This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Biomimetic Syntheses of Analogs of Hongoquercin A and B by Late-Stage Derivatization

Journal:	The Journal of Organic Chemistry
Manuscript ID	jo-2020-02638k.R2
Manuscript Type:	Article
Date Submitted by the	n/a
Complete List of Authors:	Mies, Thomas; Imperial College, Chemistry White, Andrew; Imperial College London, Department of Chemistry Parsons, Philip; Imperial College London, Department of Chemistry Barrett, Anthony; Imperial College London, Department of Chemistry

Biomimetic Syntheses of Analogs of Hongoquercin A and B by LateStage Derivatization

Thomas Mies, Andrew J. P. White, Philip J. Parsons, and Anthony G. M. Barrett*
Department of Chemistry, Imperial College, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, England.

TABLE OF CONTENTS GRAPHIC

Abstract

The hongoquercins are tetracyclic meroterpenoid natural products with the trans-transoid decalin-dihydrobenzopyran ring system, which display a range of different bioactivities. In this study, the syntheses of a range of hongoquercins using gold catalyzed enyne cyclization reactions and further derivatization are described. The parent enyne resorcylate precursors were synthesized biomimetically from the corresponding dioxinone keto ester via regioselective acylation, Tsuji-Trost allylic decarboxylative rearrangement and aromatization. The dioxinone keto ester $\mathbf{1 2}$ was prepared in 6 steps from geraniol using allylic functionalization and alkyne synthesis.

INTRODUCTION

Meroterpenoids are natural products that are biosynthesized via two different pathways, such as the polyketide pathway for the arene moiety and the terpene pathway. ${ }^{1}$ A sub-group of the meroterpenoids are natural products that incorporate a sesquiterpene unit and these include the hongoquercins. These natural products have attracted attention, not only due to the synthetic challenges with the 4 continuous stereocenters and highly substituted arene scaffold, but also in consequence of their biological activities that include inhibition of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. ${ }^{2}$ Abbanat's proposed mechanism of antibiotic action for hongoquercins (1) and (2) involves binding and disruption of the bacterial membrane. Hongoquercin A (1) showed higher biological activity than hongoquercin B (2) in both studies. Previous syntheses of the hongoquercins have used a coupling reaction between the arene entity, such as aryl halide $\mathbf{4}$ and an allylic functionalized decalin $3 .{ }^{3}$ The Barrett group has also reported two syntheses of hongoquercin A and B, which employed a dual-biomimetic polyketide and terpene polyene cyclization strategy with either early terpene 6 or late stage terpene 5 remote functionalization (Scheme 1). ${ }^{4}$ In order to enhance the structural diversity of analogs of the hongoquercins, we now report the application of gold-catalyzed 1,5-enyne cycloisomerization reactions and post-cyclization modification to convert dienyne-resorcylates into a small library of novel (\pm)hongoquercins. The dienyne-resorcylates were in turn synthesized using diketo-dioxinone chemistry ${ }^{5}$ with modified terpenoid starting materials derived from geraniol.

Scheme 1. Known retrosynthetic strategies for hongoquercin A and B.

The retrosynthetic analysis for the hongoquercin analogs 7 is outlined in Scheme 2. Thus, the key intermediate $\mathbf{8}$ should be available from dienyne 9 by gold-catalyzed carbocyclization, a process reported by Michelet, Toste and Echavarren, amongst others. ${ }^{6}$ Dienyne 9 should, in turn, be available from the sequential C-acylation of keto-ester 12, ${ }^{7}$ palladium-catalyzed decarboxylative allylic rearrangement ${ }^{8}$ to give diketo-dioxinone $\mathbf{1 0}$ and aromatization ${ }^{5}$ to produce resorcylate 9 . Dienynol 13, which should be available from geraniol (14), could then be easily converted into the key dienynol ester $\mathbf{1 2}$ using ketene generation and trapping. 5 ,7,9

Scheme 2: Retrosynthetic analysis.
Protection of geraniol (14) as its benzoate ester $\mathbf{1 5}(96 \%)^{10}$ and subsequent allylic oxidation using selenium dioxide and t-butyl hydroperoxide (56% on 40 mmol scale) ${ }^{11}$ gave alcohol 16 which was converted into allylic bromide $\mathbf{1 7}$ under Appel conditions ${ }^{12}$ (91%). Subsequent reaction of bromide 17 with 3 -trimethylsilyl-1-prop-2-ynyllithium ${ }^{13}$ gave the acetylene 18 , which was desilylated using tetrabutylammonium fluoride to give the key trans, trans-dienynol 13 (70% from bromide 17) (Scheme 3).

Scheme 3: Synthesis of the 1,5-enyne allylic alcohol 13.
Dioxinone carboxylic acid $\mathbf{2 0}$ activation and homologation by DCC-mediated coupling with the Meldrum's acid derivative 20i gave dioxane-4,6-dione keto dioxanone 19, which following literature precedent, ${ }^{7}$ gave the highly electrophilic dioxinone acyl ketene regioselectively upon heating at $55^{\circ} \mathrm{C}$. Trapping in situ with dienynol $\mathbf{1 3}$ gave the 1,5 -enyne β-keto ester $\mathbf{1 2}$ in good yield (87%). Subsequent magnesium chloride mediated regioselective C-acylation, palladium(0) catalyzed decarboxylative allylic migration and aromatization of the intermediate diketo-dioxinone $\mathbf{1 0}$ gave the 1,5-enyne resorcylate 9 (47% over 2 steps) (Scheme 4).

Scheme 4: Synthesis of the resorcylate dienyne 9 .
Reaction of dienyne 9 with a range of gold catalysts produced two compounds: the fully cyclized resorcylate $\mathbf{8}$ and the partially cyclized material 21. ${ }^{64}$ Cyclization using XPhos AuNTf $_{2}{ }^{6 \mathrm{i}}(5 \mathrm{~mol} \%)$ in 1,2-dichloroethane proceeded with a better overall conversion (combined yields $>80 \%$) as well as providing greater selectivity favoring the required pentacyclic product $\mathbf{8}$ (Scheme 5). This is in accord with the fact that XPhos is a sterically less demanding ligand and renders the Au^{+}-species more alkynophilic. ${ }^{14}$ Initial coordination of $[\mathrm{Au}]^{+}$to the alkyne provides complex 22 which gives rise to the formation of the 6 -membered ring in complex 23 and the derived tertiary carbocation is then available for classical cationic cyclisation (path a). Alternatively, as postulated by Echavarren, ${ }^{6 \mathrm{~d}}$ activation of the acetylene by $[\mathrm{Au}]^{+}$as intermediate $\mathbf{2 2}$ promotes cyclization via intermediate $\mathbf{2 3}$ and rearrangement to the cyclopropyl-gold-carbene 25 (path b) that can undergo ring opening to produce carbocations $\mathbf{2 3}$ or $\mathbf{2 4}$, which undergo classical terpene cyclisation. On the other hand, removal of an α-proton next to the carbocation $\mathbf{2 3}$ or cleavage of the cyclopropyl-goldcarbene 25 gives triene 26, which will lead to the formation of the partially cyclized material $\mathbf{2 1}$ (path c). The structure of the pentacyclic product $\mathbf{8}$ was confirmed as having the rigid trans-trans-ring stereochemistry by an X-ray single crystal structure determination.

Scheme 5: Dienyne cyclization to produce hongoquercin alkene 8 and proposed mechanism.
The use of other Lewis acids, amongst others indium bromide or bismuth triflate, gave the pentacyclic product $\mathbf{8}$ in inferior yields (58%) or gave chromane $27(26 \%)$ (Scheme 6). In addition, upon scale up and also with lower gold-catalyst loadings (1-4 mol \%), cyclization to produce the pentacyclic product 8 was slow and proceeded in inferior yield (16%) with formation of the partially cyclized compounds 21 (47%) as the major products (Scheme 6). Reactions in alternative solvents (diethyl ether, dichloromethane or toluene) did not improve the efficiency of full cyclization. Such partial cyclization is a common observation in cationic polyene cyclizations. ${ }^{15}$ Reaction of the dienyne 21 with a Lewis acid enhanced Brønsted acid catalyst, stannic chloride with
 isomers. ${ }^{6 f}$

Scheme 6: Cyclization with dual catalysis.
To avoid this issue of olefin isomerization, dual gold(I) and Lewis acid catalysis was examined. Thus, reaction using XPhos $\operatorname{AuNTf}_{2}(2 \mathrm{~mol} \%)$ and indium triflate ($2 \mathrm{~mol} \%$) gave the pentacyclic product $\mathbf{8}$ as the major product ($69-73 \%$) with only traces of the partially cyclized trienes 21 (Scheme 7). The exact role of indium triflate remains unclear, however we speculate it helps in stabilizing intermediates $\mathbf{2 3}$ or $\mathbf{2 5}$ to favor cyclization over elimination. To the best of our knowledge, such a dual catalysts system has not been reported for dienyne cyclizations. ${ }^{16}$ Subsequent hydrogenation of the pentacyclic product $\mathbf{8}$ over palladium on carbon (80%) followed by saponification gave resorcylic acid 30 in excellent yield (89%). Alternatively, saponification of the pentacyclic product $\mathbf{8}$ gave resorcylic acid $\mathbf{3 1}$ in good yields (81%).

Scheme 7: Dual catalyst system for the synthesis of analogs of hongoquercin A.
Further analogs of hongoquercin were synthesized from the pentacyclic product 8 (Scheme 8). Reaction with m chloroperbenzoic acid gave the α-epoxide $32(86 \%)$ and its stereochemistry was confirmed by nOe correlation experiments. ${ }^{6 g}$, 19 a Subsequent trans-diaxial ring opening with samarium(II) iodide in dichloromethane solution gave the iodo-alcohol $\mathbf{3 3}$ (98\%) rather than any products derived from reduction. ${ }^{18}$ Indeed, the same iodo-alcohol $\mathbf{3 3}(82 \%)$ was formed when epoxide 32 was allowed to react with samarium(II) iodide and triethylsilane. The structure and stereochemistry of the iodo-alcohol 33 were confirmed by Xray crystallography. Reaction of iodo-alcohol 33 with Raney nickel ${ }^{19}$ in ethanol gave alcohol 34 (88%). Attempts to reductively ring open epoxide 32 using lithium aluminum hydride ${ }^{17}$ or lithium triethyl borohydride resulted in reductive cleavage of the dioxinone ring to produce the benzylic alcohol 41.

Oxidation of alcohol 34 with Dess-Martin Periodinane (DMP) gave ketone 37 (87%) which was reduced with NaBH_{4} to the β alcohol 38 in excellent yields (89%). ${ }^{20}$ Attempted Mitsunobu reaction of alcohol $\mathbf{3 4}$ using triphenylphosphine, di-iso-propyl azodicarboxylate and acetic acid failed to give the β-alcohol acetate in significant conversion. ${ }^{21}$ While this sequence is not redox economic, ${ }^{22}$ we anticipated the ketone functionality may have different bioactivities compared to the alcohol since it can only serve as a H-bond acceptor. Saponification of dioxinone $\mathbf{3 4}$ with potassium hydroxide in THF gave the desired resorcylic acid $\mathbf{3 5}$ in 45% yield and the corresponding decarboxylated resorcylate 36 in 24% yield. It was anticipated that β-alcohol 38 might react similarly, thus, to suppress this undesired reaction the saponification was carried out using potassium tert-butoxide in water, ${ }^{23}$ which gave the β-alcohol resorcylic acid 39 in 52% as the sole product. Saponification of the ketone analog 37 was more complicated due to anticipated self-aldol reactions with common saponification methods. Thus, reaction of 37 with lithium diisopropylamide, in an attempt to protect the ketone as its enolate, followed by addition of potassium trimethylsilanoate gave lactone $\mathbf{4 0}$ in 24%, presumably $v i a$ an anionically accelerated retro-Diels Alder reaction, followed by rapid quenching of the quino-methide ketene intermediate with acetone.

Scheme 8: Synthesis of unsubstituted analogs of hongoquercin B.
The syntheses of methyl branched hongoquercins are described in Scheme 9. Reaction of the α-epoxide 32 with the methylcopper magnesium bromide and boron trifluoride etherate complex gave alcohol 43 in good yield (80%). ${ }^{24,25}$ The course of this reaction is dependent on the order of addition. Whilst initial preparation of the $\mathrm{Me}_{2} \mathrm{CuMgBr}$ and boron trifluoride etherate complex and reaction gave alcohol $\mathbf{4 3}$ in good yield, the addition of boron trifluoride etherate to a mixture of the epoxide and $\mathrm{Me}_{2} \mathrm{CuMgBr}$ gave both alcohol 43 and bromohydrin 42, the structure of which was determined by X-Ray crystallography. Alternative methylation protocols including methyl Grignard, trimethyl aluminium or the methyl cuprate derived from the reaction of MeMgBr and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ failed to give alcohol $\mathbf{4 3}$ or showed incompatibility with the dioxinone group. Bromohydrin 42 was also obtained when a mixture of methylmagnesium bromide and magnesium chloride was allowed to react with epoxide 32. Bromohydrin 42 was reconverted into alcohol 34 via Raney-Nickel mediated dehalogenation in 90% yield. Oxidation of α-alcohol 43 with Dess Martin periodinane gave ketone 45 (89%) and subsequent stereoselective reduction with sodium borohydride gave the β-alcohol 46 (85\%). ${ }^{20}$ Saponification of dioxinones $\mathbf{4 3}$ and $\mathbf{4 6}$ with potassium tert-butoxide in water respectively gave the resorcylic acids $44(70 \%)$ and 47 (37%), while reaction of 45 with lithium diisopropylamide followed by potassium trimethylsilanoate gave lactone 48 (33\%).

