model using Google mobility

Our epidemiological model is developed in order to exploit data on change of mobility (in our

case, provided by Google) and information on the social contacts patterns at different types of

locations, such as schools or workplaces (eg. estimated by the BBC Pandemic project [18] for

the UK and the POLYMOD study [19] for 152 countries in the world). In this manuscript, we

will focus on explaining the model for England and the methodology will be illustrated for

both England and France; however, we stress that the methodology can be extended to con-

sider any other country, and, in fact, to other epidemiological models, where suitable data is

available. In this Section, we first explain the fundamental dynamic properties considered in

this model and then explain how these two data sources are used.

Model dynamics

Assuming a well-mixed population (namely, each person has the same probability of interact-

ing with any other person in the population), we consider a compartmental model [20], split-

ting the population in different compartments representing different states of the infection.

Although this is extremely simplifying, compartmental models under this assumption are

widely used to describe the dynamics of epidemics over large populations. Our model consid-

ers the following compartments:

• Susceptible (S), meaning people who did not have any contact with the infection,

• Exposed (E) to the infection, but not yet infectious,

• Infected SubClinical (ISC, split in ISC1 and ISC2), not needing medical attention,

• Infected Clinical (IC, split in IC1 and IC2), needing medical attention,

• Recovered (R), which we assume are resistant to a new infection,

• Deceased (D).

As strong evidence towards the age-dependent severity of COVID-19 has been observed in

previous research works [1, 7], we consider age-stratification of all of the states along 5 age

groups: 0–19, 20–39, 40–59, 60–79, 80+, hence we will use the notation Ei to denote the

Exposed population in the i-th age group, and similarly for the other states. The model

will assume that all the age groups are susceptible to the infection in the same way, but

that the severity is strongly dependent on the age of the patient through age-dependent

probabilities of necessity of hospitalization (ρi) and death if hospitalized (r0i) for the i-the age

group.

Another key assumption of our model is that when a patient is hospitalized and diagnosed,

they are isolated and therefore not able to spread the infection. To reflect this scenario, we

assume that from the exposed state and after some incubation period, all patients will become

sub-clinical ISC, in which state they are infectious. Afterwards, some of them will recover (R)

and others will need clinical help (IC); we model this by splitting ISC into two categories: the

ones recovering straightaway (ISC2) and the ones in need of clinical care (ISC1). The split hap-

pens with an age-dependent probability ρi. After some time, people in ISC1 will go to hospital,

therefore moving to the IC state; similarly as before, the latter state is split in two categories

according to the final outcome: the ones in IC1 will decease (D) after some time, while the ones

in ISC2 will recover (R). This split is again described by an age-dependent probability, which

we denote as r0i. A visualization of the dynamics is given in Fig 2.

PLOS COMPUTATIONAL BIOLOGY Optimal lockdown using mobility data: COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009236 August 12, 2021 5 / 25

https://doi.org/10.1371/journal.pcbi.1009236


Mathematically, this can be described using the following system of ordinary differential

equations (ODEs):

dSi
dt
¼ � bSi

X

j

Cij

ISCj
Nj

ð1Þ

dEi

dt
¼ bSi

X

j

Cij

ISCj
Nj
� kEi ð2Þ

dISC1
i

dt
¼ rikEi � gCI

SC1
i ð3Þ

dISC2
i

dt
¼ ð1 � riÞkEi � gRI

SC2
i ð4Þ

dIC1
i

dt
¼ r0igCI

SC1
i � nI

C1
i ð5Þ

dIC2
i

dt
¼ ð1 � r0iÞgCI

SC1
i � gR;CI

C2
i ð6Þ

dRi

dt
¼ gR;CI

C2
i þ gRI

SC2
i ð7Þ

dDi

dt
¼ nIC1

i ; ð8Þ

where ISCj ¼ ISC1
j þ ISC2

j and C is the contact matrix representing the frequency of contacts

between different age groups [18], where each element Cij represents the average daily number

Fig 2. Graphical representation of the model, for each age group. The green color represents a compartment that is

observed independently for each age group, while blue represents a compartment whose sum across age groups is

observed.

https://doi.org/10.1371/journal.pcbi.1009236.g002
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of contacts a person in age group i has with people in age group j. To simulate from the model,

the ODEs (Eqs (1)–(8)) are integrated using a 4th-order Runge Kutta integrator, with a time-

step dt = 0.1 days; the dynamics is started on the 1st of March.

Influence of mobility on the dynamics. The contact matrices are a crucial component

defining our model dynamics, and were estimated in the POLYMOD study [19] for a large set

of countries (among which England and France). Specifically for the contact matrices for

England, the findings of the more recent BBC Pandemic project [18] were integrated using the

procedure described in [18]. Note that [18] provided contact matrices for the whole UK, We

assume that the contact matrix for England to be the same as that for the whole of the UK.

