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Abstract

Mitochondrial dysfunction has long been implicated in Type 2 diabetes (T2D). This rela-

tionship appears to be bidirectional, with evidence that mitochondrial dysfunction is both

caused by and causal of T2D-related phenotypes. A potential causal role in T2D onset

would be supported by evidence of a genetic predisposition to mitochondrial dysfunction,

since inherited genetic risk factors precede and contribute to disease onset. Here, a genetic

study design is used to investigate the potential role of T2D-associated genetic risk loci

(T2D loci) in disrupting mitochondrial function through the altered expression of nuclear-

encoded mitochondrial genes (NEMGs). The mitochondria are targeted by multiple T2D

drugs and therefore such loci may be informative for effective treatment and prevention

measures. The functional cis–genes regulated by T2D loci were identified based on the

co-location of T2D loci with adipose tissue expression quantitative trait (eQTL) within

a genetic distance of 1 LDU. T2D loci and eQTL were previously mapped using LDU-

based gene mapping, which is compared and contrasted in this thesis to other popular

tests of association. 50 of the identified T2D cis–genes were NEMGs and implicated

a number of pathways in the inherited risk of T2D, including the relevant pathway of

branched-chain amino acid catabolism. These same 50 genes were enriched for decreased

expression in T2D cases compared to controls in independent gene expression datasets.

Compared to the total known NEMGs, the 50 cis-NEMGs showed further enrichment for

decreased expression, suggesting that T2D-eQTL co-location may identify specific subsets

of causal genes. Finally, a candidate T2D locus associated with the cis–NEMG ACAD11

was fine-mapped using targeted sequence data for 94 T2D cases and 94 controls. Sev-

eral candidate causal variants were identified, including two low-frequency haplotypes,

one of which contained both an ACAD11 splicing mutation and a mutation predicted to

disrupt the observed binding of HNF4A and COUP-TFII within the ACAD11 promoter

region.
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ŜeQTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

29 Chromatin interaction plot from the Capture HiC Plotter for pancreatic islet data. . . . . 154

30 The targeted sequence region for the chr3q22.1 T2D locus. . . . . . . . . . . . . . . . . . . 159

31 Association of variants with T2D at the chr3q22.1 T2D locus. . . . . . . . . . . . . . . . . 160

32 NPHP3 expression with the rs16839460 genotype in skeletal muscle, omental and subcu-

taneous adipose according to GTEx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

33 ROADMAP ChiP-seq tracks for the chromatin enhancer marks (H3K27ac, H3K4me1 and

H3K9ac) surrounding the five nominally significant SNPs at the chr3q22.1 locus. . . . . . 162

34 rs16839460 occurs at position 8 of a motif matching a FOXP3 transcription factor binding

motif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

35 rs114923567 occurs at position 4/5 of the SMAD4/SMAD3 binding motifs. . . . . . . . . 164

36 ROADMAP ChromHMM data for the ACAD11/UBA5 promoters. . . . . . . . . . . . . . 168

37 ROADMAP ChiP-seq and ChromHMM data for adipose nuclei around the ACAD11 and

UBA5 back-to-back promoters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

38 motifbreakR results for rs73000573. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

39 ChiP-seq for COUP-TFII and HNF4A plotted for two liver samples. . . . . . . . . . . . . 171

40 GTEx association of rs73000573 with ACAD11 and NPHP3 expression levels. . . . . . . . 172

41 chr3:132378324C>T matches position 8 of a KLF8 binding motif. . . . . . . . . . . . . . . 173

42 ROADMAP ChiP-seq data for a ∼21 kb region surrounding the ŜT2D and NPHP3/NPHP3-
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GWAS = genome-wide association study

HapMap = Haplotype Map (The International HapMap Consortium)

HepG2 = liver hepatocellular cells

HRC = Haplotype Reference Consortium

HUGO = HUGO Gene Nomenclature Committee

HWE = Hardy-Weinberg equilibrium

IGT = impaired glucose tolerance

INDEL = insertion or deletion

IR = insulin resistant

KB = kilobase(s)

LCFA = long-chain fatty acid

LD = linkage disequilibrium

LDU = linkage disequilibrium unit(s)

MAF = minor allele frequency

MODY = maturity onset diabetes of the young

mRNA = messenger RNA

MTC = metabochip

mtDNA = mitochondrial DNA

NEMG = nuclear encoded mitochondrial gene(s)

NIDDK = National Institute of Diabetes and Digestive and Kidney Diseases

NIDDM = non-insulin-dependent diabetes mellitus

REM = random effects model

RMA = robust multi-array averaging

ROS = reactive oxygen species
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RNA = ribonucleic acid

Ŝ = estimated causal variant location

ŜT2D = estimated location of T2D-associated variant

ŜeQTL = estimated location of variant associated with gene expression

SIFT = sorting intolerant from tolerant (algorithm)

SNP = single nucleotide polymorphism

SNV = single nucleotide variant

SMR = single marker regression

SV = structural variant

TCA = tricarboxylic acid cycle

TFBS = transcription factor binding site

TG = triglyceride

Treg = T regulatory (cell)

tRNA = transfer RNA

T2D = type 2 diabetes

T2D-GENES = T2D Genetic Exploration by Next-generation sequencing in multi-

Ethnic Samples

VCF = variant call file

VLCFA = very long chain fatty acid

WAT = white adipose tissue

WES = whole exome sequence(ing)

WGS = whole genome sequence(ing)

WTCCC/WTC = Wellcome Trust Case Control Consortium
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1 Introduction

1.1 Preface

This thesis will present research regarding the relationship between the human genome,

the mitochondria and Type 2 diabetes (T2D). The following Chapter 1 will introduce T2D,

along with the relevant literature which motivates our hypothesis that the dysfunction of

the mitochondria is a heritable component of T2D aetiology1. The Introduction concludes

by presenting the hypothesis, along with aims and a research plan.

The following study aims to identify genetic mechanisms which increase the risk of T2D

through altered mitochondrial function. A genetic study design will be used to map

genetic loci associated with the risk of T2D (T2D loci) and the (cis–)genes which they

may regulate, as a follow-up to the study published by Lau et al. (2017). The genetic

design used here and by Lau et al. will be presented in Chapter 2 and will be compared and

contrasted with other gene mapping methods. As such, Chapter 2 will review published

gene mapping studies of T2D, including the methods used and how they have influenced

and contributed to our current understanding of T2D genetics. The Chapter concludes

by reviewing the Lau et al. (2017) study and work completed prior to this project.

Subsequently, this thesis follows the discovery of genetic associations (Chapter 2) by

identifying the downstream effects of T2D loci at a single-gene and pathway level (Chapter

3), complimented by independent validation (Chapter 4) and fine-mapping (Chapter 5).

A breakdown of the aims for each Chapter is provided in Section 1.7: Hypothesis,

Aims and Research Plan.

This thesis complements ongoing efforts to understand in depth the genetic factors which

predispose to T2D. This goal is becoming increasingly important in light of growing evi-

dence that genetic heterogeneity may underpin T2D phenotypic heterogeneity, including

distinct aetiologies as well as the risk of diverse complications and treatment efficacies

(discussed in Section 1.4: Type 2 diabetes: a spectrum, a palette or a cluster?).

1Aetiology - the cause, or causes of a disease or condition.
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With the continued development of high-throughput tools and large datasets, pooling

data and applying informative study designs will be crucial steps towards developing a

detailed understanding of T2D risk. The methods used in this study can be widely applied

to study complex disease genetics and their biological consequences.

1.2 Type 2 diabetes: a modern disease

Diabetes, scientifically known as diabetes mellitus is a collection of conditions recognised

by high levels of the sugar, glucose, in the blood. The prevalence and financial impact

of diabetes has been rising over the past decades, making it of critical importance to

better understand the underlying causes and risk factors in order to treat and prevent

this devastating disease. In 2019, the International Diabetes Federation (IDF) estimated

that 463 million people were affected by diabetes worldwide (Saeedi et al., 2019). Diabetes

prevalence was estimated to rise from 151 million to 463 million between the years 2000

and 2019 (Atlas, 2015). The prevalence of diabetes is higher in urban areas and in

high-income countries (Saeedi et al., 2019), which effectively translates to a high health

expenditure (Williams et al., 2020). In 2019, it was estimated that the global expenditure

on diabetes was 760 billion US dollars. The UK annual expenditure is estimated at 10%

of the annual NHS budget (Diabetes, 2014) and for the 2010/2011 year was estimated at

£1 billion for Type 1 and £8.8 billion for Type 2 diabetes, with an additional £0.9 billion

and £13 billion in indirect costs, respectively (Hex et al., 2012).

To briefly describe the history of diabetes, it was first reported as a condition of excessive

sweet-tasting urine (polyuria) and excessive thirst. It is believed that the first mention of

diabetes was around 1500 BC in the Ancient Egyptian medical text, the Ebers Papyrus

(Marwood, 1973) and it was later described by the Greek Physician, Aretaeus of Cap-

padocia, as a “melting down of the flesh and bones into urine” (Adams et al., 1856). It is

to Aretaeus that the name diabetes is attributed, which translates roughly from Greek as

‘to pass through’ or ‘siphon’ (Gemmill, 1972). In 1675, the celebrated Physician Thomas

Willis described diabetes in his book Pharmaceutice rationalis, in a Chapter famously

named ‘The Pissing Evil’ (Allan, 1953). He added the term mellitus after describing the
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sweetness of the urine, which translates from Latin as ‘honey’ or ‘sweetened with honey’.

It was the English Physician Matthew Dobson who, in 1776, eventually recognised the

residue from boiled urine as sugar. Dobson also noted the sweetness of blood serum,

opposing the previously held opinion that diabetes was a disease of the kidneys (von

Engelhardt, 1989). Diabetes insipidus describes a separate rare condition caused by a

deficiency of the antidiuretic hormone, but which is also characterised by polyuria and

excess thirst.

The metabolism of glucose is controlled largely by the hormone insulin, which is released

by the pancreas in response to high blood glucose levels. Insulin release stimulates the

storage of glucose in the liver and muscles and signals for the liver to stop the endoge-

nous production of glucose. Diabetes may result when sufficient insulin is not produced

(insulin deficiency), or when it is not effective (insulin resistance). Since its discovery in

19222, insulin has been used to effectively treat insulin deficient forms of diabetes, largely

characterised as Type 1 diabetes (insulin-dependent) (Vecchio et al., 2018). Type 1 dia-

betes is an autoimmune condition in which the immune system attacks and destroys the

pancreatic β-cells which produce insulin. In comparison, Type 2 diabetes (also known

as non-insulin-dependent diabetes mellitus, NIDDM) is characterised by resistance to the

action of insulin.

The American Diabetes Association classifies diabetes into four categories: (1) Type 1

diabetes (T1D), (2) Type 2 diabetes (T2D), (3) gestational diabetes mellitus (GDM)3

and (4) other specific types including monogenic, syndromic and induced forms, such as

neonatal diabetes, maturity onset diabetes of the young (MODY), latent onset autoim-

mune diabetes (LADA), Wolfram syndrome, Alström syndrome, cystic fibrosis-related

diabetes (CFRD) and maternally inherited diabetes and deafness (MIDD) (Association

et al., 2014, 2015). ∼90% of diabetes cases have T2D (Saeedi et al., 2019).

T2D, on which this study focusses, is largely characterised by a resistance to the effects of

2The discovery is accredited to Fred Banting and Charles Best, as well as J. J. R. Macleod and Bert
Collip, however the Romanian Nicholai Paulescu described a pancreatic extract in 1919 which cured the
Diabetic symptoms of dogs with their pancreases removed.

3Gestational diabetes mellitus (GDM) is diagnosed when women develop diabetes during pregnancy.
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insulin accompanied by defective insulin production by pancreatic β-cells. This may occur

when the increased insulin production is no longer sufficient to compensate for increased

peripheral insulin resistance (Lyssenko et al., 2008). A diagnosis of ‘pre-diabetes’ is given

to individuals with insulin resistance; the development of β-cell dysfunction may facilitate

the transition to overt diabetes (Kolb and Martin, 2017). Pre-diabetes is a risk factor

for T2D (Fletcher et al., 2002; Edwards and Cusi, 2016). The current rates of T2D,

which have been likened to a ‘global pandemic’ (Unnikrishnan et al., 2017; Ali et al.,

2017), have been attributed to an ageing population and modern lifestyle with increased

calorific intake and decreased physical activity, since these are major risk factors for T2D

(discussed in the next sections).

1.3 Type 2 diabetes: a complex disease

T2D is a complex disease, which is defined as being influenced by both environmental

and genetic factors. Several models have been used to describe this genetic contribution,

including the polygenic model in which common genetic variants shared across the entire

population additively increase risk, or the genetic heterogeneity model in which closely

related individuals have unique genetic risk factors. Environmental risk factors for T2D

include obesity, age and physical inactivity, as well as diet, short or disturbed sleep,

smoking, stress, depression and low socioeconomic status (Kolb and Martin, 2017). More

recent studies have provided evidence of T2D subtypes, which may have their own unique

risk factors such as age or BMI (Ahlqvist et al., 2018; Udler et al., 2018; Udler, 2019).

These subtypes include those characterised predominantly by insulin resistance or insulin

deficiency4. Additional risk factors for T2D include ethnic background and a positive

family history; these are discussed in more detail below.

1.3.1 T2D heritability

The current study aims to better understand the genetic risk factors which predispose

to T2D. However, there must be evidence that a trait or disease is influenced by genetic

4Type 1 diabetes is the classical ‘insulin-deficient’ phenotype, however this is diagnosed by the autoim-
mune destruction of the pancreatic β-cells and therefore the presence of autoantibodies. β-cell dysfunction
in the absence of autoantibodies may be diagnosed as T2D.
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factors before a genetic study can be carried out. For T2D, this evidence is extensive.

Firstly, T2D clusters in families (Zimmet, 1982; Harlan et al., 1987; Morris et al., 1989).

The lifetime risk of developing T2D increases to ∼40% if one parent is affected and

to ∼70% if both parents are affected (Köbberling and Tattersall, 1982) compared to a

population risk of ∼10% (Saeedi et al., 2019). Similarly, the odds ratio5 for developing

T2D with one affected parent has been estimated at ∼3.5 and with both affected parents

at ∼6 (Meigs et al., 2000).

The sibling relative risk (RR)5 λs, which is the risk of developing T2D if one sibling is

affected compared to the general population, has been estimated at ∼3 (Köbberling and

Tattersall, 1982; Hemminki et al., 2010). This number dramatically increases depending

on the number of affected first-degree relatives (Hemminki et al., 2010). Crucially, adopted

individuals showed no increased risk from adoptive parents, suggesting that T2D risk is

driven by genetic, rather than environmental factors (Hemminki et al., 2010). A more

recent study showed that individuals with a family history of T2D were less likely to have

an average BMI and waist-hip ratio, despite being more likely to partake in regular exercise

and to have healthy diets (Choi et al., 2019). These results highlight that the risk from

a positive family history may even outweigh preventative lifestyle changes, emphasising

the need to understand the underlying genetic mechanisms.

Another study design used to interrogate the extent of genetic risk is twin studies.

Monozygotic twins, who share all of their DNA, are compared to dizygotic twins who

share on average half of their DNA. Estimates for T2D proband concordance, which re-

flects the proportion of affected individuals with an affected twin (concordant twin pairs)6,

have ranged from 34-58% in monozygotic twins and 16-37% for dizygotic twins (Newman

et al., 1987; Kaprio et al., 1992; Poulsen et al., 1999). In a 15 year follow-up, Medici

et al. (1999) reported that 76% of originally discordant monozygotic twin pairs, i.e. in

5Several different measures quoted here include the odds ratio (OR) and relative risk (RR). OR is the
odds of observing disease given a particular exposure (an affected parent, for example), compared to the
odds of disease in the absence of the exposure (no affected parent). RR is the ratio of the probability of
an outcome in an exposed group to the probability of an outcome in an unexposed group.

6Probandwise concordance is calculated as 2C/(2C+D), where C is the number of concordant pairs
and D is the number of discordant pairs.
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estimated heritability for T2D differed depending on the age-of-onset, consistent with

previous reports (Falconer, 1967; Simpson, 1969). There have been several criticisms,

however, about using twin and family data to estimate heritability. These include the

potential overestimation of risk for outbred population based on families in whom diabetes

clusters (Prasad and Groop, 2015) and are discussed further in Chapter 2, Section 2.6:

Missing Heritability.

In light of this evidence, many genetic studies have aimed to identify genetic variants

which increase the risk of T2D; these are the focus of the following Chapter 2. Large-scale

genetic studies may also estimate the proportion of the total estimated trait heritability

explained by the identified variants, assuming the same liability scale (see Mahajan et al.

(2018) and Vujkovic et al. (2020) for T2D). This approach is used to indicate how many of

the additive genetic risk factors have been identified, on the assumption that all relevant

variants will have been identified when the total heritability is explained.

1.3.2 The debated evolution of T2D

There have been several hypotheses which address the increasing rates of insulin resis-

tance (IR) and T2D. One popular proposal is that of the ‘thrifty gene’, in which evolution

favoured the selection of fat-storing genotypes in times of limited food and malnutrition,

although these have a negative impact in the modern energy-rich and high-calorie environ-

ment (Neel, 1962). There is evidence that such selection may have influenced lipid and

carbohydrate metabolism, selecting for thrifty (fat storage) mechanisms (Voight et al.,

2006; Blekhman et al., 2008; Luca et al., 2010; Rubio-Ruiz et al., 2015; James et al.,

2019) and metabolic rate is itself highly heritable (Pettersen et al., 2018). Following

criticism of the ‘thrifty gene’, Speakman (2008) proposed the ‘drifty gene’ hypothesis,

which explained the genetic propensity to obesity as a result of genetic drift following the

removal of Homo sapiens predators and the resulting selective pressures. Alternatively,

the ‘thrifty phenotype’ hypothesis proposed that T2D risk was driven by environmental

factors early in life, including poor fetal growth and malnutrition (Hales and Barker, 1992,

2001). This hypothesis is of particular interest since there is strong evidence in support
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and early-life interventions may prove preventative (Vaag et al., 2012).

IR may itself have had an evolutionary advantage. For example, IR may promote glucose

availability for the inflammatory response during trauma and prevent harmful protein loss

during starvation (Soeters and Soeters, 2012), or may act as a socioeconomic mechanism,

diverting glucose to the brain and placenta to improve cognitive ability, invest in offspring

(Watve and Yajnik, 2007)7 and suppress physical aggression (Belsare et al., 2010). The

‘carnivore connection’ hypothesis stated that IR may have evolved when transitioning

from a high-glucose diet to a low-carbohydrate diet in the ice ages, to which the adaptive

response is IR (Miller and Colagiuri, 1994). Regardless of potential evolutionary explana-

tions, the modern prevalence of T2D has been attributed to an overwhelmingly sedentary

lifestyle (Freese et al., 2017).

1.4 Type 2 diabetes: a spectrum, a palette or a cluster?

More recently, the nature of T2D itself has been debated. T2D is often the diagnosis

if patients do not fit into any other diabetes category, such as Type 1 or monogenic

forms (Association et al., 2014). T2D is classically associated with obesity and other risk

factors including age and a sedentary lifestyle, however recent studies have revealed a

new level of complexity and have identified distinct subtypes of T2D. This complexity

and heterogeneity of T2D is likely to impact any study aiming to identify the underlying

causes of disease, including gene mapping.

One such study was reported by Ahlqvist et al. (2018), in which five distinct, replicable

subgroups of T2D patients were identified based on the clustering of six clinical variables:

glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic

model assessment 2 (HOMA2) estimates of β-cell function and insulin resistance. These

clusters were assigned (1) severe autoimmune diabetes, (2) severe insulin-deficient dia-

betes, (3) severe insulin-resistant diabetes, (4) mild obesity-related diabetes and (5) mild

age-related diabetes. Importantly, the authors showed that the patients in each subgroup

7Watve and Yajnik (2007) described a ‘behavioural switch’ hypothesis in which insulin resistance
facilitates a switch from ‘soldier’ to ‘diplomat’ by stimulating low birth but fast growth rates, with more
glucose diverted to the brain.
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presented different risks of micro and macro-vascular complications and distinct genetic

associations. These clusters were effectively replicated by Dennis et al. (2019), however

the authors questioned their clinical utility since simple clinical features such as age of

diagnosis were as or more effective at predicting clinical outcomes and selecting optimal

therapies. Van Smeden et al. (2018) also questioned the use of data-driven clustering

to define subgroups, warning against over-interpreting clusters of somewhat correlated

clinical measures. Both Dennis et al. and van Smeden et al. advocated the use of con-

tinuous clinical measures, rather than defining distinct categories which may still contain

heterogeneity. Despite this, the clusters reported by Ahlqvist et al. (2018) support the

idea that distinct risk factors may contribute to distinct prognoses.

T2D clusters can also be identified directly from genotypes. Udler et al. (2018) clustered

T2D-variant associations for variants known to be associated with T2D (n = 94) and

diabetes-related traits (n = 47). The authors reported five clusters, of which two contained

trait-associations characteristic of reduced β-cell function and three were associated within

insulin resistance, assigned as obesity-mediated, lipodystrophy-like and disrupted liver

lipid metabolism. Similarly to the analysis of Ahlqvist et al. (2018), the clusters were

associated with distinct clinical outcomes. The authors found that around a third of

individuals with T2D could be assigned uniquely to one cluster based on genetic risk

score and that these individuals had somewhat distinct phenotypes. This approach is

of particular interest, since genetic risk precedes disease onset and may be of more use

for preventative medicine, while the implicated genotypes can give direct insight into

underlying mechanisms (Udler, 2019).

Alternatively, the ‘palette model’ of T2D proposed by McCarthy (2017) notes that distinct

pathophysiological processes related to T2D risk, such as fat distribution, β-cell function

and insulin resistance etc, may contribute disproportionately to risk in different individu-

als. The model illustrates this as a multidimensional space where individual risk is made

up of the distinct component parts. Similarly to Udler et al. (2018), McCarthy suggests

that initial efforts might benefit from identifying individuals whose risk is dominated by a

restricted set of processes. However, a debate remains as to the current clinical utility of
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the proposed T2D subtypes. On the other hand, deconstructing T2D heterogeneity has

profound implications for discovery, for example by increasing the power of gene mapping

by studying homogenous groups of patients.

Given the evidence that genetic heterogeneity may underlie phenotypic heterogeneity,

it is of upmost importance to continue the effort to map and characterise genetic risk

factors associated with T2D. The vision provided by McCarthy (2017); Udler et al. (2018);

Ahlqvist et al. (2018) and others will continue to be realised as the biological pathways

perturbed by distinct genetic risk factors are revealed.

1.5 Mitochondrial dysfunction in T2D

With this in mind, the current study aims to investigate and better understand the

genetic mechanisms which underlie a specific biological process associated with T2D risk:

mitochondrial dysfunction.

This study follows the observation by Lau et al. (2017) that many of the putative func-

tional genes regulated by T2D loci were involved in mitochondrial function, potentially

implicating inherited changes in gene expression and mitochondrial function in T2D risk.

The following sections will review mitochondrial function and its role in diabetes, with

emphasis on particular mechanisms which have been functionally implicated in diabetes

onset and as such might be expected to be identified in further genetic analyses. The data

obtained from Lau et al. for the current study included measures of gene expression in

subcutaneous adipose. Therefore, the role of mitochondrial function in adipose and T2D

will be discussed in detail.