(48)

Scheme 9: Synthesis of methyl substituted analogs of hongoquercin B.
The syntheses of azido- and amino-hongoquercins are described in Scheme 10. Ring opening of the α-epoxide 32 with sodium azide in acetic acid and DMF gave the trans-diaxial azido-alcohol 49. The reduction of this compound to the corresponding amino-alcohol proved problematical and the use of hydrogenolysis over palladium on carbon or palladium hydroxide, with thioacetic acid, or with Raney nickel and thioacetic acid ${ }^{26,27}$ failed to provide the corresponding amine or acetamide. An attempted Staudinger reaction was also unproductive and led to the recovery of the epoxide $32(48 \%)^{28}$ However, protection of azido-alcohol 49 with acetic anhydride gave acetoxy azide $\mathbf{5 0}(63 \%),{ }^{29}$ which on reaction with trimethylphosphine in THF and aqueous sodium hydroxide gave amine 51, which was directly allowed to react with acetic anhydride, DMAP and triethylamine to produce the acetamido-ester $\mathbf{5 2}$ in 97% over 2 steps. ${ }^{30}$ Chemoselective saponification of the acetate and dioxinone groups gave the resorcylic acid $\mathbf{5 3}$ in moderate yields (48\%).

Scheme 10: Synthesis of azido- and amino-analogs of hongoquercin B.

CONCLUSION

In conclusion, several analogs of hongoquercin A and B were synthesized employing a late stage derivatization strategy from the hongoquercin alkene 8. A dual bioinspired synthesis involving polyketide aromatization and a dual gold(I)-indium(III) catalyzed polyenye cyclization gave alkene $\mathbf{8}$ with full control of relative stereochemistry. This common precursor $\mathbf{8}$ was converted into the analogs 29 to 53 through late-stage functional group manipulation thereby enhancing the structural diversity of analogs of hongoquercin antibiotics. Further studies on the lithium diisopropylamide mediated formation of lactones $\mathbf{4 0}$ and $\mathbf{4 8}$ are ongoing.

Experimental Section

General Methods. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$, DMF, THF, $\mathrm{Et}_{2} \mathrm{O}$, MeOH , EtOH and PhMe were purified by filtration through activated alumina columns or purchased as extra dry solvents and stored over $4 \AA$ molecular sieves. $\mathrm{NEt}_{3}, \mathrm{HNi}_{\mathrm{Pr}}^{2}$, pyridine and $\mathrm{N} i \mathrm{Pr}_{2} \mathrm{Et}$ were purchased as extra dry reagents and stored over $4 \AA$ molecular sieves. Pentane refers to the petroleum alkane fraction boiling between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$. The concentration of n-BuLi was determined by titration against diphenylacetic acid according to the procedure by Kofron and Baclawski. ${ }^{31}$ 2-Phenyl-1,3-dioxane-4,6-dione and 2-(2,2-dimethyl-4-oxo-4 H -1,3-dioxin-6-yl)acetic acid were prepared according to literature procedures. ${ }^{7 \mathrm{~b}}$

Reactions were carried out in cooled oven-dried $\left(180^{\circ} \mathrm{C}\right)$ glassware under a nitrogen or argon atmosphere using standard Schlenk techniques and with transfers by cannulas and syringes. Unless stated to the contrary, reactions were carried out at room temperature, when reaction temperatures refer to the external bath temperature. In all cases DrySyn heating mantels were used for reactions at elevated temperatures. Unless stated to the contrary, chromatography was carried out using the flash techniques of Still. ${ }^{32}$ The progress of reactions was monitored by analytical thin-layer chromatography (TLC) on silica gel coated aluminum oxide F_{254} plates. Components on TLC plates were visualized under UV light or by spraying with KMnO_{4} or acidic vanillin and warming. Flash column chromatography was performed by employing silica gel $60 \AA$, particle size $40-63 \mu \mathrm{~m}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and proton decoupled ${ }^{13} \mathrm{C}$-NMR spectra were respectively recorded at 400 MHz and 101 MHz in deuterated solvents at ambient temperature with chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to $\mathrm{Me}_{4} \mathrm{Si}$ and referenced to the residual solvent peak $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}\right.$ at $7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ at $77.16 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}:{ }^{1} \mathrm{H}$ at 3.31 and $4.87 \mathrm{ppm},{ }^{13} \mathrm{C}$ at 49.0 ppm$)$. Assignments of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were made by the analysis of chemical shift and coupling constant values, and as appropriate using COSY, DEPT135, HSQC and HMBC. MS spectra were recorded by the Imperial College Mass Spectrometry Service under conditions of electrospray ionization (ESI), chemical ionization (CI) or electron ionization (EI). Infra-red spectra of solids and liquids were recorded as thin films. Melting points were recorded on a melting point apparatus and are uncorrected. X-Ray diffraction data were recorded at the Imperial College X-ray Crystallography Facility. Elemental microanalyses were recorded at the University of Cambridge Microanalysis Facility.

(E)-3,7-Dimethylocta-2,6-dien-1-yl benzoate (15)

A mixture of pyridine ($6.33 \mathrm{~g}, 6.48 \mathrm{~mL}, 80.0 \mathrm{mmol}, 2.00$ equiv) and DMAP ($978 \mathrm{mg}, 8.00 \mathrm{mmol}, 0.20$ equiv) was added in one portion with stirring to geraniol (14) $\left(6.16 \mathrm{~g}, 7.00 \mathrm{~mL}, 40.0 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$. Subsequently, $\mathrm{PhCOCl}(6.19 \mathrm{~g}$, $5.11 \mathrm{~mL}, 44.0 \mathrm{mmol}, 1.10$ equiv) was added dropwise with stirring. After 20 h , reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, the layers were separated and the organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{x} 40 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1 \mathrm{M} ; 3 \times 30 \mathrm{~mL})$ and brine ($2 \times 40 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($2: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave benzoate $\mathbf{1 5}\left(9.23 \mathrm{~g}, 35.7 \mathrm{mmol}, 90 \%\right.$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.65$ (pentane : EtOAc $4: 1$); IR $v_{\max } 1716,1267,1107,710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{tp}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{ddq}, J=8.3,5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dq}, J=7.1,0.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,142.5,132.9,132.0,130.7,129.7,128.4,123.9,118.5,62.0,39.7,26.5,25.8,17.9,16.7$; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}\right)^{+}: 259.1693$, found: 259.1705. When the reaction was carried out on a 70 mmol scale, the yield was 96%. On a 100 mmol scale the yield was $\sim 99 \%$. The experimental procedure followed the one above with pyridine $(15.8 \mathrm{~g}, 16.2 \mathrm{~mL}, 200 \mathrm{mmol}, 2.00$ equiv) and DMAP ($2.44 \mathrm{~g}, 20.0 \mathrm{mmol}, 0.20$ equiv) added in two portions with stirring to geraniol (14) ($15.5 \mathrm{~g}, 17.6 \mathrm{~mL}, 100 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$. Subsequently, $\mathrm{PhCOCl}(15.5 \mathrm{~g}, 12.8 \mathrm{~mL}, 110 \mathrm{mmol}, 1.10$ equiv) was added dropwise with stirring. Work-up as above and chromatography ($2: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave benzoate $15(25.6 \mathrm{~g}$, $99.1 \mathrm{mmol}, 99 \%)$ as colorless oil. Analytical data were in good agreement with reported values. ${ }^{10}$

(2E,6E)-8-Hydroxy-3,7-dimethylocta-2,6-dien-1-yl benzoate (16)

SeO_{2} ($429 \mathrm{mg}, 3.87 \mathrm{mmol}, 0.10$ equiv) and $t-\mathrm{BuOOH}\left(70 \mathrm{wt} .-\%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 15.7 \mathrm{~mL}, 77.4 \mathrm{mmol}, 2.00$ equiv) were added sequentially in one portion with stirring to benzoate $15\left(10.0 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. After 30 h , reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x}$ $50 \mathrm{~mL})$. The combined organic layers were washed with distilled water $(50 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure (excess of $t-\mathrm{BuOOH}$ was removed by the addition and co-evaporation of PhMe). The resultant crude oil was used without further purification.
NaBH_{4} ($350 \mathrm{mg}, 9.28 \mathrm{mmol}, 0.24$ equiv) was added with stirring to the ice-cold crude oil in $\mathrm{MeOH}(110 \mathrm{~mL}$) in several portions over 30 min . After 2 h at $0^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and quenched with distilled water $(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with distilled water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($2: 1$ to $1: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave allylic alcohol $\mathbf{1 6}(6.07 \mathrm{~g}, 22.1 \mathrm{mmol}, 57 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.19$ (pentane : EtOAc $4: 1$); IR $v_{\max } 3417,1715,1269,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{tq}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 5.37(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97$ $(\mathrm{s}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,141.9,135.4,133.0,130.6,129.7,128.5,125.4,119.0,69.0,62.0,39.2,25.8,16.7,13.8$; HRMS (ESIToF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right)^{+}: 297.1461$, found: 297.1471. Analytical data were in good agreement with literature values. ${ }^{10,11}$ Upon repeating this experiment on a 100 mmol scale the yield dropped to 28% with methyl benzoate ($4.70 \mathrm{~g}, 54 \%$)
obtained after the reduction. Glyme was shown to be an appropriate substitute for methanol in the reduction step giving an overall yield of 56% on a 100 mmol scale. The experimental procedure followed the one above with $\mathrm{SeO}_{2}(1.10 \mathrm{~g}, 9.91 \mathrm{mmol}, 0.10$ equiv) and $t-\mathrm{BuOOH}\left(70 \mathrm{wt} .-\%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 40.2 \mathrm{~mL}, 198 \mathrm{mmol}, 2.00$ equiv) added sequentially in one portion with stirring to benzoate $\mathbf{1 5}$ ($25.6 \mathrm{~g}, 99.1 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. Work-up as above and removal of volatiles via co-evaporation with PhMe gave a crude oil, which was dissolved in 1,2-dimethoxyethane $(100 \mathrm{~mL})$. To the ice-cold crude oil was added $\mathrm{NaBH}_{4}(900 \mathrm{mg}$, $23.8 \mathrm{mmol}, 0.24$ equiv) in several portions with stirring over 30 mins . Work-up as above and chromatography ($2: 1$ to $1: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave allylic alcohol $16(15.0 \mathrm{~g}, 54.7 \mathrm{mmol}, 56 \%)$ as a colorless oil.

(2E,6E)-8-Bromo-3,7-dimethylocta-2,6-dien-1-yl benzoate (17)

$\mathrm{CBr}_{4}(3.14 \mathrm{~g}, 9.46 \mathrm{mmol}, 2.00$ equiv) was added in one portion with stirring to the ice-cold allylic alcohol $\mathbf{1 6}(1.30 \mathrm{~g}, 4.73 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{Et}_{2} \mathrm{O}(50.0 \mathrm{~mL}) . \mathrm{PPh}_{3}(2.48 \mathrm{~g}, 9.46 \mathrm{mmol}, 2.00$ equiv $)$ was added in several portions over 15 min . After stirring for 18 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with brine $(30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, filtered through Celite and chromatographed (100% pentane to $4: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) to give bromide $\mathbf{1 7}(1.44 \mathrm{~g}$, $4.28 \mathrm{mmol}, 91 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.61$ (pentane : EtOAc $3: 1$); IR $v_{\max } 1715,1268,1107,1097,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.11-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{ddq}, J=7.1,5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91-4.79(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{q}, J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,141.6,133.0,132.6,130.6,130.6,129.7,128.5,119.1,61.9,41.8,38.7,26.5,16.7$, 14.8; HRMS (ESI-ToF) m/z: [M - OBz] calcd. for $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Br}\right)^{\circ}: 215.0435$, found: 215.0441. Analytical data were in good agreement with literature values. ${ }^{10}$

(2E,6E)-3,7-Dimethyl-11-(trimethylsilyl)undeca-2,6-dien-10-yn-1-ol (18)

n-BuLi ($2.36 \mathrm{M}, 8.75 \mathrm{~mL}, 20.7 \mathrm{mmol}, 4.50$ equiv) was added dropwise with stirring to the dry-ice cold 1-(trimethylsilyl)propyne ($2.33 \mathrm{~g}, 3.07 \mathrm{~mL}, 20.7 \mathrm{mmol}, 4.50$ equiv) in THF $\left(95.0 \mathrm{~mL}\right.$). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , when bromide $\mathbf{1 7}$ $\left(1.55 \mathrm{~g}, 4.61 \mathrm{mmol}, 1.00\right.$ equiv) in THF (38.0 mL) was added dropwise with stirring and allowed to warm up to $23^{\circ} \mathrm{C}$. After 16 h , reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with distilled water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($5: 1$ to $3: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave a crude mixture containing silyl enynol 18 as yellow oil, which was used for the next step without further purification: $\mathrm{R}_{\mathrm{f}} 0.30$ (pentane : EtOAc $3: 1$); IR $v_{\max }$ $3330,1248,837,759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(\mathrm{tq}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dddd, $\left.J=6.9,5.6,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{ddd}, J=7.7,6.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J$ $=1.3,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{q}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.8,134.0,125.2,123.6$, 107.5, 84.8, 59.6, 39.6, 38.7, 26.4, 19.4, 16.4, 16.0, 0.3; HRMS (ESI-ToF) m/z: $[\mathrm{M}-\mathrm{OH}]^{+}$calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{Si}^{+}: 247.1877\right.$, found: 247.1890 .