Finally, the age groups considered in these studies (namely, 5 year bands) are finer than the

ones we consider in the present work; we therefore aggregate the data to make contact matrices

suit our needs. The (i, j)–th entry of this contact matrices at different locations (eg. home,

workplace, school and other locations) represent the amount of daily contacts an individual in

age group i has with individuals from age group j in different settings (see Fig 3). Before the

lockdown, the total contact matrix is simply the sum of the contributions of these different

locations:

C ¼ Chome þ Cwork þ Cschool þ Cother:

However, the introduction of lockdown measures lead to considerable change to people’s

social activity and mobility; we model this by introducing a set of multipliers (for each age

group and for each of the locations) which will represent the change in the number of social

contacts:

Ci;j ¼ a
home
i Chome

i;j þ a
work
i Cwork

i;j þ a
school
i Cschool

i;j þ aotheri Cother
i;j ; ð9Þ

where aschooli ; aotheri ; aworki , represents the change of social contacts for age group i in the locations

school, other, andwork. These multipliers are a function of time and not easily accessible.

Instead, it is rather easy to measure the reduction of people’s mobility towards the different

locations; we choose then to express the α’s as a function of the mobility values provided by

Google, as explained in the next paragraph.

Mobility data is collected by Google to reflect the reduction of the population mobility dur-

ing lockdown for each country, by following the movements of Android phones; anonymised

Fig 3. Contact matrices at different locations in the UK for the age groups used in the present study (0–19, 20–39, 40–59, 60–79, 80+); these are

obtained by aggregating and combining the contact matrices for 5-year bands provided by [18] and [19].

https://doi.org/10.1371/journal.pcbi.1009236.g003
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data is publicly available [21]. Similar datasets can be retrieved directly from other sources,

such as mobile phone companies [22]. This dataset captures mobility towards the following

locations: “residential”, “workplaces”, “parks”, “retail and recreations”, “transit stations” and

“grocery and pharmacy”, which we denote respectively as mresidential, mwork, mparks, mretail,

mtransit, mgrocery; the changes in mobility are reported with respect to the baseline values prior

to introduction of lockdown measures. As can be seen in the left panel of Fig 4, a strong weekly

periodicity is present in this data; we therefore use a Savitzky–Golay filter [23] to remove it.

We moreover combined the mobility values mparks, mretail, mtransit, mgrocery in order to

obtain an aggregated value for the reduction of mobility towards “other locations”: mother = 0.1

�mparks + 0.3 �mretail + 0.3 �mtransit + 0.3 �mgrocery. Even though the numerical values of the

weights are arbitrary, this choice is motivated by our observation that the value of the different

contributions of the mobility data is quite similar; we also attribute a smaller value to “parks”

as people get less in strict contact with each other there with respect to “retail”, “transit” or

“grocery” locations.

As no data with regards to schools were provided, we fixed the value of mschool to be 0.1

from the day schools and universities were closed except for children of essential workers

(23rd of March [24] for England, 16th March for France [25]). The mobility data obtained

after the aggregation and smoothing operations described above is presented in the right panel

of Fig 4.

In order to connect the reduction in mobility to the reduction in the number of contacts,

we proceed in the following way: first we assume that the number of residential contacts stays

constant; in fact, we expect the behavior of people at home not to differ too much with respect

to what it was prior to the introduction of lockdown measures; for our model, this amounts to

fixing ahomei ðtÞ ¼ 1; 8t; 8i. With regards to the remaining contributions to the total number of

contacts, we expect data on mobility reduction to be representative of the subset of the popula-

tion which mostly uses smartphones, which is likely to be younger than 60 years old. More-

over, a large part of the population older than 60 years old does not take part in work or school

Fig 4. Raw and elaborated mobility data in the UK. In the raw mobility data, which is scaled with respect to a baseline value representing average

mobility in the months prior to the pandemics, a strong weekly seasonality is present, which we mostly removed using a Savitzky–Golay filter.

Moreover, we note that the mobility towards “residential” (which is not used in our analysis) locations is larger during the lockdown months than

before, as people spend more time in their homes. Finally, we note the very large increase in people’s mobility towards parks around the end of the

winter season. That contribution is however only one of the components in our aggregated mother mobility value, so the latter does not increase that

abruptly.

https://doi.org/10.1371/journal.pcbi.1009236.g004
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activities. Motivated by these arguments, we define the values of aschooli ; aotheri and aworki separately

for population below and above 60. Specifically, we assume the following for age groups below

60 years old (age group index 1,2,3):

aschooli ðtÞ ¼ a123 �mschoolðtÞ;

aotheri ðtÞ ¼ a123 �motherðtÞ;

aworki ðtÞ ¼ a123 �mworkðtÞ;

for i 2 f1; 2; 3g

8
>>><

>>>:

ð10Þ

where we made the dependence on time explicit in order to highlight that α123 2 [0, 1] is a

time-independent scalar, which is an additional parameter in our model; this amounts to

assuming that the reduction in the number of contacts is due to a combination of reduced

mobility and increased awareness of people, for instance by maintaining social distancing. For

people above 60 years old (age group index 4 and 5) we assume instead that the reduction in

contacts stays constant since the introduction of lockdown measures and that such reduction

is equally distributed across the different categories (as the contacts for work and school will be

relatively few):

aschool
4
ðtÞ ¼ aother

4
ðtÞ ¼ awork

4
ðtÞ ¼ a4; aschool

5
ðtÞ ¼ aother

5
ðtÞ ¼ awork

5
ðtÞ ¼ a5; ð11Þ

where α4, α5 2 [0, 1] are time-independent scalars, which are parameters in our model as well.

This latter assumption is motivated by the fact that such part of the population is more suscep-

tible to the disease, so that the official advice will be for them to be as isolated as possible

throughout the epidemics.