1.5.1 Mitochondria: the powerhouse of the cell

The mitochondria are maternally inherited organelles present in eukaryotic cells. They

are enclosed by an outer lipid membrane and an inner lipid membrane which contorts into

folds called cristae. Mitochondria contain their own DNA (mtDNA); a circular genome of

15,569bp which contains 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. It is thought

that the mitochondria likely originated from an endosymbiotic relationship between an

α-Proteobacteria contained by a larger, essentially eukaryotic host (Lane and Martin,
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2010; Gray, 2012). Each mitochondrion can have between one and ten copies of the

circular mtDNA molecule (Cole, 2016), which was originally much larger prior to the

transfer of mitochondrial genes into the nuclear genome over time8 (Martin, 2003). The

mitochondrial proteome is now predominantly encoded by the nucleus, with the human

nuclear genome containing up to 1,500 genes which encode proteins imported to the

mitochondria (Calvo et al., 2015b); these are known as nuclear-encoded mitochondrial

genes (NEMGs). The nuclear genome may also regulate transcription of the mtDNA (Ali

et al., 2019).

The mitochondria have multiple functions, of which the most well-known is the production

of energy as molecules of ATP (adenosine triphosphate). The numbers of mitochondria

in each human cell can vary dramatically depending on the energy requirements, from

hundreds to hundreds of thousands (Cole, 2016). The mitochondria are dynamic and un-

dergo fusion, fission and degradation and can form greater fused networks (Rafelski, 2013;

Zamponi et al., 2018). These dynamics can be regulated by metabolic processes (Mishra

and Chan, 2016). Aside from their classic role in energy production, the mitochondria also

contain various metabolic reactions including β-oxidation of fatty acids, branched-chain

amino acid catabolism and production of steroids (McBride et al., 2006), making them

particularly pertinent to metabolic disorders including T2D.

1.5.2 Mitochondrial function and T2D

A potential relationship between diabetes and mitochondrial function was first reported

by Applegarth and Koneff (1946), with Yamada et al. (1975) describing a relationship

between glucose intolerance and impaired function of the liver mitochondria. One of the

clearest links between the mitochondria and diabetes can be seen in the manifestation

of maternally-inherited forms of diabetes resulting from mutations in the mitochondrial

genome (mtDNA) (Maassen et al., 2004). One example is maternally inherited diabetes

and deafness (MIDD) (van den Ouweland et al., 1994) which results from mutations

8The colocation of gene and gene product for redox regulation of gene expression (CoRR) hypothesis
proposes that the protein-coding genes retained in the mtDNA, which encode subunits of the electron
transport chain, allow for swift response to environmental changes by rapid changes in the expression of
these genes and subsequent energy production (Allen, 2015).
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in one of three mitochondrial genes: MT-TL1, MT-TK, or MT-TE. These three genes

encode transfer RNAs (tRNAs), which transport the amino acids leucine, lysine and

glutamic acid, respectively, to translating polypeptide chains within the mitochondria.

Mitochondrial dysfunction9 has, as a result, been highly researched as a potential cause

of common T2D. This is the focus of a large number of review papers (see Morino et al.

(2006); Kim et al. (2008); Sivitz and Yorek (2010); Newsholme et al. (2012); Szendroedi

et al. (2012); Montgomery and Turner (2015); Wada and Nakatsuka (2016); Gonzalez-

Franquesa and Patti (2017); Sergi et al. (2019) for some examples of general reviews). The

evidence can be broadly described as observational and functional, with some examples

provided below.

OBSERVATIONAL STUDIES: it is very well established that perturbed mitochondrial

function can be observed in individuals with T2D. This includes lower activity of mito-

chondrial oxidation and enzymes (Kelley et al., 2002; Ritov et al., 2005; Heilbronn et al.,

2007), decreased expression of genes involved in maintaining mitochondrial function and

decreased mitochondrial size (Kelley et al., 2002; Patti et al., 2003; Morino et al., 2005;

Heilbronn et al., 2007; Zorzano et al., 2009), as well as alterations in the mitochondrial

proteome (Chae et al., 2018). However, mitochondrial dysfunction is not observed in all

cases of T2D (Holloway et al., 2007; Boushel et al., 2007). Furthermore, the observed mi-

tochondrial dysfunction may be induced by diabetes itself (Hoeks et al., 2010; Fujimaki

and Kuwabara, 2017; Haythorne et al., 2019), leading many to ask whether mitochondrial

dysfunction is a cause or consequence of T2D (Turner and Heilbronn, 2008; Dumas et al.,

2009), even in recent reviews10. While some studies observe mitochondrial dysfunction

only in long-standing T2D patients (Van Tienen et al., 2012), others have observed mi-

tochondrial dysfunction in the healthy offspring of individuals with T2D (Mootha et al.,

2003; Petersen et al., 2004, 2005; Morino et al., 2005).

9Mitochondrial dysfunction has been used to refer to the altered expression of mitochondrial genes,
altered content of mitochondria, mtDNA or mitochondrial proteins, altered enzymatic activity of key
mitochondrial proteins, changes in mitochondrial size or shape, a change in ATP production and different
rates of substrate oxidation (Montgomery and Turner, 2015).

10A quote from Sergi et al. (2019): “However, whether these mitochondrial defects represent a cause
or a consequence of insulin resistance in skeletal muscle remains to be fully elucidated”.
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FUNCTIONAL STUDIES: in contrast to observational studies, functional studies in ro-

dent models have demonstrated that T2D-related phenotypes such as insulin resistance or

deficiency can result from directly perturbing mitochondrial function. Examples include

reduced glucose uptake caused by the direct perturbation of oxidative phosphorylation

electron chain subunits (Lim et al., 2006) and that mtDNA substitutions altered glucose

tolerance (Pravenec et al., 2007). Increased reactive oxygen species (ROS) may enhance

insulin signalling (Loh et al., 2009). However, mitochondrial oxidative stress has also

been shown to impair insulin signalling and drive insulin resistance in rodent models

(Hurrle and Hsu, 2017; Fazakerley et al., 2018) and may impact pancreatic β-cell func-

tion by mediating glucose toxicity and the death of β-cells (reviewed by Kaneto et al.

(2010); Ma et al. (2012)). The mitochondria of both mice and humans receiving a high-

fat diet release higher levels of ROS (Anderson et al., 2009). However, treating mice

with mitochondria-targeted antioxidants was shown to both preserve insulin sensitivity

(Anderson et al., 2009; Lee et al., 2010) but also cause chronic hyperinsulinaemia (Wang

et al., 2008). Oxidative stress may be present with insulin resistance, even when other

measures of mitochondrial function are normal (Samocha-Bonet et al., 2012). Altered

fatty acid β-oxidation has been shown to induce insulin resistance (this is discussed in

detail in Chapter 5). Inhibiting mitochondrial fission improved the insulin sensitivity of

obese mice (Jheng et al., 2012) as well as insulin signalling in diabetes-susceptible cybrid

cells (Lin et al., 2018a). Furthermore, inhibiting mitophagy (the removal of dysfunctional

mitochondria) can cause insulin resistance in mice (Drew et al., 2014) (reviewed by Su

et al. (2019)). Proper mitochondrial oxidation, ATP production, calcium release and

mitochondrial dynamics are crucial for the functioning of pancreatic β-cells, including

glucose-stimulated insulin release and the prevention of apoptosis (Soejima et al., 1996;

Tsuruzoe et al., 1998; Kennedy et al., 1998; Zhang et al., 2001; Noda et al., 2002; Joseph

et al., 2006; Gauthier and Wollhejm, 2006; Molina et al., 2009; Fridlyand and Philipson,

2010) (reviewed by Wiederkehr and Wollheim (2008)).

CONCLUSIONS and GENETIC STUDIES: the above cites just some studies of mi-

tochondrial function in relation to T2D aetiology. Based on this evidence, the most
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plausible scenario is that of a bidirectional relationship in which mitochondrial dysfunc-

tion, depending upon the context, can both contribute to and be induced by T2D. While

mitochondrial dysfunction may not be necessary for insulin resistance or β-cell dysfunc-

tion, it may be sufficient to cause it. A further question may be whether the conflicting

observations can be explained by the heterogenous nature of T2D, such that mitochon-

drial dysfunction may contribute at varying extents to T2D in different individuals (see

the ‘palette model’ proposed by McCarthy (2017)). This may reflect variation in the

predisposition to mitochondrial dysfunction, its penetrance, or in lifestyle factors such as

nutrient intake or energy requirements.

An additional question is whether a genetic predisposition to mitochondrial dysfunction

exists. Interestingly, NEMGs are enriched in genes found to be regulated by genetic varia-

tion (cis-genes), highlighting a potential important role of genetic variation in regulating

mitochondrial function (Sajuthi et al., 2016). While the observation of mitochondrial

dysfunction in the healthy offspring of T2D patients hints at a heritable mechanism,

this could feasibly result from the early, asymptomatic onset of disease or be induced by

other shared familial risk factors. Functional studies are also limited to the conditions

in which they were carried out and may not always reflect physiological effects. Alterna-

tively, genetic studies can demonstrate inherited mechanisms which precede and causally

contribute to disease onset in the human population.

DNA mutations are known to cause monogenic and maternally-inherited forms of di-

abetes. In common T2D, genetic variants may, for example, mimic the effects of the

functional perturbations described above such as increased ROS production, decreased

fat oxidation, increased mitochondrial fission and may reduce the natural compensation

of mitochondrial function in response to high-fat diets or insulin resistance (Katic et al.,

2007; Sergi et al., 2019). The mitochondria are already of therapeutic importance since

several current T2D drugs directly improve mitochondrial function (Yaribeygi et al., 2019)

and studies in rodents have shown that increasing mitochondrial capacity can improve in-

sulin sensitivity (Wright et al., 2011; Henstridge et al., 2014). Evidence has suggested that

mitochondrial function may be suppressed particularly in T2D patients who are resistant
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to exercise-induced metabolic improvements (Stephens et al., 2015), suggesting that strat-

ified patients groups may benefit from mitochondrial-targeted therapies. Indeed, previous

genetic studies have hinted at a role for genetic regulation of mitochondrial function in

insulin metabolism, glucose metabolism and diabetes (Kraja et al., 2019).

To better understand the role of mitochondrial dysfunction in the genetic risk of T2D

in humans, the following Chapters present a genetic study with the aim of identifying

genetic risk factors for T2D which directly alter mitochondrial function. This will be

achieved by systematically assigning functional cis–regulated genes to T2D genetic risk

loci. The study design presented over the following Chapters also has the potential to build

on patient stratification discussed in Section 1.4: Type 2 diabetes: a spectrum, a

palette or a cluster?, by prioritising specific biological processes for further study.

1.6 Adipose, diabetes and the mitochondria

The current study, which is a follow-up to that of Lau et al. (2017), uses gene expres-

sion data from subcutaneous adipose to systematically identify the target genes of T2D-

associated genetic risk loci (these methods are described in detail in the following Chapter

2, see Section 2.7.3: LDU-based gene mapping in T2D). The relationship between

adipose and T2D is discussed here, with a particular focus on the mitochondria.

The mitochondria are central to adipose metabolism, playing a key role in adipocyte dif-

ferentiation, lipid metabolism (lipogenesis and lipolysis), endocrine signalling and ther-

mogenesis (Boudina and Graham, 2014; Cedikova et al., 2016). Effective mitochondrial

function is required for adipose formation (adipogenesis) (Trifunovic et al., 2004; De Pauw

et al., 2009). White adipose tissue (WAT) can be divided into subcutaneous adipose,

which is located under the skin and visceral adipose, which surrounds organs (Bjørndal

et al., 2011). An additional type of adipose is brown adipose tissue (BAT) which generates

heat and contributes to thermogenesis through the release of energy from mitochondrial

fatty acid β-oxidation. BAT decreases in mass as humans age, although there is evidence

that some may remain active in adult humans (Nedergaard et al., 2007; Virtanen et al.,

2009; van Marken Lichtenbelt et al., 2009; Cypess et al., 2009) and that this may protect
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against diabetes (Chondronikola et al., 2014). BAT thermogenesis and maintenance re-

quires mitochondrial oxidation and the mitochondrial uncoupling protein 1 (Heaton et al.,

1978; Lee et al., 2015b; Cedikova et al., 2016; Gonzalez-Hurtado et al., 2018).

WAT stores fat as triglycerides, which are released when required such as in times of

reduced food intake or increased energy requirements (Sethi and Vidal-Puig, 2007). Mito-

chondria are critical for this process, producing the glycerol 3-phosphate and acetyl-CoA

necessary for triglyceride formation, and also contribute to the regulation of lipolysis

(De Pauw et al., 2009). As such, adipose have high levels of mitochondrial fatty acid

β-oxidation (this pathway and the evidence relating it to T2D is discussed in detail in

Chapter 5). Reduced storage of fats as triglycerides, potentially due to adipose inflamma-

tion, can cause increased circulating fatty acid levels and may cause insulin resistance and

ectopic fat accumulation in other organs, such as the liver and muscle (Guilherme et al.,

2008; Lê et al., 2011). WAT is also an important endocrine organ and produces adipokines

and other signalling molecules to regulate multiple processes including appetite, inflam-

mation, fat and glucose metabolism. These include leptin which regulates appetite and

food intake, prostaglandins which play a role in the repair of injuries and adiponectin

which stimulates fatty acid and glucose uptake (Sethi and Vidal-Puig, 2007). Signalling

molecules secreted by adipose tissue may regulate the insulin sensitivity of peripheral tis-

sues (Van der Kolk et al., 2019), these include the inflammatory cytokines tumor necrosis

factor-α (TNFα) and interleukin (IL)-6 (Rytka et al., 2011). The mitochondria play an

important role in this endocrine activity (Koh et al., 2007), with their dysfunction related

to the development of insulin resistance and diabetes (Medina-Gómez, 2012). Visceral

adipose, which has a high mitochondrial content (Deveaud et al., 2004), has been partic-

ularly implicated in T2D and increased visceral fat deposits are associated with insulin

resistance and diabetes (Bjørndal et al., 2011; Direk et al., 2013, 2014). Disruption of

the mitochondrial electron transport chain may be one cause of visceral adipose insulin

resistance (Ngo et al., 2019).

Several studies have implicated adipose function in T2D genetic risk. Small et al. (2018)

showed that T2D-associated genetic variants altered the expression of KLF14 in adipose,
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resulting in larger, preferentially visceral adipocytes and insulin resistance. T2D is associ-

ated with missense mutations in ADIPOQ, which encodes the adipokine adiponectin, and

PPARG, which encodes the nuclear receptor peroxisome proliferator-activated receptor-γ

(PPARγ) and is highly expressed in adipose tissue (Stumvoll et al., 2002; Hivert et al.,

2008; Gao et al., 2013; Ahmadian et al., 2013; Vergotine et al., 2014; Majithia et al., 2014).

It is also worth noting that there are both ‘healthy’ and ‘unhealthy’ forms of adiposity,

which may involve increased adipose inflammation (Aires et al., 2019; Smith et al., 2019).

Further study of the genetic mechanisms regulating adipose gene expression may provide

additional insight into the underlying processes of T2D risk. The mechanisms of insulin

resistance in adipose subtypes are further reviewed by Czech (2020).

The following Chapters describe the mapping of genes regulated by T2D-associated vari-

ants using adipose gene expression data, however mitochondrial dysfunction may have

significant implications in other tissues. Briefly, these include in the insulin response of

muscle (see reviews Muoio and Neufer (2012); Hesselink et al. (2016); Devarshi et al.

(2017)) and liver (Su et al., 2019; Bassot et al., 2019) and in maintaining insulin produc-

tion from pancreatic β-cells (Fex et al., 2018; Las et al., 2020). Altered mitochondrial

fatty acid β-oxidation may also increase the release of pro-inflammatory cytokines from

T cells in T2D patients and influence adipose metabolism (Wang and Wu, 2018; Nicholas

et al., 2019); increased production of pro-inflammatory cytokines from adipose-resident T

cells is associated with insulin resistance (Hardy et al., 2011). Mitochondrial dysfunction

may also contribute to T2D-associated kidney disease (Kang et al., 2015; Sharma, 2017).

The following Chapter 3 describes the assigning of functional genes to T2D loci using

subcutaneous adipose gene expression. However, the methods described can be applied

to the gene expression data of other tissues.

1.7 Hypothesis, aims and research plan

1.7.1 Hypothesis

The hypothesis for this study is that mitochondrial dysfunction is a heritable risk factor

for Type 2 diabetes (T2D) and can causally contribute to disease onset. As a result, we
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anticipate that some genetic risk factors for T2D will exert their effects through altering

the expression of nuclear-encoded mitochondrial genes (NEMGs).

1.7.2 Aims and research plan

CHAPTER 2: Gene mapping in T2D: a literature review

Aim: to carry out a literature review of gene mapping studies for T2D. The gene map-

ping method used by Lau et al. (2017) in generating the data analysed in this study

(see Chapter 3 aims, below) will be compared and contrasted to other gene mapping

methods.

CHAPTER 3: T2D loci regulate nuclear-encoded mitochondrial cis-genes

Aim: to investigate published and unpublished genetic loci associated with risk of Type

2 diabetes (T2D loci), previously mapped by Lau et al. (2017), for evidence of regulating

neighbouring genes (cis-genes) including NEMGs in adipose tissue.

Research plan:

1. Identify T2D cis–genes by integrating independent location estimates corresponding

to genetic variants associated with (1) T2D risk (T2D loci) and (2) neighbouring

gene expression (eQTL), provided by Lau et al.

2. Cross-reference the identified T2D cis-genes with curated databases of known NEMGs

to identify T2D cis-NEMGs.

3. Test the total T2D cis-genes for enrichment of mitochondrial pathways.

CHAPTER 4: T2D cis–gene expression in cases vs controls

Aim: to validate the identified cis-genes by demonstrating that the same genes show

evidence of differential expression in T2D cases compared to controls for independent

gene expression datasets.

Research plan:

1. Identify independent gene expression datasets with data for T2D or insulin resistant
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cases and controls from the Gene Expression Omnibus (GEO) database.

2. Test for differential gene expression and carry out meta-analysis of the T2D cis-

genes, cis-NEMGs and mitochondrial pathways using gene set enrichment analysis

(GSEA).

CHAPTER 5: Fine-mapping a candidate locus

Aim: to investigate a candidate T2D locus using targeted next generation sequencing

data, with an aim to identify the putative causal variant(s).

1. Identify single nucleotide variants, small insertions and deletions and structural

variants from targeted next generation sequencing data for 94 T2D cases and 94

healthy controls (French).

2. Test the variants for significant differences in allele frequencies between T2D cases

and controls.

3. Identify potentially functional variants by integrating variant risk prediction and

chromatin modification data from publicly available sources.
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2 Chapter 2: Gene Mapping in T2D:

A Literature Review

2.1 Overview

This project aims to investigate whether an inherited predisposition for mitochondrial

dysfunction increases the risk for Type 2 diabetes (T2D). As such, a genetic study design

will be used to investigate whether genetic risk factors for T2D alter mitochondrial func-

tion. The starting point is therefore gene mapping; the mapping of genetic loci associated

with T2D11, followed by the study of their potential downstream effects on mitochondrial

function.

Hundreds of T2D loci have been identified to date. These have been mapped mostly

through genome-wide association studies (GWAS), which test single nucleotide polymor-

phisms (SNPs) for evidence of association by regressing genotype against case-control

status. Conversely, this project investigates T2D loci mapped previously by Lau et al.

(2017) using an alternative method referred to as LDU-based gene mapping. In order to

appreciate the strengths and weaknesses of this method and hence the novelty of the re-

sults presented, Chapter 2 will review and compare the gene mapping methods previously

applied to T2D. The efficiency of different gene mapping methods will be explored in

light of new insights into complex disease genetic architecture12. Following this, Chapter

3 will explore the functional interpretation of published and unpublished T2D loci from

Lau et al. All results presented in Chapter 2 for the literature review were generated pre-

viously, excluding the analysis on page 76 (Figure 10) which was carried out specifically

to compare the genetic architecture of T2D loci identified by Lau et al. and lead SNPs

mapped by Mahajan et al. (2018) using the more conventional single-SNP GWAS.

11These will mostly be referred to as T2D loci, but may also be called disease loci or risk loci.
12Genetic architecture has been defined as types of variation, allele frequency distribution, allele effect

sizes and new mutation rates (Lupski et al., 2011). Allelic architecture may be the number of alleles
which impact a phenotype at a given locus, their frequencies and penetrance (Pritchard and Cox, 2002)
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2.2 Introduction

Gene mapping13 aims to identify the causal genetic variants and the implicated functional

gene(s) underlying a disease or trait. The importance of gene mapping is evident in the

case of rare monogenic diseases, since mapping the single causal mutation can provide an

accurate diagnosis, enable family genetic counselling and reveal causal mechanisms which

can be targeted during treatment. An important example is in neonatal diabetes for

which mutations in the potassium channel (KCNJ11 or ABCC8 genes) make up 50% of

cases (Hattersley and Patel, 2017). These patients are now specifically treated with oral

sulfonylureas to close the potassium channel and stimulate insulin release from pancreatic

β-cells, demonstrating significantly improved outcomes compared with the traditional

insulin injections (Hattersley and Patel, 2017). However, there is a longer road between

gene mapping and clinical translation when concerned with complex diseases.

The risk or ‘liability’ of developing a complex traits is observed to be influenced by hun-

dreds of genetic variants of predominantly small effect (here referred to as risk variants).

It is important to identify these risk variants not only for clinical translation, but also to

achieve a greater understanding of complex disease. Identifying the functional disease-

associated genes can reveal novel functions for those genes and implicate novel biological

pathways in disease onset. The findings from gene mapping can also be used to inform

the development of improved analytical methods. However, complex disease risk variants

are typically located in intronic or intergenic non-coding DNA rather than within coding

genes, challenging their interpretation (discussed in detail in Chapter 3).

In terms of clinical utility, there is increasing evidence that genetic risk may underlie T2D

phenotypic heterogeneity (discussed in Chapter 1, Section 1.4: Type 2 diabetes: a

spectrum, a palette or a cluster?). This evidence further motivates gene mapping

studies, since distinct underlying mechanisms may translate to targeted therapies and

guided disease management (Udler, 2019). Stratifying patient groups is likely to improve

13The mapping of a trait associated locus has also been described as positional cloning (Collins, 1992).
The terms ‘positional cloning’ and ‘gene mapping’ are now often used interchangeably. ‘Gene mapping’
will be used hereafter in this thesis.
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the power of gene mapping. For example, Guan et al. (2016) mapped novel genetic loci

in a study stratified for T2D patients with end-stage kidney disease vs healthy controls

with no kidney disease (discussed in Chapter 5). Genetic risk scores (GRSs)14 can also

be correlated with other traits to investigate shared genetic mechanisms and co-morbities

(Damkondwar et al., 2012; Hackinger and Zeggini, 2017; Zheutlin et al., 2019; Chasman

et al., 2020) and to identify novel causal pathways (Monnereau et al., 2016; Ahmad et al.,

2018; Mallet et al., 2020; Caspers et al., 2020). For example, Vujkovic et al. (2020) re-

ported that T2D genetically correlated with waist circumference, overall health, BMI and

fat mass, hypertension, coronary artery disease, dyslipidemia, alcohol intake, wheezing

and smoking, while negatively correlating with years of educational attainment.

The most widely used gene-mapping method to date is the genome-wide association study

(GWAS). This Chapter will review the published T2D GWAS prior to discussing their

strengths and limitations in comparison to LDU-based gene mapping. The next sec-

tion will first describe the fundamental concepts of linkage and linkage disequilibrium, in

addition to briefly reviewing gene mapping studies for T2D prior to GWAS.