(2E,6E)-3,7-Dimethylundeca-2,6-dien-10-yn-1-ol (13)

$\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF; $13.0 \mathrm{~mL}, 13.0 \mathrm{mmol}, 2.82$ equiv) was added dropwise with stirring to the ice-cold crude silyl enynol 18. After 19 h , reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($3: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave dienynol 13 ($838 \mathrm{mg}, 4.36 \mathrm{mmol}, 95 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.26$ (pentane: EtOAc $3: 1$); IR $v_{\text {max }} 3341,1249,1019,839$, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42(\mathrm{tq}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddq}, J=8.3,5.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=7.2,3.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=9.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{t}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,133.7,125.3,123.6,84.5,68.5$, $59.6,39.5,38.5,26.3,17.7,16.4,16.0$; HRMS (APCI) m/z: [M + H] calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}\right)^{+}$: 193.1587, found: 193.1587. Major peak $\mathrm{m} / \mathrm{z}:[\mathrm{M}-\mathrm{OH}]^{+}$calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{19}\right)^{+}: 175.1481$, found. 175.1481. Analytical data were in good agreement with literature values. ${ }^{13}$ For larger scale reactions ($>8 \mathrm{mmol}$) the yield was $67-72 \%$. The experimental procedure followed the one above with $\mathrm{n}-\mathrm{BuLi}$ ($2.36 \mathrm{M}, 38.1 \mathrm{~mL}, 90 \mathrm{mmol}, 4.50$ equiv) added dropwise with stirring to the dry-ice cold 1-(trimethylsilyl)propyne ($10.1 \mathrm{~g}, 13.3 \mathrm{~mL}$, $90 \mathrm{mmol}, 4.50$ equiv) in THF (250 mL). After 2 h at $-78^{\circ} \mathrm{C}$, bromide $17(6.74 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv) in THF (80 mL) was added dropwise with stirring. Work-up as above and chromatography ($5: 1$ to $3: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) afforded a crude oil. $\mathrm{Bu}_{4} \mathrm{NF}(1 \mathrm{M}$ in THF; $56.4 \mathrm{~mL}, 56.4 \mathrm{mmol}, 2.82$ equiv) was added dropwise with stirring at $0^{\circ} \mathrm{C}$. Work-up as above and chromatography ($3: 1$ pentane : $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ gave dienynol $13(2.76 \mathrm{~g}, 14.4 \mathrm{mmol}, 72 \%)$ as a yellow oil.

(2E,6E)-3,7-Dimethylundeca-2,6-dien-10-yn-1-yl 4-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-3-oxobutanoate (12)

DCC ($781 \mathrm{mg}, 3.79 \mathrm{mmol}, 1.82$ equiv) and DMAP ($463 \mathrm{mg}, 3.79 \mathrm{mmol}, 1.82$ equiv) were sequentially added in one portion with stirring to 2-phenyl-1,3-dioxane-4,6-dione ($728 \mathrm{mg}, 3.79 \mathrm{mmol}, 1.82$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (32.0 mL). After $15 \mathrm{~min}, 2$-(2,2 -dimethyl-4-oxo- 4 H -1,3-dioxin-6-yl) acetic acid ($705 \mathrm{mg}, 3.79 \mathrm{mmol}, 1.82$ equiv) was added in one portion. After 18 h , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, the precipitate was filtered off and the solid was washed with small portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the precipitate appeared colorless. The filtrate was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 2 \times 20 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{PhMe}(8.00 \mathrm{~mL})$ and dienynol $\mathbf{1 3}$ ($400 \mathrm{mg}, 2.08 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{PhMe}(8.00 \mathrm{~mL})$ was added in one portion with stirring. The resulting pale-yellow solution was heated to $55^{\circ} \mathrm{C}$ for 4 h after which the solution was concentrated. Chromatography ($9: 1$ to $7: 1$ to $4: 1$ pentane : EtOAc) gave β-keto ester $\mathbf{1 2}$ (730 mg , $1.81 \mathrm{mmol}, 87 \%$) as orange oil: $\mathrm{R}_{\mathrm{f}} 0.09$ (pentane : EtOAc $4: 1$); IR $v_{\max } 1724,1638,1389,1375,1272,1202,1016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.36(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{tq}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=5.4,4.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}), 1.61(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.8,166.5,163.7,160.6,143.5,133.9$,
$124.9,117.6,107.5,97.3,84.5,68.6,62.8,49.3,47.1,39.5,38.5,26.2,25.2,17.7,16.6,16.0 ;$ HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{6}\right)^{+}: 403.2115$, found: 403.2106. Major peak m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}\right)^{+}: 425.1935$, found: 425.1947.

8-((2E,6E)-3,7-Dimethylundeca-2,6-dien-10-yn-1-yl)-7-hydroxy-2,2,5-trimethyl-4H-benzo[d][1,3]dioxin-4-one (9)

MgCl_{2} ($68.0 \mathrm{mg}, 0.718 \mathrm{mmol}, 1.00$ equiv) and pyridine ($114 \mathrm{mg}, 120 \mu \mathrm{~L}, 1.44 \mathrm{mmol}, 2.00$ equiv) were added sequentially in one portion with stirring to ice-cold β-keto ester $12\left(289 \mathrm{mg}, 0.718 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.60 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{AcCl}$ ($85.0 \mathrm{mg}, 76.6 \mu \mathrm{~L}, 1.08 \mathrm{mmol}, 1.50$ equiv) was added dropwise, and, after 1 h at $0^{\circ} \mathrm{C}$, reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the pH was adjusted to $1-2$ with aqueous $\mathrm{HCl}(1 \mathrm{M})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was dissolved in THF (4.30 mL) and tri(2 -furyl) phosphine ($53.0 \mathrm{mg}, 0.228 \mathrm{mmol}, 0.32$ equiv) and tris(dibenzylideneacetone)dipalladium $(0)(35.0 \mathrm{mg}, 0.0382 \mathrm{mmol}, 0.05$ equiv) were added sequentially in one portion with stirring. After 1.5 h , cesium acetate ($413 \mathrm{mg}, 2.15 \mathrm{mmol}, 3.00$ equiv) in 2-propanol (4.30 mL) was added in one portion. After 1.5 h , reaction was quenched with aqueous $\mathrm{HCl}(1 \mathrm{M}, 15 \mathrm{~mL})$, the organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography (19: 1 to $15: 1$ pentane : EtOAc) gave resorcylate 9 ($129 \mathrm{mg}, 0.337 \mathrm{mmol}, 47 \%$) as yellow-white oil which solidified on standing.

Alternatively, $\mathrm{MgCl}_{2}(95.0 \mathrm{mg}, 0.996 \mathrm{mmol}, 1.00$ equiv) and pyridine ($158 \mathrm{mg}, 161 \mu \mathrm{~L}, 1.99 \mathrm{mmol}, 2.00$ equiv) were added sequentially each in one portion with stirring to ice-cold β-keto ester $12\left(401 \mathrm{mg}, 0.996 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{AcCl}\left(117 \mathrm{mg}, 106 \mu \mathrm{~L}, 1.49 \mathrm{mmol}, 1.50\right.$ equiv) was added dropwise, and after 1 h at $0^{\circ} \mathrm{C}$, reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the pH was adjusted to $1-2$ with aqueous $\mathrm{HCl}(1 \mathrm{M})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was dissolved in THF (4.30 mL) and tri(2-furyl)phosphine (69.0 mg , $0.299 \mathrm{mmol}, \quad 0.30$ equiv) and tris(dibenzylideneacetone)dipalladium(0) $(46.0 \mathrm{mg}, 0.0498 \mathrm{mmol}, 0.05$ equiv) were added sequentially in one portion with stirring. After $1.5 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(302 \mathrm{mg}, 417 \mu \mathrm{~L}, 2.99 \mathrm{mmol}, 3.00$ equiv) was added in one portion, and, after 20 h , reaction was quenched with an aqueous $\mathrm{HCl}(1 \mathrm{M} ; 15 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($19: 1$ to $16: 1$ to $12: 1$ pentane : EtOAc) gave resorcylate $9(176 \mathrm{mg}, 0.460 \mathrm{mmol}, 46 \%$) as yellow-white oil, which solidified upon standing: $\mathrm{R}_{\mathrm{f}} 0.33$ (pentane : EtOAc $7: 3$); IR $v_{\max } 3294,1726,1692,1607,1590,1451$, $1409,1388,1376,1295,1275,1209,1166,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.40(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $5.22-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{tt}, J=5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=7.3,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H})$, $1.59(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,160.1,156.1,143.1,138.6,134.0,125.0,121.1,113.8,112.7$, $105.6,105.0,84.5,68.5,39.7,38.5,26.3,25.9,22.2,22.0,17.7,16.4,16.0$; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}\right)^{+}$: 383.2217, found. 383.2234; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$: C, 75.36; H, 7.91. Found: C, 75.29; H, 7.80.
(\pm)-2,2,5,7a,13a-Pentamethyl-7a,8,9a,12,13,13a,13b,14-octahydro-4H,9H-benzo[a][1,3]dioxino[5,4-j]xanthen-4-one (8)
2-Dicyclohexylphosphino-2', 4', 6^{\prime} 'tri- iso-propylbiphenylgold(I) bis(trifluoromethanesulfonyl)imide ($28 \mathrm{mg}, \quad 0.029 \mathrm{mmol}$, 0.025 equiv) was added in one portion with stirring to resorcylate 9 ($444 \mathrm{mg}, 1.16 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). After $30 \mathrm{~min}, \operatorname{In}(\mathrm{OTf})_{3}(16 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.025$ equiv) was added in one portion. After 17 h , reaction was quenched with water $(20 \mathrm{~mL})$, the organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Concentration under reduced pressure and chromatography (15:1 pentane : EtOAc) gave pentacyclic resorcylate $\mathbf{8}(325 \mathrm{mg}, 0.85 \mathrm{mmol}, 73 \%)$ as a white solid: m.p. $198{ }^{\circ} \mathrm{C}$ $-200{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane); $\mathrm{R}_{\mathrm{f}} 0.61$ (pentane : EtOAc $4: 1$); IR $v_{\max } 1727,1616,1573,1305,1289,1279,1208,1167,1129 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dq}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, J=9.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J$ $=16.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{ddq}, J=5.2,3.9,2.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dt}, J=12.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ $(\mathrm{dt}, J=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59$ (td, $J=6.5,5.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{dd}, J=5.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,159.1,156.2,142.3,129.9,126.1,114.6,108.6,104.9,104.2,78.9,48.8,46.0,40.2$, $35.2,35.0,26.3,25.6,25.2,23.2,22.1,21.5,17.0,11.5$; HRMS (ESI-ToF) m/z: $[M+H]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}\right)^{+}: 383.2217$, found. 383.2223.