We initialise our implementation of the model dynamics on the 1st of March and we fix the

contact matrix to be the standard one relative to the country until the introduction of lock-

down measures (which we assume to be on the 18th March, i.e. two days after the UK govern-

ment advised people to self-isolate [26] and one day after the French government banned all

except essential journeys [27]); from that day onward, we use the contact matrix obtained

from Eq (9), by fixing αhome = 1 and obtaining the values for the other α’s by Eqs (10)

and (11).

Intitialization and model parameters. At the beginning of the dynamics, most of the

population is in the S state, except for a small number of individuals which seed the infection.

We therefore assume that some people were already infected on the 1st of March and we

denote that number as Nin; this number is split across the different categories and age groups

in the following way:

• First, the total number of infected population is spread across the age groups with the fol-

lowing rates (from youngest to oldest): 0.1, 0.4, 0.35, 0.1, 0.05; these values come from the

assumption that the disease was brought to the country from abroad, and we took that as an

estimate of the age distribution of international travellers (for UK, a dataset describing age

distribution of flight passengers is available and approximately equal to the provided values

[28]).

• Then the number of infected individuals in each age group is split in the E, ISC1 and ISC2

compartments in the following way:

Ein
i ¼ Nin

i =3; ISC1;in
i ¼ riNin

i � 2=3; ISC2;in
i ¼ ð1 � riÞNin

i � 2=3: ð12Þ
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The other compartments are initialized to 0, except for S, which is initialized to the total

population in the corresponding age group obtained by the most recent country-specific cen-

sus, from which the number of people seeding the infection at the start of the dynamics is

subtracted.

Parameters which define the dynamics of our model and need to be calibrated are the

following:

• β: probability of a contact between an S and ISC individual resulting in the S individual catch-

ing the infection.

• κ = 1/dL: transition rate of an Exposed individual becoming Infected SubClinical, with dL the

average number of days in the E state.

• γC = 1/dC transition rate of going from ISC1 to IC, with dC the average number of days it takes

to undergo this transition.

• γR = 1/dR recovery rate from ISC2, with dR the average number of days it takes to recover.

• γR,C = 1/dR,C recovery rate from IC2, with dR,C the average number of days it takes to recover.

• ν = 1/dD death rate from IC1, with dD the average number of days before death occurs after

entering the IC1 state.

• ρi’s: age dependent probabilities of going to IC instead of directly recovering from the ISC

state.

• r0i’s: age dependent probabilities of death after being hospitalized.

• Nin: total number of individuals who carried the infection at the start of the training period

(1st of March).

• α4: constant value of reduction in social contacts for people in age group 4, after the begin-

ning of the lockdown period.

• α5: constant value of reduction in social contacts for people in age group 5, after the begin-

ning of the lockdown period.

• α123: coefficient of proportionality between reduction of social contacts and reduction of

mobility for age groups 1,2,3.

These parameters will be estimated using Approximate Bayesian Computation (ABC),

which provides a posterior distribution for them—the details of the ABC methodology and

associated results can be found in S1 and S2 Appendices correspondingly. The results below

are integrated over this posterior distribution, which allows us to design robust controls and

quantify the underlying uncertainty in our results.

Optimised mobility values based on uncertainty

We now adopt the viewpoint of a policy maker whose task is to determine mobility restrictions

on a population in order to slow down the spread of the COVID-19 epidemics, while still keep-

ing the economic costs of lockdown as low as possible. We therefore formulate the problem in

an optimal control setting. In this context, we will minimise a cost functional which includes

penalties on the number of COVID-19 related deaths, hospital beds occupancy, and the eco-

nomic cost of different types of lockdown.

The control variables in our problem are the reductions of the mobility values mschool,

mwork, mother (“Mobility data”). These are related to the coefficients in the contact matrices
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αschool, αwork, αother via the inferred values α123, α4 and α5 in (10) and (11), relating our control

policy to measurable quantities. We recall here that the mobility values mloc, for loc 2 {school,
other, work} only control the change of contacts for age groups 1,2,3 (below 60 years old),

while the change of contacts for age groups 4 and 5 (above 60) is instead represented by the

parameters α4, α5, which we inferred from data. Our optimisation framework therefore

assumes that the reduction in social contacts for age groups 4 and 5 stays fixed to the inferred

value throughout the optimisation horizon, and we optimise only on the change of mobility

referred to younger age groups. This is reasonable as the older age groups constitute a minor

part of the workforce and are the extremely vulnerable to the disease. Therefore, we expect

that the official advice for them will be to remain with stricter isolation rules than the rest of

the (working) population.

We will take advantage of the ABC inferential framework both to quantify the uncertainty

of the parameters of our model and to develop a lockdown strategy that is robust to uncertain-

ties. To this end, we proceed as follows, where the details of each step will be given throughout

this section.

1. Uncertainty quantification: Perform inference on the model parameters using data from the

public health authorities and Google mobility to obtain a posterior distribution of the

parameter values given the dataset.

2. Posterior loss based cost functional: Define a cost functional that takes into account the eco-

nomic cost of closing venues / reducing mobility to different locations and the sanitary cost

of increased infection.

3. Nonlinear model predictive control: Optimize, over a fixed time frame, a lockdown strategy

by minimizing the sanitary/economic cost functional, constrained to the inferred epidemi-

ological dynamics. The optimisation is based on the integrated posterior distribution: this

involves solving the epidemiological model forward using various sets of parameters values,

sampled from the posterior distribution, and computing the expectation of the cost func-

tional with respect to this distribution. This optimization step determines an optimal policy

that is applied for a reduced amount of time, after which the model is updated and the opti-

mal policy recomputed.

