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with Knowledge Based Neuvral
Networks for Computational Fluid
Dynamics

Nick Pepper'*, Audrey Gaymann?, Sanjiv Sharma? & Francesco Montomolit

This work presents a machine learning based method for bi-fidelity modelling. The method, a
Knowledge Based Neural Network (KBaNN), performs a local, additive correction to the outputs of a
coarse computational model and can be used to emulate either experimental data or the output of a
more accurate, but expensive, computational model. An advantage of the method is that it can scale
easily with the number of input and output features. This allows bi-fidelity modelling approaches

to be applied to a wide variety of problems, for instance in the bi-fidelity modelling of fields. We
demonstrate this aspect in this work through an application to Computational Fluid Dynamics, in
which local corrections to a velocity field are performed by the KBaNN to account for mesh effects.
KBaNNs were trained to make corrections to the free-stream velocity field and the boundary layer.
They were trained on a limited data-set consisting of simple two-dimensional flows. The KBaNNs
were then tested on a flow over a more complex geometry, a NACA 2412 airfoil. It was demonstrated
that the KBaNNs were still able to provide a local correction to the velocity field which improved its
accuracy. The ability of the KBaNNs to generalise to flows around new geometries that share similar
physics is encouraging. Through knowledge based neural networks it may be possible to develop a
system for bi-fidelity, computer based design which uses data from past simulations to inform its
predictions.

Computational simulations are playing an increasingly important role in engineering design, reducing the quan-
tity of physical testing required by using simulations to model the performance of new designs. In order to pro-
duce designs that are reliable, the parametric uncertainties associated with the design variables must be taken into
account. Uncertainty Quantification (UQ) typically involves propagating the parametric uncertainties associated
with the inputs of a computational model in order to determine the effects of these uncertainties on the designs
performance (see, e.g.!). On the other hand, reliability based design optimisation (RBDO) algorithms seek to find
the design which minimises a cost function subject to probabilistic constraints®. Both UQ and RBDO algorithms
rely on repeated simulations of a design for varying values of the design variables. A single simulation may be
time consuming, for instance a single Computational Fluid Dynamics (CFD) simulation can take several hours
to complete due to the mesh size and the complexity of the geometries studied. Consequently, repeated model
evaluations can place an overwhelming demand on potentially limited computational resources.

An attractive strategy for mitigating the computational cost of these algorithms is to supplement the results
of the most accurate models of a system, referred to as high-fidelity models, with models that are computation-
ally less expensive. These low-fidelity models may have simplified physics, a coarser meshing or less detailed
geometries and as a consequence are not as accurate. A popular area of research has been in developing multi-
fidelity methods that can leverage relatively scarce high-fidelity data with low-fidelity data that allows trading
accuracy with rapidity of results.

A particularly popular example of a multi-fidelity method is co-kriging®*. An auto-regressive model is con-
structed to combine datasets of multiple fidelties, with the outputs of the model treated as a realisation of a
Gaussian random variable. A Markov property is assumed: the coarse models cannot add additional informa-
tion at locations where high-fidelity data is available. Co-kriging has been used widely among many disciplines,
however, there are a number of drawbacks that make its application to industrial problems challenging. Training
the kernel involves repeated inversions of the correlation matrix. This matrix scales with the size of the training
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Figure 1. Architecture of a KBaNN for bi-fidelity modelling. A correction is made to the outputs (y) of a
coarse, low-fidelity model F,(x) by a network consisting of boundary neurons (b), region neurons (r), and
normalised region neurons (+’) for an input x .

dataset, which can become intractable for large datasets®. Secondly, the kernel is sensitive to the choice of kernel
function, the choice of which is not trivial in high dimensional problems®. Conversely, neural methods have
proved efficient for high dimensional meta-modelling”®. However, while neural networks can act as powerful
approximators, they are purely data-driven and function as black box models. Predictions made by neural net-
works are often criticised due to this lack of transparency®!°. For these reasons there is interest in developing
deep neural networks which incorporate physical knowledge of a system**.