(\boldsymbol{E})-7-Hydroxy-2,2,5-trimethyl-8-(3-methyl-5-(2-methylcyclohexa-2,5-dien-1-yl)pent-2-en-1-yl)-4H-benzo[d][1,3]dioxin-4-

 one, (E)-7-hydroxy-2,2,5-trimethyl-8-(3-methyl-5-(6-methylenecyclohex-2-en-1-yl)pent-2-en-1-yl)-4H-benzo [d][1,3]dioxin-4-one, and () -7-hydroxy-2,2,5-trimethyl-8-(3-methyl-5-(2-methylcyclohexa-1,5-dien-1-yl)pent-2-en-1-yl)-4Hbenzo[$d][1,3]$ dioxin-4-one (21)Resorcylate 9 ($30.0 \mathrm{mg}, 78.4 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{PhMe}(1.00 \mathrm{~mL})$ was added dropwise with stirring to 2-(dicyclohexylphosphino$2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropylbiphenyl) gold(I) bis(trifluoromethanesulfonyl)imide ($53.0 \mathrm{mg}, 3.92 \mu \mathrm{~mol}, 0.05$ equiv). After 17 h , the mixture was filtered through a silica plug with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.00 \mathrm{~mL})$ and $\mathrm{EtOAc}(1 \times 5.00 \mathrm{~mL})$ and the combined filtrates were concentrated under reduced pressure. Chromatography ($17: 1$ to $9: 1$ pentane : EtOAc) gave a mixture of the three alkenes 21 (13.0 mg , $34.0 \mu \mathrm{~mol}, 42 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.23$ (pentane : EtOAc $4: 1$); IR $v_{\text {max }} 3337,2924,1728,1696,1607,1592,1452,1295,1277$, $1209 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.59-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=$ $14.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=0.9 \mathrm{~Hz}, 5 \mathrm{H}), 2.56(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.07(\mathrm{~m}$, $3 \mathrm{H}), 2.07-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.5,161.3,160.1,159.4,144.3,143.0,142.4,138.1,137.0,130.6,126.0,125.9,124.9,124.2,124.1,122.9$, $122.2,121.3,117.9,116.0,113.7,113.5,105.0$, ACS Paragon Plu's Environment 49.1 , $31.6,32.1,31.8,31.0,30.5,29.8,28.8,26.0$, ACS Paragón Plus Environment
25.9, 23.4, 22.4, 22.2, 22.0, 21.4, 17.1, 16.4, 11.5; HRMS (ESI-ToF) m/z: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4}\right): 381.2071$, found. 381.2057.
(\pm)-2,2,5,8-Tetramethyl-8-(4-methyloct-3-en-7-yn-1-yl)-9,10-dihydro-4H,8H-[1,3]dioxino[4,5-ffchromen-4-one (27)
The experimental procedure followed that for compound 21 with 0.30 equiv of $\mathrm{Bi}(\mathrm{OTf})_{3}$. Chromatography (pentane : EtOAc 15 : 1) gave chromane $27\left(8.0 \mathrm{mg}, 0.0209 \mathrm{mmol}, 26 \%\right.$) as yellow oil: $\mathrm{R}_{\mathrm{f}} 0.47$ (pentane : EtOAc $3: 1$); IR $v_{\max } 1728,1574,1282 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.14(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 4 \mathrm{H}), 2.29-2.25(\mathrm{~m}$, $2 \mathrm{H}), 2.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}),, 2.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dq}, J=3.9,2.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dq}, J=23.1$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.61(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;$ HRMS (ESI-ToF) m/z: [M+H]+calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}\right)^{+}: 383.2217$, found: 383.2208 .

(土)-2,2,5,7a,13a-Pentamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo[a][1,3]dioxino[5,4-j]xanthen-4-one

 (29)$\mathrm{Pd} / \mathrm{C}(5 \%, 10 \mathrm{mg})$ was added in one portion with stirring to resorcylate $\mathbf{8}(25 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.00$ equiv $)$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and EtOAc $(1.0 \mathrm{~mL})$. The black suspension was purged with H_{2} three times. After 17 h stirring under H_{2}, the mixture was filtered through Celite ${ }^{\circledR}$ and the solids rinsed with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were concentrated under reduced pressure. Chromatography ($9: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave resorcylate $29\left(20 \mathrm{mg}, 0.052 \mathrm{mmol}, 80 \%\right.$) as white solid: m.p. $162{ }^{\circ} \mathrm{C}-164{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane) ; $\mathrm{R}_{\mathrm{f}} 0.58$ (pentane : EtOAc $7: 3$); IR $v_{\max } 1724,1615,1572,1450,1375,1299,1282,1207,1171,1129,901,730$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=17.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{dt}, J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (t, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 2 \mathrm{H}) 1.28(\mathrm{dd}, J=4.3,3.3 \mathrm{~Hz}), 1.24(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 1.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,159.0,156.2,142.2$, $114.6,108.6,104.9,104.1,78.9,49.9,47.7,40.2,38.8,36.5,28.1,26.8,26.6,26.3,25.6,22.1,21.3,21.1,16.7,12.2$; HRMS (APCI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{4}\right)^{+}: 385.2373$, found: 385.2370. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{C}, 74.97 ; \mathrm{H}, 8.39$. Found: C, 75.29; H, 8.59.
(\pm)-11-Hydroxy-6a,9,12b-trimethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a] xanthene-10-carboxylic acid (30)
Aqueous $\mathrm{KOH}(5 \mathrm{M} ; 1.0 \mathrm{~mL}, 5 \mathrm{mmol}, 100$ equiv) was added with vigorous stirring to resorcylate $29(20 \mathrm{mg}, 0.052 \mathrm{mmol}$, 1.00 equiv) in THF $(1.0 \mathrm{~mL})$. After 6 days at $60^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M} ; 10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc (3×5 $\mathrm{mL})$. The combined organic layers were washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($1: 4: 5 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$: pentane) gave resorcylic acid $\mathbf{3 0}$ ($16 \mathrm{mg}, 0.046 \mathrm{mmol}, 89 \%$) as an off-white solid: m.p, $183-185^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R}_{\mathrm{f}} 0.15$ (pentane : EtOAc 7 : 3), IR $v_{\max } 2927,1616,1595,1576,1454,1269,1263,1183,1109$, $800 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.13-6.09(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.26$ (ddd, $J=15.9,13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ $-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 1.34-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J$ $=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.6,164.5,159.0,141.8,112.9,109.0$, $104.9,79.2,51.6,47.8,41.3,40.0,37.5,30.8,29.2,27.7,24.2,22.4,21.2,17.8,12.4$; HRMS (APCI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}\right)^{+}: 345.2060$, found: 345.2068.

(\pm)-11-Hydroxy-6a,9,12b-trimethyl-1,4a,5,6,6a,12,12a,12b-octahydro-2H-benzo[a]xanthene-10-carboxylic acid (31)

Aqueous $\mathrm{KOH}(5 \mathrm{M} ; 1.5 \mathrm{~mL}, 7.5 \mathrm{mmol}, 129$ equiv) was added in one portion with stirring to resorcylate $\mathbf{8}(22 \mathrm{mg}, 0.058 \mathrm{mmol}$, 1.00 equiv) in THF (1.5 mL). After vigorously stirring for 6 days at $60^{\circ} \mathrm{C}$, the mixture was diluted with water (5 mL) and EtOAc $(5 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M} ; 10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($1: 2: 7 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$: pentane) gave resorcylic acid $\mathbf{3 1}(16 \mathrm{mg}, 0.047 \mathrm{mmol}, 81 \%)$ as an off-white solid: m.p. $158{ }^{\circ} \mathrm{C}-162{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R}_{\mathrm{f}} 0.12$ (pentane : EtOAc $7: 3$); IR $v_{\max } 2927,1621,1454,1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.12(\mathrm{dd}, J=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dq}, J=9.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dq}, J=5.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73$ (ddd, $J=16.3,8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 164.1,159.0,154.3,141.8,131.0,126.9,112.9,109.0$, $105.2,79.3,50.4,47.2,41.4,36.1,36.0,26.2,24.2,24.1,21.7,18.1,11.8$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}\right)^{+}$: 343.1904, found: 343.1905; also found m / z : $[\mathrm{M}+\mathrm{D}]^{+}$calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{DO}_{4}\right)^{+}: 344.1965$; found: 344.1967; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} .0 .5 \mathrm{H}_{2} \mathrm{O}$ C, 71.77; H, 7.74. Found: C, 71.89; H, 7.49.

(\pm)-3a,6,9,9,11b-Pentamethyl-1a,1b,3,3a,11,11a,11b,12,13,13a-decahydro-2H,7H-[1,3]dioxino[4,5$a]$ oxireno $\left[2^{\prime}, 3^{\prime}: 5,6\right]$ benzo $[1,2-j]$ xanthen-7-one (32)

m-CPBA $(65.0 \mathrm{mg}, 0.291 \mathrm{mmol}, 1.05$ equiv) was added in two portions with stirring to resorcylate $\mathbf{8}(106 \mathrm{mg}, 0.277 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.00 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{M}, 0.84 \mathrm{~mL})$. After 3 h , further m-CPBA ($18.0 \mathrm{mg}, 83.1 \mu \mathrm{~mol}$, 0.3 equiv) was added, and, after 1.5 h , reaction was quenched with water. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 10 \mathrm{~mL})$. The combined organic layers were washed with aqueous $\mathrm{NaOH}(1 \mathrm{M} ; 15 \mathrm{~mL})$, distilled water $(10 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($6: 1$ to $4: 1$ pentane : EtOAc) gave epoxide $32\left(95.0 \mathrm{mg}, 0.238 \mathrm{mmol}, 86 \%\right.$) as white foam: $\mathrm{R}_{\mathrm{f}} 0.18$ (pentane : EtOAc $4: 1$); IR $v_{\max } 1718,1615,1571,1289,1279,1206,1128,1036,919,900,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~d}$, $J=0.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=4.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.10(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=12.8,6.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}) 1.87(\mathrm{td}, J=5.0,4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=$
$5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.50$（ $\mathrm{m}, 1 \mathrm{H}) 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 1 \mathrm{H}),, 0.83(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.8,158.8,156.1,142.2,114.5,108.2,104.9,104.2,78.2,54.8,51.8,47.9,47.5,40.0,34.3,31.7,26.3,25.5,24.5,22.0,21.4$ ， 20．8，17．2，12．6；HRMS（ESI－ToF）m／z：$[\mathrm{M}+\mathrm{H}]^{+}$calcd．for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}\right)^{+}: 399.2166$ ，found．399．2176．
（土）－11－Hydroxy－10－iodo－2，2，5，7a，13a－pentamethyl－7a，8，9a，10，11，12，13，13a，13b，14－decahydro－4H，9H－ benzo［a］［1，3］dioxino［5，4－j］xanthen－4－one（33）
$\mathrm{Et}_{3} \mathrm{SiH}$（ $48 \mathrm{mg}, 0.066 \mathrm{~mL}, 0.42 \mathrm{mmol}, 2.4$ equiv）and SmI_{2}（ 0.1 M in THF； $3.2 \mathrm{~mL}, 0.32 \mathrm{mmol}, 1.88$ equiv）were sequentially added dropwise with stirring to strictly deoxygenated epoxide 32 （ $69 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.00$ equiv）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ ．After 20 min ，the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ ．Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the organic layer was separated．The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine（ 15 mL ），dried $\left(\mathrm{MgSO}_{4}\right)$ ，filtered and concentrated under reduced pressure．Chromatography（ $3: 1$ pentane ： $\mathrm{Et}_{2} \mathrm{O}$ to $3: 1$ pentane ：EtOAc）gave iodohydrin $33(75 \mathrm{mg}, 0.14 \mathrm{mmol}, 82 \%)$ as a white solid．

Alternatively： SmI_{2} in THF（ $0.1 \mathrm{M} ; 2.3 \mathrm{~mL}, 0.23 \mathrm{mmol}, 1.8$ equiv）was added dropwise with stirring to a strictly deoxygenated epoxide $32\left(50 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00\right.$ equiv）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ ．After 1 h ，the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ ．Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added，the organic layer was separated，and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ ．The combined organic layers were washed with brine $(20 \mathrm{~mL})$ ，dried $\left(\mathrm{MgSO}_{4}\right)$ ，filtered and concentrated under reduced pressure．Chromatography（ $1: 1: 8$ pentane ： $\mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ）gave iodohydrin $33(65 \mathrm{mg}, 0.12 \mathrm{mmol}$ ， 98% ）as a white solid：m．p．： $117-120^{\circ} \mathrm{C}$（dec．）$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$／pentane）； $\mathrm{R}_{\mathrm{f}} 0.21$（pentane ：EtOAc $7: 3$ ）；IR $v_{\max } 3425,1727,1701,1619$ ， $1573,1307,1293,1284,1171,1130,1047 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=$ $3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 2.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{dd}, J=5.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.58$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR（101 MHz， CDCl_{3} ）$\delta 161.2,158.8,156.2,142.2,114.5,108.0,105.0,104.1,78.3,73.1,51.0,42.3,39.5,37.3,36.7,31.5$ ， $28.5,26.3,25.6,23.2,22.1,21.0,15.9,14.2$ ；HRMS（APCI）m／z：$[\mathrm{M}+\mathrm{H}]^{+}$calcd．for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{IO}_{5}\right)^{+}: 527.1289$ ，found：527．1284； Anal．Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{IO}_{5}$ ：C， 54.76 ；H，5．94．Found：C， 54.66 ；H，5．88．