A diagram synthesizing this data-driven optimal control approach is presented in Fig 5.

The applicability of this methodology goes beyond the design of control strategies for the

COVID-19 pandemic, and can be applied to different dynamics and cost functionals.

We remark again that even though this procedure is computationally costly, it pays off by

offering a control strategy that is robust to a number of possible (and highly likely) scenarios,

by taking into account the uncertainty on parameter estimates [29].

Uncertainty quantification

We use approximate Bayesian computation (ABC) [30] to calibrate the parameters of our

model, by using the datasets reporting on the number of hospitalized and deceased patients

released by the public health authorities:

• The daily number of deaths in hospitals attributed to COVID-19 (per age group)

• The daily number of hospitalized people with COVID-19 related diseases

We calibrate our model on data from the 1st of March up to different ending times tobs (eg.

31st of August). ABC is suitable for the considered task as it relies only on simulations from

the model, and works by looking for values of parameters such that the integrated dynamics is
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close to the observed one. In this way, it provides the user with samples from an approximate

posterior distribution of the parameters given observed data (πABC(θ|xobs)). The better the

match between the simulation and the observation, the better is the approximation of the true

posterior π(θ|xobs). However, this comes at higher computational cost, so that the level of

approximation needs to be balanced with computational considerations. We discuss additional

Fig 5. Flow diagram of the data-driven optimal control approach. Starting from a generic-type SEIRD model, we learn optimal model parameters based

on mobility/healthcare datasets and Approximate Bayesian Computation. The output is a posterior distribution of model parameters, which is used to

generate calibrated SEIRD dynamics and a cost functional accounting both for sanitary and economic costs of a lockdkown. These two ingredients

determine the formulation of an optimal control problem, which is solved by means of a global optimization algorithm. The final output of our approach

is an optimal lockdown policy which can be recalibrated as new data is fed into the system.

https://doi.org/10.1371/journal.pcbi.1009236.g005
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details regarding the use of ABC to calibrate our model in Section 2 of S1 Appendix. Moreover,

ABC allows us to fix a prior uncertainty on the values of the parameters (defined by a prior dis-

tribution π(θ)), and to quantify prediction uncertainty through the approximate posterior

πABC(θ|xobs), which we will use in designing the optimal control task next.

We remark that the ABC algorithm which we employ (discussed in Section 2 of S1 Appen-

dix) provides us with a set of samples from the posterior distribution associated with impor-

tance weights. We can obtain independent and identically distributed (i.i.d.) samples from it

by using bootstrap; namely, we choose (with replacement) from the set of ABC samples with

probability proportional to the importance weight itself. The new set of samples generated in

this way can be considered as i.i.d. from the posterior distribution of the parameters given

data.

Posterior loss based cost functional

In this step we identify the cost functional we will optimize to determine an optimal lockdown

strategy. We consider a cost functional which combines the economic cost of lockdown with

the sanitary cost of lifting restrictions. We focus on the representation of these terms and on

the inclusion of the posterior distribution of the model parameters in its modelling. Determin-

ing the relevance of sanitary versus economic costs is a task left to the policy maker. However,

when a quantitative choice has been made, our methodology allows to test the effect of such a

choice and to evaluate the stability of the optimal strategy.

We denote by t0 the start of the optimisation interval, corresponding to the day we wish to

start the new lockdown policy (in our first example, the 24th of May), and by Th the length of

the interval in days, for which we want to apply the lockdown strategy, also known as optimisa-

tion horizon. To study the cost of lifting restrictions, we penalise the predicted number of

deaths during the optimisation horizon [t0, t0 + Th]. This is given by

X

i

Diðt0 þ ThÞ � Diðt0Þ ¼
Xt0þTh

t¼t0þ1

X

i

DDiðtÞ ;

where ΔDi(t) is the daily increase in the number of deceased in the age group i. Furthermore,

we need to guarantee that the number of infected individuals who need hospitalisation,

IC ¼
P

iI
C1
i þ IC2

i , remains below the overall hospitals capacity Hmax. This could be included as

a hard state constraint, here instead we penalise the event in which IC surpasses the total capac-

ity by including a term of the form

FðICÞ≔maxðIC � Hmax; 0Þ :

We point out that this term will not be activated if the levels of infected people who need hos-

pitalisation remain well below Hmax, which here we take to be Hmax = 10000. For example, the

number of people in hospital in England with COVID-19 related symptoms at the end of our

first training window (23rd of May) was 7106, while at the height of the peak of the first wave

of the epidemic in England (on the 12th of April) this number was 17933. For France, numbers

reach higher values; however, we keep the same value of Hmax = 10000, in order to penalize a

large number of infected people in the same way across the two countries, and to have compa-

rable values in the optimization strategy. As a final measure of the sanitary cost, we introduce a

final time cost, where we penalise the basic reproduction number (R) at the end of the optimi-

sation horizon Rðt0 þ ThÞ (details about R number for our model can be found in Section 1

of S1 Appendix). This terminal penalty ensures that the control strategy does not simply out-

put an optimal solution which switches off the reduction on mobility towards the end of the
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optimisation horizon. While such a solution is consistent with the optimal control design and

is an interesting instance of the turnpike phenomenon [31], it is not suitable in our context.