2.3 Linkage, LD and pre-GWAS gene mapping in T2D

This section introduces the concepts of linkage and linkage disequilibrium (LD), as well

as linkage and association studies. Linkage and association studies exploit the related

properties of linkage and LD, which correlate genotypes at two loci within and between

defined pedigree structures, respectively (Terwilliger, 2001). They are described below,

along with examples of their application to T2D gene mapping. Detailed reviews of T2D

loci mapped prior to GWAS are also given by McCarthy (2004); McCarthy and Menzel

(2001) and van Tilburg et al. (2001)15.

Prior to the popularisation of GWAS from 2005 onwards, T2D genetic risk loci were

identified using linkage analysis and then further investigated in larger cohorts using as-

14There is a large literature on the use of genetic risk scores which will not be discussed here. For several
recent reviews, see: Torkamani et al. (2018); Lewis and Vassos (2020) and McCarthy and Mahajan (2018)
for diabetes specifically

15See also Chapter 16 of Collins (2007), ‘Identifying susceptibility variants for Type 2 diabetes’ by
Zeggini and McCarthy.
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of observing a recombination is smaller when a smaller region is considered. Prior to the

availability of high-throughput genotyping, or indeed, the availability of any genotype

data18, linkage could be exploited to map the locations of disease-causing variants. Ge-

netic polymorphisms of known location, also known as markers, were genotyped in related

individuals (family data). Due to linkage, markers nearby a causal variant would be inher-

ited together on the sample haplotype and would therefore also co-segregate through the

pedigrees with affected individuals. Multiple generations were included so that a larger

number of recombinations could be directly observed to break down linkage, resulting in

the co-segregation of a smaller genetic region with disease and greater resolution for infer-

ring the disease gene location. The resolution of linkage analysis is limited to the number

of observed recombinations, with a 1% probability of observing a recombination equat-

ing to approximately 1Mb (Khil and Camerini-Otero, 2009). As a result, linkage studies

typically implicated large chromosomal segments and could be carried out by genotyping

relatively disperse markers. A limitation of family-based linkage studies is the need to

recruit large pedigrees of related individuals.

Importantly, the probability of recombination is not entirely random. This may be in-

fluenced by the binding of transcription factors (Tiemann-Boege et al., 2017; Coop and

Przeworski, 2007) and interfering DNA structures such as chiasmata, for example. Re-

combination events are also observed to cluster in ‘hot spots’ first observed by Chakravarti

et al. (1984), the theory of which is reviewed elsewhere (Tiemann-Boege et al., 2017; Coop

and Przeworski, 2007). As a result, linkage is non-linear with respect to physical distance

and the number markers linked with a causal mutation will differ depending on the ge-

nomic location. These patterns can be captured by genetic linkage maps which can (1)

inform where best to place markers to capture the inheritance of surrounding variants

and (2) the physical region surrounding a significant marker in which the linked causal

them.
18The concept of linkage was first explained by Thomas Morgan in 1911, based on the observed inher-

itance of simple traits in Drosophila fruit flies such as eye colour and wing mutations that appeared to
co-segregate together, violating Mendel’s second law of independent assortment. Morgan announced the
following profound conclusion: ‘Instead of random segregation in Mendel’s sense we find “associations of
factors” that are located near together in the chromosomes.’ (Morgan, 1911).
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mutation is likely to reside. Linkage maps are discussed in Section 2.7.1: Genetic and

LDU maps and a review of the various linkage analysis methods can be found in Chapter

7 of Neale et al. (2007) and Terwilliger and Ott (1994).

Variations of the linkage design were used to detect several T2D loci of large effect (Mc-

Carthy, 2003). These included model-free, non-parametric19 methods such as affected sib-

pair or affected-pedigree-member and analysis of ‘extreme discordant sib pairs’20 (Weeks

and Lathrop, 1995; Risch and Zhang, 1995; Freimer and Sabatti, 2004). Examples of T2D

loci first identified through linkage analysis include the TCF7L2 (Reynisdottir et al., 2003;

Duggirala et al., 1999) and ADIPOQ loci (Vionnet et al., 2000; Mori et al., 2002; Busfield

et al., 2002). The TCF7L2 locus analysis has since been detected as the most signifi-

cant genome-wide signal of T2D association across multiple populations (Cauchi et al.,

2007; Sladek et al., 2007; Tabassum et al., 2013; Ng et al., 2014; Qi et al., 2017; Mahajan

et al., 2018; Chen et al., 2019a) and ADIPOQ, which encodes the cytokine adiponectin

has accumulated a large literature regarding its role in T2D (Achari and Jain, 2017).

The application of linkage methods to complex diseases were more recently discussed by

Flaquer and Strauch (2012).

While linkage studies had great success in mapping genes which caused early-onset, famil-

ial forms of diabetes known as maturity-onset diabetes of the young (MODY) (Botstein

and Risch, 2003), they were underpowered to detect variants which did not strictly co-

segregate with disease. By 2001, genome-wide linkage studies had largely failed to detect

loci which could be reproducibly associated with complex diseases (Altmüller et al., 2001).

This supported the polygenic model of complex disease, in that liability resulted from the

accumulation of multiple small effect variants21 (see Figure 1). Advocated by Risch and

Merikangas (1996); Lander and Schork (1994) and others, association studies of candidate

genes largely supplanted linkage analysis in the study of complex diseases.

19Non-parametric studies make no assumption regarding the mode of inheritance, whereas parametric
studies test a pre-defined mode of inheritance.

20Alternative designs include studies of parent-offspring trios (Huxtable et al., 2000) and the
transmission-disequilibrium test (Spielman et al., 1993).

21The mapping of several large-effect loci is notably consistent with the modern view of T2D as having
significant genetic heterogeneity (Udler, 2019).
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2.3.2 Linkage disequilibrium and association mapping

Association analysis exploits linkage disequilibrium (LD), which is a measure of allelic

association. LD measures the frequency with which alleles are found together across a

population and large families. A population can be considered as an extended pedigree in

which historical, unobserved recombinations have created new combinations of alleles. LD

therefore measures linkage with a much higher resolution, since many more recombination

events occur within the history of a population compared to a pedigree of several genera-

tions. That being said, LD is also influenced by population-parameters such as population

admixture and inbreeding, as well as the number of founding individuals and the num-

ber of generations within a population, natural selection, genetic drift and mutation rate

(Collins, 2007). Patterns of LD across the genome can be seen following the construction

of genetic LDU maps described in Section 2.7.1: Genetic and LDU maps.

Various metrics used to measure LD include r2, D′ and ρ, which are all normalised

measures of the covariance, D (Falconer and Mackay, 1996; Lynch et al., 1998). The

calculation of these are shown below for two nearby SNPs with major alleles A and B

and minor alleles a and b, where the frequency of each haplotype is denoted pAB, pAb, paB

and pab and the allele frequencies are denoted pA, pB, pa and pb:

Locus B
B b

Locus A A pAB pAb

a paB pab

DAB = pAB − pApB r2AB =
D2

(pApapBpb)
ρAB =

DAB

pApb

D′
AB =



















DAB

min(pApB, papb)
DAB < 0

DAB

min(pApb, papB)
DAB > 0
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analysis, for example both linkage signals at TCF7L2 and ADIPOQ were fine-mapped

to the respective genes using association analysis (Grant et al., 2006; Zhang et al., 2006;

Vasseur et al., 2002). Other studies genotyped markers at candidate genes implicated

in the onset of MODY, including the insulin promoter factor 1, IPF-1/PDX1 (Stoffers

et al., 1999; Macfarlane et al., 2000), the sulfonylurea receptor, SUR (Inoue et al., 1996;

De Knijff et al., 1999), insulin receptor substrate 1, IRS-1 (Almind et al., 1993) and

the hepatocyte nuclear factor-4-α, HNF4A (Love-Gregory et al., 2004; Silander et al.,

2004). Other genes were prioritised as known targets of T2D drugs, including PPARG,

which encodes the ligand-activated transcription factor PPARγ (Altshuler et al., 2000)

and KCNJ11 and ABCC8, which encode the pancreatic potassium channel.

Despite offering a greater resolution and the freedom to recruit unrelated participants,

the few successful association studies were outweighed by a general lack of consistency

and reproducibility (Hirschhorn et al., 2002; Hirschhorn and Altshuler, 2002; Ioannidis

et al., 2001), leading to arguments for (Burgner and Hull, 2000) and against their util-

ity (Gambano et al., 2000). Various explanations addressing both study design and the

nature of complex diseases were offered and calls for consistent study designs were made

(Hirschhorn et al., 2002; Colhoun et al., 2003; Hattersley and McCarthy, 2005). Potential

explanations included cohort heterogeneity, fluctuations in allele frequency, gene-gene or

gene-environment interaction effects, variations in LD23, population stratification24 and

too liberal statistical thresholds. Furthermore, existing methods had limited power to

prioritise candidate genes (McCarthy et al., 2003), especially given that complex disease

mechanisms were largely unknown (hence the requirement for gene mapping) (Hatters-

ley and McCarthy, 2005). Hypothesis-free linkage scans also required prior evidence to

prioritise genes, since their low resolution typically implicated large regions.

As high-throughput studies made available genome-wide maps of common variants and the

23Populations-specific LD and the relative difficulties in reproducing trans-ethnic association signals
are the focus of Section 2.4.4: Trans-ethnic GWAS and defining replication.

24Population stratification arises when there is a systematic difference in allele frequencies between
subpopulations in a population, which in the context of association study may cause confounding (e.g.
false positives and false negatives) where the prevalence of disease also differs between subpopulations.
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costs of genotyping decreased, hypothesis-free scanning of the genome using association

analysis became feasible. Genome-wide association studies (GWAS) subsequently became

one of the most popular methods with which to carry out gene mapping for complex

disease; these are discussed below.

2.4 Genome-wide association studies (GWAS)

2.4.1 Overview

As mentioned previously, the GWAS design has to date been the most widely used method

to identify variants associated with complex disease. The conventional GWAS tests in-

dividual SNPs, genome-wide, for evidence of association; this is shortened to single-SNP

GWAS in the following text. The alternative method of LDU-based gene mapping was

used to generate data for this current study. To compare the strengths and limitations of

these two methods, the assumptions and design of the single-SNP GWAS are described

below, including the common disease, common variant (CD/CV) hypothesis, indirect

genotyping and imputation. Following this, Section 2.4.3: GWAS of T2D will review

the published T2D GWAS, which is followed by Section 2.4.4: Trans-ethnic GWAS

and defining replication. The limitations of single-SNP GWAS are discussed later in

Section 2.6: Missing heritability.

2.4.2 GWAS: the design

GWAS are typically carried out by genotyping genetic markers using genotyping arrays

for large case-control cohorts. The indirect genotyping approach illustrated in Figure 3

is used such that an informative subset of markers can be genotyped in order to capture

information about unobserved genotypes in high LD (Collins et al., 1997; Johnson et al.,

2001; Carlson et al., 2004a,b). Thus, exploiting LD to reduce the number of genotyped

variants allowed for larger sample sizes and greater power25 (Gabriel et al., 2002; Con-

sortium et al., 2005). Early predictions for the number of genotyped SNPs required to

capture the inheritance of all common variants ranged between 300,000 and 1 million,

25Crucially, the increase in power applies only to variants which are in high LD with markers.
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depending on the population (Kruglyak, 1999; Gabriel et al., 2002; Hapmap, 2003). At

this time, 1.42 million SNPs were reported (Sachidanandam et al., 2001) and this was

predicted to rise to 10-15 million SNPs (minor allele frequency, MAF >1%) (Botstein and

Risch, 2003; Kruglyak and Nickerson, 2001). By 2005, ∼1.5 million SNPs were published

by the International HapMap Consortium (Hinds et al., 2005) and this increased to ∼8

million SNPs with a MAF >5% and ∼12 million SNPs with a MAF between 0.5% and

5% reported by the 1000 Genomes Project (Consortium et al., 2015a).

Marker SNPs are required to be in high LD with a causal variant in order to capture its

association with disease. The placement of markers was highly influenced by both the

common disease, common variant (CD/CV) hypothesis and the observation of haplotype

blocks. The CD/CV hypothesis states that complex traits result from the additive small

effects of common variants26 found frequently across the population (Risch and Merikan-

gas, 1996; Cargill et al., 1999; Chakravarti, 1999; Reich and Lander, 2001). As a result,

markers were selected to be in high LD with common SNPs27. The debates and criti-

cisms surrounding this hypothesis, including the contribution of rare and low-frequency

variants, are discussed in Section 2.6: Missing Heritability. Haplotype blocks are

extended blocks of variants in high LD which persist through a population due to little

to no historical recombination (Daly et al., 2001); blocks of high LD typically extend

for 10s of kilobases (kb) (Reich et al., 2001). In theory, a marker will capture or ‘tag’

all other common variants on the same haplotype. The placement of markers on early

GWAS arrays was informed by the International HapMap Project (Gabriel et al., 2002;

Hapmap, 2003; Consortium et al., 2005), which aimed to map common shared sequences

of extended LD across diverse populations.

An extension to the indirect genotyping approach is imputation, in which genotyped

markers are used to predict missing genotypes using out-of-sample reference panels. This

effectively increases the number of ‘observed’ genotypes which can be tested for associa-

26Common variants are defined as variants with a population minor allele frequency, MAF, of >1% or
>5% depending on the source.

27In addition to the CD/CV hypothesis, capturing common variants as opposed to rare variants allowed
a more straightforward and convenient design for high-throughput, indirect genotyping.
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tion. Drawn from the same population, a larger number of variants are genotyped in an

independent cohort for use as a reference panel. A missing genotype can then be imputed

in a case-control GWAS based on the frequency with which it is detected together with

the nearby markers in the reference panel. Imputation facilitates greater commensura-

bility between independent genotyping platforms for meta-analysis by imputing variants

present on other arrays. The confidence or quality of imputation decreases when there

is less LD between a variant and the genotyped markers, but improves when reference

panels capture more variation using denser genotypes and larger sample sizes.

Following genotyping, individual SNPs are tested for evidence of disease association, typ-

ically using the single-marker regression (SMR) to regress genotype against case-control

status or a quantitative trait28, with optional covariants including age, sex and BMI. The

test of association is fitted to an inheritance model which can either be recessive, addi-

tive or dominant, with the genotypes coded as shown below. The most commonly used

model is the co-dominant model, since this offers the most consistent power when the true

inheritance is non-additive (Lettre et al., 2007).

AA Aa aa
Recessive 0 0 1
Additive 0 1 2
Dominant 0 1 1

SMR was shown to increase power over the conventional Cochran-Armitage test (Dizier

et al., 2017), which combines allele frequencies in a contingency table and calculates a

trend-test statistic similar to a Pearson χ2 statistic.

Based on the number of estimated SNPs and the correlated LD structure between them,

Risch and Merikangas (1996) estimated that there would be approximately one million

independent tests of association in a GWAS. The p-value from each test represents the

probability of observing the resulting test statistic given that the null hypothesis (no

association) is true. A conventional p-value threshold of 0.05 represents a 5% probability

28Alternative methods proposed included haplotype or multimarker tests of association and pooled
analysis; these are reviewed elsewhere (Carlson et al., 2004a; Botstein and Risch, 2003)
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of observing a significant test despite there being no actual association, hence a total

of 50,000 tests would be expected to be false positives for 1 million independent tests.

There are several methods used to correct for this ‘multiple testing problem’. These

include the Bonferroni-correction which controls the family-wise error rate (FWER) to

achieve a probability of no more than one false positive. The significance level is divided

by the number of independent tests, making the new p-value threshold 0.05/1,000,000

= 5×10−8 (Risch and Merikangas, 1996). Several less stringent thresholds have been

suggested, such as 5×10−5 suggested by Colhoun et al. (2003) to improve replication

rates hindered by publication bias, chance, and inadequate sample sizes. Control of type

I error rates (false positives) can also be achieved using the false discovery rate (FDR)

introduced by Benjamini and Hochberg (1995), which represents the expected proportion

of false positives out of all the statistically significant results for a specified significance

threshold. For example, significant SNPs may be identified using the q-value proposed by

Storey (2002) which corrects based on FDR (Storey et al., 2003; Storey and Tibshirani,

2003). 5×10−8 is the widely accepted GWAS threshold29.

2.4.3 GWAS of T2D

The published T2D GWAS are briefly reviewed below, including their findings and the

evolving methodology. Sample sizes are highlighted in bold for easy comparison with

the LDU-based study of Lau et al. (2017), in which 111 T2D loci were replicated at

genome-wide significance in a sample of 5,800 T2D cases and 9,691 controls.

In the first T2D GWAS, Sladek et al. (2007) genotyped a French cohort of 694 T2D

cases and 669 healthy controls (Sladek et al., 2007). The study replicated a known

signal at the TCF7L2 locus and reported two novel loci, which were themselves replicated

by the Icelandic company deCODE (Steinthorsdottir et al., 2007). In the same year, coor-

dinated publications from the UK Wellcome Trust Case Control Consortium (WTCCC),

the Finland-United States Investigation of NIDDM Genetics (FUSION) and the Diabetes

29which assumes a high proportion (over 99%) of the total genomic tests will be consistent with the
null hypothesis of no association. Where this is not true, for example with gene expression arrays (where
the proportion of null tests may be nearer two thirds), the FDR can be used to introduce less stringent
significance thresholds while still controlling the Type I error rate.
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Genetics Initiative (DGI) together brought the number of independent, replicated GWAS

signals to a total of five (Consortium et al., 2007b; Scott et al., 2007; Saxena et al., 2007).

Of these, the WTCCC genotyped the largest number of cases at 1,924 T2D cases (Con-

sortium et al., 2007b; Zeggini et al., 2007). In 2008, the DIAGRAM Consortium (Diabetes

Genetics Replication and Metaanalysis) combined data from WTCCC, FUSION and DGI

enabling a larger sample size of 4,549 T2D cases and 5,579 controls (Zeggini et al.,

2007). This meta-analysis imputed up to ∼2.2 million common SNPs using the HapMap

phase II reference panel, which was based on 60 European individuals genotyped for over

3 million SNPs (Consortium et al., 2007a)30. A total of six new loci were identified.

Despite a total of 19 loci robustly associated with T2D (McCarthy and Zeggini, 2009),

Manolio et al. (2009) reported that only 6% of the estimated T2D heritability could

be accounted for (T2D heritability is described in Chapter 1, Section 1.3.1: T2D

heritability and the proposed explanations for this ‘missing heritability’ are discussed in

detail in Section 2.6: Missing heritability). Several studies reported that additional

heritability could be explained by including variants of small effect which failed to reach

genome-wide significance, arguing in favour of larger GWAS to capture this ‘hidden’

heritability (Gibson, 2010). Denser genotyping arrays, denser imputation reference panels

and consistent study designs31 were also expected to capture more variation (De Bakker

et al., 2008; McCarthy et al., 2008; Pe’er et al., 2008).

By 2011, a total of 44 loci had been associated with T2D (Wheeler and Barroso, 2011;

Billings and Florez, 2010; Imamura and Maeda, 2011)32, of which 12 loci were reported

in an expanded European meta-analysis of 8,130 T2D cases and 38,987 controls

from the DIAGRAM+ Consortium, now comprising an additional five cohorts (Voight

30HapMap phase II genotyped approximately one SNP every kilobase and was estimated to contain
between 25-35% of all common SNPs (MAF ≥0.05) (Consortium et al., 2007a).

31Best practices included consistent subject ascertainment, marker selection and array design, analysis
methods, validation, quality control, replication and the use of 5×10−8 as a threshold for genome-wide
significance, as well as the replication of novel signals in at least one independent cohort.

32Billings and Florez (2010); Imamura and Maeda (2011) also list 24 SNPs associated with continuous
glycemic traits. GWAS of glycemic traits are not the focus of this section and are reviewed elsewhere
(Marullo et al., 2014)
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et al., 2010). Up to 2.4 million SNPs were imputed (MAF >1%)33 and six of the 12 were

reported to be detected ‘wholly or predominantly’ from imputed data. However, ∼90%

of T2D heritability remained unaccounted for (Imamura and Maeda, 2011). Further

improvements, including more trans-ethnic studies (see Section 2.4.4: Trans-ethnic

GWAS and defining replication) and a focus on low frequency variants were called

for (Imamura and Maeda, 2011; Wheeler and Barroso, 2011; Visscher et al., 2012a).

In 2010, the pilot phase of the 1000 Genomes Project provided the locations and fre-

quencies of ∼15 million SNPs, following low-coverage sequencing of 179 genomes and

high-coverage sequencing of 697 exomes (Consortium et al., 2010a). The 1000 Genomes

data improved the accuracy of imputation compared to the HapMap reference panel. For

example, Huang et al. (2012) detected one additional significant SNP absent from the orig-

inal WTCCC phase 1 publication (Consortium et al., 2007b)34. Using 1000 Genomes data,

it was estimated that previous arrays had captured <60% of common variants (Sanghera

and Blackett, 2012). Denser genotyping arrays were developed, as well as custom arrays

which included a range of allele frequencies designed for the replication and fine-mapping

of previously identified loci.

Two subsequent GWAS by Saxena et al. (2012) and Morris et al. (2012) used custom

arrays and both reported evidence of independent, secondary signals at several T2D loci,

providing clear examples of allelic heterogeneity, in which variants arise independently

at the same locus to potentially disrupt the same functional unit. The Morris et al.

study (‘DIAGRAMv3’) meta-analysed 12,171 T2D cases and 56,862 controls to

discover ten new loci using the custom cardiometabolic chip (Metabochip), designed using

1000 Genomes Project data to genotype cardiometabolic trait-associated loci, of which

21,774 SNPs were at previously identified T2D loci. The Metabochip was estimated

to capture ∼90% of common SNPs (MAF >5%) and 60% of lower-frequency variants

(1%> MAF <5%) at the target loci, compared to ∼77% and ∼32% using HapMap data,

33One of the eight stage 1 cohorts genotyped ∼500,000 SNPs on an Illumina bead array, with the rest
genotyping <400,000 SNPs.

34The total of four significant SNPs is in comparison to the 98 genome-wide significant and replicated
T2D locations detected in the same data by Lau et al. (2017) using LDU-based gene mapping.
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respectively35.

In 2014, Mahajan et al. published seven novel loci from a trans-ethnic meta-analysis of

26,488 T2D cases and 83,964 controls, combining DIAGRAM with East Asian, South

Asian, Mexican and Mexican American meta-GWAS. Each imputed up to 2.5 million

SNPs (MAF >1%) using HapMap reference panels (Consortium et al., 2007a, 2010b). By

2015, ∼153 variants had been associated with T2D, including through targeted association

studies and exome-sequencing (Prasad and Groop, 2015). In 2017, Scott et al. carried out

a European meta-analysis of 26,676 T2D cases and 132,532 controls, imputing over

12 million SNVs36 using new 1000 Genomes data37. 13 novel SNPs were identified and

replicated. The authors reported no significant associations with low-frequency alleles,

despite a reported study power of 80% to detect variants with MAF of 0.5%, 1% or

5% with odds ratios of 1.80, 1.48 and 1.16, respectively. In the same year, Zhao et al.

(2017) reported 13 novel loci38 following the analysis of 73,337 T2D cases and 192,341

controls split between European and South Asian ancestry, imputing SNPs with >1%

MAF using 1000 Genomes. Xue et al. (2018) later detected significant association at a

total of 139 common and 4 rare variants in a total of 62,892 T2D cases and 596,424

controls. Xue et al. (2018) imputed over 5 million SNPs (MAF >1%).