（土）－11－Hydroxy－2，2，5，7a，13a－pentamethyl－7a，8，9a，10，11，12，13，13a，13b，14－decahydro－4H，9H－benzo［a］［1，3］dioxino［5，4－ j｜xanthen－4－one（34）

Raney－Ni（ 50% aqueous suspension； 1.4 mL ）was added portionwise with stirring to iodohydrin 33 （ $75 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.00$ equiv） in $\mathrm{EtOH}(7.0 \mathrm{~mL})$ ．After heating at reflux for 3 h ，the mixture was filtered through Celite ${ }^{\circledR}$ and the solids rinsed with $\mathrm{EtOH}(20 \mathrm{~mL})$ ． The filtrate was concentrated under reduced pressure，and the residue dissolved in EtOAc $(20 \mathrm{~mL})$ and washed with water $(10 \mathrm{~mL})$ ． The organic layer was separated，and the aqueous layer was further extracted with $\operatorname{EtOAc}(2 \times 10 \mathrm{~mL})$ ．The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ ，filtered and concentrated under reduced pressure．Chromatography（ $3: 1$ to $1: 1$ pentane ： $\mathrm{Et}_{2} \mathrm{O}$ ）gave α－ alcohol $34(50 \mathrm{mg}, 0.12 \mathrm{mmol}, 88 \%)$ as a white solid：m．p． $97-100{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane）； $\mathrm{R}_{\mathrm{f}} 0.12$（pentane ：EtOAc $7: 3$ ）；IR $v_{\text {max }}$ $3430,1707,1614,1570,1282,1207,1170,1127,1097,907,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=16.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dt}, J=12.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77$ $-173(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dt}, J=7.9,2.5 \mathrm{~Hz}$ ， $1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.0,159.0,156.2,142.1,114.6,108.5,104.9,104.1,78.7,66.1,49.4,40.0,39.4,36.3,35.1,32.7,28.4,26.3$（ $2 \times \mathrm{C}$ ），25．5，22．1， 21．0，16．7，11．1；HRMS（ESI－ToF）m／z：$[\mathrm{M}+\mathrm{H}]^{+}$calcd．for $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{5}\right)^{+}: 401.2323$ ，found：401．2330．Similar yields（90\％）were obtained when the bromohydrin 40 was allowed to react in this fashion．
（土）－3，11－Dihydroxy－6a，9，12b－trimethyl－1，3，4，4a，5，6，6a，12，12a，12b－decahydro－2H－benzo［a］xanthene－10－carboxylic acid（35） Aqueous $\mathrm{KOH}(5 \mathrm{M}, 1.0 \mathrm{~mL})$ was added dropwise with stirring to α－alcohol $34(37 \mathrm{mg}, 0.092 \mathrm{mmol}, 1.00$ equiv）in THF（ 1.0 mL ）． After vigorous stirring for 6 days at $60^{\circ} \mathrm{C}$ ，the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ ．The organic layer was separated，and the aqueous layer was further extracted with EtOAc（ $3 \times 5 \mathrm{~mL}$ ）． The combined organic layers were washed with brine $(15 \mathrm{~mL})$ ，dried $\left(\mathrm{MgSO}_{4}\right)$ ，filtered and concentrated under reduced pressure． Purification by flash column chromatography（ $1: 9$ to $2: 8$ to $3: 7 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ）gave resorcylic acid $35(15 \mathrm{mg}, 0.042 \mathrm{mmol}$ ， 45% ）as a yellow－transparent film： $\mathrm{R}_{\mathrm{f}} 0.09$（pentane ：EtOAc $1: 1$ ）；IR $v_{\text {max }} 3478,2928,2862,1621,1578,1452,1262,1175 \mathrm{~cm}^{-1}$ ； ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.22(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.8,4.9 \mathrm{~Hz}, 1 \mathrm{H})$ ， $2.51(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=16.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 1 \mathrm{H}), 1.38$ （dd，$J=9.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}$ ）， $1.23(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.6,163.9,159.0,141.6$ ， $112.8,108.2,102.7,78.7,66.4,49.7,40.1,39.6,36.4,35.1,32.8,28.5,26.4,24.3,21.1,17.0,11.1 ;$ HRMS（ESI－ToF）m／z：［M－H］${ }^{-}$ calcd．for $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}\right)^{-}: 359.1864$ ，found： 359.1867 ．

（ \pm ）－6a，9，12b－Trimethyl－1，3，4，4a，5，6，6a，12，12a，12b－decahydro－2H－benzo［a］xanthene－3，11－diol（36）

Aqueous $\mathrm{KOH}(5 \mathrm{M}, 1.0 \mathrm{~mL}$ ）was added dropwise with stirring to α－alcohol $34(37 \mathrm{mg}, 0.092 \mathrm{mmol}, 1.00$ equiv）in THF（ 1.0 mL ）． After vigorous stirring for 6 days at $60{ }^{\circ} \mathrm{C}$ ，the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ ．The organic layer was separated，and the aqueous layer was further extracted with EtOAc（ $3 \times 5 \mathrm{~mL}$ ）． The combined organic layers were washed with brine $(15 \mathrm{~mL})$ ，dried $\left(\mathrm{MgSO}_{4}\right)$ ，filtered and concentrated under reduced pressure． Purification by flash column chromatography（ $1: 9$ to $2: 8$ to $3: 7 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ）gave phenol $\mathbf{3 6}(7.0 \mathrm{mg}, 0.022 \mathrm{mmol}, 24 \%$ ）as a yellow－white film： $\mathrm{R}_{\mathrm{f}} 0.29$（pentane ：EtOAc $1: 1$ ）；IR $v_{\max } 3381,1587,1445,1333,1260,1172,1059,1035,1018,988,822 \mathrm{~cm}^{-}$ ${ }^{1}$ ；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.2,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dt}, J=12.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$
$(\mathrm{dd}, J=4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta, 154.2,153.9,137.4$, $110.4,107.2,106.8,77.0,66.4,50.0,40.3,39.6,36.3,35.2,32.9,28.5,26.4,21.3,21.0,16.9,11.1 ;$ HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3}\right)^{+}: 317.2111$, found: 317.2102. Phenol 36 has a similar R_{f} value to the starting material. Reactions might therefore be considered incomplete due to the similarity of the R_{f} value. Noteworthy, while the starting α-alcohol $\mathbf{3 4}$ is UV-active and stains with acidic vanillin, phenol $\mathbf{3 6}$ is not strongly UV-active and only appears upon staining with acidic vanillin.

(\pm)-2,2,5,7a,13a-Pentamethyl-7a,8,9a,12,13,13a,13b,14-octahydro-4H,9H-benzo[a][1,3]dioxino[5,4-j]xanthene-4,11(10H)dione (37)

Dess-Martin periodinane ($201 \mathrm{mg}, 0.474 \mathrm{mmol}, 2.00$ equiv) was added with stirring in two portions over the course of 5 mins to ice-cold α-alcohol $34\left(95.0 \mathrm{mg}, 0.237 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. After 1.5 h , the mixture was concentrated and loaded onto a column with a Celite ${ }^{\circledR}$ pad. Chromatography ($1: 1$ to $1: 2$ pentane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave ketone $37(82.0 \mathrm{mg}, 0.206 \mathrm{mmol}, 87 \%$) as a white solid: m.p. $223-226^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane); $\mathrm{R}_{\mathrm{f}} 0.22$ (pentane : EtOAc $7: 3$); IR $v_{\max } 1709,1615,1572,1451,1299$, $1279,1206,1170,1128,1038,912,899,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dt}, J=12.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 1), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.5,160.8,158.6,156.1,142.4,114.5,107.9,104.9,104.2,78.2,49.0$, $46.3,43.9,39.5,38.3,37.2,35.8,26.3,26.3,25.5,22.0,20.8,17.3,11.5$; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}\right)^{+}$: 399.2166, found: 399.2174; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}$: C, 72.34; H, 7.59. Found: C, 72.19; H, 7.52.

(\pm)-11-Hydroxy-2,2,5,7a,13a-pentamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo[a][1,3]dioxino[5,4j] xanthen-4-one (38)

$\mathrm{NaBH}_{4}(2.3 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.30$ equiv) was added in one portion with stirring to ice-cold ketone $37(19 \mathrm{mg}, 0.048 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{EtOH}(1.0 \mathrm{~mL})$. After 1 h at $0{ }^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $5.0 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($1: 1: 8 \mathrm{EtOAc}:$ pentane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave β-alcohol $38(17 \mathrm{mg}, 0.042 \mathrm{mmol}, 89 \%)$ as a white foam: R_{f} 0.08 (pentane : EtOAc $7: 3$); IR $v_{\max } 3440,2930,1718,1615,1572,1452,1388,1376,1287,1209,1129,1042,902,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{tt}, J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=$ $16.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dt}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dd}, J=4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{dd}, J=11.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0$, $158.9,156.2,142.3,114.6,108.3,104.9,104.2,78.7,71.1,49.5,45.3,40.1,37.2,37.2,35.8,30.7,26.4,26.3,25.6,22.1,21.0,17.1$, 12.3; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{5}\right)^{+}: 401.2323$, found: 401.2318.
(\pm)-3,11-Dihydroxy-6a,9,12b-trimethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthene-10-carboxylic acid (39) $\mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~mL}, 16.6 \mathrm{mmol}, 391 \mathrm{eq})$ was added dropwise to an ice-cold suspension of $\mathrm{KO}-\mathrm{t} \mathrm{Bu}(162 \mathrm{mg}, 1.44 \mathrm{mmol}, 34.0 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$. After $5 \mathrm{~min}, \beta$-alcohol $\mathbf{3 8}(17.0 \mathrm{mg}, 0.0424 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(0.4 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ was added dropwise with stirring. The flask was rinsed with THF $(0.4 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$, which was added dropwise with stirring. After 48 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (2 : $8 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave resorcylic acid $39(8.00 \mathrm{mg}, 0.0222 \mathrm{mmol}, 52 \%)$ as a transparent-white film: $\mathrm{R}_{\mathrm{f}} 0.06$ (pentane : EtOAc 1 : 1); IR $v_{\max } 3437,2925,2853,1618,1577,1453,1262,1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.11(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-$ $3.50(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dt}, J=11.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=5.2,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{dtd}, J=7.4,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.6,164.5,159.0,141.8,112.9,108.9,104.9,79.2,71.6,51.1,46.5,41.3,38.3,37.9,36.8,31.4,27.5,24.2$, 21.2, 18.2, 12.5; HRMS (ESI-ToF) m/z: [M - H] calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}\right): 359.1864$, found: 359.1863.

(\pm)-13-Hydroxy-6a, 10,10,14b-tetramethyl-1,4,4a,5,6,6a,9,14,14a,14b-decahydro-2H,10H-benzo[a]pyrano[4,3-i]xanthene-3,12-dione (40)

$\mathrm{n}-\mathrm{BuLi}\left(2.30 \mathrm{M}, 0.140 \mathrm{~mL}, 0.326 \mathrm{mmol}, 1.30\right.$ equiv) was added dropwise with stirring to dry-ice cold $\mathrm{HN} i \mathrm{Pr}_{2}(45.7 \mu \mathrm{~L}, 33.0 \mathrm{mg}$, $0.326 \mathrm{mmol}, 1.30 \mathrm{eq})$ in THF (1.5 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then warmed up to $0{ }^{\circ} \mathrm{C}$ for 30 min and cooled back down to $-78{ }^{\circ} \mathrm{C}$, when ketone $37(100 \mathrm{mg}, 0.251 \mathrm{mmol}, 1.00$ equiv) in THF (2.5 mL) was added dropwise with stirring. After 1 h , KOTMS ($322 \mathrm{mg}, 2.51 \mathrm{mmol}, 10.0 \mathrm{eq}$) was added with stirring and the mixture was allowed to warm up to $23^{\circ} \mathrm{C}$. After 13 h , reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc (3 x $20 \mathrm{~mL})$. The combined organic layers were washed with brine $(30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($\left.9: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}\right)$ gave lactone $40(20.0 \mathrm{mg}, 0.0603 \mathrm{mmol}, 24 \%)$ as a white film: $\mathrm{R}_{\mathrm{f}} 0.43$ (pentane : EtOAc 1: 1); IR $v_{\max } 1652,1631,1584,1388,1357,1297,1267,1222,1168,1100,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}), 6.16-6.09(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=16.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J$ $=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=15.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{ddt}, J=7.3,4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 5 \mathrm{H}), 1.30(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.8,169.8,161.8$,
$159.5,137.3,108.5,108.1,100.1,81.7,78.4,49.2,46.5,44.0,39.7,39.4,38.5,37.3,36.0,27.5,27.3,26.5,21.0,17.3,11.6$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5}\right)^{+}: 399.2166$, found: 399.2162.