Finally, to account for the economic cost of lockdown, we penalise the mobility reduction by

introducing a quadratic cost of the form k1 −mloc(t)k2, for loc 2 {school, other, work}.

As mentioned before, the forward model is run for different sets of parameters drawn from

the posterior distribution obtained via ABC inference. For this reason, the ΔDi(t) and ICi ðtÞ
variables appearing in the cost functional depend on the chosen value of the parameters of the

model. We hide the explicit dependence for notational convenience. The cost is computed by

taking an expectation over the posterior distribution for the parameters, since each parameter

value will lead to a different realisation of the dynamics. Due to the nonlinearity of the system,

this is clearly not the same as minimizing the objective using the posterior mean of the param-

eters only. In practice, we use 50 i.i.d. samples from the posterior distribution and approximate

the expectation with an average over the trajectories obtained with those parameter values.

Minimizing an expected cost in this way is much more computationally expensive than a cost

computed on a point estimate of the parameters (for instance the posterior mean). However, it

provides a way to take into account the uncertainty in the parameters while producing more

robust results.

Collecting the different terms in our cost, we optimise

min
mð�Þ2M

J ðmÞ ≔
Xt0þTh

t¼t0þ1

"
1

2
E
X

i

DDiðtÞ þ FðI
CðtÞÞ

" #

þ
X

loc2fschool; other; workg

�loc
2
k1 � mlocðtÞk2

#

þ E R t0 þ Thð Þ½ �;

ð13Þ

through the control signal

mðtÞ ¼ ðmschoolðtÞ;mworkðtÞ;motherðtÞÞ 2M≔fm : ½t0; t0 þ Th� ! ½0; 1�
3
g ;

where �loc, for loc 2 {school, other, work}, represents the relative cost of limiting the mobility to

schools, workplaces and other locations with respect to the sanitary cost, and where the expec-

tation is taken over the posterior distribution of the parameters of the model. The choice of the

values for �loc affects the optimal policy by attributing a larger economic or social cost of clos-

ing one of the categories with respect to the others. Determining adequate weights for these

costs is the ultimate task of the policy maker.

Nonlinear model predictive control

To close our optimal control formulation we add specifications to the controls we expect to

obtain, restricting the space of admissible signals. As the values of α are between 0 and 1, a rea-

sonable assumption is to expect the mloc to be in the interval [0, 1] as well, for loc 2 {school,
work, others}. However, due to the fact that we cannot impose a 100% closure of all settings, we

set a lower bound for mloc to be the lowest value of each mloc observed during the lockdown

period. This results in the constraints mwork 2 [0.31, 1], mschool 2 [0.1, 1], and mothers 2 [0.41,

1].

As can be seen from Eq (13), the controls mloc, loc 2 {school, work, others} are time-depen-

dent, and they are computed by minimising the cost functional (13) subject to the state con-

straints (1)–(8). Ideally, the numerical realization of the optimal control strategy would be

driven by the calculation of first-order optimality conditions and a reduced gradient approach

to minimise J ðmÞ. However, the nonlinearities in the dynamics and in the terminal penalty,
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where the reproduction rate is expressed as an eigenvalue of a parameter-dependent matrix,

make our problem highly non-convex. Moreover, the penalty F(IC) is non-differentiable. For

the purposes of this paper we will compute the optimal control by using generalized simulated

annealing (or dual annealing) [32]. The use of meta-heuristics for the solution of large-scale

nonlinear optimal control problems has been assessed in [33, 34]. We embed the solution of

the optimal control problem (13) in a nonlinear model predictive control (NMPC) framework

[35]. To this end, we select a prediction horizon Topt, and optimise the control variables

mloc(t), t 2 [t0, t0 + Topt] using the current state at t0 as our initial condition. From the optimal

control sequence we recover the optimal action for a single day, that is mloc(t), t 2 [t0, t0 + 1]

and evolve the dynamics for the same amount of time, and repeat the optimisation procedure

in the updated time frame [t0 + 1, t0 + 1 + Topt]. This process is then repeated until the com-

plete optimisation interval [t0, t0 + Th] is covered. The NMPC methodology recovers a robust

optimal control law in feedback form that can be adjusted to account for disturbances in the

control loop. Therefore, instead of using the current state predicted by the model as initial con-

dition, we can update this to be the current state of the population in the considered country

estimated from data, every time new data becomes available. This ensures that the control

methodology accounts for noisy observations, or for unexpected variations in the data.

Results and discussion

In this section, we apply our methodology to each of the datasets specified in the previous sec-

tions. In the first half of the section, as a proof of concept, we show the importance of the vari-

ous terms included in the cost functional and their influence on the results, and this is done

for the England dataset with parameter values calibrated with data between the 1st of March

and the 23rd of May, with lockdown strategies applied for 90 or 120 days starting on the 24th

of May. In the second half, we apply our methodology to two populations: England and

France, with the models calibrated up to the 31st of August and lockdown strategies applied

from the 1st of September. The posterior distributions of the parameters are available in S2

Appendix. This section is organised as follows:

1. Choice of an appropriate prediction horizon, Topt.

2. Influence of the relative weight of the economic and sanitary costs (i.e., how large to choose

each of the �school, �work and �other).