Knowledge based neural networks use prior knowledge of a system to inform their predictions. In the original
formulation for a hybrid learning system proposed in Towell and Shavlik (1994) the prior knowledge is encoded
in the network in the form of symbolic rules which determine the neural network structure and the initialisation
of its weights. It was demonstrated that the performance of a classifier could be improved by incorporating these
“domain theories”, especially if the data used to train the classifier was limited'>">. An alternative formulation
for KBaNNs was later introduced in Wang and Zhang (1997) in which prior knowledge is embedded in a neural
network in the form of a “knowledge layer” consisting of empirical functions'®. Later works replaced the empiri-
cal functions with a low-fidelity model, producing a neural network for bi-fidelity modelling'>'¢. The general
architecture for a KBaNN capable of bi-fidelity modelling is illustrated in Fig. 1, in the figure F.(x) refers to an
evaluation of the coarse model, which is modified at the output layer by the neural network.

The high computational cost associated with individual simulations make CFD simulations a popular applica-
tion in the multi-fidelity modelling literature. There are two approaches to defining a low-fidelity CFD simula-
tion: the first approach is to alter the physics of the model so that it is cheaper to evaluate. For instance, Direct
Numerical Simulation (DNS) is a high fidelity technique for modelling turbulent flows. The Navier-Stokes equa-
tions are solved at every length scale, allowing the turbulence to be completely resolved and hence providing
complete knowledge of the flow. The drawback to the method is that it is very computationally expensive, with
each simulation typically taking a number of days to run'’. A number of works in the literature leverage a small
set of DNS results with Reynolds-Averaged Navier-Stokes (RANS) simulations, which are less accurate due to
simplifications in the turbulence closure but also cheaper to evaluate!®-2. An alternative approach is to use the
same model with meshes of varying coarseness in order to create low-fidelity surrogates. Examples of such an
approach have been used in the literature for the design of a transonic compression rotor in Shapar et al (2011)?!
and in Shah et al (2015)* for airfoil design. This approach is similar to multi-scale modelling, where a relatively
coarse model used to model the entire domain can be informed by more accurate models of a sub domain (see,
e_g.23,24)_

In this work a local Navier-Stokes approximator is used to correct for mesh effects in CFD simulations intro-
duced by a coarse mesh. The approximator is a KBaNN that has been trained using a dataset of high-fidelity
and low-fidelity CFD data. A crucial distinction between this work and the multi-fidelity modelling literature
is that the multi-fidelity approximator is tested on data harvested from a flow around a geometry that is not the
same as the geometry that was used to train it. In the test case presented here, the approximator is trained on a
dataset comprising simulations of a two-dimensional channel flow and flow over a converging channel before
being tested on a flow across a NACA 2412 airfoil. By learning the local corrections that must be made to the
velocity field due to the coarseness of the mesh for a simple geometry, the system can generalise to flows around
more complex geometries that share similar physics. As computational based design becomes an increasingly
important part of designing new products, data-bases of simulation results will begin to accumulate. This paper
presents a framework by which these databases may continue to add value, by training a multi-fidelity system
that can be used to inform future designs.

Methods

Knowledge based neural networks (KBaNNs). Knowledge Based Neural Networks are a bi-fidelity
machine learning architecture that allow the outputs of a computationally inexpensive, but less accurate coarse
model, F(x), to be augmented by the predictions of a neural network. This correction takes the form of an addi-
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tive correction applied to F.(x) in the output layer of the KBaNN. Having been trained using a dataset compris-
ing outputs of a high-fidelity model or experiment, F,(x), the KBaNN corrects the outputs of the coarse model
to emulate the output of F,(x). The generalised KBaNN architecture is illustrated in Fig. 1. The architecture is
based on the KBaNN proposed in Wang et al (1997) but adapted for bi-fidelity modelling. The formalism has
also been modified to produce an additive rather than multiplicative correction to F,(x). It also now incorpo-
rates L2 regularisation. The motivation for both of these modifications is to improve the interpretability of the
network; an additive correction to F.(x) makes the contribution of the neural network to the estimation easier
to quantify. Similarly, we use regularisation to penalise network complexity that produces deviations from F_ (x).

The neural architecture consists of five layers: input layer x, boundary layer b, region layer r, normalised
region layer 7, and output layer y. Neurons in the boundary layer are related to the KBaNN inputs through the
vector of parameters v associated with each of the n, boundary neurons:

b; = viTx, i=1,2,..,np. (1)

This is a generalised formulation for the boundary neurons in which linear boundaries are assumed. It is noted in
Wang et al (1997) that there is the potential to include problem specific boundary functions if these are known.
Neurons in the region layer are evaluated in a similar fashion to the hidden layers of a Multi-Layer Perceptron
(MLP), with weighted connections between the neurons in the region layer and boundary layer:

np
ri = Ho(a,—jbj +0;), i=12,..,np, (2)
j=1

where o (.) refers to a sigmoid activation function and n, the number of region neurons. The parameters o;;
and 6;; refer to the weight and bias in the connection between the ith region neuron and jth boundary neuron.
Rational function based neurons® are used in the normalized region layer to normalize the region layer outputs:

ri i

I_Z] lr]

