
Gradient-augmented Supervised Learning of
Optimal Feedback Laws Using State-dependent

Riccati Equations
Giacomo Albi, Sara Bicego, and Dante Kalise

Abstract—A supervised learning approach for the solution
of large-scale nonlinear stabilization problems is presented. A
stabilizing feedback law is trained from a dataset generated from
State-dependent Riccati Equation solvers. The training phase is
enriched by the use of gradient information in the loss function,
which is weighted through the use of hyperparameters. High-
dimensional nonlinear stabilization tests demonstrate that real-
time sequential large-scale Algebraic Riccati Equation solvers can
be substituted by a suitably trained feedforward neural network.

Index Terms—nonlinear feedback control, state-dependent Ric-
cati equations, supervised learning

I. INTRODUCTION

A large class of control problems in fluid flow control,
consensus dynamics, and power networks, among many others,
can be cast as optimal stabilization problems sharing two
distinctive features in the dynamics: nonlinearity, and a high-
dimensional state space. The natural control-theoretical frame-
work to address these problems is through optimal stabilization
using dynamic programming and Hamilton-Jacobi-Bellman
(HJB) partial differential equations (PDEs). Unfortunately, the
HJB PDE arising in nonlinear control is a first-order, fully
nonlinear equation with no general explicit solution. Moreover,
the overwhelming computational complexity associated to the
solution of high-dimensional HJB PDEs poses a formidable
challenge limiting the applicability of traditional grid-based
computational methods to very low-dimensional control sys-
tems.

The numerical approximation of high-dimensional HJB
PDEs arising in deterministic optimal control is a topic that
has been the subject of extensive research. Without attempt-
ing an exhaustive literature review on the topic, effective
computational approaches to this problem include the use
of sparse grids [1], tree structure algorithms [2], max-plus
methods [3], polynomial approximation [4], [5] and tensor
decomposition methods [6], [7], [8], [9], [10]. These schemes

DK was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) grants EP/V04771X/1, EP/T024429/1, and EP/V025899/1.
GA was supported by the PRIN Project 2017 (No. 2017KKJP4X entitled
“Innovative numerical methods for evolutionary partial differential equations
and applications”).

G.A. and S. B. are with the Department of Computer Science, Univer-
sity of Verona, Strada le Grazie 15 - 37134 Verona, Italy (e-mail: gia-
como.albi@univr.it, sara.bicego@studenti.univr.it)

D. K. is with the Department of Mathematics, Imperial College Lon-
don, South Kensington Campus SW7 2AZ, United Kingdom (e-mail:
dkaliseb@ic.ac.uk)

are complemented with recent works making use of artificial
neural networks [11], [12], [13], [14], [15].

In this paper, we propose a computational method for the
solution of large–scale optimal stabilization problems for non-
linear dynamics avoiding the solution of the HJB PDE through
a supervised learning approach. This idea dates back to [16],
where the synthesis of feedback controls by interpolating
finite horizon open-loop solvers was proposed. More recently,
this problem has been studied in [17] using a sparse grid
interpolant, in [18], [19] using deep neural networks, and
in [20] through sparse polynomial regression. Similarly, the
works [21], [22], [23] make use of representation formulas
for HJB PDEs along with fast convex optimization solvers.

Many of the aforementioned works exploit the relation
between the Hamilton-Jacobi-Bellman PDE and necessary op-
timality conditions through Pontryagin’s Maximum Principle
(PMP) in finite horizon control. Under convexity and smooth-
ness assumptions, the PMP system represents the characteristic
curves of the HJB PDE, and the value function of the problem
can be computed at a given space-time point by solving
a two-point boundary value problem. Unfortunately, such
an interpretation is not readily available for infinite horizon
optimal control, which is the case of interest for asymptotic
stabilization of nonlinear dynamics.