(土)-7-(Hydroxymethyl)-3a,6,9b-trimethyl-1a,1b,3,3a,9,9a,9b,10,11,11a-decahydro-2H-oxireno[2',3':3,4]benzo[1,2-a]xanthen-8-ol (41)

LiBHEt_{3} in THF ($1 \mathrm{M} ; 0.110 \mathrm{~mL}, 0.105 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was added dropwise with stirring to ice-cold epoxide 32 (40.0 mg , $0.100 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(1.00 \mathrm{~mL})$. After 2 h , reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the organic layer was separated, and the aqueous layer was further extracted with $\operatorname{EtOAc}(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Flash column chromatography ($4: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave benzylic alcohol $41(33.0 \mathrm{mg}, 0.0958 \mathrm{mmol}, 95 \%)$ as a transparent film: $\mathrm{R}_{\mathrm{f}} 0.43$ (pentane : EtOAc $1: 1$); IR $v_{\max } 1627$, $1585,1457,1421,1350,1227,1217,1191,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 1 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{t}, J$ $=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,146.9$, $132.3,112.6,111.7,109.3,77.4,61.5,55.1,52.0,48.4,47.7,40.3,34.4,31.8,24.7,21.4,20.9,17.7,17.4,12.7 ;$ HRMS (EI) m/z: $[\mathrm{M}-\mathrm{OH}] \cdot$ calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3}\right)^{\circ}: 327.1960$, found. 327.1955.

(\pm)-10-Bromo-11-hydroxy-2,2,5,7a,13a-pentamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-
 benzo $[a][1,3]$ dioxino $[5,4-j]$ xanthen-4-one (42)

MgCl_{2} ($7.5 \mathrm{mg}, 0.079 \mathrm{mg}, 0.40$ equiv) was added in one portion with stirring to epoxide $\mathbf{3 2}(77 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.00$ equiv) in THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, followed by the dropwise addition of MeMgBr in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{M} ; 0.070 \mathrm{~mL}, 0.20 \mathrm{mmol}, 1.05$ equiv $)$. After gradually warming up over 24 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with distilled water $(10 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$ and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered concentrated under reduced pressure. Chromatography ($6: 1$ to $3: 1$ pentane : EtOAc) gave bromohydrin 42 ($46 \mathrm{mg}, 0.096 \mathrm{mmol}, 50 \%$) as pale-yellow oil which solidified to a white solid: m.p. $120^{\circ} \mathrm{C}\left(\mathrm{dec}\right.$.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane); $\mathrm{R}_{\mathrm{f}} 0.23$ (pentane : EtOAc $7: 3$); IR $v_{\max } 3439,1701,1616$, 1571, 1296, 1284, 1205, 1195, 1168, 1129, 1047, 910, $898,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12$ $-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,158.8,156.2,142.3,114.6,108.1,105.0,104.2,78.4,71.3,57.2,50.7,43.3,39.9$, $36.7,31.7,26.3,25.9,25.6,23.2,22.1,21.0,16.1,14.5$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrO}_{5}\right)^{+}: 479.1428$, found. 479.1423; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrO}_{5}$: C, 60.13; H, 6.52. Found: C, 59.98; H, 6.48.

(\pm)-11-Hydroxy-2,2,5,7a,10,13a-hexamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo[a][1,3]dioxino[5,4$j \mid$ xanthen-4-one (43)

MeMgBr in $\mathrm{Et}_{2} \mathrm{O}\left(3 \mathrm{M} ; 0.13 \mathrm{~mL}, 0.40 \mathrm{mmol}, 2.4\right.$ equiv) was added dropwise with stirring to $\mathrm{CuBr} . \mathrm{SMe}_{2}(16 \mathrm{mg}, 0.079 \mathrm{mmol}$, 0.46 equiv) in THF (1.0 mL) $-78{ }^{\circ} \mathrm{C}$. After 1 h at $-78^{\circ} \mathrm{C}$, $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(46.5 \% ; 0.20 \mathrm{~mL})$ was added dropwise with stirring. After 5 min , epoxide $32\left(67 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.00\right.$ equiv) in THF and $\mathrm{Et}_{2} \mathrm{O}(1: 2,6.0 \mathrm{~mL})$ were added dropwise. After 40 min at -78 ${ }^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and poured onto an ice-water mixture $(30 \mathrm{~mL})$ which was acidified with aqueous $\mathrm{HCl}(1 \mathrm{M} ; 5 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($3: 1$ to $1: 1$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave α-alcohol $43\left(56 \mathrm{mg}, 0.14 \mathrm{mmol}, 80 \%\right.$) as a white solid: m.p. $97-100{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane $) ; \mathrm{R}_{\mathrm{f}}$ 0.17 (pentane : EtOAc $7: 3$); IR 3456, 1707, 1614, 1570, 1283, 1206, 1197, 1128, 1042, $908,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=12.3$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=10.2,4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{dd}, J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.20$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,158.9,156.2,142.1,114.5$, $108.3,104.9,104.0,78.7,71.7,50.6,42.6,41.2,40.5,36.5,32.3,26.3,25.5,24.6,24.3,22.1,20.8,16.2,14.8,14.4$; HRMS (ESIToF) m/z: $[\mathrm{M}-\mathrm{H}]$ - calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5}\right):$: 413.2333, found: 413.2334; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}: \mathrm{C}, 72.44 ; \mathrm{H}, 8.27$. Found: C, 72.03; H, 8.07.
(\pm)-3,11-Dihydroxy-4,6a,9,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthene-10-carboxylic acid (44)
$\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L}, 9.97 \mathrm{mg}, 0.554 \mathrm{mmol}, 6.95 \mathrm{eq})$ was added dropwise to an ice-cold suspension of $\mathrm{KO}-\mathrm{tBu}(129 \mathrm{mg}, 1.15 \mathrm{mmol}$, $14.4 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$. After 5 min , α-alcohol $43(33.0 \mathrm{mg}, 0.0796 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2: 1,1.0 \mathrm{~mL})$ was added dropwise with stirring. The flask was rinsed with THF $(0.2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{~mL})$, which was also added dropwise with stirring. After 2 weeks, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M}, 5 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification by flash column chromatography ($2: 8 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave resorcylic acid $44(21.0 \mathrm{mg}, 0.0561 \mathrm{mmol}, 70 \%)$ as a white foam: $\mathrm{R}_{\mathrm{f}} 0.05$ (pentane : EtOAc $1: 1$); IR $v_{\max } 3420,2927,2864,1621,1578,1453,1264,1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{q}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (ddd, $J=9.6,4.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.41\left(\mathrm{~m}, 2 \mathrm{H}, 1.35-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101\right.$
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.9,163.9,158.3,141.1,112.2,108.1,10.49,78.6,71.9,51.9,43.3,41.6,41.2,36.9,33.0,25.1,24.1,23.6,20.4$, 16.7, 14.5, 14.1; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5}\right)^{+}$: 375.2166, found: 375.2176.
$(\pm)-2,2,5,7 \mathrm{a}, 10,13 \mathrm{a}-\mathrm{Hexamethyl-7a,8,9a,12,13,13a,13b,14-octahydro-4H,9H-benzo}[a][1,3]$ dioxino[5,4-j$]$ xanthene-4,11(10H)dione (45)
Dess-Martin periodinane ($139 \mathrm{mg}, 0.328 \mathrm{mmol}, 2.00$ equiv) was added in two portions with stirring over 5 mins to ice-cold α alcohol 43 ($68.0 \mathrm{mg}, 0.164 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.00 \mathrm{~mL})$. After 1.5 h , the mixture was concentrated and loaded onto a column with a Celite ${ }^{\circledR}$ pad. Chromatography ($1: 1$ to $1: 2$ pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave ketone $\mathbf{4 5}(60.0 \mathrm{mg}, 0.145 \mathrm{mmol}, 89 \%$) as a white solid: m.p. $170-171^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane); $\mathrm{R}_{\mathrm{f}} 0.26$ (pentane : EtOAc $7: 3$); IR $v_{\max } 1726,1616,1575,1288,1170,1130 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.39-6.31(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H}) 263-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.39-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=6.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.1(\mathrm{dd}, J=7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=13.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.0,160.8,158.5,156.0$, $142.3,114.4,107.7,104.9,104.1,78.1,50.1,48.4,48.4,39.9,38.3,36.1,34.3,26.2,25.5,23.6,22.0,20.6,16.6,14.6,13.6$; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5}\right)^{+}: 413.2323$, found: 413.2321; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 72.79; H, 7.82. Found: C, 72.75; H, 7.81.
(\pm)-11-Hydroxy-2,2,5,7a,10,13a-hexamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo[a][1,3]dioxino[5,4j] xanthen-4-one (46)
$\mathrm{NaBH}_{4}(2.3 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.3$ equiv) was added in one portion with stirring to ice-cold ketone 45 ($21 \mathrm{mg}, 0.051 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{EtOH}(1.0 \mathrm{~mL})$. After 1 h at $0^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and reaction quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($1: 2$ pentane : $\mathrm{Et}_{2} \mathrm{O}$) gave β-alcohol 46 ($18 \mathrm{mg}, 0.043 \mathrm{mmol}, 85 \%$) as a white foam: $\mathrm{R}_{\mathrm{f}} 0.09$ (pentane : EtOAc 7 : 3); IR $v_{\max } 3438,1711,1615,1572,1450,1388,1284,1205,1129,1046,914,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~s}, 1 \mathrm{H})$, 3.76 (ddd, $J=9.5,7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=17.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=9.2,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=13.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dd}, J=9.3,3.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.51(\mathrm{dd}, J=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{q}, J=2.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09$ (dtd, $J=13.3,8.8,8.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,158.8,156.2,142.3,114.5$, 108.1, 104.9, 104.1, 78.7, 73.7, 50.8, 48.9, 40.6, 40.0, 37.9, 36.1, 26.3, 25.8, 25.6, 25.1, 22.1, 20.8, 16.6, 15.5, 9.0; HRMS (ESI$\mathrm{ToF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{5}\right)^{+}: 415.2479$, found: 415.2474.
(\pm)-3,11-Dihydroxy-4,6a,9,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthene-10-carboxylic acid (47)
$\mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~mL}, 16.6 \mathrm{mmol}, 382 \mathrm{eq})$ was added dropwise to an ice-cold suspension of $\mathrm{KO}-\mathrm{t} \mathrm{Bu}(160 \mathrm{mg}, 1.44 \mathrm{mmol}, 34.0 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$. After $5 \mathrm{~min}, \beta$-alcohol $46(18.0 \mathrm{mg}, 0.0434 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(0.4 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ was added dropwise with stirring. The flask was rinsed with THF $(0.3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$, which was also added dropwise with stirring. After 48 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{EtOAc}(5 \mathrm{~mL})$ and acidified with aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (1 : 9 to $3: 7 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave resorcylic acid $47(6.00 \mathrm{mg}, 0.0160 \mathrm{mmol}, 37 \%)$ as a white film: $\mathrm{R}_{\mathrm{f}} 0.07$ (pentane : EtOAc $1: 1$); IR $v_{\max } 3421(\mathrm{br}, \mathrm{s}), 2922,2852,1651,1622,1456,1264,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.11(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dt, $J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.81$ (dd, $J=8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{tt}, J=9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=13.1,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR (101 MHz, CD ${ }_{3}$ OD) $\delta 175.6,164.5,158.9,141.8,112.8,108.7,105.4,79.2,74.5,52.5,50.1,41.8,41.5,39.0,37.2,33.1$, 26.2, 24.2, 21.0, 17.7, 15.9, 9.5; HRMS (ESI-ToF) m/z: [M - H] calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5}\right): 373.2020$, found: 373.2010.