Finally, an additive correction with second order neurons® is applied to the outputs of the coarse model in the
output layer:

i= 1,2,..., ny. (3)

nr
Y = BiF5 () + > pitl + Bjos  j=1,2,.0my, (4)
i=1

where F; refers to the jth output of the coarse model. The parameter p;; weights the contribution of the ith region
to the jth output neuron. The KBaNN is trained using a dataset that includes P evaluations of the fine model and
the corresponding coarse model evaluations: [x;, F.(x;), Fc(x;)], i = 1,...,, P. The error in the KBaNN prediction
for the pth element of the training set is given by:

1y

Z(ypj — Fj(xp))* + A, 5)

] 1

i.e. the sum of the mean square error (MSE) and a L? regularisation term which is dependent on the complexity
of the KBaNN:

nr Ny ny Ny ne My

® = Z||v,||2+zza,]+229 +22py+2ﬁ]0+2(1—|ﬁj|)2 (6)

i=1 j=1 i=1 j=1 i=1 j=1

The parameter /, the regularisation constant, weights the contribution of the model complexity term to the
prediction error. Penalising model complexity in this way is intended to produce a more parsimonious model.
Whilst regularisation techniques in MLP’s typically act to force the network’s prediction to zero, in the case of
the KBaNN the regularisation is instead used to punish predictions that deviate from the outputs of the coarse
model. The KBaNN is trained through back-propagation using gradient descent optimisation. In this paper the
adagrad algorithm for gradient based optimisation is used. Employing an adaptive learning rate, the magnitude
of the updates made to the KBaNN parameters at each iteration is tailored to the frequency with which the
features in the training set occur and is well suited for sparse datasets®’. Incorporating information from the
derivatives in the formulation for the learning rate ensures that the learning rate is monotonically decreasing
and does not need to be manually tuned. More details on the error back-propagation, including the derivatives
for the prediction error and Adagrad, may be found in Appendix A. An open source code for implementing the
KBaNN is available in MATLAB?® and Python?.

KBaNN architecture for a local Navier-Stokes approximation. In this work a KBaNN is used to
perform a local correction to the results of a low-fidelity CFD simulation of a two-dimensional laminar flow.
The KBaNN is trained using data taken from CFD simulations of a flow at two levels of meshing: a fine mesh
which has fully converged to a solution (i.e. the mesh quality no longer affects the solution) and a coarser, more
inaccurate mesh which is less computationally expensive to run. Having learnt the discrepancies between the
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Figure 2. Schematic of the N x N sample grids used for the local Navier-Stokes approximation. There are two
configurations for the grids: in the freestream or near a wall with a boundary layer present. Velocity data from
the inlet of the grids were used as an input to the KBaNN, which estimated the velocities for the entire sample
grid .
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Figure 3. A modified KBaNN architecture was used for the local Navier-Stokes approximator. It was found that
training a separate set of boundary and region neurons for each velocity component was more efficient (fewer
neurons were required overall) than the general KBaNN architecture illustrated in Fig. 1.

high and low-fidelity mesh the KBaNN can then be employed to make corrections to CFD simulations of flows
with similar physics.

Local velocity data is extracted from each of the simulations by superimposing N x N sample grids on the
flow and evaluating the velocity point at each data point. This is illustrated in Fig. 2, where a grid of data points
is superimposed over a square mesh. For a two-dimensional flow with no separation there are two configurations
that these sample grids may take depending on whether a wall is present. A KBaNN is then trained for each of
these to situations i.e. a KBaNN trained for sample grids in the free-stream and a separate KBaNN trained for
sample grids in the boundary layer, with a row of points inside a wall. The inputs of the KBaNN are the horizontal
and vertical velocities along the ‘inlet’ side of the sample grid and the outputs the horizontal and vertical veloci-
ties of the entire sample grid. The output dimensions therefore scale quadratically with N, which demonstrates
why it is advantageous to use a neural method for the bi-fidelity modelling as the number of dimensions can be
significant even for a relatively small sample grid. Note that the spatial location of the grid is not included in the
training data. This allows the KBaNN to be used on sample grids in the same flow in different locations or on
sample grids in flows with similar physics but different geometries.