Contributions

The methodology proposed in the present work circumvents
the direct solution of the HJB PDE and the lack of PMP-
like representation formula for the value function by resorting
to State-dependent Riccati Equations (SDRE) [24], [25]. In
the SDRE framework, after casting the nonlinear dynamics in
semilinear form, a feedback control is obtained by a sequential
solution of Algebraic Riccati Equations (ARE) along the tra-
jectory. Under certain stabilizability conditions, this feedback
law generates a locally asymptotically stable closed-loop and
approximates the optimal feedback law from the HJB PDE.
However, the main computational bottleneck of the SDRE
approach is the availability of a sufficiently fast ARE solver to
be called at an arbitrarily high rate. In this paper, we propose a
methodology for real-time SDRE control of high-dimensional
dynamics which does not require online ARE solves. Fol-
lowing a supervised learning approach, we train an artificial
neural network that approximates the SDRE feedback law. The
training is done in an offline phase. The resulting feedback law
can be called in real-time scenarios at a very high rate, as its

synthesis is reduced to the evaluation of a feedforward neural
network. We provide two alternatives for training: learning
the high-dimensional feedback map directly, or learning an
approximation of the value function of the control problem,
and recovering the feedback as a function of its gradient. We
numerically assess that, through an adequate choice of network
architectures, and including the use of gradient information of
the model in the training, it is possible to accurately recover
the SDRE feedback law for high-dimensional dynamics. To
the best of our knowledge, this is the first work to propose
the use of a supervised learning approach in conjunction with
SDRE control for stabilization of high-dimensional dynamics.

The rest of the paper is organized as follows. In Section II
we describe the nonlinear optimal stabilization problem and its
solution, and in Section III we present the SDRE approach.
In Section IV we discuss its numerical approximation through
supervised learning, to continue in Section V with a compu-
tational assessment for two nonlinear, high-dimensional tests,
and conclusions in Section VI.

II. INFINITE HORIZON OPTIMAL FEEDBACK CONTROL

We study the design of feedback laws for asymptotic
stabilization through infinite horizon optimal control:

min
u(·)∈U

J (u(·),x0) :=

∞∫
0

x>(s)Qx(s) + u>(s)Ru(s) ds ,

(1)
subject to nonlinear, control-affine dynamics of the form

ẋ(t) = f(x(t)) + B(x(t))u(t) , x(0) = x0 , (2)

where x(t) = (x1(t), . . . , xn(t))> ∈ Rn denotes the state of
the system, u(·) ∈ U = {u(t) : R+ → Rm,measurable}
is an unbounded control variable, Q ∈ Rn×n is a symmetric
positive semidefinite matrix, and R ∈ Rm×m is symmetric
positive definite. The system dynamics f(x) : Rn → Rn and
the control operator B(x) : Rn → Rn×m are assumed to be
C1(Rn) and, without loss of generality, such that f(0) = 0 and
B(0) = 0. The optimal feedback law for the control problem
(1) is synthesized using Dynamic Programming. For this, we
define the value function of the control problem

V (x) = inf
u(·)∈U

J (u(·),x) , (3)

which in turn satisfies a first-order, static, nonlinear Hamilton-
Jacobi-Bellman PDE

∇V (x)>f(x)− 1

4
∇V (x)>W(x)∇V (x)+x>Qx = 0 , (4)

where W(x) = B(x)R−1B(x)>. After solving for V (x), the
optimal feedback is given by

u(x) = −1

2
R−1B(x)>∇V (x) . (5)

The main difficulty when applying the dynamic programming
approach to optimal feedback synthesis resides in the solution
of the HJB PDE (4). This is a nonlinear PDE cast in the
state-space of the system dynamics, with a dimension that can
be arbitrarily high. Perhaps the most successful instance of
a solution to this problem is the linear quadratic regulator

(LQR), where, under the additional assumption that the free
dynamics are linear, f(x) = Ax and B(x) = B, and making
the ansatz V (x) = x>Πx with Π ∈ Rn×n leads to

u(x) = −Kx = −R−1B>Πx , (6)

where Π is a positive definite solution of the Algebraic Riccati
Equation (ARE)

A>Π + ΠA−ΠBR−1B>Π + Q = 0 . (7)

There are different methods which utilize the solution of the
ARE above to generate a sub-optimal feedback control for lo-
cal stabilization of nonlinear dynamics. Most notably, solving
(7) with (A,B(0)) where Aij = ∂fi(x)

∂xj
|x=0 leads to a linear

feedback operator K0 which can effectively stabilize states
in a vicinity of the origin. In the following, we discuss the
synthesis of nonlinear feedback control laws by a sequential
solution of AREs.