(\pm)-13-Hydroxy-4,6a,10,10,14b-pentamethyl-1,4,4a,5,6,6a,9,14,14a,14b-decahydro-2H,10H-benzo[a]pyrano[4,3-i]xanthene-3,12-dione (48)

$\mathrm{n}-\mathrm{BuLi}\left(2.30 \mathrm{M}, 0.0800 \mathrm{~mL}, 0.189 \mathrm{mmol}, 1.30\right.$ equiv) was added dropwise with stirring to dry-ice cold $\mathrm{HN} i \operatorname{Pr}_{2}(26.5 \mu \mathrm{~L}, 19.0 \mathrm{mg}$, $0.189 \mathrm{mmol}, 1.30 \mathrm{eq})$ in THF (0.5 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then warmed up to $0{ }^{\circ} \mathrm{C}$ for 30 min and cooled back down to $-78^{\circ} \mathrm{C}$, when ketone $\mathbf{4 5}(60.0 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.00$ equiv) in THF (1.0 mL) was added dropwise with stirring. After 1 h , KOTMS ($187 \mathrm{mg}, 1.45 \mathrm{mmol}, 10.0 \mathrm{eq}$) was added with stirring and the mixture was allowed to warm up to $23{ }^{\circ} \mathrm{C}$. After 12 h , reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc (3 x $10 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($\left.9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}\right)$ gave lactone $48(20.0 \mathrm{mg}, 0.0485 \mathrm{mmol}, 33 \%)$ as a white film: $\mathrm{R}_{\mathrm{f}} 0.55$ (pentane : EtOAc $1: 1$); IR $v_{\max } 1707,1653,1631,1585,1388,1357,1297,1285,1169,1100,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.62(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=16.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dq}, J=13.1,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{dq}, J=11.0,3.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{dt}, J=7.2,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36(\mathrm{dq}, J=5.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3,169.8,161.8,159.5,137.3,108.5,108.1,100.1,81.7,78.0,53.1,49.5,44.7,39.9,39.4,39.0$, 37.2, 36.8, 27.5, 27.3, 23.3, 20.9, 17.3, 12.8, 11.8; HRMS (ESI-ToF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5}\right)^{+}: 413.2323$, found: 413.2325 .
(\pm)-10-Azido-11-hydroxy-2,2,5,7a,13a-pentamethyl-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9Hbenzo $[a][1,3]$ dioxino $[5,4-j]$ xanthen-4-one (49)
AcOH (0.5 mL) and $\mathrm{NaN}_{3}(166 \mathrm{mg}, 2.56 \mathrm{mmol}, 12.0$ equiv) were added sequentially each in one portion to epoxide $\mathbf{3 2}(85.0 \mathrm{mg}$, $0.213 \mathrm{mmol}, 1.00$ equiv) in DMF (3.50 mL). After 15 h at $110^{\circ} \mathrm{C}$, the mixture was poured onto an ice water and saturated aqueous NaHCO_{3} mixture ($1: 1 ; 100 \mathrm{~mL}$). The mixture was diluted with EtOAc, stirred for 30 min , the organic layer was separated, and the aqueous layer was further extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, distilled water $(20 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Filtering through a small silica plug with EtOAc gave the crude azide 49 which was used without further purification in the next step: $\mathrm{R}_{\mathrm{f}} 0.18$ (pentane : EtOAc $4: 1$); IR $v_{\max } 3466,2924,2099,1728,1706,1616,1573,1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{td}, J=3.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 4 \mathrm{H}) 2.36(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{dd}$, $J=16.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{ddd}, J=14.9,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82$ (dd, $J=13.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,158.8,156.2,142.2,114.5,108.1,104.9,104.1,78.4,67.9,66.8,50.2,43.4,40.1,36.1$, $32.0,26.2,25.6,24.3,24.0,22.1,21.0,16.2,13.7$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}\right)^{+}: 442.2336$, found: 442.2336 .
(\pm)-10-Azido-2,2,5,7a,13a-pentamethyl-4-oxo-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo[a][1,3]dioxino[5,4j jxanthen-11-yl acetate (50)
NEt_{3} ($432 \mathrm{mg}, 0.595 \mathrm{~mL}, 4.27 \mathrm{mmol}$, 20.0 equiv) and $\mathrm{Ac}_{2} \mathrm{O}(218 \mathrm{mg}, 0.202 \mathrm{~mL}, 2.13 \mathrm{mmol}, 10.0$ equiv) were sequentially added dropwise to crude azide 49 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.50 \mathrm{~mL})$. DMAP ($26.1 \mathrm{mg}, 0.213 \mathrm{mmol}, 1.00$ equiv) was added in one portion, and, after 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and reaction quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography ($1: 5: 4 \mathrm{EtOAc}$: pentane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave acetate $50\left(65.0 \mathrm{mg}, 0.134 \mathrm{mmol}, 63 \%\right.$ over 2 steps) as a yellow-white solid: m.p. $74-79{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /pentane); $\mathrm{R}_{\mathrm{f}} 0.46$ (pentane : EtOAc $7: 3$); IR $v_{\max } 2100,1727,1616,1574,1375,1286,1232,1206,1170,1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{td}, J=2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=14.2,8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.72(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 5 \mathrm{H}), 1.68(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=9.2,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,160.9,158.7,156.2$, 142.3, $114.4,108.0,104.9,104.2,78.3,70.2,63.9,50.3,44.7,40.1,35.8,32.6,26.2,25.6,23.9,22.1,21.5,21.4,21.1,16.2,13.9$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\right)^{+}: 484.2442$, found: 484.2444; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 64.58; H, 6.88.; N, 8.69. Found: C, 64.16; H, 6.81; N, 8.62.
(\pm)-10-Amino-2,2,5,7a,13a-pentamethyl-4-oxo-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9H-benzo $[a][1,3]$ dioxino $[5,4-$ j jxanthen-11-yl acetate (51)
PMe_{3} in THF ($1 \mathrm{M} ; 0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}, 2.5$ equiv) was added dropwise to acetate $\mathbf{5 0}(20 \mathrm{mg}, 0.041 \mathrm{mmol}, 1.00$ equiv) in THF $(3.0 \mathrm{~mL})$ and distilled water $(5.0 \mu \mathrm{~L})$. The mixture was warmed to $35^{\circ} \mathrm{C}$ after which aqueous $\mathrm{NaOH}(2 \mathrm{M} ; 0.10 \mathrm{~mL})$ was added dropwise. After 5 h at $35^{\circ} \mathrm{C}$, the mixture was poured onto a mixture of water and $\operatorname{EtOAc}(1: 1,15 \mathrm{~mL})$. The mixture was adjusted to pH 7 with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the organic layer was separated, and the aqueous layer was further extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the crude amine 51 which was used without further purification in the next step: $\mathrm{R}_{\mathrm{f}} 0.01$ (pentane : EtOAc $7: 3$); IR $v_{\max } 3430,1727,1618,1573,1282,1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NH}_{2}\right)$, $4.84(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}), 3.04(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 5 \mathrm{H}), 2.53(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 4 \mathrm{H}), 1.48(\mathrm{ddd}, J=9.3,7.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.3,161.0,158.7,156.2,142.3,114.5,108.0,104.9,104.2$, $78.4,73.2,54.4,50.5,44.2,40.3,35.8,33.0,26.3,25.6,23.6,22.1,21.5,21.0,20.9,16.2,14.8$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{6}\right)^{+}: 458.2537$, found: 458.2554 ; Also found m / z : $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}\right]^{+}$calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6}\right)^{+}$: calc. 499.2803, found: 499.2844.

(\pm)-10-Acetamido-2,2,5,7a, 13a-pentamethyl-4-oxo-7a,8,9a,10,11,12,13,13a,13b,14-decahydro-4H,9Hbenzo $[a][1,3]$ dioxino $[5,4-j]$ xanthen- $11-y l$ acetate (52)

$\mathrm{NEt}_{3}\left(21 \mathrm{mg}, 29 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 5.0\right.$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(8.6 \mathrm{mg}, 8.0 \mu \mathrm{~L}, 0.083 \mathrm{mmol}, 2.0$ equiv) were sequentially added dropwise to the crude amine 51 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. DMAP ($5.0 \mathrm{mg}, 0.041 \mathrm{mmol}, 1.00$ equiv) was added in one portion and after 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Chromatography (7:3 $\mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave acetamide 52 ($20 \mathrm{mg}, 0.040 \mathrm{mmol}, 97 \%$ over 2 steps) as a white foam: $\mathrm{R}_{\mathrm{f}} 0.01$ (pentane : EtOAc $7: 3$); IR $v_{\max } 3331,1728,1653,1616,1573$, $1281,1238,1206,1170,1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.86(\mathrm{q}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=11.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, $1.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$-NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,169.7,160.9,158.6,156.2,142.5,114.5,107.6,105.0,104.2,78.1$, $70.6,51.6,50.4,43.3,39.9,35.8,32.2,26.4,25.5,23.8,23.1,22.1,21.5,21.4,20.9,16.2,14.4 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{7}\right)^{+}: 500.2643$, found: 500.2635; Also found m/z: $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}$calcd. for $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}\right)^{+}: 563.2733$, found: 563.2762.
(\pm)-4-Acetamido-3,11-dihydroxy-6a,9,12b-trimethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthene-10carboxylic acid (53)
Aqueous $\mathrm{KOH}(2 \mathrm{M} ; 2.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 67 equiv) was added in one portion to acetamide $52(30 \mathrm{mg}, 0.060 \mathrm{mmol}, 1.0$ equiv) in THF $(2.0 \mathrm{~mL})$. After vigorously stirring at $60^{\circ} \mathrm{C}$ for 4 days, the mixture was diluted with EtOAc $(5.0 \mathrm{~mL})$ and distilled water $(5.0 \mathrm{~mL})$ and acidified to pH 1 with aqueous $\mathrm{HCl}(1 \mathrm{M})$. The organic layer was separated, and the aqueous layer was further extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (15 mL), dried (MgSO_{4}), filtered and concentrated under reduced pressure. Chromatography (100% EtOAc) gave resorcylic acid $53\left(12 \mathrm{mg}, 0.028 \mathrm{mmol}, 48 \%\right.$) as a white foam: $\mathrm{R}_{\mathrm{f}} 0.01$ (EtOAc 100\%); IR $v_{\max } 3392,1651,1645,1634,1622,1576,1456,1418,1262 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.14(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.12(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{dd}, J=16.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{tt}, J=11.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=24.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}$, 3H), $1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.2,164.5,158.8,155.5,141.8,112.8,109.8,108.6,78.8,69.5,55.5$, $52.1,44.5,41.4,36.9,33.1,24.9,24.5,24.2,22.8,21.0,17.3,14.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{6}\right)^{+}: 418.2224$, found: 418.2218 .

ASSOCIATED CONTENT

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{8}, \mathbf{9}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 5}-18,21,27,29-53$ and X-ray structural data for $\mathbf{8}, \mathbf{3 3}, 42$ and $\mathbf{4 5}$. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: agmb@ic.ac.uk

ORCID

Anthony G. M. Barrett: 0000-0002-8485-215X
Philip J. Parsons: 0000-0002-9158-4043
Andrew J. P. White: 0000-0001-6175-1607

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Peter Haycock, Corey Fulop and Dr. Lisa Haigh (Imperial College London) are gratefully acknowledged for their help with NMR and mass spectrometry, respectively. We also extend our thanks to Nigel Howard (University of Cambridge) for elemental microanalyses. We thank GlaxoSmithKline for a generous endowment (to A.G.M.B.).

REFERENCES

[1] Page, J. E.; Nagel, J. in Integrative Plant Biochemistry, (Ed.: J. T. Romeo), Recent Advances in Phytochemistry, Elsevier, 2006, pp. 179210.
[2] a Roll, D. M.; Manning, J. K.; Carter, G. T. Hongoquercins A and B, New Sesquiterpenoid Antibiotics: Isolation, Structure Elucidation, and Antibacterial Activity. J. Antibiot. 1998, 51, 635-639. b Abbanat, D. A.; Singh, M. P.; Greenstein, M. Hongoquercins, New Antibacterial Agents from the Fungus LL-23G227: Fermentation and Biological Activity. J. Antibiot. 1998, 51, 708-714.
[3] a Tsujimori, H.; Bando, M.; Mori, K. Synthesis and Absolute Configuration of Hongoquercin A, an Antibacterial Sesquiterpene-Substituted Orsellinic Acid Isolated as a Fungal Metabolite. Eur. J. Org. Chem. 2000, 2000, 297-302. b Tsujimori, H.; Mori, K. Synthesis and Absolute Configuration of Hongoquercin B, a Sesquiterpene-substituted Orsellinic Acid Isolated as a Fungal Metabolite. Biosci., Biotechnol., Biochem. 2000, 64, 1410-1415. c Kurdyumov, A. V.; Hsung, R. P. An Unusual Cationic [2+2] Cycloaddition in a Divergent Total Synthesis of Hongoquercin A and Rhododaurichromanic Acid A. J. Am. Chem. Soc. 2006, 128, 6272-6273. d Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. C-H Functionalization Logic Enables Synthesis of (+)-Hongoquercin A and Related Compounds. Angew. Chem., Int. Ed. 2013, 52, 7317-7320. e Fernández, A.; Alvarez, E.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-Manzaneda, E. A. A short synthetic route towards merosesquiterpenes with a benzoxanthene skeleton. Chem. Commun. 2014, 50, 13100-13102.f Dethe, D. H.; Murhade, G. M.; Dherange, B. D.; Sau, S. K. Enantiospecific Syntheses of Hongoquercins A and B and Chromazonarol. Eur. J. Org. Chem. 2017, 2017, 1143-1150.
[4] a Barrett, T. N.; Barrett, A. G. M. Cascade Polyketide and Polyene Cyclizations: Biomimetic Total Synthesis of Hongoquercin B. J. Am. Chem. Soc. 2014, 136, 17013-17015. b Ma, T.-K.; Elliott, D. C.; Reid, S.; White, A. J. P.; Parsons, P. J.; Barrett, A. G. M. Meroterpenoid Synthesis via Sequential Polyketide Aromatization and Cationic Polyene Cyclization: Total Syntheses of (+)-Hongoquercin A and B and Related Meroterpenoids. J. Org. Chem. 2018, 83, 13276-13286.
[5] Cookson, R.; Barrett, T. N.; Barrett, A. G. M. β-Keto-dioxinones and β, δ-Diketo-dioxinones in Biomimetic Resorcylate Total Synthesis. Acc. Chem. Res. 2015, 48, 628-642. And citations there-in.
[6] Selected examples for gold mediated cyclizations: a Toullec, P. Y.; Blarre, T.; Michelet, V. Mimicking Polyolefin Carbocyclization Reactions: Gold-Catalyzed Intramolecular Phenoxycyclization of 1,5-Enynes. Org. Lett. 2009, 11, 2888-2891.b Sethofer, S. G.; Mayer, T.;
Toste, F. D. Gold(I)-Catalyzed Enantioselective Polycyclization Reactions. J. Am. Chem. Soc. 2010, 132, 8276-8277. c Pradal, A.; Chen, Q.;