3. Influence of the relative costs between reducing mobility to different locations (i.e., the rela-

tive weights of �school, �work and �other).

4. Dynamic update of the control strategy as we recalibrate the model.

5. Application of our methodology to England and France.

Steps 1–3 can inform a policy maker on their decision of how to weight each term in the

cost functional, but we remark that this is ultimately their decision. In steps 4 and 5 we fix the

parameters explored in 1–3 and test the methodology in specific cases.

Before presenting the optimal lockdown results, we exemplify our inference results for

England with plots of the variables that are relevant for the control methodology—for the com-

plete inference results, we refer the reader to S2 Appendix. In Fig 6, we plot the predicted num-

ber of people in the IC category—the red line is the median prediction and the shaded area

denotes a confidence interval with 99% credibility—compared to the true data in green in the

left panel. The middle panel reports on the same results for the number of deceased people,

and the right panel reports the predicted basic reproduction number, RðtÞ.
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Proof of concept of the methodology

We now proceed to present the results of our methodology as described above on data for

England observed until 23rd May. Each of the figures below is either of two types: 1) Lock-

down strategy and its effect on the number of hospitalized individuals, and 2) Influence of the

lockdown strategies on the reproduction number RðtÞ. In the first case, we plot the number of

hospitalised people (full red line) for each control strategy—these results are associated with

the red axis, on the left of the figure—and the value of the optimized mobility values mloc for

loc 2 {school, work, others} in the three blue lines, associated with the blue values on the right

axis. The full, dashed, and dash-dotted lines correspond to work, school and other settings,

respectively.

Dependence on Topt. A crucial issue in the NMPC framework is the selection of the pre-

diction horizon Topt. For small prediction horizons, the optimal action tends to be instanta-

neous and loses its capability to foresee long-term consequences of the policy. On the other

hand, a sufficiently long prediction horizon will enforce a stabilizing control law, but its

numerical realization becomes increasingly complex. Therefore, at the core of the selection of

a suitable prediction horizon there is a trade-off between short-sightedness, stabilization capa-

bilities of the policy, and computability. This is exemplified in Fig 7, where we illustrate the

role that is played by the prediction horizon in the performance of the control loop for a fixed

value of �loc, for loc 2 {school, work, others}. It can be observed that a short-sighted policy, with

Fig 6. Comparison of predictions of our model with the real number of hospitalized people with COVID-19 and total daily deaths (green) on

23rd May for England. The solid red line denotes the median prediction, filled spaces denote the 99% credible interval and the vertical dashed line

denotes the observation horizon. The different columns represent number of people in hospital, IC (left), daily deceased (middle) and value of RðtÞ
(right).

https://doi.org/10.1371/journal.pcbi.1009236.g006

Fig 7. Dependence on the prediction horizon Topt for determining and optimal control strategy for England. Here, (�s, �w, �o) = (100, 100, 100) and

the lockdown strategies were applied for Th = 90 days starting on the 24th of May.

https://doi.org/10.1371/journal.pcbi.1009236.g007
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a prediction horizon of 20 days (left panel), is less stringent in the mobility reduction, causing

a larger number of hospitalized people in the long term and a large uncertainty in the end

result.

However, it is clear that the lockdown strategies are similar for both prediction horizons of

Topt = 30 (middle panel) and Topt = 40 (right panel): here, we observe a smaller overall number

of hospitalized people over time, while the uncertainty on the results remains bounded, with

slightly smaller credibility intervals in the second case. For this reason, we will from now on

use the prediction horizon of Topt = 30, which is long enough to avoid a short-sighted strategy,

while being short enough to be computationally cheaper. We point out that this is correctly

aligned with the COVID-19 time scale for transmission, is a reasonable time frame for a policy

maker, and agrees with PHE definition of death due to COVID, where a death is considered

COVID-related if it is within 28 days of a positive COVID test [36].

Influence of the relative weights of the control penalties (�school, �work, �other). The choice

of suitable control penalties �loc, loc 2 {school, work, other} is a sensitive issue in any optimal

control problem, and we now proceed to study its effect on the resulting lockdown strategies.

In this context, there are two important properties to explore: the relative weight between the

sanitary and economic costs of our lockdown strategy, which is represented by how large the

values of each of �school, �work, �other are, and the relative importance between each of the �school,

�work, �other. We observe that the predicted number of daily deceased at the end of the training

interval is between 200 and 400 (see Fig 6). Having in mind that the control variables are con-

strained to [0, 1], we conclude that each �loc should be in the order of 100, so that the control

strategies are sensitive to both the sanitary and economic costs.

In our next example, we assume that the economic cost of opening each type of location is

the same (i.e. �school = �work = �other) and analyse the effect of varying their relative weight to

that of the sanitary cost. This is shown in Fig 8, where we present the lockdown strategies and

corresponding values of hospitalized people for �loc = 100 (left) and �loc = 200 (right), for loc 2
{school, work, other}. We observe that higher values of �loc result in the strategies which open

workplaces earlier, as keeping them closed is more expensive, but also result in higher uncer-

tainty. Interestingly, however, we observe that both control strategies keep mother constant at a

value of approximately 0.41, which is the minimum value allowed for this parameter. This

behaviour is consistently reproduced for any of the values �loc that we explored as we will see

below; the only situation in which we did not observe this behaviour was by attributing an

unreasonably high weight to the economic cost, in which case all the lockdown measures are

lifted, leading to a large increase of the number of infected people and to a second wave of the

Fig 8. Different relative weights between the sanitary cost and economic cost of the lockdown measures with the

lockdown strategies starting on the 24th of May and applied for Th = 120 days, for England.

https://doi.org/10.1371/journal.pcbi.1009236.g008
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epidemics. To better understand this phenomenon, we inspect the contact matrix relative to

the “other locations” category (Fig 3). There, it can be observed that the setting in which there

are more contacts between the part of the population in which our optimisation strategy acts,

(under 60 year-olds), and the older population is the “other locations”. As the latter are the

most vulnerable to the disease, the optimisation is limiting the number of contacts they have

by reducing mother.