III. STATE-DEPENDENT RICCATI EQUATION

Having a representation of the nonlinear dynamics in semi-
linear form

ẋ = A(x)x + B(x)u(t) , (8)

we approximate the synthesis of the optimal feedback control
following the State-dependent Riccati Equation (SDRE) ap-
proach. Formally, the solution of the nonlinear optimal control
problem (1) is associated to an ARE where the operators are
state-dependent

A>(x)Π(x)+Π(x)A(x)−Π(x)W(x)Π(x)+Q=0 , (9)

and analogously, the feedback (6) is also expressed through a
state-dependent gain operator K(x)

u(x) = −K(x)x = −R−1B>(x)Π(x)x . (10)

Aiming at directly solving (9) for a general high-dimensional
operator Π(x) leads to the same difficulties already present
in (4). Instead, we assume the operator Π(x) is a positive
definite matrix in Rn×n, so that for a fixed x, solving (9)
effectively reduces the problem to an ARE. We can benefit
from this SDRE framework by applying it in a receding
horizon fashion. Given a current state x̄ along a trajectory,
we solve (9) for Π(x̄) by freezing every operator accordingly,
recovering the feedback u(x) = −K(x̄)x, to then evolve the
controlled dynamics for a reduced time frame, after which
we update the state of the system and recompute the feedback
law. This approach leads to two natural questions: establishing
conditions under which the SDRE approach generates an
asymptotically stable closed-loop, and the design of effective
computational methods for the fast solution of SDREs of
potentially large scale. Regarding the first question, we recall
the following proposition on asymptotic stability of the closed-
loop generated by the SDRE approach [24].

Proposition 1: Assume a nonlinear system

ẋ(t) = f(x(t)) + B(x(t))u(t) , (11)

where f(x) is C1 for ‖x‖ ≤ δ, and B(x) is continuous. If
f(x) is parametrized in the form f(x) = A(x)x, and the

pair (A(x),B(x)) is stabilizable for every x in a non-empty
neighbourhood of the origin Ω ⊂ Bδ(0), then the closed-
loop dynamics generated by the feedback law (10) are locally
asymptotically stable.
Assuming the stabilizability hypothesis above, the main bot-
tleneck in the implementation of the SDRE approach is the
availability of an ARE solver sufficiently fast for real-time
feedback control. Here, we assume an ARE solver is readily
available, however, it is not suitable for real-time control. In
order to circumvent this difficulty, we follow a supervised
learning approach, as we explain in the following section.

IV. GRADIENT-AUGMENTED SUPERVISED LEARNING FOR
OPTIMAL FEEDBACK LAWS

The SDRE (9) is solved offline for a set of training states,
denoted by Xt, which is used for training a suitable artificial
neural network (ANN) which is then implemented for real-
time control. The use of ANNs for SDREs has been explored
for learning the matrix-valued operator Π(x) in (9) with
an unsupervised learning approach, see e.g. [26]. A natural
drawback of learning Π(x) is the dimension of the output,
which amounts to n2

2 entries. This is particularly demanding
in a large-scale scenario, and can lead to high training errors
despite the dataset being accurately generated. We report that
for the tests presented in Section V, learning Π(x) led to
underperfomant model training. Here, we propose:

a) Learning u(x): we train a model for the vector-
valued feedback law u(x) : Rn → Rm upon a set of
Ns training states Xt := {x(i)}Nsi=1, the solution of the
corresponding Π(x), and the controls u(x) via (10).

b) Learning V (x): we train a model for the scalar
function V (x) : Rn → R from V (x) = x>Π(x)x and its
gradient ∇V (x) = 2Π(x)x, where Π(x) is a positive definite
solution of (9) for each x ∈ Xt. The feedback law is then
expressed as u(x) = − 1

2R
−1B(x)>∇V (x).