An improved European reference panel of >39 million SNPs (MAF ≥0.1%) was published

by the Haplotype Reference Consortium (HRC), combining low-coverage WGS data from

32,488 individuals (McCarthy et al., 2016). McCarthy et al. demonstrated improved

accuracy when imputing using the HRC vs 1000 Genomes and more recently, Belsare

et al. (2019) reported that the low-coverage 1000 Genomes data failed to reliably impute

35Morris et al. suggest that their results favoured the CD/CV hypothesis. Notably, the Metabochip
fine-mapped loci previously found by GWAS optimised for the detection of common variants. Therefore it
should be considered that the target loci may predominantly be driven by common variants. Furthermore,
Morris et al. excluded variants with a MAF <1% from their study.

36Single nucleotide polymorphisms (SNPs) is used to refer to polymorphic loci with common variants,
whereas single nucleotide variants (SNVs) includes low-frequency and rare variants which are not observed
to be polymorphic in the population.

37This included ∼38 million SNPs, 1.4 million indels and >14,000 larger deletions from the sequencing
of 1,092 human genomes (Consortium et al., 2012a) of which 3.9 million had a MAF between 0.5 and 5%

38The authors report 16 novel loci, but as noted in a footnote of the Zhao et al. (2017) paper, Scott
et al. (2017) published while the manuscript was under review and detected three of the 16 loci.
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rare variants, advocating the denser HRC panel for imputation in European cohorts39.

The HRC reference panel was used by Mahajan et al. (2018) to impute ∼27 million

variants in a meta-analysis of 74,124 T2D cases and 824,006 controls, of which ∼21

million variants had a MAF <5%. Mahajan et al. reported 243 genome-wide significance

loci (231 in a BMI-unadjusted analysis and 152 in a BMI-adjusted analysis), of which

135 were reported to be novel. 403 distinct signals were detected across the total loci,

demonstrating the expected allelic heterogeneity. 56 low-frequency and 24 rare T2D-

associated variants were detected, including 14 with odds ratios >2.

Other recent GWAS include those by Suzuki et al. (2019) and Spracklen et al. (2020)

who analysed individuals of Japanese and East Asian ancestry, respectively. Suzuki et al.

reported 28 new loci from the analysis of 36,614 T2D cases and 155,150 controls,

while Spracklen et al. meta-analysed 77,418 T2D cases and 356,122 controls to

identify 301 distinct signals at 183 loci, of which 61 loci were novel. The most recent T2D

GWAS was published by Vujkovic et al. (2020), who reported the results from a multi-

ethnic meta-analysis of 228,499 T2D cases and 1,178,783 controls. The authors

detected 568 significant variants, as well as 25 ancestry-specific variants, of which 286

were reported to be novel. The loci were estimated to explain 19% of T2D risk. Variants

with MAF >0.1% in Europeans and >1% in other cohorts were included. The authors

observed that the 286 novel SNPs had smaller average effect sizes than replicated SNPs,

likely due to the increased sample size and power to detect small effects. Consistent

with previously observed allelic heterogeneity, Vujkovic et al. reported 233 conditionally

independent SNPs surrounding 49 novel and 108 replicated SNPs in Europeans.

2.4.4 Trans-ethnic GWAS and defining replication

The LDU-based study of Lau et al. (2017) included a trans-ethnic analysis of two European

and one African American cohorts. This section will describe the advantages of trans-

ethnic analysis and will provide a brief overview of the trans-ethnic GWAS and GWAS

39Notably, the HRC reference panel also largely used low-coverage WGS data, removing sites with a
minor allele count <5 and calculating genotype likelihoods, which may also impact the accuracy of very
rare variant calls.
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for T2D which have been carried out using African American individuals. For direct

comparison, Lau et al. (2017) used LDU-based gene mapping to replicate 93 T2D loci

in 956 African American T2D cases and 1,029 controls. 57 loci were individually

genome-wide signifiant in the African American cohort.

Trans-ethnic GWAS can aid locus discovery by exploiting population-specific LD patterns.

LD is influenced by multiple population parameters including the number of generations

of meiotic recombinations (Campbell and Tishkoff, 2008; Pengelly et al., 2015; Vergara-

Lope et al., 2019b). As a result, younger populations with more extensive LD such as

Europeans are useful for locus discovery, since a causal variant is more likely to be tagged

and imputed correctly. Older populations with LD breakdown such as Africans are useful

for fine-mapping, providing a narrower search space since markers will be in high LD

with fewer variants. Improved power and resolution can be achieved by increasing sample

size in a multi-ethnic analysis, while a smaller number of variants will be consistently

associated with disease due to the different LD patterns (assuming the causal variant is

shared across populations, i.e. is cosmopolitan) (Cooper et al., 2008; Zaitlen et al., 2010;

Rosenberg et al., 2010; Li and Keating, 2014; Mahajan et al., 2014a). Novel loci can be de-

tected due to differences in allele frequencies and effect sizes, including population-specific

disease loci40. These may also implicate distinct aetiologies, since there is evidence that

T2D in European, Finnish and American populations is characterised by insulin resis-

tance (Elmansy and Koyutürk, 2019), while Arab populations associate risk with obesity

(Abuyassin and Laher, 2015) and East Asian populations with β-cell function (Narayan

and Kanaya, 2020). The incidence of T2D also differs between populations (Spanakis

and Golden, 2013), being reported at 2.4-fold and 1.5-fold greater in African American

women and men, who have an average of 80% African ancestry and 20% European an-

cestry (Brancati et al., 2000), compared to white individuals.

Some limitations of trans-ethnic GWAS include potential population substructure or ad-

mixture which can cause spurious associations, while less LD equates to more independent

40A classic example is the KCNQ1 locus first identified in East Asian GWAS due to a MAF of 40%
compared to 5% in Europeans causing significant difference in statistical power (McCarthy, 2008).
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SNPs and a greater multiple testing burden (Pe’er et al., 2008). Early arrays were also

designed using reference panels of predominantly European ancestry and captured sig-

nificantly less variation in African populations compared to European populations, for

example (Barrett and Cardon, 2006). Increasingly sophisticated methods for genotyping,

imputation and meta-analysis have gradually improved gene mapping in diverse popu-

lations, including through denser and custom arrays (Charles et al., 2014; Wang et al.,

2013; Harlemon et al., 2019). One particular complication of trans-ethnic GWAS is the

replication of lead SNPs, which can differ due to population-specific LD even if the causal

variant is shared41. Accurate imputation also requires population-specific reference pan-

els (Teo et al., 2010). It has been widely acknowledged that a lack of replication does

not guarantee that a signal is population-specific (Fu et al., 2011; Kato, 2012; McCarthy

et al., 2008; Visscher et al., 2012a). Alternative approaches used to define replication

include exact replication: nominal significance of the same lead SNP, often p-value <0.05,

local replication: significance of the same lead SNP or any SNP in strong LD, and local

transferability: the significance of any SNP within a pre-defined physical distance (Clarke

et al., 2007; Charles et al., 2014; Ng, 2015). Local replication greatly improves replication

rates over exact replication by accounting for differences in LD structure (Shriner et al.,

2009)42. It should be noted that exact and local replication assume that a signal is driven

either by the same causal variant or variants on the same haplotype, whereas local trans-

ferability may detect allelic heterogeneity of different causal variants disrupting the same

functional element; a gene or enhancer for example.

LDU-BASED GENE MAPPING AND AFRICAN-AMERICAN GWAS

A limited number of T2D loci have been identified or replicated in African Americans to

date. This may be attributed to the less extensive LD, allelic heterogeneity and different

allele frequencies (Ng, 2015), as well as the accuracy of imputation and variant calling

(Rosenberg et al., 2010; Huang et al., 2009). For example, Ng et al. (2014) mapped five

41The independent lead SNPs may be in high LD with the causal variant in each population, but may
not be in LD with each other.

42The term ‘transferability’ may also refer to the same direction of effect rather than significant repli-
cation (Shriner et al., 2009; Mahajan et al., 2014a).
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significant T2D loci in an African-American meta-analysis consisting of 8,284 cases and

15,543 controls. In the recent T2D GWAS published by Vujkovic et al. (2020), which

included a meta-analysis of 228,499 T2D cases and 1,178,783 controls including

19.5% African Americans, a total of 21 significant T2D-associated SNPs were reported in

African Americans including three which were population-specific.

By comparison, Lau et al. (2017) used LDU-based gene mapping to map 57 loci in

965 T2D cases and 1,029 controls of African American ancestry at genome-wide

significance. Lau et al. further reported a total of 93 T2D locations which replicated in

African Americans and Europeans based on nominal significance (p-value <10−3) in both

cohorts, co-location within ±100 kb and Bonferroni-corrected genome-wide significance

in a combined meta-analysis. LDU-based gene mapping offers substantial advantages

for trans-ethnic gene mapping, since the model of association incorporates population-

specific LD structure rather than using it post hoc to investigate replication. There is also

a reduced multiple testing burden since each test of association involves multiple markers

(described in detail in Section 2.7: Association mapping using LDU maps).

In conclusion, the analysis of diverse populations has successfully increased the number

of known risk loci and revealed novel disease-associated pathways. Trans-ethnic GWAS

have shown that common T2D risk variants tend to replicate across populations (Waters

et al., 2010), consistent with complex disease being largely driven by shared, common

variants. However, many loci also show population-specific effects, which may be used

to investigate phenotypic heterogeneity, including population-specific risk and prognosis

(Spanakis and Golden, 2013).

2.5 Beyond GWAS: lessons learnt from sequencing

In contrast to the GWAS described in the previous sections, sequencing studies do not

rely on indirect genotyping or imputation and instead directly genotype all variants. They

have been used to successfully map novel risk variants including structural and rare vari-

ants which are not included on arrays, hence revealing novel insights into T2D genetic

architecture and challenging previous conclusions that common variants drive complex
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disease (in addition to the efficacy of the indirect, array-based GWAS design)43 (Morris

et al., 2012). Several sequencing studies for T2D are described below, with particular

focus on the novel findings for which single-SNP tests are underpowered to detect, thus

emphasising the need for alternative methods such as LDU-based gene mapping. Sequenc-

ing studies may be used in hypothesis-free locus discovery by targeting the whole-genome

or whole-exome, while targeted sequence data can be used to fine-map candidate loci

and obtain more accurate effect-size estimates (this is the approach used to fine-map a

candidate T2D NEMG locus in Chapter 5) (Nasykhova et al., 2019).

WHOLE-EXOME SEQUENCING IN T2D

Whole-exome sequencing (WES) studies target only the protein-coding exome, thus re-

ducing costs and allowing for larger sample sizes. WES studies frequently make use of

aggregate tests, which analyse the combined impact of independent (often rare) variants

on pre-defined functional units; most commonly protein-coding genes (Liu and Leal, 2010;

Lee et al., 2014). Aggregate tests, also known as gene-based, variant-set and aggregate

unit tests, are a powerful method with which to detect allelic heterogeneity and effectively

reduce the multiple testing burden by testing multiple variants per test. Methods can be

grouped into collapsing approaches, which compare the numbers of cases and controls

with at least one variant and burden tests, which assess the combined effects of multiple,

often rare variants (Lee et al., 2014; Nicolae, 2016; Povysil et al., 2019)44.

Examples of WES in T2D include that of 20,791 T2D cases 24,440 controls by

Flannick et al. (2019). Gene-level tests reported significant enrichment of rare variants

in cases for four genes, SLC30A8, MC4R, PAM and UBE2NL. The authors highlighted

limitations with array-based GWAS, demonstrating that 95.3% and 74.6% of the SNPs

contributing to the gene-level association could not be imputed using the 1000 Genomes

43While more recent GWAS arrays and reference panels have included increasing numbers of rare
variants, the accurate calling of rare variants is still challenging, see Section 2.6: Missing heritability.

44Of interest is the recent report by Cirulli et al. (2020), in which a gene-based, collapsing rare variant
(MAF <0.1%) approach was used to analyse thousands of traits in over 70,000 exomes from the UK
Biobank and Healthy Nevada Project (HNP). The authors report significant associations driven by al-
leles below the MAF detectable by arrays, including substantial contributions from ultra-rare singletons
(variants found in only one individual).
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and Haplotype Reference Consortium (HRC) reference panels, respectively. Flannick

et al. (2019) acknowledged that more genes would achieve exome-wide significance with a

considerably larger sample size. Further examples include the WES of 574 T2D cases

and 290 controls of Qatari ancestry in which six genes were significantly enriched for low-

frequency, protein-altering mutations (CTNNB1, DLL1, DTNB, DVL1, EPB41L3, and

KIF12 ), although none of the genes were replicated (perhaps being population-specific

variants). WES has also been used to identify rare variants in genes which associate with

the risk of proliferative diabetic retinopathy (Ung et al., 2017; Shtir et al., 2016).

WHOLE-GENOME SEQUENCING IN T2D

Compared to WES, whole-genome sequencing (WGS) is considerably more expensive.

Studies with high-quality WGS are limited to small sample sizes, while larger studies may

reduce costs by carrying out low-coverage sequencing supplemented using genotyping by

array and imputation. However, the importance of whole-genome discovery is emphasised

by the findings from GWAS indicating that the majority of T2D loci are non-coding

(Tak and Farnham, 2015; Fuchsberger et al., 2016). For example, Cirillo et al. (2018)

investigated published T2D GWAS SNPs, of which 98% were non-coding (this is discussed

further in Chapter 3).

In 2014, Steinthorsdottir et al. combined WGS from 2,630 Icelandic individuals with

imputation in a further ∼11,000 cases and ∼276,000 controls to successfully identify sev-

eral novel variants associated with T2D. These included two low-frequency missense mu-

tations in PAM, a rare frameshift mutation in PDX1 and a low-frequency, self-regulatory

variant in CCND2 intron 1. A total of 34.2 million variants were tested, representing a

substantial increase in the number of variants investigated compared with genotyping ar-

rays. More recently, the GoT2D and T2D-GENES Consortia published the results of low-

coverage WGS in 1,326 T2D cases and 1,331 controls, combined with high-coverage

WES in 6,504 T2D cases and 6,436 controls from five ancestry groups, plus genotyp-

ing and imputation in a further 111,548 subjects (Fuchsberger et al., 2016). In total, 26.7

million variants were investigated, including 1.5 million indels and 8,876 large deletions.

57



The authors reported 2.4 million low-frequency SNVs which were poorly tagged by arrays

(r2 <0.3). No genes were significantly enriched for rare or low-frequency variants, however

rare variants were nominally enriched in genes implicated in monogenic diabetes and this

was driven by SNVs with MAF <1% (p-value = 2.8×10−5). A number of genome-wide

significant T2D-associated SNPs were identified, including several novel signals. Fuchs-

berger et al. (2016) observed larger effect sizes for lower frequency alleles, but concluded

that low-frequency variants explained limited heritability compared to common variants.

However, it is important to note that the WGS data in this study consisted of low-coverage

reads at an average of 5× coverage, which was supplemented by genotyping arrays and

imputation. Belsare et al. (2019) recently demonstrated that this approach limits the

accuracy with which rare variants are called. In independent work, Ros-Freixedes et al.

(2018) demonstrated that low-coverage sequence data may cause biases in favour of the

reference allele. WGS was also carried out in 20 large Mexican-American families with

high prevalence of T2D, consisting of 600 individuals. No significant associations were

observed for individual rare variants or for gene-level tests and the authors concluded

that large variations in T2D risk were unlikely to be explained by rare variants with large

effects in these pedigrees.

It is worth noting that gene-based tests may also have limited power. Moutsianas et al.

(2015) demonstrated that common gene-based methods had around ∼5-20% power to

detect loci explaining ∼1% of phenotypic variance in 1,500 cases and 1,500 controls, de-

pending on the genetic architecture (MAF, number of causal variants etc) which increased

to a modest ∼60% in 10,000 individuals.

2.6 Missing heritability

Following over a decade of T2D GWAS, a substantial amount of T2D heritability remains

unexplained. Two recent GWAS have estimated that the total SNPs genotyped in each

respective study explained 18% and 19% of T2D heritability (Mahajan et al., 2018; Vu-

jkovic et al., 2020). A recent study by Willemsen et al. (2015) estimated T2D heritability

at 72% (discussed in Chapter 1: Section 1.3.1: T2D heritability). The popularly
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termed ‘missing heritability’ (Maher, 2008) has fuelled debates regarding the genetic ar-

chitecture of complex disease and remains the focus of various publications (Young, 2019;

López-Cortegano and Caballero, 2019).

Several studies have reported that missing heritability can in fact be explained using all

variants. Wainschtein et al. (2019) recently showed that the heritability of height and

BMI could be entirely recovered using mixed linear modelling of WGS data, with the

classic ‘missing heritability’ explained by rare variants, particularly those in regions of

low LD. These results highlight the need for methods which can map causal variants with

challenging genetic architectures, including low-frequency and rare variants in regions of

low LD.

Commenting on the future use of GWAS, Visscher et al. (2017) noted that no complex

trait had yet shown a plateau of locus discovery with increasing sample size and antic-

ipated further discoveries with larger cohorts, as well as a future shift towards GWAS

using WGS data (discussed in Section 2.5: Beyond GWAS: lessons learnt from

sequencing). A prominent criticism of increasing sample size is that the collective con-

tribution of variants with very small effects (which may require impractical sample sizes

to detect at genome-wide significance) may eventually implicate almost all of the genome,

challenging any useful biological insight (Goldstein et al., 2009). This may be because

almost all genes can be related in one way or another to a subset of core disease-related

genes due to the inter-connection of gene regulatory networks (Boyle et al., 2017). Under

such a model, large-effect, rare variants may offer more insight into core disease genes

(Povysil et al., 2019). With this in mind, an important aim of gene mapping is to identify

core genes and pathways which underlie disease, disease heterogeneity and variable risks of

micro- and macro-vascular complications (Ahlqvist et al., 2018; Udler et al., 2018; Udler,

2019). Alternative gene mapping methods which identify additional, large-effect disease

loci therefore hold promise for providing important insights towards this goal. One of

these methods is LDU-based gene mapping.

The missing heritability has been attributed to many causes, of which different meth-
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ods have different levels of sensitivity to. These include: overestimated heritability,

caused by gene-gene interaction effects (Zuk et al., 2012) or by estimating heritability

for outbred populations using family or twin data (Groop and Pociot, 2014); gene-gene,

gene-environment and non-additive effects, including the genetic nurture effect resulting

from parental genotypes (Kong et al., 2018), sex-specific effects (Small et al., 2018) and

parent-of-origin effects (Lyssenko et al., 2015)45; the epigenome (Ling and Rönn, 2019),

the microbiome (Sandoval-Motta et al., 2017) and the in utero environment (Smith and

Ryckman, 2015); as well as genetic and phenotypic heterogeneity (Groop and Pociot, 2014;

Udler, 2019). Other causes include aspects of genetic architecture which single-SNP tests

of association are underpowered to detect: LD breakdown and inaccurate imputation;

structural variation such as insertions, deletions, copy number and structural variants,

which may not be imputed or tested in array-based GWAS (Mahajan et al., 2018; Vu-

jkovic et al., 2020); and rare variants and allelic heterogeneity. An additional limitation

preventing the detection of significant risk loci is the stringent multiple testing burden.

Several of these are directly addressed by the LDU-based gene mapping followed by tar-

geted sequencing approach used by Lau et al. (2017) and in this study. These are discussed

below.

2.6.1 LD breakdown, rare variants and impuation

Several previous studies have observed that low frequency variants and regions of low

LD are enriched for complex trait heritability (Gazal et al., 2017; Zeng et al., 2018;

Wainschtein et al., 2019). However, it is particularly difficult to map causal variants in

regions of low LD using indirect, single-SNP tests of association, since accurate imputation

relies on high LD with markers. Rare variants are typically in very low LD with common

marker SNPs (Li et al., 2013) and thus indirect genotyping is very inefficient at capturing

rare variant associations, often resulting in underestimated effect sizes and heritability

45Considering interaction effects may also improve the detection of risk loci (Woo and Reifman, 2018).
Jyothi and Reddy (2015) reported two variants which became significantly associated with T2D when
adjusted for various factors including sex and BMI. Keaton et al. (2018) identified a novel risk locus at
the CMIP gene based on the analysis of genetic interactions with an intronic variant within MTNR1B,
which was itself associated with insulin secretion.
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(Yang et al., 2010; Zeng et al., 2018). By extension, rare variants are often imputed

incorrectly (Huang et al., 2009; Marchini and Howie, 2010), including in low-coverage

sequence data (Belsare et al., 2019) (such as in the T2D WGS analysis by Fuchsberger

et al. (2016) or the 1000 Genomes data (Consortium et al., 2015a)). Rare variants may

be surprisingly common46 in regions of LD breakdown since mutation rate is correlated

positively with recombination rate and negatively with LD (Smith et al., 2005; Hellmann

et al., 2005; Spencer et al., 2006; Webster and Hurst, 2012; Arbeithuber et al., 2015;

Halldorsson et al., 2019; Castellano et al., 2020). De novo mutations are also enriched

near recombination events (Besenbacher et al., 2016)47.

Interestingly, patterns of LD are influenced by genomic function. Selection against in-

creased rates of mutations likely drives the observed depletion of recombination hotspots

within genes (McVean et al., 2004; Myers et al., 2005; Mackiewicz et al., 2013; Liu et al.,

2017), particularly highly conserved genes (Liu et al., 2017; Castellano et al., 2020). Ge-

netic diversity is greater at regions with more recombination since selection can act on

independent variants rather than on haplotype blocks48. Consistent with this, there are

low levels of LD (high recombination rates) surrounding genes which are thought to benefit

from increased allelic diversity; these include the immune response and sensory percep-

tion (Chuang and Li, 2004; Smith et al., 2005; Sun et al., 2011; Gibson et al., 2013).

The LD surrounding genes relating to T2D will be an intriguing area of further study,

since metabolic pathways involved in evolutionary adaptation may also have benefitted

from higher levels of recombination and increased allelic diversity49. Rare and de novo

mutations may also contribute significantly to phenotypes with a large mutational target,

defined as the proportion of the genome which contributes to trait heritability (Lupski

46For example, 93.5% of the exonic variants found ∼45,000 T2D cases and controls had a MAF <5%
(Flannick et al., 2019). This may be explained by relaxed selection pressures due to improved life
expectancy, increasing mutation rates with increasing parental ages and accelerating population growth
(Coventry et al., 2010; Lupski et al., 2011).

47Potentially due to additional rounds of DNA replication, as well as biased gene conversion in which
one allele is more likely to be the donor for recombination (Duret and Arndt, 2008; Berglund et al., 2009).

48known as Hill-Robertson interference (Keightley and Otto, 2006; McVean and Charlesworth, 2000).
49It might also be further investigated whether the relationship between recombination and greater

allelic diversity may differ for pathways involved in nutrition and insulin resistance compared to those
regulating pancreatic β-cell function.
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et al., 2011; Stanley and Kulathinal, 2016). Phenotypes associated with evolutionary

adaptation are also associated with enhancers susceptible to deactivating mutations (Li

et al., 2019), potentially implicating additional non-coding mutations.

Single-SNP tests of association are underpowered to detect rare variants. Purcell et al.

(2003) estimated that a cohort of 1,500 cases and 1,500 controls offered ∼5% power to

detect a variant with MAF = 0.5% and relative risk = 3 at genome-wide significance.

Visscher et al. (2017) noted that a sample size of over one million would be required to

achieve 80% power to detect an association for a variant with 0.001% MAF and odds ratio

>450. This is assuming accurate genotyping, since genotyping errors will cause further

reductions in power (Gordon et al., 2002; Kang et al., 2004). Rare variants are particularly

likely to be imputed incorrectly or called incorrectly from low-coverage sequence data,

non-optimised bioinformatics methods or genotyping arrays (which require multiple data

points to accurately separate genotype clusters) (Huang et al., 2009; Marchini and Howie,

2010; Belsare et al., 2019; Yang et al., 2010; Zeng et al., 2018; Ren et al., 2018; Anderson

et al., 2010; Weedon et al., 2019; Wright et al., 2019). Furthermore, multi-ethnic GWAS

are also unable to increase power for variants which arose after population divergence. As

a consequence, rare variants have particularly underestimated effect sizes and rarely pass

genome-wide significance (Stringer et al., 2011).