Faudot dit Bel, P.; Toullec, P. Y.; Michelet, V. Gold-Catalyzed Cycloisomerization of Functionalized 1,5-Enynes - An Entry to Polycyclic Framekwork. Synlett 2012, 23, 74-79. d Rong, Z.; Echavarren, A. M. Broad scope gold(I)-catalysed polyenyne cyclizations for the formation of up to four carbon-carbon bonds. Org. Biomol. Chem. 2017, 15, 2163-2167. Selected examples of other π-Lewis acid promoted cyclizations: e Imagawa, H.; Iyenaga, T.; Nishizawa, M. Mercuric Triflate-Catalyzed Tandem Cyclization Leading to Polycarbocycles. Org. Lett. 2005, 7, 451453. f Nelsen, D. L.; Gagné, M. R. Platinum(II) Enyne Cycloisomerization Catalysis: Intermediates and Resting States. Organometallics 2009, 28, 950-952.g Qiu, W.-W.; Surendra, K.; Yin, L.; Corey, E. J. Selective Formation of Six-Membered Oxa- and Carbocycles by the $\operatorname{In}($ III)Activated Ring Closure of Acetylenic Substrates. Org. Lett. 2011, 13, 5893-5895. h Surendra, K.; Qiu, W.; Corey, E. J. A Powerful New Construction of Complex Chiral Polycycles by an Indium(III)-Catalyzed Cationic Cascade. J. Am. Chem. Soc. 2011, 133, 9724-9726. i Mézailles, N.; Ricard, L.; Gagosz, F. Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and AirStable Catalysts for the Cycloisomerization of Enynes. Org. Lett. 2005, 7, 4133-4136.
[7] a Elliott, D. C.; Ma, T.-K.; Selmani, A.; Cookson, R.; Parsons, P. J.; Barrett, A. G. M. Sequential Ketene Generation from Dioxane-4,6-dione-keto-dioxinones for the Synthesis of Terpenoid Resorcylates. Org. Lett. 2016, 18, 1800-1803. b Ma, T.-K.; White, A. J. P.; Barrett, A. G. M. Meroterpenoid total synthesis: Conversion of geraniol and farnesol into amorphastilbol, grifolin and grifolic acid by dioxinone- β-ketoacylation, palladium catalyzed decarboxylative allylic rearrangement and aromatization. Tetrahedron Lett. 2017, 58, 2765-2767.
[8] Anderson, K.; Laclef, S.; Barrett, A. G. M. Mechanistic studies of highly regioselective decarboxylative-prenyl migration reactions of prenyloxycarbonyl-diketo-dioxinones. Tetrahedron 2014, 70, 5569-5579.
[9] The keto-esters exist as a mixture of keto and enol tautomers. For brevity, only the keto form is drawn.
[10] Armstrong, R. J.; Weiler, L. Synthesis of (\pm)-trixagol by an electrophilic cyclization of an allylsilane. Can. J. Chem. 1983, 61, 2530-2539.
[11] Rajendar, G.; Corey, E. J. A Systematic Study of Functionalized Oxiranes as Initiating Groups for Cationic Polycyclization Reactions. J. Am. Chem. Soc. 2015, 137, 5837-5844.
[12] Kobayashi, S.; Ando, A.; Kuroda, H.; Ejima, S.; Masuyama, A.; Ryu, I. Rapid access to 6-bromo-5,7-dihydroxyphthalide 5-methyl ether by a CuBr_{2}-mediated multi-step reaction: concise total syntheses of hericenone J and 5 '-deoxohericenone C (hericene A). Tetrahedron 2011, 67, 9087-9092.
[13] Huang, J.; Wu, C.; Wulff, W. D. Total Synthesis of (\pm)-Phomactin B2 via an Intramolecular Cycloheadienone Annulation of a Chromium Carbene Complex. J. Am. Chem. Soc. 2007, 129, 13366-13367.
[14] a Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. Intramolecular [4+2] Cycloadditions of 1,3-Enynes or Arylalkynes with Alkenes with Highly Reactive Cationic Phosphine Au(I) Complexes. J. Am. Chem. Soc. 2005, 127, 6178-6179.b Paz Muñoz, M.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Ligand Effects in Gold- and Platinum-Catalyzed Cyclization of Enynes: Chiral Gold Complexes for Enantioselective Alkoxycyclization. Organometallics 2005, 24, 1293-1300.
[15] a Ishihara, K.; Ishibashi, H.; Yamamoto, H. Enantioselective Biomimetic Cyclization of Homo(polyprenyl)arenes. A New Entry to (+)-Podpcarpa-8,11,13-triene Diterpenoids and (-)-Tetracyclic Polyprenoid of Sedimentary Origin. J. Am. Chem. Soc. 2001, 123, 1505-1506. b Ishihara, K.; Ishibashi, H.; Yamamoto, H. Enantio- and Diastereoselective Stepwise Cyclization of Polyprenoids Induced by Chiral and Achiral LBAs. A new Entry to (-)-Ambrox, (+)-Podocarpa-8,11,13-triene Diterpenoids, and (-)-Tetracyclic Polyprenoids of Sedimentary Origin. J. Am. Chem. Soc. 2002, 124, 3647-3655. c Ishibashi, H.; Ishibara, K.; Yamamoto, H. A New Artifical Cyclase for Polyprenoids: Enantioselective Total Synthesis of (-)-Chromazonarol, (+)-8-epi-Puupehedione, and (-)-11'-Deoxytaondiol Methyl Ester. J. Am. Chem. Soc. 2004, 126, 1112211123.
[16] Selected examples of dual gold-transition metal catalysis: a Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum, S. A. Catalyzed Catalysis Using Carbophilic Lewis Acid Gold and Lewis Basic Palladium: Synthesis of Substituted Butenolides and Isocoumarins. J. Am. Chem. Soc. 2009, 131, 18022-18023. b Hirner, J. J.; Shi, Y.; Blum, S. A. Organogold Reactivity with Palladium, Nickel, and Rhodium: Transmetalation, CrossCoupling, and Dual Catalysis. Acc. Chem. Res. 2011, 44, 603-613. c Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. "Silver Effect" in Gold(I)-Catalysis: An Overlooked Important Factor. J. Am. Chem. Soc. 2012, 134, 9012-9019. d Al-Amin, M.; Roth, K. E.; Blum, S. A. Mechanistic Studies of Gold- and Palladium Cooperative Dual-Catalytic CrossCoupling Systems. ACS Catal. 2014, 4, 622-629. e Wang, X.; Dong, S.; Yao, Z.; Feng, L.; Daka, P.; Wang, H.; Xu, Z. Synthesis of Spiroaminals and Spiroketals with Bimetallic Relay Catalysis. Org. Lett. 2014, 16, 22-25.f Peng, H.; Akhmedov, N. G.; Liang, Y.-F.; Jiao, N.; Shi, X. Synergistic Gold and Iron Dual Catalysis: Preferred Radical Addition toward Vinyl-Gold Intermediate over Alkene. J. Am. Chem. Soc. 2015, 137, 8912-8915.g Alyabyev, S. B.; Beletskaya, I. P. Gold as a Catalyst. Part I. Nucleophilic addition to the triple bond. Russ. Chem. Rev. 2017, 86, 689-749. A noteworthy example of dual catalysis in polyene cyclizations: Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. Iridium-Catalyzed Enantioselective Polyene Cyclization. J. Am. Chem. Soc. 2012, 134, 20276-20278.
[17] Fox, M. E.; Li, C.; Marino, J. P.; Overman, L. E. Enantiodivergent Total Syntheses of (+)- and (-)-Scopadulcic Acid A. J. Am. Chem. Soc. 1999, 121, 5467-5480.
[18] van de Weghe, P.; Collin, J. Ring opening reactions of epoxides catalyzed by samarium iodide. Tetrahedron Lett. 1995, 36, 1649-1652.
[19] a Kurosawa, T.; Nomura, Y.; Mahara, R.; Yoshimura, T.; Kimura, A.; Ikegawa, S.; Tohma, M. Synthesis of 19-Hydroxylated Bile Acids and Identification of $3 \alpha, 7 \alpha, 12 \alpha, 19-T e t r a h y d r o x y-5 \beta$-cholan-24-oic Acid in Human Neonatal Urine. Chem. Pharm. Bull. 1995, 43, 1551-1557. b Barrero, A. F.; Alvarez-Manzaneda, E. J.; Chaboun, R.; Meneses, R.; Romera, J. L. Raney Nickel: An Effective Reagent for Reductive Dehalogenation of Organic Halides. Synlett 2001, 2001, 485-488.
[20] a Dauben, W. G.; Fonken, G. J.; Noyce, D. S. The Stereochemistry of Hydride Reductions. J. Am. Chem. Soc. 1956, 78, 2579-2582. b D. C. Wigfield, D. J. Phelps. Enthalpy-Entropy Relations in the Reduction of Hindered and Unhindered Cyclohexanones by Sodium Borohydride. J. Org. Chem. 1976, 41, 2396-2401. c Wigfield, D. C. Stereochemistry and mechanism of ketone reductions by hydride reagents. Tetrahedron 1979, 35, 449-462.
[21] Hughes, D. L.; Reamer, R.A.; Bergan, J. J.; Grabowski, E. J. J. A Mechanistic Study of the Mitsunobu Esterification Reaction, J. Am. Chem. Soc., 1988, 110, 6487-6491.
[22] Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Redox Economy in Organic Synthesis. Angew. Chem., Int. Ed. 2009, 48, 2854-2867.
[23] Gassman, P. G.; Schenk, W. N. A General Procedure for the Base-Promoted Hydrolysis of Hindered Esters at Ambient Temperatures. J.
Org. Chem. 1977, 42, 918-920.
[24] Gläser, F.; Bröhmer, M. C.; Hurrle, T.; Nieger, M.; Bräse, S. The Diels-Alder Approach to Δ^{9}-Tetrahydrocannabinol Derivatives. Eur. J. Org. Chem. 2015, 2015, 1516-1524.
[25] a Lipsutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. Effects of Lewis acids on higher order, mixed cuprate couplings.
Tetrahedron Lett. 1984, 25, 5959-5962. b Y. Yamamoto. Selective Synthesis by Use of Lewis Acids in the Presence of Organocopper and Related Reagents. New Synthetic Methods (61). Angew. Chem., Int. Ed. Engl. 1986, 25, 947-959. c Lipsutz, B. H.; Elsworth, E. L.; Siahaan. T. J. The role of boron trifluoride etherate in reactions of lower order (Gilman) organocuprates. J. Am. Chem. Soc. 1989, 111, 1351-1358.
[26] Kolakowski, R. V.; Shangguan, N.; Sauers, R. R.; Williams, L. J. Mechanism of Thio Acid/Azide Amidation. J. Am. Chem. Soc. 2006, 128, 5695-5702.
[27] Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta 1919, 2, 635-646.
[28] Willeit, A.; Müller, E. P.; Peringer, P. Umsetzung von 2-Azidoalkoholen mit Trialkylphosphiten Bildung von Aziridinen und
Amidophosphorsäureesten via Imidophosphorsäureester und 1,3,5玍-Oxazaphospholidine. Helv. Chim. Acta 1983, 66, 2467-2480.
[29] Gong, J.; Li, W.; Fu, P.; MacMillan, J.; De Brabander, J. K. Isolation, Structure, and Total Synthesis of the Marine Macrolide Mangrolide D. Org. Lett. 2019, 21, 2957-2961.
[30] Nyffeler, P. T.; Liang, C.-H.; Koeller, K. M.; Wong, C.-H. The Chemistry of Amine-Azide Interconversion: Catalytic Diazotransfer and Regioselective Azide Reduction. C.-H. Wong. J. Am. Chem. Soc. 2002, 124, 10773-10778.
[31] Kofron, W. G.; Baclawski, L. M. A convenient method for estimation of alkyllithium concentrations. J. Org. Chem. 1976, 41, 1879-1880.
[32] Still, W. C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923-2925.