Both alternatives are a direct supervised learning formula-
tion of the SDRE approach, with the sole objective of synthe-
sizing a feedback requiring a reduced number of operations for
online implementation. However, the second approach links
the solution of the SDRE with finding a function V (x) which
approximates the solution of the original HJB equation (4).
As discussed in [27], there is a direct equivalence between
HJB, SDRE, and ARE in the linear-quadratic case. For the
general nonlinear case, the ansatz V (x) = x>Π(x)x with
Π(x) generated from the SDRE approximates the solution of
the HJB PDE only in neighbourhood of the origin. However,
this idea is instrumental from a computational viewpoint. The
advantage of the second formulation resides in the training of
a scalar function, for which both function and gradient values
are available. This shall be reflected in the choice of gradient-
augmented loss functions for training.

1) Network architecture: The approximation task is carried
out using feedforward neural networks (FNN), with infor-
mation flowing from the input nodes to the output without
generating any cycles or loops. FNNs approximate a function
f(·) by a chain of compositions

f(x) ≈ fθ(x) = lM ◦ ... ◦ l2 ◦ l1(x), (12)

where each layer lm is defined as lm(y) = σm(Amy + bm),
Am are the weight matrices, bm are the bias vectors and
σm(·) are nonlinear activation functions applied component-
wise. Standard choices for σ(·) are the ReLU function σ(x) =
max(0, x) and σ(x) = tanh(x). The activation function in
the hidden layers needs to be chosen accordingly with the
valuation of the model’s goodness of fit, and the last layer is
typically assumed to be linear, thus σM (x) = x.

Considering a data set T = {x(i), f(x(i))}Ns
i=1, the NN

is trained over the parameters θ = {Am,bm}Mm=1 to best
approximate the target f(x), i.e. minimizing the loss between
the approximation fθ(x

(i)) of the model and the true values
f(x(i)) for every x(i) ∈ T :

min
θ
L(f(x), fθ(x)) (13)

where the loss function L evaluates how well fθ(·) models the
given dataset T . The goodness of fit of fθ within a set T ′ =
{x(j)}Nv

j=1 can be measured by the coefficient of determination

r2 = 1−
∑Nv

j=1 ‖f(x(j))− fθ(x(j))‖2∑Nv

j=1 ‖f(x(j))− f̄‖2
, (14)

where f̄ = 1
Nv

∑Nv

j=1 f(x(j)). This coefficient typically ranges
in [0, 1]; a value of 1 indicates that the model perfectly fits
the data, while values below 0 suggest the trained model fits
the data worse than a horizontal hyperplane.

We search for an approximation of the feedback control
u(x), for which we consider two different approaches: to build
a model uθ(·) having u(·) itself as target variable, u(x) ≈
uθ(x), or to describe it through a FNN Vθ approximating V (·),
on top of which we add a feedback layer

u(x) ≈ uV (x) = −R
−1BT∇Vθ(x)

2
. (15)

An accurate approximation of ∇V (·) is essential for calcu-
lating a reasonable uV (x). Here we deal with this through
automatic differentiation, which allow us to compute exact
gradients of Vθ in an efficient way. In this case, our training is
not limited to pointwise valuations of V (x), but also includes
the discrepancy between the true gradient ∇V (x) and its
approximation ∇Vθ. This is done choosing an ad hoc loss
function Vθ.

2) Loss function: The training of the neural network for
uθ is done through a standard loss function: the mean squared
error (MSE)

L0(u,uθ) :=
1

Ns

Ns∑
i=1

‖u(x(i))− uθ(x(i))‖2, (16)

averaging the squared difference between approximation and
actual observations.

For the training of Vθ, we consider instead

L1(V, Vθ) = µV L0(V, Vθ) + µdV L0(∇V,∇Vθ) . (17)

This loss function represents a compromise between the
fitting functional L0(V, Vθ) and the gradient regulation
L0(∇V,∇Vθ), suitably weighted thanks to µV and µdV .

V. NUMERICAL EXPERIMENTS

We assess the neural network approximation for feedback
laws in two different tests. The control laws to be approx-
imated rely on the pointwise solution of the SDRE (9),
for which we resort to the lqr routine in MATLAB. The
samples for training were generated by solving (1)-(2) for
initial condition vectors Xt = {x(i)}Ns

i=1 ∈ Ω ⊂ Rn, being
populated using Halton quasi-random sequences in [0, 1]n.