Multiple rare and low-frequency variants have been associated with T2D, partly through

array-based GWAS with larger sample sizes and denser reference panels (Mahajan et al.,

2018), but also through gene-based aggregate tests (Bonnefond and Froguel, 2015; Flan-

nick, 2019). Many rare variants observed to contribute to gene-wide significance can not

be accurately imputed (Flannick et al., 2019). Importantly, methods for aggregate tests

are comparatively more advanced for coding compared to non-coding DNA51, despite the

majority of T2D signals being non-coding (Cirillo et al., 2018). This arises from easily

50Notably, the largest T2D GWAS to date included a sample size of ∼1.4 million, but truncated the
analysis for SNPs with a MAF >1% in non-Europeans and >0.1% in Europeans (Vujkovic et al., 2020).

51For a brief review of potential methods used to aggregate and weight variants within non-coding
elements, see Povysil et al. (2019).
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defined gene boundaries, more apparent effects on protein-function52 and the reduced ex-

pense of exome studies. The functional impact of non-coding variation is also difficult

to predict. Enhancer elements, for example, may have different levels of susceptibility to

deactivating mutations (Li et al., 2019). Allelic heterogeneity in regulatory elements may

therefore be expected to explain additional T2D heritability53.

A further problem with imputation arises when haplotype frequencies differ significantly

between cases and controls, since imputation is based on general population reference

panels. Maniatis et al. (personal communication) demonstrated that risk variants identi-

fied using targeted sequence data could not be imputed correctly at three candidate loci,

due to significant differences in haplotype frequencies.

MULTIPLE TESTING THRESHOLD

The conventional genome-wide significance threshold of 5×10−8 remains the subject of

continued debate. Fadista et al. (2016) advocated more stringent thresholds for lower-

frequency variants, since these are present at greater numbers in the genome and a greater

number of tests must therefore be corrected for. Conversely, Irizarry (2017) argued that

lowering the GWAS threshold would save millions of dollars and allow for more true pos-

itives to be identified. Several approaches have been suggested for reducing the multiple

testing burden, such as restricting association analysis to pre-defined candidate regions

or by aggregating SNPs in blocks of high LD (Huang et al., 2007; Wu et al., 2010; Li and

Meyre, 2013; Yoo et al., 2017; Guinot et al., 2018). Eskin (2008) suggested that LD infor-

mation may be used to set significance thresholds which are specific to each marker and

the number of variants they correlate with, while Kaler and Purcell (2019) proposed an

alternative p-value correction based on the estimated heritability of the phenotype.

52Coding mutations can be weighted based on predicted functional impact, for example gene sub-
regional intolerance (Hayeck et al., 2019) or gene-based effect size (Lali et al., 2020).

53In their WGS study of T2D, Fuchsberger et al. (2016) tested the burden of rare variants in pre-
defined pancreatic enhancers, reporting no evidence of enrichment. However, the WGS cohort included
2,657 combined cases and controls, offering only limited power (Moutsianas et al., 2015). Furthermore,
the approach of supplementing low-coverage WGS data with imputed arrays may not achieve high levels
of accuracy for calling rare variants (Belsare et al., 2019).
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2.7 Association mapping using LDU maps

In single-SNP GWAS, LD is typically used to design genotyping arrays by placing marker

SNPs to capture common variation, or to test the local replication of significant lead

SNPs post hoc. Described in this section is a gene mapping method developed by Ma-

niatis et al. (2004) in which LD is instead incorporated into the test for association. A

likelihood framework is used to test multiple genotyped markers at once, both avoiding

imputation and reducing the multiple testing burden. As opposed to methods which claim

to incorporate LD by collapsing variants into ‘blocks’, the method of Maniatis et al. cap-

tures information from multiple genotyped SNPs, utilising the underlying LD structure

and observed patterns of association to estimate the location of a causal variant. LD

information is obtained from high-resolution population-specific genetic maps measured

in linkage disequilibirum units (LDU). The construction, structure and applications of

LDU maps are described in the next section. The use of LDU maps in testing for dis-

ease association is described in Section 2.7.2: LDU-based gene mapping, while the

application of this method to T2D by Lau et al. (2017) is reviewed in Section 2.7.3:

LDU-based gene mapping in T2D. Importantly, data from the Lau et al. study will

be analysed in the following Chapters, which in turn will refer to methods detailed in this

section.

2.7.1 Genetic and LDU maps

Genetic maps are an important tool in association-based gene mapping. Due to LD struc-

ture (described in Section 2.3.2: linkage disequilibrium and association mapping),

nearby variants are inherited together with causal variants on shared haplotypes, causing

all variants in high LD to be observed as associated with disease. This is crucial for indi-

rect genotyping methods, since marker SNPs are only co-inherited with the phenotype if

they are in high LD with the causal variant (assuming the marker is not itself the causal

variant). LD depends on the frequency of recombination and this occurs non-randomly

across the genome. Patterns of LD are captured in genetic maps as units of genetic dis-

tance, such that a large genetic distance corresponds to significant LD breakdown (two
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variants are inherited together less often than two markers separated by a small genetic

distance, even if they are separated by the same number of base pairs).

There are several different types of genetic maps. These include linkage maps, which can

be constructed from current recombination events observed in family data and population-

based maps built using coalescent theory (McVean et al., 2004). LDU maps are con-

structed by modelling the frequency at which alleles are found together across a population

(the extent of LD) and therefore reflect historical recombinations and other population-

specific demographic events which influence LD.

GENETIC LDU MAPS: CONSTRUCTION

In 2002, Maniatis et al. constructed the first genetic map measured in additive linkage

disequilibrium units (LDU)54. Metric LDU maps are constructed using a Malecot model,

first described by Malécot (1948) to model the decline in genetic relatedness of individuals

with increasing geographical distance and later adapted by Collins and Morton (1998) to

model the decline in LD with increasing genomic distance. The relationship between

pairwise SNP association (ρ, see page 65) and physical distance (d) is plotted in Figure

4, to which an exponential decay curve is fitted using the Malecot equation:

ρ = (1 − L)Me−ǫd + L

Where L is the residual association at large distances (the asymptote), M is the intercept,

i.e. ρ at zero distance and ǫ is the exponential decline of association (how steep the curve

is). Empirically observed pairwise SNP association, ρ̂ is calculated below for two example

loci A and B, assuming that b is the rarest allele and DAB = pAB − pApB. The haplotype

frequencies are denoted pAB, pAb, paB and pab and the allele frequencies are pA, pB, pa and

pb. ρ equals 1 when the SNPs are in complete LD.

ρ̂AB =
DAB

pApb

Locus B

B b

Locus A A pAB pAb

a paB pab

54The construction and uses of LDU maps are described according to Maniatis et al. (2002) and also
Chapters 3 and 4 of Collins (2007). 65



Pairwise SNP association (ρ) vs SNP distance (d)
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Figure 4: Theoretical LD between pairs of SNPs, measured as ρ, plotted against the
distance between the SNP pairs (d). The fitted line is estimated using the Malecot
equation as shown below.

The metric ρ was shown by Morton et al. (2001) to be the most efficient metric for mod-

elling the relationship between physical distance and LD compared to other measures

such as D’ or r2, which are in turn more sensitive to the frequencies of the alleles being

measured. LDU map construction requires ρ to be calculated for all SNP pairs using

genotype data from multiple unrelated individuals. LDU are calculated using the expo-

nential decline in association with distance, such that LDU = ǫd. To construct the LDU

maps, the Malecot model is run iteratively to calculate the LDU between each pair of

adjacent SNPs (e.g. A-B, B-C, C-D and D-E in the example below). LDU is additively

measured as a sum of the LDU between the adjacent SNP pairs.

Figure 5 shows an example LDU map, adapted from the example shown by Collins (2007)

and Tapper (2007). LDU for the ith interval is calculated as ǫidi, where di is the distance

between the two adjacent SNPs and ǫi is the Malecot parameter for that SNP interval.

To calculate ǫ separately for each interval, the Malecot model is run on the pairwise SNP

association, ρ, and distances, d, for all marker pairs which contain the interval, since these
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between the ith pair and Kρ = χ2/ρ̂2.

GENETIC LDU MAPS: PROPERTIES

LDU steps correspond to sites of recombination

kb

LDU ‘block’

LDU ‘step’

Figure 6: LDU and recombination maps for chromosome 6p21.3 region. This image is
adapted from Zhang et al. (2002) (Figure 2), with recombination data from Jeffreys et al.
(2001). Added notation is shown in red. This early version of the metric LDU map shows
that LDU steps coincide with observed sites of recombination in sperm data.

LDU maps show a ‘step’ and ‘block’ structure which is illustrated in Figure 6, where steps

have a large increase in LDU relative to the physical distance and blocks have no increase

in LDU. Zhang et al. (2002) constructed LDU maps for two datasets capturing sites

of recombination (Jeffreys et al., 2001) and low haplotype diversity (Daly et al., 2001),

confirming that LDU steps have a striking overlap with recombination events while blocks

align to regions of low haplotype diversity and extended LD. Figure 6 shows a comparison

by Zhang et al. (2002) of LDU with recombination frequency available at high resolution

from the analysis of sperm by Jeffreys et al. (2001). This study confirmed that LDU

maps can accurately capture recombination hotspots and LD structure, despite the large
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stochastic variation observed in population data.

LDU maps compared to a high-resolution linkage map
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Figure 7: European LDU and linkage maps plotted for a 47 kb region at the chr3q22.1
T2D locus. LDU maps are based on genotype data from HapMap (Lau et al., 2017) and
whole genome sequence (WGS) data (Jabalameli et al., 2019). The rutgers v.3 linkage
map has been smoothed using local quadratic curves with interpolated SNP positions
(there is no cM increase within this region on the non-smoothed map, demonstrating its
limited resolution) (Kong et al., 2004; Matise et al., 2007). Genotyped markers are shown
as crosses.

LDU maps have several important strengths. Firstly, high resolution is achieved since

many historical recombinations are captured by assessing the frequency with which alleles

are found together across a population. This difference in resolution is illustrated in Figure

7, which plots LDU and linkage maps for a 47 kb region at the chr3q22.1 T2D locus (this

locus is fine-mapped in Chapter 5). Two separate LDU maps are shown, one constructed

using HapMap release 28 genotypes for 56 individuals (∼2.2 million markers) (Lau et al.,

2017) and a second constructed more recently using whole-genome sequence (WGS) data

for 454 individuals (∼7.5 million markers) (Pengelly et al., 2015; Vergara-Lope et al.,
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2019b). The HapMap LDU map is used for analysis in the following Chapters, although

it is worth noting that the greater density of the WGS map allows additional resolution

to be captured (96 markers are genotyped within the 47 kb region plotted in Figure 7

compared to 19 in the HapMap map). The high-resolution rutgers cM linkage map is also

shown, built using ∼28,500 markers (Kong et al., 2004; Matise et al., 2007). Notably, the

linkage map includes only two genotyped markers within the genomic segment region in

Figure 7.

Secondly, LDU maps indirectly model all historical population demographic events which

influence observed LD, including mutation, selection, effective population size, popula-

tion age, bottlenecks and founder effects, allele frequencies, outbreeding, gene conversion

and genetic drift (Zhang et al., 2004). These population-specific LD structures influ-

ence the tagging of causal variants in GWAS. Therefore while sperm recombination maps

accurately capture recombination events, LDU maps capture allelic association at a pop-

ulation level which is required for association mapping using population data. On this

note, population-specific LDU maps can be generated and used to study similarities be-

tween different populations such as recombination hotspot concordance (Gibson et al.,

2005). Other uses of LDU maps include to investigate evidence of selection as well as

population parameters such as divergence and estimated effective population size. LDU

maps may identify novel recombination hotspots (Collins et al., 2001) (with the caveat

that some recent hotspots may be missed and others may no longer be active (Jeffreys

and Neumann, 2002; Jeffreys et al., 2005)). High-resolution LDU maps can be used to

inform the selection of genotype markers, with high densities of markers in regions of LD

breakdown. More recently, LDU maps were used to investigate how LD differs depending

on the genomic context (Sved and Hill, 2018; Vergara-Lope et al., 2019a).

2.7.2 LDU-based gene mapping

A major application of genetic LDU maps is in disease gene mapping. In 2004, Maniatis

et al. described positional cloning by linkage disequilibrium55; a gene mapping method

55This method is referred to as LDU-based gene mapping throughout this thesis.
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which estimates the location of causal variants using LDU maps. The same Malecot

model is adapted to model the association between each marker and a single phenotype

rather than marker-by-marker association, as shown in Figure 8. The phenotype can be

either dichotomous or continuous, such as disease status or gene expression levels. If a

causal variant is present, the magnitude of trait association is expected to decline for

SNPs which are increasingly further away, as a function of the declining LD. Distance is

therefore measured in LDU. The Malecot equation is applied as:

y = (1 − L)Me−ǫ|Si−S| + L

Trait association vs distance to the causal variant
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Figure 8: The relationship between trait association and the absolute distance between
the causal variant of unknown location (S) and the ith SNP of known location (Si), shown
as |Si − S|. There is no association under the Null hypothesis, H0. Under the alternate
hypothesis, H1, the trait-SNP association decreases as the distance from the causal variant
increases.

where y is a measure of trait association, such as a z-score of association with disease or

a β-regression coefficient for a continuous trait. |Si− S| represents the absolute distance

between the ith SNP of known location (Si) and the causal variant of unknown location

(S). S is freely estimated along with the M , L and ǫ parameters.
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The model effectively tests for a significant deviation from the Null hypothesis of no asso-

ciation in which the y-intercept, M = 0 (H0), and the alternative hypothesis of association,

M > 0 (H1); these are shown in Figure 8. Both models are fitted and a χ2 statistic56 is

calculated by comparing the composite likelihood of both models. For regions with signifi-

cant evidence of trait association, the χ2 will be large and optimal estimates of the model

parameters will be returned for the best fit model, including the likely location of the

causal variant (S). Therefore, the LDU-based test of association provides the estimated

location of a causal variant (S), rather than a lead SNP as is the case with conventional

single-SNP GWAS.

The LDU-based Malecot model has several important advantages compared to conven-

tional single-SNP GWAS. Firstly, multiple genetic markers and underlying LD structure

are used to inform gene mapping; this information is lost when analysing single-SNPs.

Others include:

Improved power in regions of low LD: By simulating individual SNPs one at a time

to act as the causal variant and using the remaining SNPs to estimate their location,

Maniatis et al. (2004) showed that SNP positions in LDU rather than physical coordinate

(kb) improved the model accuracy, since kb positions fail to consider the step and block

structure of allelic association (Maniatis et al., 2002). The greatest improvement was seen

in a region of LD breakdown. This is further demonstrated in original analysis presented

in Figure 10 on page 76, showing that ŜT2D from Lau et al. (2017) are surrounded by

significantly greater LDU (LD breakdown) compared to GWAS lead SNPs mapped using

dense imputation. LDU-based gene mapping also avoids the risk of incorrect imputation

in regions of LD breakdown by using only directly genotyped SNPs.

Reduced multiple testing burden: The model is fitted once per analytical window,

which substantially reduces the multiple testing burden compared to GWAS which test

every SNP individually. For example, Lau et al. (2017) divided the genome into ∼4,800

analytical windows, making a stringent genome-wide significance threshold equal to ap-

56For small candidate regions, an F -test is more efficient than a χ2 test.
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proximately 1×10−5 (0.05/5,000). The significance threshold in single-SNP GWAS is set

at 5×10−8 to correct for ∼1 million independent tests (Risch and Merikangas, 1996). A

less stringent threshold, due to the reduced burden of multiple testing, makes it more

likely that a larger number of true positives will achieve genome-wide significance.

Integrating independent and trans-ethnic data: Replicating lead SNPs in trans-

ethnic GWAS is complicated by different LD structures, meaning that lead SNPs may

differ between populations and may themselves not even be in LD, despite tagging the

same causal variant. In comparison, LDU-based mapping incorporates population-specific

LDU maps and outputs accurate estimates of causal variant locations. Furthermore,

the increased power and lower multiple-testing burden makes it more likely that causal

loci will achieve genome-wide significance in independent studies, allowing for confident

replication.

The LDU-based methods of Maniatis et al. (2004) have since been applied to several

complex diseases, including to map novel loci and refine estimates for Crohn’s disease

(Elding et al., 2013) and for T2D (Lau et al., 2017), described in detail below.

2.7.3 LDU-based gene mapping in T2D (Lau et al., 2017)

The Lau et al. (2017) study had three main aims, (1) to map the locations of T2D risk

loci (ŜT2D) in Europeans and African Americans, (2) to map variants which regulate gene

expression levels in adipose tissue, otherwise known as expression quantitative trait loci

(eQTL)57 (ŜeQTL) and (3) to assign target genes to T2D loci based on the assumption

that co-locating ŜT2D and ŜeQTL represent the same causal variant(s). The study in-

cluded African Americans (AA) since few T2D loci had been identified and replicated for

this informative population in which the prevalence of T2D is almost twice that of Euro-

peans. African populations may also provide more accurate location estimates, since LD

is generally less extensive in this older population (discussed in Section 2.4.4: Trans-

ethnic GWAS and defining replication). The use of population-specific LDU maps

57eQTL are expression quantitative trait loci, defined as genetic loci where genotype associates with
gene expression levels. These are described in more detail in Section 3.2.2.
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also provided a powerful framework to test for shared risk loci.

(1) MAPPING T2D LOCI (ŜT2D)

Dataset # cases # controls Array (# of SNPs)

(1) European (WTC) 1,925 2,938 Affymetrix (∼500,000)

(2) European (MTC) 2,910 5,724 Metabochipa (∼200,000)

(3) African American (AA) 965 1,029 Affymetrix (∼1 million)

Table 1: European and African American T2D case-control datasets analysed by Lau et al.
(2017). aThe Metabochip is a custom array designed to capture genetic loci previously
implicated in metabolic, cardiovascular and anthropometric traits (Voight et al., 2012).

Table 1 shows the T2D case-control datasets for two independent European cohorts and

one African-American cohort. The European datasets (1) and (2) were obtained from

the Wellcome Trust Case Control Consortium (WTCCC) phase I (Consortium et al.,

2007b) and phase II (Voight et al., 2012), respectively. The African American dataset

(3) was obtained from the National Institute of diabetes and Digestive and Kidney Dis-

eases (NIDDK) (Palmer et al., 2012). The LDU-based Malecot model was applied to

each dataset using population-specific LDU maps constructed from HapMap, on 4,800

analytical windows with a minimum length of 10 LDU comprising the autosomal genome.

Replicated loci were defined where two or more datasets gave ŜT2D within 100 kb of each

other58 and if the locus passed Bonferroni-corrected significance in meta-analysis (p-value

<10−5). Figure 9 plots the chr3q22.1 T2D locus and shows two significant ŜT2D from the

European WTC and MTC datasets; these are located 7 kb apart, or 0.086 LDU apart

on the HapMap LDU map. This locus is European-specific since the AA dataset did not

return a significant ŜT2D.

In total, Lau et al. (2017) mapped 111 novel T2D loci which were replicated in at least

two datasets, of which 93 (84%) were shared between Europeans and African Americans.

Including the replication of previously known loci, Lau et al. mapped 175 significant

T2D loci using a combined sample size of 5,800 T2D cases and 9,691 controls. In

58The use of genetic vs physical distance to define co-location are discussed further in Chapters 3/4.
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LDU and linkage maps at the chr3q22.1 T2D locus

Figure 9: T2D location estimates (ŜT2D) plotted for ∼407 kb at the chr3q22.1 region with
the HapMap LDU map (Lau et al., 2017), WGS LDU map (Jabalameli et al., 2019) and
the smoothed rutgers linkage map v.3 (there is no cM increase within this region on the
non-smoothed map) (Kong et al., 2004; Matise et al., 2007). The T2D locus is European-
specific, with two independent ŜT2D from the European WTC and MTC datasets located
7 kb and 0.086 LDU apart based on the physical and HapMap LDU maps, respectively.

comparison, the single-SNP GWAS by Mahajan et al. (2014a) included 26,488 T2D

cases and 83,964 controls and identified 76 significant loci. The greater number of

loci can be attributed to the greater power of LDU-based gene mapping. This is also

demonstrated by previous single-SNP analysis of the same datasets reporting substantially

fewer results. For example, four significant SNPs were identified in the European WTC

dataset using single SNP analysis (Consortium et al., 2007b; Huang et al., 2012), compared

to 98 significant ŜT2D (Lau et al., 2017).

There are several reasons why LDU-based analysis may identify more disease loci com-

pared to single-SNP analysis, including increased power in regions of LD breakdown. To
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LDU surrounding ŜT2D vs GWAS lead SNPs (±10 kb)
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Figure 10: The LDU distance extending ±10 kb from Lau et al. (2017) ŜT2D (n=111) and
Mahajan et al. (2018) lead SNPs (n=243). Lower LDU corresponds to more extensive LD
while larger LDU reflects a breakdown in surrounding LD.

investigate this, the surrounding LDU was compared for 111 ŜT2D from Lau et al. (2017)

and 243 lead SNPs from Mahajan et al. (2018). The physical coordinates of both ŜT2D

and lead SNPs were extended by ±10 kb and converted to genetic coordinates on the

HapMap LDU map (European). The LDU distances for the surrounding 20 kb intervals

are plotted in Figure 10. ŜT2D are surrounded by significantly higher LDU (p-value =

2.87e-06, Wilcoxon rank sum test) and therefore greater LD breakdown compared to lead

SNPs. This is consistent with LDU-based gene mapping having increased power to map

causal variants in regions of LD breakdown. Notably, 40 of the 111 novel T2D loci from

Lau et al. (2017) have since been replicated in single-SNP GWAS, including 20 reported

as novel sin the most recent T2D GWAS with 228,499 T2D cases using their replication

criteria of ±500 kb (Vujkovic et al., 2020).

76



The chr3q22.1 T2D locus with ŜT2D and ŜeQTL estimates
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Figure 11: European T2D location estimates (ŜT2D) and eQTL location estimates (ŜeQTL)
are plotted for the chr3q22.1 region with the HapMap LDU, WGS LDU and rutgers
linkage maps. Two significant ŜeQTL for the cis-genes ACAD11 and NPHP3 are shown

as examples (other ŜeQTL and genes are not shown for simplicity).

(2) MAPPING eQTL (ŜeQTL) and (3) ASSIGNING cis–GENES

Next, Lau et al. obtained adipose gene expression data for an ageing, population-based

European sample from the MuTHER Consortium (TwinsUK) (Grundberg et al., 2012)

and carried out association mapping using quantitative gene expression levels as the out-

come. Genes within ±1.5Mb of replicated ŜT2D were included in the analysis, which

resulted in location estimates of causal variants associated with gene expression levels:

adipose eQTL (ŜeQTL). Figure 11 shows two example ŜeQTL at the chr3q22.1 T2D locus

for the nearby genes ACAD11 and NPHP3. Where ŜeQTL co-located within 50 kb of

previously replicated ŜT2D, Lau et al. defined shared signals (T2D-eQTL). This approach

assumes that the same causal variant is responsible for both the association with T2D
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(ŜT2D) and gene expression (ŜeQTL). The genes associated with the co-locating ŜeQTL

were considered to be regulated in cis by the T2D-eQTL and are subsequently referred

to as T2D cis-genes. In total, 104 T2D loci (including 33 previously known and 71 novel)

co-located with ŜeQTL for a total of 266 cis-genes.