The last property we investigate is the effect of varying the values of � for each category,

which can produce a more economically viable solution. In the cases we will explore, we

observe that opening workplaces is clearly an important part of the economy, and this might

not be achievable without opening schools as well. For this reason, we will attribute the highest

economic costs to closing workplaces, followed by schools and then others. We point out that

this is ultimately a choice of the policy maker, and in principle any combination of values for

each �loc could be considered. We tested a variety of combinations of these cost weights, each

providing us with a lockdown strategy. In this case, we compare the efficiency of each strategy

in Figs 9 and 10. As can be seen in Fig 9, all of the strategies propose to open workplaces and

schools earlier or later (or not at all, in the case of schools) depending on the relative weights

between sanitary and economic costs, and, as before, keep other locations at its minimum

value. We show an additional comparison in Fig 10, where we plot the reproduction number

RðtÞ resulting from each strategy, compared with what it would be if the mobility values

remained unchanged from their estimated values on the 29th of May. We note that the optimal

strategies always keep the value of R smaller than 1 for most of the optimization horizon, but

the confidence intervals allow for values larger than 1 at the end of the optimization window.

Dynamic update of the model and optimal control strategy

As new data becomes available, we can re-perform the model fit, and obtain a new posterior

distribution on the parameters to use in order to find the optimal mobility values. An instance

Fig 9. Different economic cost weights produce different opening strategies and predicted hospitalized people, with lockdown strategies starting

on the 24th of May and applied for Th = 120 days, for England.

https://doi.org/10.1371/journal.pcbi.1009236.g009
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of this dynamic update can be seen in Fig 11, where we show the optimal mobility values and

the corresponding basic reproduction number after the model parameters and the optimal

solution are updated at four instances: the 11th of April, 26th of April, 11th of May and 23rd of

May. Here we used (�school, �work, �other) = (150, 300, 3) as from the results in Figs 9 and 10 it

can be seen that such a choice leads to a lockdown strategy that increases the mobility towards

both workplaces and schools while keeping the value of RðtÞ < 1.

We observe that the lockdown strategy determined with parameter values fitted on data up

to the 11th of April is extremely restrictive, as the predicted dynamics on that date badly over-

estimates the number of deceased and hospitalized people (see S2 Appendix). However, we see

Fig 10. Evolution of RðtÞ corresponding to different opening strategies starting on the 24th of May, learned using different economic cost

weights for different � values, with 99% credibility intervals; these plots are referred to England.

https://doi.org/10.1371/journal.pcbi.1009236.g010

Fig 11. Dynamically updated control strategy: We fit the model on data for England up to tobs = 11th of April and

determine the optimal mobility strategy up to the next observation point tobs = 26th April. Data until the latter is

used to repeat the procedure, in order to update the optimal control strategy exploiting newly available information.

Here (�school, �work, �other) = (150, 300, 3). In panel (a), we show the resulting optimal mobility values, with the

corresponding values of RðtÞ and their credibility intervals shown in panel (b).

https://doi.org/10.1371/journal.pcbi.1009236.g011
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that recalibrating the parameters and updating the lockdown strategy using newly available

data is beneficial: using data until the 26th of April results in a better prediction of hospitalized

and deceased numbers, and we see an increase of the mobility towards schools already at the

end of April. We repeat the procedure on the 11th and 23rd of May, resulting on a proposed

strategy allowing schools to be open even further at the first instance, and then remaining

almost unchanged, with an increased mobility towards workplaces around mid-June. We also

note that, with the exception of the time interval between the 11th and the 26th of April—

where the high value of RðtÞ is due to the fact that for the current values of the parameters the

epidemic is predicted to increase rapidly, independently of the lockdown measures—the pre-

dicted RðtÞ value always stays below 1. This dynamic update of the model allows us to rely less

on long-term predictions from the model, which are more computationally expensive and

become more biased the farther in the future the prediction is. Together with the knowledge

on model-specific biases coming from fitting the model to different horizons in the past, this

approach enables a policy maker to assess the validity of the proposed optimal mobility strat-

egy and update it on a periodic basis as new data becomes available.

Optimal strategy for England and France on 1st of September

After exploring all the different properties of our optimal control strategy, we proceed to test it

in two populations, England and France, in a more recent setting, which is closer to a second

wave of the epidemics. We fit the model again with data from the PHE and the NHS for

England, and from SpF for France, and using the Google mobility data in both cases. The

inference was performed on both cases for data up to the 31st of August and the results are pre-

sented in Fig 12 below.

Optimal lockdown strategy for England starting in September 2020. We apply our

optimal control strategy again for the population of England, for a more recent time interval.