Once the solution of the SDRE is computed for each sample
x(i) ∈ Xt, the training set {x(i),u(x(i))}Ns

i=1 for uθ can be
computed as in (10), while the ANN Vθ is trained upon an
enriched dataset, containing both the value function V (x) and
its gradient ∇V (x). Both these quantities can be obtained as
a by-product of solving the SDRE at no additional computa-
tional cost since V (x) = x>Π(x)x and ∇V (x) = 2Π(x)x.
The sampling datasets are split into training sets and valuation
sets, with a ratio of 80/20. The goodness of fit in the valuation
set, measured by the coefficient of determination r2, guided
the choice of the NN’s architecture within the FNN family. The
minimization of the loss function (13) was performed using the
quasi-Newton method lbfgs. The parameters to be optimized
are the number of hidden layers, the number of neurons per
layer, the activation function, and the number of epochs taken
into account during the training (we fixed the batches’ size
to 100). For Vθ(x), we also optimize the hyper-parameters
µV and µdV weighting the terms in the loss function (17) by
doing a grid search in the parametric space (µV , µdV). The
goodness of fit of the trained models is finally evaluated in the
test set, a uniform grid of Nv = 104 points within the state
space, where the approximated control is compared with the
pointwise computation through the SDRE solution. Goodness
of fit of trained models in both tests are presented in Table
I. Closed-loop simulations are performed with a RK45 solver
with a timestep of 10−4, determining the rate at which the
ANN-based feedbacks are called.

Test 1 Test 2

Predicted variable r2 MSE r2 MSE

Vθ 0.67236 0.39829 0.81681 0.00025
∇Vθ 0.94921 0.07906 0.87114 0.00026
uV 0.92415 56.2208 0.91976 0.01218
uθ 0.96039 29.3591 0.85443 0.02210

TABLE I
GOODNESS OF FIT FOR TESTS 1 AND 2.

A. Test 1: Stabilization for the Cucker-Smale model

We test our approach over a high-dimensional, nonlinear
and nonlocal control problem related to consensus dynamics of
agent-based Cucker-Smale model [28]. We consider Na = 20
agents having states xi = (yi, vi) ∈ R2, denoting position
and velocity respectively, in Ω = [−3, 3]40 ⊂ R20 × R20 and
governed by the dynamics

ẏi = vi , v̇i =
1

Na

Na∑
j=1

vj − vi
1 + ||yi − yj ||2

+ ui , (18)

where i = 1, . . . , Na. Here, the control vector u(t) belongs to
L2([0, T];RNa) and is optimized according to

min
u(·)
J (x(·)) =

1

Na

∫ T

0

Na∑
i=1

||yi||2 + ||vi||2 + ||ui||2dt (19)

and it can be written in semilinear form as[
ẏ
v̇

]
=

[
ONa

INa

ONa
ANa

(y)

] [
y
v

]
+

[
ONa

INa

]
u ,

[
A(y)

]
i,j

=

{
− 1
Na

∑Na

k=1 P (yi, yk) if i = j ,
1
Na
P (yi, yj) otherwise

P (yi, yj) =
1

1 + ||yi − yj ||2
, Q =

1

Na
I2Na , R =

1

Na
INa ,

where On denotes a matrix of zeros in Rn×n. We train a model
for Vθ consisting of a FNN with 3 hidden layers with 400
neurons per layer and activation function σ(x) = max(0, x).
The best configuration resulting from hyper-parameter tuning
was (µV , µdV) = (0.1, 2), where the NN reaches the maxi-
mum r2 being trained for 41 epochs, just before overfitting.
Finally, applying the trained model to a grid of points in the
hypercube [−3, 3]40, we compute the gradient of the model
w.r.t. its input via automatic differentiation, computing the
approximate control as in (15). The direct feedback model
uθ(x) ∈ RNa consists of 2 hidden layers, with 400 neurons
per layer, and activation function σ(x) = tanh(x), while being
trained for 20 epochs.