The ŜT2D and ŜeQTL mapped by Lau et al. will be analysed in Chapter 3 in order to (1)

repeat T2D and eQTL co-location analyses using genetic, rather than physical distance

and (2) identify functional target genes regulated in cis by T2D-eQTL loci (cis-genes),

including those involved in mitochondrial function. Following this, Chapter 4 will aim

to validate the identified T2D cis-genes by demonstrating differential expression in T2D

cases compared to controls, using independent case-control gene expression datasets.

2.8 Discussion

The design of different gene mapping methods for complex disease is an important point of

discussion, since any result may be influenced by the underlying assumptions or biases of

the methods used. The most widely used method to date has been the single-SNP genome-

wide association study (GWAS), with three recent GWAS by Mahajan et al. (2018);

Vujkovic et al. (2020); Spracklen et al. (2020) reporting 403, 568 and 301 significant loci

for T2D, respectively. These studies have aimed to improve power through larger sample

sizes, higher resolution arrays and denser imputation panels. However, indirect genotyping

and single-SNP analysis remain subject to limitations discussed in this Chapter, while

large sample sizes require large expenditure. Furthermore, it has been suggested that

increasing sample sizes to identify loci of smaller effects will eventually implicate the

entire genome, placing a limit on how informative large studies can be (Goldstein et al.,

2009; Boyle et al., 2017).

The variety of gene mapping methods available each have their own strengths and lim-

itations. Sequencing studies address the limitations of indirect genotyping and avoid

the inaccurate calling of very rare variants from genotyping arrays (Wright et al., 2019;

Weedon et al., 2019). However, they come with high costs which may limit sample size

and therefore power, as well as reduced quality across GC-rich regions and Alu repeats
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(Freeman et al., 2020). Family-based designs offer more power to detect rare variants

with very large effects (Terwilliger and Ott, 1994) and linkage studies are robust to allelic

heterogeneity, despite their low resolution and need for multi-generational pedigrees (Fla-

quer and Strauch, 2012; Ott et al., 2015). Aggregate tests can detect independent rare

variants, yet different methods are sensitive to different genetic architectures (e.g. MAF,

selection pressure, number of causal variants) (Moutsianas et al., 2015) and they currently

have limited use in non-coding regions (Povysil et al., 2019). Non-coding regions are also

less well covered by sequencing studies, which often target the exome with high coverage

and the non-coding genome with low coverage and imputation (Fuchsberger et al., 2016;

Belsare et al., 2019).

This Chapter also discussed an alternative gene mapping method: LDU-based gene map-

ping, also called positional cloning by linkage disequilibrium. The application of this

method to T2D by Lau et al. (2017) identified substantially more T2D loci compared

to previous single-SNP analysis of the same data, for example detecting 98 significant,

replicated ŜT2D compared to only four significant SNPs in the WTCCC Phase I cohort

(Consortium et al., 2007b; Huang et al., 2012). Crucially, the LDU-based method de-

tected more results without the need for excessively large cohorts. Direct comparison

with lead SNPs from single-SNP GWAS showed that T2D loci mapped using the LDU-

based method were surrounded by significantly lower LD, suggesting that the two methods

map loci with different genetic architectures. The results demonstrate that alternative

methods which challenge the limitations of the conventional GWAS design can be used

to successfully identify additional risk loci, including those in low LD (using LDU-based

gene mapping) and rare variants (using aggregate tests). In other words, a diverse set of

methods should be used to identify a diverse set of T2D risk loci.

As gene mapping methods have evolved it has become increasingly clear that T2D has a

surprisingly diverse genetic architecture, to which its extensive phenotypic heterogeneity

may be attributed (Udler, 2019). Common, intermediate-frequency, rare and de novo

variants of various effect sizes all contribute to the heritability of T2D and other complex

diseases, prompting the revision of exclusive hypotheses such as common disease, com-
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mon variant (CD/CV) and common disease, rare variant (RD/RV) (Iyengar and Elston,

2007; Schork et al., 2009; Lupski et al., 2011; Visscher et al., 2012b). Further analyses

may continue to study the unique genetic risk factors for T2D subtypes and associated

complications (Ahlqvist et al., 2018; Udler, 2019). However, it is equally as important

to establish the resulting molecular mechanisms which drive the risk of disease at both

known and novel risk loci. As such, the following Chapters describe follow-up analysis to

Lau et al. (2017), with Chapter 3 investigating the target genes of T2D risk loci in order

to address a specific biological question: whether mitochondrial function is regulated by

T2D genetic risk factors. The subsequent analyses aim to validate the cis–genes by test-

ing their expression in independent cohorts of T2D cases and controls (Chapter 4) and to

fine-map a candidate locus using targeted sequence data (Chapter 5).

2.9 Conclusions

This Chapter reviewed the current knowledge of T2D genetics and described a selection of

popular gene mapping methods available to investigate the diverse genetic architecture of

T2D. The potential biases and limitations of individual gene mapping methods motivates

the conclusion that multiple methods should be used to gain a comprehensive view of T2D

genetics. LDU-based gene mapping, the method used to map the T2D loci investigated

in the following Chapters, addresses several limitations of indirect single-SNP tests of

association and offers an effective tool to map novel risk loci, as well as to integrate

independent datasets. In Chapter 3, genetic LDU maps will be used to integrate gene

expression data and to identify the target genes of non-coding T2D loci which implicate

mitochondrial function.

To conclude, there is evidence to suggest that neither GWAS nor sequencing studies may

fully explain the familial heritability estimates of T2D (Fuchsberger et al., 2016; López-

Cortegano and Caballero, 2019; Young, 2019). Although it has been suggested that larger

studies will only achieve diminishing returns and the eventual potential implication of the

entire genome (Goldstein et al., 2009; Boyle et al., 2017), others argue in favour of the

continued mapping of loci which may have functional and clinical importance (Hirschhorn
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et al., 2009). In addition, it is becoming increasingly clear that genetic heterogeneity con-

tributes to the phenotypic heterogeneity seen in T2D, suggesting that informative cohorts

and study designs may further identify phenotypically-relevant pathways (Udler, 2019).

As such, addressing the current limitations of gene mapping methods will complement

efforts to discover novel, clinically important risk factors and drivers of phenotypic het-

erogeneity.
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3 Chapter 3: T2D loci regulate nuclear-encoded mi-

tochondrial genes

3.1 Overview

The main aim of Chapter 3 is to investigate T2D-associated genetic risk loci (T2D loci)

mapped by Lau et al. (2017) to assess their potential to alter mitochondrial function. To

achieve this, T2D loci will be investigated for evidence of association with the expres-

sion levels of nuclear-encoded mitochondrial genes (NEMGs) using both published and

unpublished data provided by Lau et al.

This analysis aims to identify testable genetic mechanisms through which a heritable

predisposition to mitochondrial dysfunction may increase risk of T2D, through the iden-

tification of T2D risk loci which regulate the expression of NEMGs.

To introduce this Chapter, the next section will review the functions of regulatory, non-

coding DNA, in which most T2D loci are found. Section 3.2.2: eQTL analysis as a

tool to interpret non-coding disease loci will review eQTL analysis, the method of

choice used by Lau et al. (2017) and in this Chapter to identify genes regulated in cis

by nearby T2D loci (cis–genes). The LDU-based method of Lau et al. will be compared

with other methods which are commonly used to integrate eQTL analysis with GWAS.

The following sections will present three main aims:

1. Integrate eQTL and T2D loci to identify target cis-genes (Section 3.3)

2. Filter the total cis–genes for NEMGs (Section 3.4)

3. Test the cis–genes for enrichment of mitochondrial functions (Section 3.5).

3.2 Introduction

3.2.1 Complex traits and non-coding DNA

Crucial to the design of this study is that most genetic loci associated with complex

diseases, including T2D, are found in intronic or intergenic non-coding regions (Hindorff
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et al., 2009; Welter et al., 2014). For example, Cirillo et al. (2018) reported that 98%

of T2D-associated GWAS SNPs were non-coding. Multiple studies have reported that

GWAS variants are enriched in regulatory DNA, which can be categorised into several

different types including enhancers, silencers, locus control regions, core and proximal

promoters, non-coding RNAs and boundary elements or long non-coding RNAs which

maintain the higher order structure of the 3D genome (discussed below) (Maston et al.,

2006; Morris and Mattick, 2014; Engreitz et al., 2016; Moszyńska et al., 2017; Giral et al.,

2018; Rowley and Corces, 2018). There is estimated to be over one million enhancers in

the human genome (Consortium et al., 2012b). Regulatory elements such as enhancers

have tissue-specific activity (Ong and Corces, 2011, 2012; Ko et al., 2017) and both GWAS

variants and realised trait heritability estimates are particularly enriched in the regulatory

elements of trait or disease-relevant cell types (Maurano et al., 2012; Gusev et al., 2014;

Torres et al., 2014; Kundaje et al., 2015; Farh et al., 2015). For T2D in particular, GWAS

variants are enriched in pancreas-specific regulatory DNA, including 3D enhancer ‘hubs’

(Parker et al., 2013; Pasquali et al., 2014; Varshney et al., 2017; Miguel-Escalada et al.,

2019). This relationship has been observed particularly for variants associated within

insulin secretion, while insulin action and lipid-associated variants show enrichment in

adipocyte, pre-adipocyte, monocyte and hepatocyte enhancers (Scott et al., 2017; Udler

et al., 2018; Torres et al., 2014).

While coding mutations alter the amino acid sequence of a protein and thus provide a

clear mechanism of effect, mutations which disrupt regulatory elements are considerably

less clear-cut. The regulation of gene expression is dependent on multiple factors includ-

ing cell-type (Consortium et al., 2015b, 2017; Gamazon et al., 2018), temporal patterns

such as the circadian clock (Zhang et al., 2014b; Mermet et al., 2017) and time of feed-

ing (Vollmers et al., 2009), as well as nutritional intake (Pellatt et al., 2016) and stress

(De Nadal et al., 2011), among others. Around half of human genes may show tissue-

specific expression (Yang et al., 2018). Regulatory variants may therefore influence gene

expression in several ways, including the level or timing of expression, splicing, transcript

stability or translational efficiency. Further complicating the understanding of regulatory
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mutations is the extensive folding of nuclear DNA into dynamic compartments, facilitat-

ing both short and long-range interactions between regulatory DNA and gene promoters

(Bonev and Cavalli, 2016; Schoenfelder and Fraser, 2019). Hence, the target gene (cis-

gene) of a regulatory element can be a neighbouring or distal gene, as opposed to the

closest gene on a linear map of the chromosome. This 3D structure is also dynamic, for

example Mermet et al. (2018) found that interactions between enhancer elements and

gene promoters in mouse oscillated in response to the circadian rhythm.

The interpretation of non-coding disease loci hence requires several layers of information

in order to identify (1) the causal variant(s), since the causal SNP is nearly always not

the genotyped SNP but may be any SNP in reasonably high LD (discussed in detail

in Chapter 5: Fine-mapping) and (2) the downstream effect, including the target

cis-gene(s) and implicated cell-type. There are many different methods available to de-

termine the cis–genes regulated by non-coding T2D loci (Kyono et al., 2019; Lin and

Musunuru, 2018; Cebola, 2019). This chapter will focus on high-throughput eQTL anal-

ysis, although other methods include: 3D chromatin interaction maps, high-throughput

reporter assays and CRISPR gene editing technologies to interrogate in vivo or in vitro

gene perturbations.

3.2.2 eQTL analysis as a tool to interpret non-coding disease loci

eQTL analysis involves the mapping of variants which alter gene expression by testing

genotype association with quantitative RNA levels. This concept is illustrated in Figure

12. Variants which associate with RNA levels are known as expression quantitative trait

loci (eQTL), or eSNPs59, and in 2010, Nicolae et al. systematically demonstrated that

trait-associated SNPs were likely to be eQTL. Other evidence suggests that common

GWAS SNPs are likely to be highly connected in tissue-specific gene expression networks,

influencing the expression of multiple genes60 (Fagny et al., 2017).

59Prior to fine-mapping, an associated SNP implicates every variant at the locus which is in high LD.
Thus, while ‘eSNP’ might be used to refer to a lead SNP associated with gene expression levels, eQTL
(expression quantitative trait locus) may more accurately reflect the true resolution until fine-mapping
confirms the causal variant (the true eSNP).

60Although these results suggest that disease-related SNPs are more likely to perturb gene expression
networks, they may also reflect the higher power of GWAS to detect variants of larger effect.
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Figure 13: This is Figure 1 from Giambartolomei et al. (2014) and is used to describe the
scenarios of co-localisation tested by the Bayesian method COLOC. Two independent tests
are run: the red line shows SNP association (as the -log10 p-value) with gene expression
and the blue line shows SNP association with disease status (for example). H1 (or H2):
only one test shows evidence of association at this locus. H3: there are two independent
signals of association. H4: the causal variant is shared and the surrounding patterns of
association are the same.

loci regulate mitochondrial function, in order to provide evidence to the ongoing debate

as to whether mitochondrial dysfunction is a ‘cause or consequence’ of T2D (see Chapter

1, Section 1.5: Mitochondrial dysfunction in Type 2 diabetes).

3.2.3 Methods for eQTL-GWAS integration

Integrating GWAS with gene expression data is now largely routine; this is made possi-

ble by publicly available databases of genome-wide regulatory elements such as the GTEx

portal61, which reports eQTL across 44 tissues or ‘regions’ (including different brain subre-

61The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office
of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and
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gions, for example) (Consortium et al., 2017). As described in Chapter 2, Section 2.4.4:

Trans-ethnic GWAS and defining replication, there are several different ways to

integrate independent tests of association, in this case GWAS for disease with eQTL

analysis. For example, Scott et al. (2017) and van de Bunt et al. (2015) classified shared

GWAS/eQTL signals if lead SNPs for each were in high LD (r2>0.8). Other groups have

developed more sophistical methods including formal tests for shared causality. These

can be broadly grouped into those which test for co-localisation and those which test

intermediate gene expression (Barbeira et al., 2016). Co-localisation tests assume that, if

a causal variant is shared, then the surrounding patterns of association will be the same.

This is illustrated in Figure 13 as used by the popular tool COLOC (Giambartolomei

et al., 2014). Other tools include eCAVIAR (Hormozdiari et al., 2016) and RTC (Nica

et al., 2010; Wallace et al., 2012). Alternative methods assess shared causality by testing

for the association of a SNP with a phenotype via intermediate gene expression. When

gene expression data is unavailable for a GWAS cohort, it is imputed based on the variance

in gene expression explained by individual or aggregate SNPs in an independent eQTL

analysis. The imputed gene expression is then correlated with the phenotype. Example

tools include SMR (summary data-based Mendelian Randomisation) (Zhu et al., 2016),

TWAS (Gusev et al., 2016), and PrediXcan/MetaXcan (Gamazon et al., 2015; Barbeira

et al., 2016).

The above tools including SMR, COLOC and MetaXcan have been used to identify novel

cis-genes at T2D loci (Xue et al., 2018; Liang et al., 2017; Torres et al., 2017; Viñuela

et al., 2019), while other studies have tested for high LD between lead T2D and eQTL

SNPs (van de Bunt et al., 2015; Scott et al., 2017; Khamis et al., 2019; Raulerson et al.,

2019)62. Two recent T2D GWAS which systematically applied these methods include

Mahajan et al. (2018), in which eQTL from GTEx were tested for co-localisation with

GWAS credible sets (sets of SNPs which have 99% confidence of containing the causal

NINDS. The data used for the analyses described in this Chapter were obtained from the GTEx Portal
prior to August 2020.

62As a further example, Fernández-Tajes et al. (2019) integrated GWAS with eQTL using a regression-
based approach with a ‘positional candidacy score’ and ‘variant link score’.

87



variant) using COLOC and Vujkovic et al. (2020), who imputed gene expression using

S-PrediXcan and tested for co-localisation using COLOC.

3.2.4 Methods for eQTL-GWAS integration: LDU maps

An alternative method to integrate GWAS with eQTL data is described by Lau et al.

(2017), who estimated the locations of T2D risk variants and eQTL using the Malecot

model described in Chapter 2, Section 2.7: Gene-mapping with LDU maps. The

Lau et al. (2017) study is reviewed in detail in Chapter 2, Section 2.7.3: LDU-based

gene mapping in T2D. The LDU-based approach provides greater commensurability

between studies where lead SNPs differ (for example due to population-specific LD struc-

tures), but location estimates overlap. Location estimates (Ŝ) represent the most likely

location of a causal variant and are estimated using a powerful multi-marker model which

incorporates population-specific LD.

Lau et al. (2017) described a simple test of co-localisation where ŜT2D and ŜeQTL were

required to co-locate within a physical distance of ±50 kb. Alternatively, the use of

genetic LDU maps facilitates a test for co-location which incorporates genetic distance.

As described in Chapter 2, LDU distance reflects the decline in allelic association, LD,

with physical distance. A co-location threshold corresponding to a set genetic distance,

for example 1 LDU (which reflects the physical distance over which ρ has declined to e−1

or 0.37 of its starting value) would therefore test whether the mapped loci are in high LD.

This is similar to the local replication described on page 54, which requires lead SNPs

to be in high LD, while a co-location threshold of ±50 kb would correspond to a local

transferability approach. There are advantages to both approaches; local replication is

considerably more effective at removing loci for which the causal variant is not shared,

however local transferability is more robust to allelic heterogeneity, where the causal

variants are independent but disrupt the same functional element. A formal test of co-

localisation may also be developed to test the overlap between the Ŝ confidence intervals

or by comparing the likelihood surfaces output from the Malecot model; this may be of

interest for future work.
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In the following analysis, T2D location estimates (ŜT2D) will be integrated with eQTL

location estimates (ŜeQTL) by means of genetic co-location within 1 LDU, with the as-

sumption that co-locating signals correspond to the same causal variant63. The a priori

defined threshold of 1 LDU was assessed post hoc and compared to the threshold of 50 kb

in Section 3.3.3: Physical vs genetic distance: co-location using 1 LDU.

3.2.5 Pathway analysis of cis-genes

The systematic, genome-wide integration of GWAS with eQTL offers the power to detect

networks of perturbed cis–genes and thus biological pathways involved in disease (Wang

et al., 2007; Chen et al., 2008; Cookson et al., 2009; Goh et al., 2007; Sieberts and Schadt,

2007; Wang et al., 2010a). This involves testing identified cis–genes for the enrichment

of pre-defined sets of genes (gene set enrichment analysis, GSEA) (Garćıa-Campos et al.,

2015; Kao et al., 2017). Prior to tools for eQTL mapping being made widely available,

several studies carried out pathway analysis for T2D based on the closest gene(s) to

GWAS lead SNPs (Torkamani et al., 2008; Yazdanpanah et al., 2013; Perry et al., 2009;

Cirillo et al., 2018)64. However, as described in the previous section, GWAS variants are

unlikely to target the closest gene and other studies have instead interrogated cis-genes

implicated by eQTL analysis. This approach has shown T2D cis–genes to be enriched for

mTOR pathways, FOXA2 targets and genes involved adipocyte differentiation, cholesterol

biosynthesis and lipid metabolism (Scott et al., 2017; Liang et al., 2017; Small et al.,

2018). Using this approach, the current study will test for evidence of the enrichment of

mitochondrial pathways within the list of identified T2D cis–genes.

3.2.6 Aims

Following the availability of genetic location estimates associated with (1) T2D (ŜT2D)

and (2) subcutaneous adipose gene expression levels (ŜeQTL) by Lau et al., this Chapter

63Independent location estimates which are within a small genetic distance may reflect either the same
causal variant or independent causal variants in high LD. As described by Zhu et al. (2016), these reflect
scenarios of shared ‘causality’ or ‘linkage’, respectively.

64Torkamani et al. (2008) assigned GWAS SNPs to genes within 5 kb; Yazdanpanah et al. (2013)
assigned low-frequency variants to a gene if they were within the gene coordinates or ±50 kb; Perry et al.
(2009) assigned genes to the most significant SNP within 200 kb; Cirillo et al. (2018) assign SNPs to
genes if they are located within 1 kb upstream and 1 kb downstream of the gene coordinates.
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will aim to address the following objectives:

1. Integrate ŜT2D and ŜeQTL based on co-location within a pre-defined genetic distance

of 1 LDU.

2. Identify cis-genes associated with co-locating ŜT2D-ŜeQTL which are involved in

mitochondrial function.

3. Test the total cis-genes for enrichment of mitochondrial pathways.

3.3 Aim one: filter and define T2D-eQTL

This study presents a follow-up to the analysis published by Lau et al. (2017), who mapped

the most likely locations of variants associated with T2D (ŜT2D) and gene expression

levels (ŜeQTL) using LDU maps and an adapted Malecot model. The first aim of this

follow-up analysis was to define the putative cis–genes regulated by T2D loci by filtering

published and unpublished ŜT2D and ŜeQTL from Lau et al. (2017) which co-located

within 1 LDU. Nominally significant loci were considered in order to include additional

cis–genes and increase the power to detect subsequent pathway enrichment (with the

caveat of potentially including more false positive results). T2D locations were mapped

in one African American and two European cohorts of T2D case-controls, while eQTL were

mapped using adipose gene expression data from an ageing, population-based European

sample (TwinsUK). The number of T2D cases and controls for each dataset is shown in

Table 1 on page 74, with a total of 5,800 T2D cases and 9,691 controls.

Type 2 diabetes case-control cohorts

• WTCCC phase 1. Europeans (WTC) (Consortium et al., 2007b)

• WTCCC phase 2. Europeans (MTC) (Voight et al., 2012)65

• NIDDK. African Americans (AA) (Palmer et al., 2012)

Subcutaneous adipose gene expression cohort

65The WTCCC phase 2 cohort was genotyped using the custom Metabochip array (Voight et al., 2012)
with ∼200K SNPs strategically placed around known or candidate T2D loci.
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• eQTL: MuTHeR. Healthy Europeans (Grundberg et al., 2012)

3.3.1 Methods

The analysis described in this chapter reproduces to some extent the test to define shared

ŜT2D-ŜeQTL by Lau et al. (2017), based on co-location within ±50 kb. However, the

current study introduces several differences to the filtering stage; these are shown in

Table 2 and are described in more detail below.

T2D-eQTL filtering criteria, Lau et al. (2017) vs the current study

Study ŜT2D

p-valuea
ŜeQTL

p-value
ŜT2D-ŜeQTL

distance
ŜT2D-ŜT2D

distance

Lau et al. (2017) <10−5 Bonferroni-
correctedb

<50 kb <100 kb

Current <10−3 <0.05 <1 LDU <1 LDU

Table 2: T2D-eQTL inclusion criteria for Lau et al. (2017) and the current study. LDU
= linkage disequilibrium unit. a10−5 is Bonferroni-corrected, whereas 10−3 is nominally
significant. bp-value thresholds were corrected for the total number of genes tested for
each locus within ±1.5Mb of the replicated ŜT2D.
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INCLUSION CRITERIA 1: T2D loci

As reported in Lau et al. (2017), ŜT2D were mapped by running the adapted Malecot

model on 4,800 genomic windows66, equating to a stringent Bonferroni-corrected statis-

tical threshold of 10−5 (a conservative estimate of 0.05/5,000). Lau et al. (2017) defined

replicated T2D loci as windows containing two or more independent ŜT2D within 100 kb

of each other, each of which had nominal significance and passed Bonferroni-correction

when meta-analysed using Fisher’s method. The authors calculated that, for 111 ŜT2D

replicated using the criteria of 100 kb, the average D’ for all HapMap SNP pairs found

within the ŜT2D intervals was 0.86 in Europeans and 0.78 for African Americans, confirm-

ing that an interval of 100 kb corresponded to generally high LD. In the current study,

ŜT2D were included with meta-analysed p-value of <10−3 in order to facilitate pathway

analyses with larger numbers of cis-genes.