In order to prevent the grid size, L, from impacting the results the velocity data is scaled by a factor k = L—L*,
where L* is the characteristic length scale of the flow. The KBaNN is used to predict the normalised velocities
u* = kuand v* = k.

The architecture of the KBaNN used for local Navier-Stokes approximation is illustrated in Fig. 3 fora N=9
sample grid. Note that this is a slight modification of the general KBaNN architecture illustrated in Fig. 1. The
network is effectively split in half, with one portion of the network learning the corrections to the horizontal
velocity and the other portion the vertical velocity correction. Splitting the network in this way was found to be
more efficient as fewer neurons in total were required to fit the training data. This is a common technique that
has been used in modular neural networks (see, e.g.*°).

Test case and results

The potential of the KBaNN architecture described above to act as a local Navier-Stokes approximator was
demonstrated through two test cases. As described above, the system consisted of two KBaNNs: one of which
was trained on data taken from the freestream and the other trained on grids located in the boundary layer. The
KBaNNs were trained using data taken from seven simulations of a simple two-dimensional channel flow. In six
of the simulations the channel walls were parallel, while in the seventh simulation one of the walls was inclined,
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Figure 4. (a) A visualisation of the two-dimensional channel flow used to train the KBaNNs. The locations of
the sample grids used to harvest velocity data are superimposed. Blue grids correspond to sample grids in the
freestream, red to grids that bound the wall and capture the boundary layer. (b) Close ups of the mesh near the
wall of the channel, with a sample grid superimposed. (c) A simulation of the flow over a slightly converging
channel was included in the validation data set to prevent overfitting (d) the spatial resolution of the two meshes
was kept the same.

creating a converging channel. The system was first validated using a channel flow simulation at a different
Reynolds number before being applied to the more challenging case of a flow around a NACA 2412 airfoil. The
intention was to train the system with a small dataset harvested from a relatively simple geometry and then to use
it to make local Navier-Stokes estimations of a flow around a more complex geometry that shared similar physics.

For the test case of a channel flow at a different Reynolds number it was found that the system greatly
improved the accuracy of the coarse mesh simulation. In the case of the airfoil the system led to an overall
improvement in accuracy, despite the more complex geometry of the flow around the airfoil compared to the
training data.

Training and channel validation. Bi-fidelity CFD simulations of a laminar flow through a two-dimen-
sional channel were used to train two KBaNNs so that the system could learn the discrepancies between the fine
and coarse meshes. Figure 4a shows the two-dimensional channel flow and the locations of the sample grids
which were used to train the KBaNNs. One KBaNN was trained using the blue sample grids located in the free
stream, while the other was trained on the data from the red sample grids lying in the boundary layer attached to
the channel wall. In Fig. 4b a sample grid is superimposed on plots of the coarse and fine meshes. As can be seen
the spatial resolution of the fine mesh is significantly shorter than the length of the sample grid. It was chosen to

Scientific Reports |

(2021) 12:14459 | https://doi.org/10.1038/s41598-021-93280-y nature portfolio



www.nature.com/scientificreports/

be short enough to no longer affected the results of the simulation. The spatial resolution of the coarse mesh is
around 8 times larger than that of the fine mesh. No-slip boundary conditions are applied to the boundaries at
y = 0and y = 6, an outflow at the boundary at x = 10, and finally a uniform inflow was applied between x = 0
and x = 1. Simulations of the channel were run at varying values of the inflow velocity, U, for each mesh in order
to generate a set of training data.

The training dataset was generated from the velocity data of the square, 9x9 sample grids illustrated in Fig. 4a.
As has been discussed above, the velocities were scaled to account for effects introduced by changing the size
of the grid. Data was collected from grids of size L = 0.1, 0.5, and 0.75 so that these effects could be learned by
the system.