Fig. 1. Test 1. Top: uncontrolled positions (left) and velocities (right). Bottom:
the controller uθ(x) stabilizes the dynamics (18) to the origin.

Figure 1 depicts trajectories for an initial condition
(y(0),v(0)) that is a vector of equally spaced entries in
[0, 0.4]. For this choice of dimension of the physical space
and number of agents, the model uθ performs better than the
gradient-augmented uV . The differences between both control
signals can be observed in Figure 2.

Fig. 2. Test 1. Control signals uθ(t) (left) and uV (t) (right). In this nonlinear
test, learning directly a model for u leads to better results. We omit the plot
for u(t) since it is well approximated by uθ(t).

B. Test 2: Feedback control of the Allen-Cahn PDE

Following a test presented in [9], we consider the control
of the nonlinear Allen-Cahn PDE

∂tx(ξ, t) = 0.1∂2ξξx+ x(1− x2) + χω(ξ)u(t) (20)

in [0, 1] × R+ with Neumann boundary conditions, where
the scalar control signal u : [0,+∞] → R acts through
the indicator function of the interval ω = [0.6, 0.9]. Without
control action, these dynamics are bistable with x ≡ ±1 being
the stable equilibria. We are interested in minimizing

J (u, x) =

∫ +∞

0

||x(ξ, t)||2 + 0.1u2(t)dt , (21)

thus stabilizing the dynamics towards the equilibrium x = 0.
The PDE (20) is discretized in space via finite differences with
N = 51 nodes, leading to the nonlinear system

ẋ = Ax + x� (1− x� x) + Bu(t), (22)

where x(t) = (x(ξ1, t), ..., x(ξn, t)) is the discrete state,
� denotes the Hadamard product and A,B correspond to
a discretization of the Laplace operator and the indicator
function χω(ξ) over a uniform grid {ξi}ni=1.

We consider a dataset {x(i), V (x(i)),∇V (x(i))}Ns
i=1 with

Ns = 1000, where the states have been sampled from
[−2, 2]51. We train a model for Vθ with 3 hidden layers, 500
neurons per layer, and activation function σ(x) = max(0, x).
The best configuration of hyper-parameters is found to be
(µV , µdV) = (0.9, 7), with the NN being trained for 71
epochs. Finally, we test the trained model Vθ in a test grid
of points in [−2, 2]51. For the model uθ, the architecture is
built with 4 hidden layers, with 500 neurons per layer, and
activation function σ(x) = max(0, x). The output layer for
uθ is made only of a single neuron, since the feedback law is
scalar. The model was trained for 50 epochs.

In Figs 3 and 4 we compare the trajectories resulting
from the integration of the discretized dynamics (22) with
t ∈ [0, 10], for an initial condition x(ξ, 0) = 1 + (1 − ξ)ξ,
and different feedback laws: the constant zero function, the
feedback obtained considering the linear control operator K0,
the control resulting from the gradient-augmented approxima-
tion Vθ, and the one given by uθ. In this high-dimensional
local problem, the approximation done through the gradient-
augmented model Vθ happens to outperform uθ in terms of

goodness of fit. On the other hand, observing the different
closed-loop evolutions and control signals, we can see how
both approximated feedback laws succeed in stabilizing the
trajectories near x = 0, while the uncontrolled system is stable
in x = 1 and the u0 results in a system which, for t = 10 has
not yet approached the equilibrium.

Fig. 3. Test 2. Top: uncontrolled state, converges to x = 1. Middle: controlled
state with linearized feedback u0(x) = −K0x around the origin, fails to
stabilize. Bottom: the nonlinear feedback uV stabilizes the system to x = 0.

Fig. 4. Test 2. Different control signals: u0, uθ and uV . The feedback law
trained with gradient-augmented data uV outperforms uθ .