INCLUSION CRITERIA 2: eQTL p-value

For each replicated disease locus (two or more independent ŜT2D within ±100 kb), Lau

et al. (2017) carried out eQTL mapping using the expression of neighbouring genes within

±1.5Mb. A strict Bonferroni-corrected threshold was applied to each locus in the Lau

et al. study depending on the number of neighbouring genes tested. In this analysis, ŜeQTL

were required to have a nominally significant p-value of <0.05. An added requirement

was that the standard error (stderr) of the ŜeQTL estimate was less than 900, in order to

exclude estimates where the likelihood model did not successfully converge.

INCLUSION CRITERIA 3: ŜT2D-ŜeQTL co-location

As described previously, Lau et al. (2017) defined T2D-eQTL where ŜeQTL co-located

within ±50 kb of a replicated ŜT2D. In comparison, the current study required ŜT2D and

ŜeQTL to co-locate within a genetic distance of 1 LDU, the advantages of which include

the removal of Ŝ which are physically close but are separated by a large genetic distance,

66the criteria of 10 LDU was defined using the European genetic map. The physical coordinates of each
window were converted to the African American map, resulting in an average of 16 LDU per window due
to the more extensive LD breakdown in this older population.
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ASSIGNING GENE IDENTIFIERS

eQTL location estimates (ŜeQTL) were each associated with gene expression as measured

by a probe from the Illumina HumanHT-12 v3.0 array. Probes were initially assigned

to a gene ID using the array annotation package in R (Dunning et al., 2015). However,

following the observation that some of the probes did not overlap with the annotated

gene, gene IDs were subsequently updated using gene coordinates from Ensembl GRCh37.

Probe coordinates were converted from build 36 to build 37 and cross-referenced with

Ensembl code coordinates. If the probe was located within multiple genes, the original

gene ID assigned to the array was used. The Ensembl gene ID was used if the Ensembl ID

differed from the array ID, or if there was no gene assigned by the array annotation.

3.3.2 Results

The filtering steps and results are shown in Figure 15 and are described below. Data

was provided from Lau et al. for a total of 265 analytical windows for which the ŜT2D

achieved a p-value of <10−3 in meta-analysis and the ŜT2D locations were within 100 kb.

For the current analysis, the windows were filtered to include those with ŜT2D within 1

LDU, as shown in Figure 16. 91 results were removed and 174 were retained.

For the 174 T2D loci, eQTL mapping for genes within ±1.5Mb gave a total of 7,960 inde-

pendent ŜeQTL estimates associated with 3,530 annotated genes. Invalid ŜeQTL estimates

resulting from failed convergence of the Malecot model were assigned a high standard

error and were excluded. Valid ŜeQTL estimates were required to have a p-value <0.05

and to be within 1 LDU of one or more ŜT2D. After filtering for these criteria, a total of

1,066 ŜeQTL co-located with 166 T2D loci and associated with 763 cis–genes.

3.3.3 Physical vs genetic distance: co-location using 1 LDU

In this study, ŜT2D and ŜeQTL were required to co-locate within 1 LDU, since a small

genetic distance reflects high LD. For example, Ŝ separated by a small genetic distance

of 0.5 LDU and 150 kb represent variants in high LD, such that any variants within the

150 kb region may be driving the association and the Ŝ may tag the same causal vari-

ant. Conversely, Ŝ separated by 2 LDU and 50 kb are in low LD and the variants will
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Distance between ŜT2D plotted in kb vs LDU
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Figure 16: The distance between T2D locations (ŜT2D) measured in kb vs in LDU. The
threshold of 1 LDU is shown in red.

widely; data points with a small kb and large LDU distance are located in regions of

significant LD breakdown such as recombination hot spots, whereas data points with

a large physical distance and small genetic distance are located in regions of extensive

LD, such as recombination cold spots. These data are subsetted in Figure 18 to show a

filtering criteria based on a physical distance of 50 kb and a genetic distance of 1 LDU.

As shown in Figure 18, subsetting ŜT2D-ŜeQTL based on a co-location of <50 kb also

retains Ŝ estimates which are separated by large genetic distances, i.e. significant LD

breakdown. Conversely, filtering by a genetic distance of <1 LDU retains Ŝ separated by

a large physical distance, but which are in high LD. These filtering criteria are further

compared in Chapter 4, Section 4.4: Physical vs genetic distance: differential

expression.
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3.4 Aim two: Identify cis-genes involved in mitochondrial

function

The following section aims to identify nuclear-encoded mitochondrial genes (NEMGs)

among the total 763 T2D cis-genes identified in Section 3.3.

3.4.1 Nuclear encoded mitochondrial genes (NEMGs)

Nuclear encoded mitochondrial genes (NEMGs) are genes located in the nuclear genome

which encode proteins transported to the mitochondria. Early efforts to characterise the

mitochondrial proteome hinted at up to 1,500 mitochondrial proteins (Rabilloud et al.,

1998; Lopez et al., 2000). High-throughput techniques have more recently facilitated large

databases of the mitochondrial proteome (Lemkin et al., 1996; Scharfe et al., 2000; At-

timonelli et al., 2002; Gaucher et al., 2004; Forner et al., 2006; Ingman and Gyllensten,

2006; Godin and Eichler, 2017). The two databases used in this analysis result from the

integration of multiple data sources which effectively detect low abundance mitochondrial

proteins and reduce false positives. The first of these is MitoCarta2.0 (Pagliarini et al.,

2008; Calvo et al., 2015a). Briefly, Calvo et al. (2015a) applied a Bayesian integration

of known mitochondrial protein training sets with seven genome-scale datasets including:

detection of the protein in purified mitochondria using highly sensitive, tandem mass spec-

trometry; homology with known yeast mitochondrial proteins; co-expression with known

mitochondrial proteins; presence of a mitochondrial-specific protein domain; presence of

an N-terminal mitochondrial targeting sequence; endosymbiont ancestry (i.e. homology

with Rickettsia prowazekii proteins); and mRNA up-regulation in cellular models of mi-

tochondrial proliferation. Mitocarta2.0 contains 1,158 NEMGs. This resource has since

been revised by Floyd et al. (2016), yielding the second database used in this study:

Mitocarta+. Floyd et al. (2016) combined the published MitoCarta2.0 with additional

studies of the mitochondrial matrix proteome (Rhee et al., 2013) and inter-membrane

space (Hung et al., 2014). The T2D cis–genes identified in this study were compared to

1,204 NEMGs present in both MitoCarta2.0 and Mitocarta+ to define cis–NEMGs.
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3.4.2 Methods

The list of 763 T2D cis-genes defined in the previous section were filtered for NEMGs,

referred to as T2D cis–NEMGs, by cross-referencing with the MitoCarta2.0 and Mito-

Carta+ databases. The MitoCarta2.0 database was downloaded from the Broad Institute

webpage67 and both HGNC (HUGO Gene Nomenclature Committee) and Ensembl gene

IDs were extracted. The MitoCarta+ database was obtained from Floyd et al. (2016) and

Entrez gene IDs were converted to Ensembl using the R bioconductor package (Carlson,

2019). Both Ensembl and HGNC gene IDs were used for cross-referencing.

3.4.3 Results

In total, 56 ŜeQTL were associated with probes annotated to 50 unique NEMGs. These

are shown in Table 3. The 50 NEMGs accounted for 6.55% of the total number of

identified cis–genes. The 50 T2D cis–NEMGs are grouped in Figure 19 by common

biological functions, following annotation according to KEGG pathways and KEGG on-

tology terms (Kanehisa et al., 2015), in addition to GeneCards summaries (Rebhan et al.,

1997) where KEGG data was lacking. Summary information for the biological functions

of each NEMG is shown in Appendix A.1. The potential relationship between candidate

genes and pathways shown in Figure 19 and T2D are discussed further in Section 4.5:

Discussion.

67https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html
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Table 3: ŜT2D and ŜeQTL for the 50 cis–NEMGs

Bonferroni-corrected T2D loci
T2D locations p-value < 10−5

Chr
T2D
location
(WTC)

T2D
location
(AA)

T2D
location
(MTC)

cis–
NEMG

eQTL
locationd

eQTL
p-value

1 26006625 NA 26003695 MTFR1L 25900571 1.20e-04
1 26006625 NA 26003695 CLIC4 26002616

25900772
6.32e-05
4.80e-02

1 234270220 234273988 NA COA6 234338743 6.63e-04
1 234270220 234273988 NA TOMM20 234309446 0.017
2 NA 204023399 203970861 NIF3L1 203798637 0.005
2 NA 204023399 203970861 C2orf69 204126463 0.005
2 NA 204023399 203970861 MARS2 203820504 0.002
2 NA 204023399 203970861 HSPD1 204204077 0.037
2 NA 204023399 203970861 CPS1 204126514 0.020
2 227080369 NA 227021099 MFF 227151692 0.037
3 67744088 67685265 NA SLC25A26 67637196 0.049
3 120573472 120555505 NA NDUFB4 120573615 6.21e-06
3 123048537 NA 123061689 CCDC58 122876198 0.002
3 132436519 NA 132429438 ACAD11 132451038 1.62e-09
3 183260285 183210822 NA MCCC1 183260250 0.028
4 91942692 91950656 NA PDHA2 91947875 1.21e-07
4 104004185 NA 103936988 CISD2 104141231 2.66e-04
6 127539286 NA 127502744 TRMT11 127479024 0.001
6 127539286 NA 127502744 HINT3 127357421 0.010
10 94499812 NA 94479016 MARCHF5 94488072 0.001
10 104786704 NA 104841790 SFXN2 104732175 2.18e-09
11 8551677 NA 8637191 CYB5R2 8667032 0.040
11 43879353 NA 43879882 ALKBH3 43607412 0.004
11 65575917 NA 65600493 MRPL11 65466334 0.002
12 56618300 NA 56622584 SUOX 56621500 0.005
12 56618300 NA 56622584 GLS2 56628724 0.018
12 106406604 106384733 NA MTERF2 106410234 2.03e-04
12 121317223 NA 121243696 ACADS 121372772 0.003
12 121317223 NA 121243696 GATC 121186959 3.45e-06
12 123387213 123750895 123447928 DIABLO 123386489

123832253
123394850

1.10e-03
1.09e-02
3.53e-05

13 102408534 102452781 NA PCCA 102428282 0.001
13 111049674 111004953 111035483 NAXD 111060677 0.003
15 NA 63345547 63425768 LACTB 63453484 2.34e-28
20 NA 25769672 25727136 ACSS1 25740998 0.013
22 33046025 33046036 NA PISD 33058307 1.86e-04
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Nominally significant T2D loci
T2D locations p-value < 10−3

Chr T2D
location
(WTC)

T2D
location
(AA)

T2D
location
(MTC)

cis–
NEMG

eQTL
locationd

eQTL
p-value

2 NA 194739106 194690969 COQ10B 194842026 3.76e-04
2 NA 194739106 194690969 HSPD1 194213959 0.010
2 200305909 NA 200330147 C2orf69 200457932 0.015
2 200305909 NA 200330147 MAIP1 200070891 3.48e-07
6 NA 76217291 76199095 COX7A2 76466553 4.19e-04
7 48732315 48812202 NA ABCA13 48628852 2.71e-06
7 140349763 140367908 NA MRPS33 140378682 0.010
10 112924900 112866891 NA GPAM 112917454 0.004
11 61284211 61258729 NA FADS2 61260634 5.89e-04
12 12633435 12621259 NA HEBP1 12634131 0.004
12 123387253 NA 123470526 ABCB9 123260234

123244794
123386756

2.95e-02
2.40e-02
1.11e-06

12 123387213 123750895 123447928 ABCB9 123386769
123260234

7.63e-07
2.95e-02

12 123387213 123750895 123447928 COXPD7 123439939 0.038
12 123387253 NA 123470526 DIABLO 123386662

123797762
123387709

0.003
0.008
6.55e-05

12 133105848 NA 133168320 PGAM5 133182753 0.018
15 77270791 NA 77310648 IDH3A 77085108 0.003
16 9759261 NA 9794698 ABAT 9799479 0.005
21 44327412 44352930 NA NDUFV3 44210786 0.009

Table 3: T2D and eQTL location estimates associated with 50 T2D cis–NEMGs. All loca-
tions were estimated on population-specific genetic LDU maps and converted to physical
coordinates (B37). All eQTL locations (ŜeQTL) are within ±1 LDU of a T2D location

estimate (ŜT2D). ŜT2D are presented for the European WTCCC1 (WTC), African Amer-
ican NIDDK (AA) and European WTCCC2 MetaBoChip study cohorts (MTC) (signals
with low SNP coverage indicated by N/A, were not analysed). ŜeQTL were generated
using subcutaneous adipose gene expression for a population based sample of European
individuals from the MuTHER consortium (TwinsUK).
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3.5 Aim three: test cis-genes for enrichment of mitochondrial

pathways

3.5.1 Methods

The 763 T2D cis-genes were tested for evidence of mitochondrial pathway enrichment

by cross-referencing with 41 curated gene sets downloaded from the Molecular Signatures

Database (Subramanian et al., 2005; Liberzon et al., 2011), of which each had ≥25% genes

in MitoCarta2.0/+ (see Appendix A.2). The 763 cis–genes were cross-referenced with the

gene sets to generate observed counts (obs). Expected counts (exp) were generated using

10,000 permutations, in which genes were randomly selected from the same array used to

measure the cis–genes using either:

• Random approach: 763 genes were randomly selected.

• Structured approach: the random gene selection was controlled for the local

structure seen in the T2D cis-genes (selected within ±1.5Mb of a disease locus).

There were ∼4.6 cis–genes per locus (763/166), therefore each permutation ran-

domly selected 190 genes, then randomly selected three genes from within ±1.5Mb.

Additional genes were randomly selected to bring the total to 763. The rationale for

this approach was to emulate any potential correlation structure observed between

local cis–genes.

For each gene set, an empirical p-value was calculated as Σ(exp≥obs)/10,000, where

Σ(exp≥obs) is the total number of permutations for which the number of random genes

in the gene set (exp) was ≥ to the observed count of T2D cis–genes in the gene set

(obs).

3.5.2 Results

The T2D cis–genes were not significantly enriched for NEMGs per se (gene set defined

as the combined Mitocarta2.0/+, p-value = 0.14). However, the permutation analysis

returned evidence of enrichment for four mitochondrial-related gene sets with a p-value

threshold of 0.05. These are shown in Table 4.
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Mitochondrial gene set cis–genes (a) p-value
(random)

(b) p-value
(structured)

Valine, leucine and isoleucine degradation
(KEGG)

5 0.020 0.027

Biotin carboxylases (manually defined) 2 0.022 0.019
Propanoate metabolism (KEGG) 4 0.025 0.042
Butanoate metabolism (KEGG) 4 0.032 0.042

Table 4: Mitochondrial pathways with evidence of enrichment in the total T2D cis-genes
(p-value <0.05). Gene sets corresponding to mitochondrial pathways are listed, along
with the source, either KEGG (Kanehisa et al., 2015) or manually defined.

The enrichment of these gene sets are largely driven by a core set of overlapping genes.

The T2D cis–NEMGs in each gene set are shown below:

• Valine, leucine and isoleucine degradation: ABAT, ACADS, ALDH2, MCCC1 and

PCCA

• Biotin carboxylases: MCCC1 and PCCA

• Propanoate metabolism: ABAT, ACSS1, ALDH2 and PCCA

• Butanoate metabolism: ABAT, ACADS, ALDH2 and PDHA2

3.6 Discussion

This Chapter aimed to investigate the hypothesis that T2D loci regulate genes involved in

mitochondrial function. As such, T2D cis–genes were assigned to T2D loci based on the

co-location of ŜT2D and ŜeQTL location estimates provided by Lau et al. This hypothesis is

based on strong prior evidence that perturbed mitochondrial function may cause T2D (see

Chapter 1, Section 1.5.2: Mitochondrial function and T2D), making an aim of this

study to identify candidate genes which may constitute underlying genetic mechanisms.

The number of potential candidate genes was increased by including ŜT2D and ŜeQTL of

nominal significance. A total of 50 nuclear-encoded mitochondrial genes (NEMGs) were

identified as putative T2D cis–genes.

A test of enrichment did not provide evidence of NEMG enrichment in the total cis–genes,

however more specific tests returned significant results for five mitochondrial-related path-

ways: branched chain amino acid (BCAA) degradation, biotin carboxylases, propanoate
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metabolism and butanoate metabolism. These pathways largely overlapped, with a core

set of cis–NEMGs driving the observed enrichment. These results may be consistent with

a contributory, rather than principal role for mitochondrial dysfunction in T2D onset, al-

though specific features of mitochondrial metabolism such as those highlighted here may

be of particular importance. However, future work investigating eQTL identified in other

tissues may reveal additional contributions of mitochondrial dysfunction. Specific candi-

date genes and pathways, including their potential relationship with T2D are discussed

below. A summary of the NEMG functions is available in Appendix A.1.

CANDIDATE T2D cis–NEMGs AND T2D

All of the 50 identified T2D cis–NEMGs present mechanisms of interest which may poten-

tially contribute to T2D onset. As seen in Figure 19 (page 102), the implicated pathways

include mitochondrial transcription, translation and organisation, as well as more specific

metabolic processes including lipid, amino acid, butanoate and propanoate metabolism,

oxidative phosphorylation, pyruvate metabolism and the TCA cycle, in addition to mi-

tochondrial protein and iron transport, autophagy & calcium homeostasis and apoptosis.

Many of these pathways have been previously implicated in T2D (some are discussed in

Chapter 1, Section 1.5.2: Mitochondrial function and T2D and lipid metabolism

is discussed specifically in Chapter 5, Section 5.1.2: ACAD11, fatty acid oxidation

and diabetes). Several examples of candidate genes and pathways which may be related

to T2D aetiology are discussed below.

The first noteworthy example is the pathway of branched chain amino acid (BCAA)

catabolism, which showed evidence of enrichment in the total T2D cis–genes by count.

Five of the identified T2D cis–NEMGs were annotated to this pathway, demonstrating

potential T2D-associated genetic regulation of multiple adjacent steps, as shown in Figure

20. The five cis–NEMGs include two biotin-dependent carboxylases, MCCC1 and PCCA,

as well as ABAT (encodes GABA transaminase), ACADS (encodes acyl-CoA dehydroge-

nase, short chain) and ALDH2 (encodes aldehyde dehydrogenase 2 family member). An

eQTL for MCCC1 was previously shown to be highly associated with BMI, further sug-
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circulating levels of the BCAAs, valine, leucine and isoleucine are increased in individu-

als who go on to develop T2D, demonstrating potential predictive power (Flores-Guerrero

et al., 2018; Guasch-Ferré et al., 2016). The catabolism of the three BCAAs may influence

mitochondrial function, metabolism and insulin sensitivity (reviewed in detail by Gan-

non et al. (2018)), as well as adipogenesis, lipogenesis (Green et al., 2016), inflammation

(Nicastro et al., 2012; Zhenyukh et al., 2018) and appetite (Solon-Biet et al., 2019). Con-

sistent with a previous study which reported a link between T2D genetic risk and impaired

BCAA catabolism (Lotta et al., 2016), the results here present five candidate genes which

may potentially drive this risk, providing testable genetic mechanisms for further analysis.

For example, propionyl CoA-carboxylase, for which the α chain is encoded by the T2D

cis-gene PCCA, catalyses a step directly upstream of the B12-dependent methylmalonyl-

CoA mutase (Mut) which induces impaired glucose tolerance in heterozygous knock-out

mice (Lerin et al., 2016). Mut catalyzes the conversion of methylmalonyl-CoA, produced

by the catabolism of BCAAs and odd-chain fatty acids, to the TCA cycle intermediate

succinyl-CoA. It will also be of interest to further investigate BCAA cis–genes in other

tissue types, such as omental adipose in which suppressed BCAA catabolism is associated

with insulin resistance (Lackey et al., 2013).

As mentioned above, MCCC1 and PCCA encode two biotin-dependent carboxylases, of

which there are a total of five encoded in the human genome (Tong, 2013). Biotin levels

are notably reduced in individuals with T2D (Valdés-Ramos et al., 2015) and biotin

supplementation may improve glucose control (Sahin et al., 2013), making these T2D

cis–NEMGs of potential therapeutic interest. An additional strong candidate is CISD2,

in which mutations cause Wolfran Syndrome of which a known symptom is diabetes

(Rouzier et al., 2017). CISD2 encodes an integral membrane protein which facilitates

the interaction between the mitochondria and endoplasmic reticulum (ER) membranes;

a process which is itself associated with T2D and insulin resistance (Wang et al., 2014,

2015; Thivolet et al., 2017; Tubbs et al., 2018). The current study identified evidence that

CISD2 may be regulated by a genetic locus associated with risk of common T2D.

Three T2D cis–NEMGs regulate mitochondrial fission: MARCH5, MFF and MTFRL1.
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Mitochondrial fission has been shown to cause insulin resistance when induced and im-

proved insulin signalling when inhibited (Jheng et al., 2012; Rovira-Llopis et al., 2017;

Lin et al., 2018a). Additional T2D cis-genes which were included in the list of NEMGs

due to the proteins not being present in the mitochondria include PPARG and SPATA18.

PPARG encodes the ligand-activated transcription factor PPAR-γ, while the protein en-

coded by SPATA18 facilitates the removal of oxidised proteins in the mitochondria. These

two genes regulate mitochondrial function and quality, respectively (Yeligar et al., 2018;

Dan et al., 2020).

STRENGTHS, LIMITATIONS AND FUTURE WORK

A common approach used in conventional GWAS is to assign significant SNPs from eQTL

analysis (eSNPs) which are in high LD with GWAS lead SNPs (Scott et al., 2017; van de

Bunt et al., 2015). Similarly, ŜeQTL were here assigned to ŜT2D if they were within a close

genetic distance of 1 LDU, reflecting high LD. There are multiple advantages to using an

LDU-based approach for mapping T2D loci and their cis–genes; these are discussed in

detail in Chapter 2, Section 2.7.2: LDU-based gene mapping. Briefly, these include

increased power to detect associations which makes it more likely that cis–genes will be

identified, due to the integration of multiple genotyped markers, population-specific LD

and a reduced multiple testing burden.

There are several assumptions which must be considered in the design of this study.

Firstly, ŜT2D and ŜeQTL within 1 LDU are assumed to represent a shared causal variant;

this is an assumption of all approaches which test co-location based on high LD. As

discussed on page 86, alternative methods can be used to formally assess shared causality.

A more formal test for co-localisation could be developed for use with the Ŝ location

estimates. For example, similarities between the likelihood surface outputs from the

Malecot could be compared, similarly to the comparison of trait-associations carried out

by COLOC (see Figure 13 on page 86). The Malecot model assumes that there is just

one causal variant per window and outputs the highest peak of the likelihood surface. An

additional step might be to run conditional analysis in a search for secondary signals, in
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order to investigate allelic heterogeneity.

Future analysis may build on these results by further developing the methods used. Addi-

tional ŜeQTL may be detected by incorporating RNA-seq datasets, which offer significant

improvement over expression arrays. Array data has several complications including sys-

tematic biases introduced during sample preparation and potential SNPs within gene

expression probe which may change probe affinity and appear as differential expression

(Akey et al., 2007; Spielman et al., 2007; Alberts et al., 2007). Arrays are also limited

to the genes included and importantly, gene annotation is continuously updated. With

this in mind, the probes used in this analysis could be compared to gene coordinates

according to Ensembl or GENCODE (GRCh38) to obtain the most up-to-date annota-

tions. RNA-seq also captures genes which may not be functionally annotated such as

long non-coding RNAs (lncRNAs). Follow-up analysis such as that by Small et al. (2018)

may investigate genome-wide changes in gene expression in response to candidate risk

variants to identify trans-regulatory networks. The study of trans–eQTL may also reveal

additional tissue-specific mechanisms (Fagny et al., 2017; Consortium et al., 2017).