A common problem in training neural networks is over-fitting the network to the training data. A strategy to
prevent over-fitting is to hold aside some training data and use this as a validation dataset. Data was held aside
from the channel configuration illustrated in Fig. 4a and also from a single simulation of the two-dimensional
flow through a converging channel. This flow is illustrated in Fig. 4c. The spatial resolutions of the fine and coarse
mesh were the same as with the other simulations, as can be seen in Fig. 4d. The bottom wall was inclined to give
a 5% slope and the sample grids placed in different locations to the configuration in Fig. 4a. By including data
from a flow around a different geometry in the validation set the KBaNNs were encouraged not to over-learn
the discrepancies between the fine and coarse meshes. The following simulations were used for the training and
validation datasets:

Training data: Channel flow simulations at Re = [300, 480, 600, 720, 900]
Validation data: Channel flow simulation at Re = 660 and converging channel flow at Re = 480

with data extracted from the sample grids locations displayed in Figs. 4a and 4c at three length scales. The
KBaNN architecture illustrated in Fig. 3 was used. The sub networks were relatively small, with between 8-10
neurons in each layer and an equal number of neurons in the boundary and region layers. 9 x 9 sample grids
required each sub network to have 18 neurons in the input layer and 81 neurons in the output layer. Error back-
propagation was used to train the KBaNNs, more details of which may be found in Appendix A. A gradient
based optimisation algorithm was used to find values of the KBaNN parameter set ® that minimised the mean
squared error (MSE) of the validation dataset.

Figure 5 displays the predictions of the KBaNNs for two sample grids in the channel simulation at Re = 660
that was used in the validation dataset. These sample grids are labelled in Fig. 5a. In 5b—c the fine mesh solution
is plotted against the estimations of the KBaNNs, with the coarse mesh solution included for comparison. As can
be seen there is very good agreement between the fine mesh solution and the predictions of the KBaNNs. This
agreement is reflected in Table 1, which tabulates the Residual Sum of Squares (RSS) differences between the
coarse mesh and fine mesh solutions and between the KBaNN estimations and the fine mesh solution. Figure 6
illustrates the performance of the system as a function of the number of grids included in the training data. The
RSS error between the fine and coarse mesh solutions are included as a comparison, represented by the horizontal
lines in the figure. Increasing the scarcity of the training data reduced the performance of the system, however,
it was found that even the KBaNNs trained with a minimal amount of data were more accurate than the coarse
mesh solution in isolation.

This test demonstrates that the system can give accurate predictions for a flow that shares the same geometry
as the flow used to train it. As can be seen in Fig. 5 the additive corrections made by the relatively small KBaNN
effectively act as a high-order transformation of the coarse mesh solution.

Airfoil test case. Having demonstrated that the KBaNNs were capable of giving highly accurate estimations
of the local velocity field for data harvested from a geometry identical to that used to train it, the system was
tested on a test dataset harvested from a more complex, unfamiliar geometry. A laminar flow around a NACA
2412 airfoil at Re = 480 was chosen as the test geometry. Estimations are made challenging in the boundary layer
by the curvature of the airfoil and in the freestream by the displacement caused by the airfoil.

The flow is visualised in Fig. 7a, with the locations of the sample grids superimposed. A sample grid was
placed in the boundary layer on the top surface of the airfoil. Figure 7b displays this grid, superimposed on the
two meshes. One challenge for the system is that the grid sits on a section that is locally flat in the coarse mesh,
while the box in the coarse mesh curves to match the contours of the airfoil. The predictive power of the system is
dependent on the data used to train it. Consequently, the sample grid in the boundary layer is situated upstream
of the separation point, as the system has no experience of a separated boundary layer. Similarly, the sample grid
placed in the freestream is located above the airfoil wake. The intention of the test case is to demonstrate that
a system trained using data taken from simple flows can be used to make estimations in more complex flows,
provided that the flow physics are sufficiently similar. Making predictions in separated boundary layers and wakes
would require a more expansive training dataset, including flows with these features. To illustrate this point, we
include a third sample grid in the wake of the airfoil.

Figure 8 displays the predictions of the KBaNNs for the sample grids around the NACA 2412 airfoil. The
results of the fine mesh and coarse mesh CFD simulations are plotted for comparison. The RSS between the
KBaNN predictions and the fine mesh results are tabulated in Table 2, along with the RSS between the results
of the coarse and fine meshes for these grids. As with the channel test case, the freestream KBaNN is able to
significantly improve the accuracy of the coarse mesh for the first two sample grids. The boundary layer KBaNN
also leads to an overall increase in accuracy, although the system has difficulty estimating the vertical velocity
of this grid due to the curvature. Nevertheless, this test shows that it is possible to use the KBaNNs on flows
around different geometries to those in the training data provided the physics of the flow is sufficiently similar.
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Figure 5. The performance of the KBaNNs was evaluated for a channel flow at U = 0.11ms™. (a) shows the
locations of the two sample grids plotted. (b,c) the KBaNN predictions significantly improve the coarse mesh
velocity field, while continuing to respect the no-slip boundary condition at the wall.