VI. CONCLUSIONS

We have presented a novel computational method for the ap-
proximation of stabilizing feedback laws in nonlinear dynam-
ics based on a supervised learning approach. The training data
originates from the pointwise solution of the State-Dependent
Riccati Equation. We have studied the approximation of the
feedback control through feedforward neural networks, and
analysed different choices of architectures and loss functions
for training. We have provided computational evidence that for
high-dimensional nonlinear problems, the SDRE feedback law
can be effectively approximated through FNNs, thus removing
the stringent requirement of a fast ARE solver for real-time
closed-loop control. This is illustrated in Table II, where
the runtime of an ARE solve is compared the evaluation
time of the ANN-based controllers. As the number of states
increases, the real-time computation of ARE solves becomes
unfeasible, while the ANN-based feedbacks can be evaluated
at reduced computational cost. We observe that for genuinely

Test 1 Test 2

DoF SDRE uV uθ SDRE uV uθ

20 0.3715 0.0443 0.0375 0.3223 0.1004 0.0923
40 0.5157 0.0797 0.0637 0.3555 0.1143 0.0783
80 1.1382 0.0848 0.0585 0.4577 0.1016 0.0775

160 6.7549 0.1019 0.0927 1.0780 0.1000 0.0703
200 12.3 0.1393 0.0770 1.7496 0.12111 0.0901

TABLE II
AVERAGED ELAPSED TIME (SECONDS) WHEN COMPUTING A SINGLE ARE

SOLUTION VERSUS EVALUATING ANN-BASED CONTROLLERS.

nonlinear control problems, such as agent-based dynamics,
better results are achieved by learning directly the feedback
u(x) from the SDRE solves. However, for problems where
a linear structure is more prominent, such as in the control
of semilinear parabolic PDEs, learning a model for a local
approximation of the value function V (x) and computing the
control from its gradient is more accurate and efficient.

REFERENCES

[1] J. Garcke and A. Kröner, “Suboptimal feedback control of PDEs by
solving HJB equations on adaptive sparse grids,” J. Sci. Comput., vol. 70,
no. 1, pp. 1–28, 2017.

[2] A. Alla, M. Falcone, and L. Saluzzi, “An efficient DP algorithm on a
tree-structure for finite horizon optimal control problems,” SIAM J. Sci.
Comput., vol. 41, no. 4, pp. A2384–A2406, 2019.

[3] M. Akian, S. Gaubert, and A. Lakhoua, “The max-plus finite element
method for solving deterministic optimal control problems: basic prop-
erties and convergence analysis,” SIAM J. Control Optim., vol. 47, no. 2,
pp. 817–848, 2008.

[4] D. Kalise, S. Kundu, and K. Kunisch, “Robust feedback control of non-
linear PDEs by numerical approximation of high-dimensional Hamilton-
Jacobi-Isaacs equations,” SIAM J. Appl. Dyn. Syst., vol. 19, no. 2, pp.
1496–1524, 2020.

[5] D. Kalise and K. Kunisch, “Polynomial approximation of high-
dimensional Hamilton-Jacobi-Bellman equations and applications to
feedback control of semilinear parabolic PDEs,” SIAM J. Sci. Comput.,
vol. 40, no. 2, pp. A629–A652, 2018.

[6] M. B. Horowitz, A. Damle, and J. W. Burdick, “Linear Hamilton Jacobi
Bellman equations in high dimensions,” in 53rd IEEE Conference on
Decision and Control, 2014, pp. 5880–5887.

[7] E. Stefansson and Y. P. Leong, “Sequential alternating least squares
for solving high dimensional linear Hamilton-Jacobi-Bellman equation,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 3757–3764.

[8] A. Gorodetsky, S. Karaman, and Y. Marzouk, “High-dimensional
stochastic optimal control using continuous tensor decompositions,” Int.
J. Robot. Res., vol. 37, no. 2-3, pp. 340–377, 2018.

[9] S. Dolgov, D. Kalise, and K. Kunisch, “Tensor Decomposition Methods
for High-dimensional Hamilton–Jacobi–Bellman Equations,” SIAM J.
Sci. Comput., vol. 43, no. 3, pp. A1625–A1650, 2021.

[10] M. Oster, L. Sallandt, and R. Schneider, “Approximating the stationary
Hamilton-Jacobi-Bellman equation by hierarchical tensor products,”
2019, arXiv preprint:1911.00279.