As mentioned above, the parameters were fitted up to the 31st of August, and we apply a lock-

down strategy for Th = 120 days, starting on the 1st of September. The prediction horizon was

kept at Topt = 30 days and we used two possible sets of values for �loc. The corresponding results

are shown in Fig 13, where the first two panels show the number of hospitalized people and

corresponding credibility intervals (full red line and dashed area) and the mobility values (blue

lines), while the corresponding values of RðtÞ (and credibility intervals) are presented in the

right panel.

Optimal lockdown strategy for France starting in September 2020. Our methodology is

valid in general, and in particular it can be applied to different datasets. Our last example

applies the strategy to the French population, where the epidemics has exhibited a different

evolution than in the UK. As in the previous paragraph, we fitted the parameters with data up

to the 31st of August, and apply the lockdown strategy for Th = 120 days, starting on the 1st of

September. The prediction horizon was kept at Topt = 30 days and we used two possible sets of

values for �loc. The corresponding results are shown in Fig 14, and are organised in a similar

manner to Fig 13. We observe that in this case the relative values of �loc have a much stronger

influence, with the lockdown strategy shown in the left panel having extremely better results

than that on the middle panel. This is visible both on the number of hospitalized people and

the resulting reproduction number, and illustrates the importance of the choice of these

parameters and associated discussion with policy makers.

We can see a significant difference in the data reported in these two countries (green lines

in Fig 12) which leads to very different parameter estimates of the epidemic model (see S2

Appendix). This is reflected in the optimal control we inferred for these two countries,

highlighting the adaptability of our methodology for different countries and different
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scenarios. We reiterate that our methodology for both England and France recommends to

keep mobility of “others” as low as possible if not at the lowest possible label of full lockdown.

Remembering that the others category refers to “retail”, “transit” or “grocery” locations, our

methodology is recommending that the we should keep a stringent lockdown until December,

while opening up the work and school places in a socially-distanced manner. Deviations from

that will likely result in a second-wave of infection spreading.

Fig 13. Optimal strategy for England with parameters fitted with data up to the 31st August. The lockdown strategy is applied for 120 days starting

on the 1st of September and uses a prediction horizon of Topt = 30 days.

https://doi.org/10.1371/journal.pcbi.1009236.g013

Fig 12. Comparison of predictions of our model with the real number of hospitalized people with COVID-19 and total daily deaths (green) on

31st August in England and France. The solid red line denotes the median prediction, filled spaces denote the 99% credible interval and the vertical

dashed line denotes the observation horizon. The different rows represent different observation horizons, while the columns represent number of

people in hospital (IC compartment, left column), daily deceased (middle column) and value of RðtÞ (right column).

https://doi.org/10.1371/journal.pcbi.1009236.g012
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Concluding remarks and future work

We have proposed a general estimation/control methodology for the determination of optimal

lockdown strategies in the context of the COVID-19 pandemic. Our approach is composed of

the following elements: system dynamics described through an age-structured SEIRD model,

the use of public data such as Google Mobility for estimating model parameters, and the design

of adaptive lockdown strategies in the framework of nonlinear optimal control. The current

work focused on a study of the COVID-19 pandemic in England and France, however the

underlying methodology can be extended to other spatio-temporal locations. It can be applied

to epidemiological models in general, assuming the availability of healthcare and mobility data

for a suitable calibration of the dynamics. Our systematic approach provides a computational

tool to assist the design of lockdown strategies which can be periodically rectified as the model

is fed with incoming public data. Moreover, the proposed strategies are parsimonious in the

sense that they encode both healthcare and socio-economic factors, and realistic as they are

expressed as mobility reduction parameters which can be effectively measured, as opposed to

switching on-off strategies.

The control strategy our framework devises strictly depends on the quality of the forecast

for the evolution of the epidemics. Therefore, we expect improvements in the former can be

obtained by upgrading the epidemiological model. For instance, in some of the considered sce-

narios our model overestimates the number of deaths and hospitalized people at the end of the

prediction horizon (as for instance in Fig 6), and this could lead to a conservative suggested

control strategy (although we believe that, when it comes to human lives a more conservative

approach is to be preferred). This discrepancy may be caused by our model not taking into

account the increased capacity of the health system to fight the disease through better treat-

ments and more extensive testing. Specifically, it is reasonable to assume that a larger propor-

tion of people in the subclinical compartment get tested as the epidemics progresses; ideally,

these people will adhere to stringent social isolation regimes with the expectation to slow

down the spread of the disease. However, how the latter affects the evolution of the epidemics

when reduced mobility measures for all citizens are already in place remains unclear.

As we continue to work on our approach, a natural way to improve the accuracy of our

model is through a further downscaling of our dynamics, for instance by considering 418 prin-

cipal local authorities (LA) in the UK, along with a commuting network of UK citizens

between them constructed from the 2011 census data. Such a refined model, whose numerical

treatment will necessarily require the use of high-performance computing resources, would

allow the design of space-time adaptive lockdowns. Our progress along these lines will be

Fig 14. Optimal strategy for France with parameters fitted with data up to the 31st August. The lockdown strategy is applied for 120 days starting

on the 1st of September and uses a prediction horizon of Topt = 30 days.

https://doi.org/10.1371/journal.pcbi.1009236.g014
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documented on the companion website [37]. Code implementing the described experiments is

available at https://github.com/OptimalLockdown.
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