The KBaNN cannot be applied indiscriminately however, as illustrated by sample grid 3, which is placed in the
wake of the airfoil. The KBaNN approximation is inaccurate for this grid, as it is in a flow regime that was not
included in the training data.
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) u* 7.2058e-4 8.3983e-6
v* 6.6582e-5 1.0856e-6
) u* 4.087%-4 9.2442e-7
v* 2.5176e-4 1.2501e-8

Table 1. The residual sum of squares (RSS) between the KBaNN predictions and the fine mesh for each of
the sample grids pictured in Fig. 5. The corrections made by the KBaNNs greatly improve the accuracy of the

solution.
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Figure 6. Plot of the performance of the KBaNNs as a function of the scarcity of the training data. Note that in
all cases the RSS error of the KBaNNs was less than that of the coarse mesh.
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Figure 7. (a) Simulation results for the flow over a NACA 2412 airfoil at Re = 480. Two sample grids were
placed in the freestream and one on the top surface of the airfoil. (b) A closer view of the sample grid on the top
surface of the airfoil.
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Figure 8. (a) the locations of the sample grids used to test the KBaNN. (b-d) A comparison of the predicted
velocities in the sample grids from the KBaNN versus the fine mesh results. For comparison the velocities of the
coarse mesh (which the KBaNN estimation is in part based on) are included.
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Sample grid | Velocity component | RSS between coarse and fine mesh | RSS between KBaNN and fine mesh
u* 1.618e-6 3.1175e-7

! v* 4.1606e-7 1.713e-6
u* 5.2534e-5 2.0391e-6

2 \a 1.9255e-4 9.094e-6
u* 4.1163e-5 4.3414e-4

} v* 2.6833e-6 1.0288e-5

Table 2. The RSS between the KBaNN predictions and the fine mesh for each of the sample grids pictured
in Fig. 8a. For comparison the RSS between the coarse and fine mesh is included. As can be seen, the KBaNN
improves significantly on the fine mesh prediction, provided the sample grid is within the training data.

Conclusion

A neural based approach for bi-fidelity modeling, the KBaNN, has been introduced in this paper. An advantage
of the method is that it can scale easily with the number of input and output features. This allows bi-fidelity
modelling approaches to be applied to a wide variety of problems, for instance in the bi-fidelity modelling of
fields. In this paper, KBaNNs were applied to a problem in CFD, in which mesh effects introduced variations
in the estimation of a velocity field. KBaNNs were trained using data harvested from a limited number of runs
of a simple flow, before being applied to a flow over a more complex geometry, but with similar physics. It was
demonstrated that the KBaNNs could still produce a more accurate estimate of the flow in the freestream and
near the top surface of the airfoil than could be provided by only using a coarse mesh, despite the KBaNNs not
having ‘seen’ the airfoil geometry in training.

Allowing the KBaNNss to be informed by the low-fidelity model of the system helps to address the criticism
of neural networks that they are black boxes which are completely data-driven. This criticism has implications
for the trustworthiness and interpretability of neural network predictions. Interpretability motivates our use of
the additive correction in the KBaNN architecture, rather than a multiplicative one. A further extension to the
KBaNN architecture that would help address the issue of trustworthiness would be to incorporate a metric for
the predictive uncertainty in the network, analogous to the kriging variance in Gaussian Processes.

The KBaNN architecture provides a framework for bi-fidelity modelling in which problems with multiple
output features can be efficiently handled. For this reason the KBaNN is a natural choice for the bi-fidelity mod-
elling of fields. The particular application to the velocity field predicted by CED in this work offers a framework
through which data-bases of simulation results for old designs can be used to inform the simulations of new
designs. The KBaNNs were tested on a new geometry, with sample grids that were of a different size to those
used to train them, which helps convince us that the KBaNNs make estimates that are to some extent informed
by the physics of the model, rather than over-fitting patterns in the training data-set. In this study we developed
a KBaNN architecture to correct mesh effects in a flow in the laminar regime, without separation. An interesting
extension would be to diversify the training data available to the KBaNNss to allow it to make estimations for
more complex flows, for instance flows in three dimensions or including wakes and separation. The system could
then be expanded to include a number of KBaNNs, each trained on its own set of training data, with a classifier
used to determine which KBaNN is suitable for a given regime.
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