[11] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differ-
ential equations using deep learning,” Proc. Natl. Acad. Sci. USA, vol.
115, no. 34, pp. 8505–8510, 2018.

[12] J. Darbon, G. P. Langlois, and T. Meng, “Overcoming the curse of
dimensionality for some Hamilton-Jacobi partial differential equations
via neural network architectures,” Res. Math. Sci., vol. 7, no. 20, 2020.

[13] N. Nüsken and L. Richter, “Solving high-dimensional Hamilton-Jacobi-
Bellman pdes using neural networks: perspectives from the theory
of controlled diffusions and measures on path space,” 2020, arXiv
preprint:2005.05409.

[14] K. Ito, C. Reisinger, and Y. Zhang, “A Neural Network-Based Pol-
icy Iteration Algorithm with Global H2-Superlinear Convergence for
Stochastic Games on Domains,” Found. Comput. Math., vol. 21, pp.
331–374, 2021.

[15] K. Kunisch and D. Walter, “Semiglobal optimal feedback stabilization of
autonomous systems via deep neural network approximation,” ESAIM:
COCV, vol. 27, p. 16, 2021.

[16] S. C. Beeler, H. T. Tran, and H. T. Banks, “Feedback control method-
ologies for nonlinear systems,” J. Optim. Theory Appl., vol. 107, no. 1,
pp. 1–33, 2000.

[17] W. Kang and L. C. Wilcox, “Mitigating the curse of dimensionality:
sparse grid characteristics method for optimal feedback control and HJB
equations,” Comput. Optim. Appl., vol. 68, no. 2, pp. 289–315, 2017.

[18] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, “Adaptive Deep Learn-
ing for High-Dimensional Hamilton–Jacobi–Bellman Equations,” SIAM
J. Sci. Comput., vol. 43, no. 2, pp. A1221–A1247, 2021.

[19] W. Kang, Q. Gong, and T. Nakamura-Zimmerer, “Algorithms of Data
Development For Deep Learning and Feedback Design,” 2019, arXiv
preprint:1912.00492.

[20] B. Azmi, D. Kalise, and K. Kunisch, “Optimal feedback law recovery
by gradient-augmented sparse polynomial regression,” J. Machin. Learn.
Res., vol. 22, no. 48, pp. 1–32, 2021.

[21] Y. T. Chow, J. Darbon, S. Osher, and W. Yin, “Algorithm for overcoming
the curse of dimensionality for state-dependent Hamilton-Jacobi equa-
tions,” J. Comput. Phys., vol. 387, pp. 376–409, 2019.

[22] ——, “Algorithm for overcoming the curse of dimensionality for time-
dependent non-convex Hamilton-Jacobi equations arising from optimal
control and differential games problems,” J. Sci. Comput., vol. 73, no.
2-3, pp. 617–643, 2017.

[23] J. Darbon and S. Osher, “Algorithms for overcoming the curse of
dimensionality for certain Hamilton-Jacobi equations arising in control
theory and elsewhere,” Res. Math. Sci., vol. 3, pp. Paper No. 19, 26,
2016.

[24] H. T. Banks, B. M. Lewis, and H. T. Tran, “Nonlinear feedback con-
trollers and compensators: a state-dependent Riccati equation approach,”
Comput. Optim. Appl., vol. 37, no. 2, pp. 177–218, Jun 2007.

[25] J. R. Cloutier, “State-dependent Riccati equation techniques: an
overview,” in Proceedings of the 1997 American Control Conference,
vol. 2, 1997, pp. 932–936 vol.2.

[26] J. Wang and G. Wu, “A multilayer recurrent neural network for solving
continuous-time algebraic Riccati equations,” Neural Networks, vol. 11,
no. 5, pp. 939–950, 1998.

[27] A. Jones and A. Astolfi, “On the solution of optimal control problems
using parameterized state-dependent riccati equations,” in 2020 59th
IEEE Conference on Decision and Control (CDC), 2020, pp. 1098–
1103.

[28] G. Albi, M. Herty, D. Kalise, and C. Segala, “Moment-driven pre-
dictive control of mean-field collective dynamics,” arXiv preprint
arXiv:2101.01970, 2021.