On the topic of tissue specificity, the ŜeQTL for this study were mapped only for subcu-

taneous adipose, therefore the current cis–genes implicate mechanisms which are either

specific to subcutaneous adipose or are shared across tissues. There is current ongoing

work by Lau et al. to map ŜeQTL using RNA-seq data available from the GTEx database

for multiple tissues. These additional data will be important to (1) replicate the ŜeQTL in

this study since they were generated for only one dataset and (2) identify cis–NEMGs po-

tentially regulated by other tissue-specific eQTL. This will facilitate the mapping of mech-

anisms which underlie tissue-specific mitochondrial functions (Fernández-Vizarra et al.,

2011; Pacheu-Grau et al., 2018; Kappler et al., 2019). Beyond tissue specificity, regula-

tory elements can also be activated under stimulated conditions and are highly dynamic

(Siersbæk et al., 2017; Freire-Pritchett et al., 2017; Rubin et al., 2017; Ramos-Rodŕıguez

et al., 2019; Miguel-Escalada et al., 2019). For example, insulin stimulation was required

to observe the increased expression of ANK1 in the presence of the rs508419 T2D-risk

allele (Yan et al., 2016). While most publicly available chromatin maps are representative
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of a basal state, independent data may be useful for mapping eQTL active under stimu-

lated conditions (Kyono et al., 2019). Additional NEMGs may also be implicated through

the mapping of other QTL, such as loci associated with metabolites levels or measures

of mitochondrial function. Expression data stratified for different heterogenous subtypes

of T2D patients (see Udler (2019)) may also inform on NEMGs which are dysregulated

with specific phenotypes.

An important future work will be to validate the 50 T2D cis–NEMGs identified in this

analysis. The next Chapter 4 describes a step towards this, by investigating whether the

cis–genes show differential expression in independent datasets of T2D case and control

gene expression. Gene expression data may also be used to further investigate the choice

of 1 LDU as a co-location threshold. One way to do this may be to compare the expression

of cis–genes in an independent cohort of T2D cases and controls identified using different

statistical thresholds. The enrichment of differential expression may be used to inform an

optimal co-location threshold for identifying true positives. This approach is tested in the

next Chapter 4, Section 4.4: Physical vs genetic distance: differential expression.

Another important step to validation will be to fine-map the causal variants at each locus

and provide evidence that they regulate the assigned cis–gene(s). This may be achieved

through functional validation and by integrating chromatin interaction maps, which can

provide evidence that a causal variant makes physical contact with a cis–gene promoter,

for example. Chapter 5 discusses fine-mapping in detail and presents the fine-mapping of

one candidate T2D NEMG locus.

CAUSATION OR CORRELATION?

In this analysis, 763 cis–genes were assigned to 166 T2D loci, equivalent to an average of

∼4.6 cis–genes per locus. This is consistent with T2D risk being increased by mutations

in regulatory elements which target multiple genes. For any one locus, it is an important

question as to whether the risk of T2D is conferred by the altered expression of all the

cis–genes, or by a subset. This question may be further investigated by integrating these

results with targeted sequence data as well as follow-up functional studies which can
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perturb individual genes in in vitro or in vivo to assess the impact on diabetes-related

phenotypes. Cis-genes are also more likely to be causal if they are identified as cis–genes

for multiple independent T2D loci.

3.6.1 Conclusions

A total of 50 cis–NEMGs were identified as potential target genes of T2D risk loci. Many

of these genes implicate pathways which are well-established as related to the onset of

T2D, while others implicate novel genetic pathways. The following Chapter 4 will aim

to validate the role of these cis–genes in T2D by investigating their expression in T2D

cases compared to controls in independent datasets. This will investigate the hypothesis

that the identified cis–genes are regulated by T2D-risk variants present at different allele

frequencies in T2D cases.

111



4 Chapter 4: T2D cis-gene expression in cases vs

controls

4.1 Introduction

In Chapter 3, 763 T2D cis–genes were identified based on the co-location of the asso-

ciated ŜeQTL within 1 LDU of an independent, replicated ŜT2D. A total of 166 T2D

loci co-located with ŜeQTL, defined as putative T2D-eQTL. Chapter 4 will aim to pro-

vide independent validation by investigating whether the same cis–genes are observed to

be differentially expressed in independent case-control gene expression data. If the cis–

genes are regulated by shared T2D risk variants then gene expression is expected to differ

between cases and controls; this is illustrated in Table 5.

eQTL allele frequencies cause differential gene expression

Gene
expression

Allele
frequency

Average gene expression
level

Healthy Controls

ACTGAGTACGGAT 100% 80% (100×0.8) + (50×0.2) = 90%

ACTGAGGACGGAT 50% 20%

T2D Cases

ACTGAGTACGGAT 100% 60% (100×0.6) + (50×0.4) = 80%

ACTGAGGACGGAT 50% 40%

Table 5: In this illustrative example, a regulatory variant T>G causes a 50% reduction
in gene expression levels. The higher frequency of the G allele in T2D cases causes an
overall reduction in the average gene expression level.

Observing differential expression of the T2D cis–genes in T2D cases compared to controls

will provide an important step towards validating ŜeQTL which were originally mapped

using adipose gene expression data for an independent population-based cohort. Gene

expression will be analysed in publicly available gene expression datasets for skeletal

muscle, liver and pancreas in addition to adipose tissue, in order to investigate potential

ubiquitous effects in multiple tissues relevant to T2D.
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4.1.1 Aims

The main aim of Chapter 4 is to provide independent evidence that the T2D cis-genes

associated with T2D-eQTL mapped in Chapter 3 are also differentially expressed in T2D

or insulin resistant (IR) cases compared to healthy controls. To do so, the following aims

will be met:

1. Identify publicly available case-control gene expression datasets based on pre-defined

inclusion and exclusion criteria (Section 4.2)

2. Test for differential gene expression and carry out meta-analysis of the T2D cis–

genes, cis–NEMGs and mitochondrial pathways using gene set enrichment analysis

(GSEA) (Section 4.3).

4.2 Aim one: identify gene expression datasets

4.2.1 Dataset search

Datasets measuring gene expression in T2D or IR cases were obtained from the public

Gene Expression Omnibus (GEO) repository (Edgar et al., 2002; Barrett et al., 2012).

Inclusion and exclusion criteria are listed in Table 6. Both T2D and IR phenotypes were

included since the T2D cis-genes were mapped using subcutaneous adipose expression

data and are likely to capture either adipose-specific or multi-tissue mechanisms involved

in peripheral insulin resistance. Datasets were required to have the original, baseline gene

expression measures (prior to any intervention), measured on Affymetrix arrays to allow

for a consistent normalisation and meta-analysis pipeline. Cases with Type 1 diabetes or

those taking insulin medication were excluded in order to obtain baseline gene expression

measures. The search string used to identify datasets from GEO is shown below. Datasets

with European samples were included in order to minimise heterogeneity.
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Inclusion criteria Exclusion criteria

T2D or insulin resistant case-control

study

Ongoing medications at time of sampling

(excluding pancreas samples)*

Baseline gene expression measures Non-European cohort

Original data available as CEL format Measurements from cultured cells

Data generated on an Affymetrix array

Either skeletal muscle, adipose, liver or

pancreas

Table 6: Inclusion and exclusion criteria for GEO gene expression datasets. *Pancreas
datasets were exempt from this exclusion criteria, since the donors are typically deceased
and unable to stop medication prior to sampling.

GEO search string:

(((((T2D OR Type 2 Diab* OR IGT OR insulin resistan* OR IFG OR pre*diab* OR impaired fasting

glucose OR impaired glucose tolerance)) AND (homo sapiens[Organism] OR human[Organism])) AND

cel[Supplementary Files]) AND expression profiling by array[DataSet Type]) AND (muscle OR skeletal

muscle OR adipose OR adipo* OR omental OR subcutaneous OR skeletal muscle OR vastus lateralis

OR rectus abdominus OR liver OR hepat* OR pancreas OR islet OR beta cell* OR myotub*)

4.2.2 Results

132 datasets were returned from the initial GEO search. Filtering according to the in-

clusion and exclusion criteria led to the exclusion of 106 results (see Figure 21). The

remaining 26 datasets were subject to a full text review, leading to the exclusion of an

additional 13 results. Of the final 13 datasets, three were skeletal muscle, five were adi-

pose, two were liver, three were pancreas and one dataset had both skeletal muscle and

adipose samples. Summary information for these 13 datasets is provided in Table 7. Of

the final 13 datasets, one skeletal muscle dataset included healthy controls with zero, one

or two parents affects by T2D (GSE25462) (see Table 7).
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Dataset ID Tissue
Phenotype(s)

Cases /

Controls

No. of
genes

GSE13070a Skeletal Muscle IR 51/18 21,276

GSE25462b Skeletal Muscle T2D (& FH+) 10/15 21,276
GSE22435 Skeletal Muscle T2D/IGT 7/10 21,276
GSE101492 Adipose IR 40/40 24,254
GSE26637 Adipose IR 5/5 20,212
GSE94752 Adipose IR 18/21 21,276
GSE20950 Adipose IR 9/10 21,276
GSE27949 Adipose T2D (& IGT) 12/11 21,276
GSE13070a Adipose IR 28/6 21,276
GSE64998 Liver T2D 7/8 13,931
GSE15653 Liver T2D 9/4 20,212
GSE76894 Pancreas T2D 19/83 21,276
GSE25724 Pancreas T2D 6/7 13,931
GSE41762 Pancreas T2D 20/57 20,212

Table 7: Summary information for the 13 gene expression datasets obtained from GEO
using the inclusion and exclusion criteria listed in Table 6. aThe dataset GSE13070
provided both skeletal muscle and adipose samples. bControls included family history
information as the number of parents with T2D. The No. of genes reports the number of
genes present on the gene expression array used for each study. T2D = Type 2 diabetes,
IR = insulin resistant, IGT = impaired glucose tolerance, FH+ = family history positive.

are shown in Figure 22. Briefly, raw gene expression data were downloaded in CEL

format and normalised using robust multi-array averaging (RMA) (Irizarry et al., 2003),

as implemented by the R oligo package (Carvalho and Irizarry, 2010). Phenotype data was

extracted using the GEOquery package (Davis and Meltzer, 2007) and the corresponding

array annotation package was downloaded (see Appendix A.3 for the array used by each

study). Each gene was tested for evidence of differential expression between cases and

controls by regressing the expression, as measured by one or more probes, on disease

status. Age and BMI were included as co-variates where available68. If more than one

probe was assigned to a gene then the probes were fitted as random effects in a linear

mixed-effects model (Bates et al., 2015). This “gene-centric” model assumes that probes

68Of the three T2D cohorts analysed by Lau et al. (2017), the African American NIDDK cohort was
matched for BMI (Palmer et al., 2012), in order to minimise confounding of loci associated with BMI.
However, this has been suggested to bias against the discovery of loci which increase the risk of T2D via
their effects on adiposity and BMI (Billings and Florez, 2010). An additional step might be to further
study the expression of the T2D cis–genes and cis–NEMGs without correcting for BMI, however the
current analysis included BMI as a covariate for consistency with the Palmer et al. (2012) and Lau et al.
(2017) designs.
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against the number of affected parents (0, 1 or 2):

gene expression ∼ number of affected parents + age + BMI + (1|probe)

A Z-score of differential expression was calculated for each gene by dividing the β regres-

sion coefficient by its standard error for the explanatory variable of interest (case control

status or the number of affected parents).

4.3.2 Additional quality control

The Z-scores were correlated between datasets to test for dataset homogeneity as de-

scribed by Väremo et al. (2015). A Pearson correlation coefficient was calculated for each

pair of datasets using Z-scores for genes with Z <-1 or Z >1 in either dataset, in order to

minimise uninformative variation. The results are shown in Figure 23. The correlations

are shown by red (-1 to 0) and green (0 to +1) shading and the within-tissue correlations

are highlighted in red boxes. The within-tissue datasets were generally positively corre-

lated. One adipose dataset, GSE20950, had a weak negative correlation with the other

adipose datasets, although it was strongly positively correlated with the three skeletal

muscle datasets and so was retained. The two liver datasets had a weak negative corre-

lation. As expected, the between-tissue correlations were generally weaker compared to

the within-tissue comparisons.

4.3.3 Meta-analysis

Individual datasets were included in a tissue-specific meta-analysis by combining gene

summary Z-scores and variance of differential expression using a random effects model

(REM). As described by Choi et al. (2003), a REM may be used to meta-analyse gene

summary scores across studies. As opposed to a fixed effects model which assumes that

variation between datasets is due to sampling error alone, the REM considers heterogene-

ity between datasets caused by random sampling of the study cohorts from the population,

by assuming study-specific means. This suitability of the REM for the data in question

can be formally tested by estimating Cochran’s Q statistic, which uses a non-parametric
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to achieve statistical significance, while also providing biological insight.

GSEA was carried out in R using the package piano (Väremo et al., 2013), which incor-

porates different GSEA methods into a single, user-friendly interface69. Piano allows the

user to test gene sets for enrichment which can be either distinct-directional, in which

the gene set is enriched for decreased or increased expression or mixed-directional, in

which the gene set is enriched for genes with both significantly increased and significantly

decreased expression. For the following analyses, GSEA was carried out by calculat-

ing a Wilcoxon test statistic using piano, unless otherwise stated. The non-parametric

Wilcoxon rank-sum test has been shown to have the highest reproducibility and sensitivity

compared to other commonly used GSEA test statistics (Hung et al., 2011). Significance

was calculated through gene sampling, in which sets of randomly selected genes were

compared to the query gene set. The number of permutations was set at 10,000. GSEA

were carried out to test the case vs control differential expression of the T2D cis-genes

and cis-NEMGs identified in this study, as well as pre-defined mitochondrial pathways.

These are described in more detail below.

(1) Differential expression of T2D cis-genes and cis-NEMGs

The first set of GSEA tested whether the T2D cis-genes and cis-NEMGs were enriched

for differential expression in T2D/IR cases compared to controls. Z-scores that reflect

the differential expression of each gene between cases and controls were used to make two

initial comparisons:

1. T2D cis-genes (n=763) against the genomic background

2. T2D cis-NEMGs (n=50) against the genomic background

Three control gene sets were randomly selected for each GSEA. Three sets of 763 genes

were selected as controls for the first GSEA from a list of adipose cis-genes obtained

from the MuTHeR Consortium (Grundberg et al., 2012), from which summary data was

69Väremo et al. (2013) described 11 different competitive tests which compare a set of genes to the
genomic background. These differ by permutations either randomising the genes or case-control status,
or by the test statistic.
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used to map the ŜeQTL locations (Lau et al., 2017). The control genes were significant

cis–genes associated with eQTL greater than 2Mb away from a T2D location, in order to

test whether ŜT2D-ŜeQTL co-location conferred a greater enrichment of differential expres-

sion. The cis–genes were associated with eQTL from the MuTHeR single-SNP analysis

which achieved a p-value of <0.05, the same threshold used to include ŜeQTL. For the

second GSEA, three sets of 50 genes were randomly selected from the list of total known

NEMGs described in Chapter 3, Section 3.4.1: Nuclear encoded mitochondrial

genes (NEMGs) (MitoCarta+ and MitoCarta2.0 combined), with the 50 observed T2D

cis-NEMGs excluded.

Since mitochondrial dysfunction may also result as a consequence of developing T2D or

IR (see Chapter 1, Section 1.5: Mitochondrial dysfunction in Type 2 diabetes), a

prior hypothesis might be that all NEMGs show differential expression as a consequence

of disease. In order to investigate whether the observed cis–NEMGs represent a subset

of NEMGs regulated by T2D loci, the expression of the 50 cis–NEMGs were compared

to the background of all known NEMGs. The third GSEA was therefore:

3. T2D cis-NEMGs (n=50) against all known NEMGs

The same three control sets of 50 NEMGs were included as controls as above.

(2) Differential expression of mitochondrial pathways

Previously in Chapter 3, Section 3.5: Aim three: test cis-genes for enrichment of

mitochondrial pathways, four gene sets representing mitochondrial pathways showed

evidence of enrichment in the total T2D cis–genes: valine, leucine and isoleucine degrada-

tion, biotin-dependent carboxylases, propanoate metabolism and butanoate metabolism.

The same four gene sets, downloaded from the curated Molecular Signatures Database

(MSigDB) (Liberzon et al., 2015), were tested for differential gene expression in these

case-control datasets.
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GSEA results: T2D cis-genes vs the genomic background

Dataset Tissue

763 T2D
cis–genes
vs ALL

763 random cis–genes vs
ALL (3 control gene sets)

Meta-analysis Muscle ↓ 0.001 ↓ 0.016 n.s. ↓ 0.003
Meta-analysis Adipose 0.006 n.s. n.s. n.s.
Meta-analysis Liver ↓ 0.020 n.s. n.s. ↑ 0.003
Meta-analysis Pancreas ↓ 0.003 ↑ 0.009 n.s. n.s.

GSE13070 Muscle ↓ 0.050 n.s. n.s. ↓ 0.003
GSE25462 Muscle n.s. n.s. n.s. 0.012
GSE22435 Muscle ↓ 0.002 0.003 n.s. ↓ 0.036
GSE101492 Adipose ↓ 0.025 n.s. n.s. n.s.
GSE26637 Adipose ↑ 0.027 n.s. n.s. n.s.
GSE94752 Adipose n.s. n.s. n.s. n.s.
GSE20950 Adipose ↓ 2.5e-04 n.s. n.s. n.s.
GSE27949 Adipose ↑ 0.017 n.s. ↑ 0.009 ↑ 0.034
GSE13070 Adipose ↑ 0.003 ↑ 0.002 ↑ 0.035 ↑ 0.002
GSE64998 Liver ↓ 0.010 n.s. n.s. n.s.
GSE15653 Liver n.s. n.s. n.s. ↑ 0.018
GSE76894 Pancreas 0.035 ↑ 0.015 n.s. 0.048
GSE25724 Pancreas n.s. ↑ 0.003 n.s. n.s.
GSE41762 Pancreas 0.018 n.s. n.s. n.s.

Family history dataset

GSE25462 Muscle ↓ 0.021 n.s. n.s. n.s.

Table 8: Gene set enrichment analysis results comparing the expression of the 763 T2D
cis-genes to the genomic background (ALL). FDR-adjusted p-values ≤ 0.05 are shown for
significant enrichment of increased (↑), decreased (↓) or mixed increased and decreased
(no arrow). GSEA used a Wilcoxon rank-sum test and 10,000 permutations. n.s. = not
significant. The family history dataset regressed gene expression in healthy individuals
against the number of parents affected by T2D.

The T2D cis–genes were significantly enriched for differential expression in 10 out of the

14 individual datasets. Expression was decreased in two muscle, two adipose and one

liver dataset, mixed in two pancreas datasets and increased in three adipose datasets.

This is consistent with the T2D cis–genes being differentially expressed in individuals

with T2D, with some genes showing increased expression and others showing decreased

expression. Notably, all three datasets showing increased expression were adipose, possibly

reflecting tissue-specific mechanisms. The T2D cis–genes were also enriched for decreased

expression in the highly informative dataset of healthy, normoglycemic individuals with

an increasing number of parents affected by T2D (family history dataset, Table 8), while
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all three control datasets were non-significant. This dataset is expected to more accurately

reflect heritable changes in gene expression with reduced confounding that may arise as

a consequence of T2D onset, since the study subjects are healthy, first-degree relatives of

T2D cases.

The three control gene sets showed evidence of differential expression in two, zero and

two meta-analysed tissues, as well as four, two and seven of the individual datasets,

respectively. When considering the proportion of individual datasets with evidence of

cis–gene differential expression, the T2D cis–genes were enriched for differential expres-

sion in 11/15 or 73% of the observed datasets, which was significantly greater than the

proportion of control gene sets (13/45 datasets or 29%) with a two-proportion, one-tailed

z-test providing a p-value = 0.003. These results provide supporting evidence that the dif-

ferential expression of the 763 cis-genes are plausibly driven, at least in part, by heritable

mechanisms rather than as a consequence of disease onset.

(2) GSEA RESULTS: T2D cis-NEMGs vs the genomic background

The expression of the 50 T2D cis-NEMGs were significantly decreased compared to the

genomic background in cases compared to controls in three of the four meta-analysed

tissues, nine out of the 14 datasets and in the family history data (see Appendix A.4).

However, the three control sets of 50 random cis–NEMGs were also consistently down-

regulated across the datasets, including in the family history dataset. This is consistent

with a general observation of mitochondrial dysfunction in T2D, which may result as a

consequence of developing T2D or as driven by a subset of dysregulated genes. In this

context, the expression of the T2D cis-NEMGs cannot be concluded to be different from

that of randomly selected NEMGs. This further motivates the next analysis, in which the

50 T2D cis–NEMGs are instead compared to the background of all NEMGs.

(3) GSEA RESULTS: T2D cis-NEMGs vs all NEMGs

To further investigate if ŜT2D and ŜeQTL co-location identified a subset of 50 NEMGs

which are regulated by T2D risk variants (T2D-eQTL), the expression of the T2D cis-

NEMGs were compared to the background of known NEMGs (n = 1,203 in the combined
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MitoCarta2.0 and MitoCarta+). Due to the general reduced expression of NEMGs ob-

served in T2D/IR patients compared to controls and the expected high correlation between

NEMG expression, this comparison is likely to have limited power. As a result, Table 9

presents the raw p-values resulting from GSEA rather than the FDR-adjusted p-values as

in Table 8.

Gene set enrichment analysis results: T2D cis-NEMGs vs all NEMGs

Dataset Tissue

50 T2D
cis–NEMGs vs
all NEMGs

50 random cis–NEMGs vs
all NEMGs (3 control gene
sets)

Meta-analysis Muscle n.s. n.s. n.s. n.s.
Meta-analysis Adipose 0.029 n.s. 0.029 n.s.
Meta-analysis Liver n.s. n.s. n.s. n.s.
Meta-analysis Pancreas ↓ 0.009 n.s. n.s. n.s.

GSE13070 Muscle n.s. n.s. n.s. n.s.
GSE25462 Muscle ↓ 0.035 n.s. n.s. n.s.
GSE22435 Muscle n.s. n.s. n.s. n.s.
GSE101492 Adipose n.s. n.s. ↓ 0.045 n.s.
GSE26637 Adipose n.s. n.s. n.s. n.s.
GSE94752 Adipose n.s. n.s. ↑ 0.003 n.s.
GSE20950 Adipose n.s. ↓ 0.030 ↓ 0.011 n.s.
GSE27949 Adipose ↑ 0.024 n.s. n.s. n.s.
GSE13070 Adipose n.s. n.s. n.s. n.s.
GSE64998 Liver n.s. n.s. 0.009 n.s.
GSE15653 Liver n.s. n.s. n.s. n.s.
GSE76894 Pancreas n.s. n.s. n.s. n.s.
GSE25724 Pancreas ↓ 0.016 n.s. n.s. n.s.
GSE41762 Pancreas ↓ 0.008 n.s. n.s. n.s.

Family history dataset

GSE25462 Muscle ↓ 0.043 n.s. n.s. n.s.

Table 9: Gene set enrichment analysis comparing the expression of the 50 T2D cis-NEMGs
to the background of all known NEMGs. Non-adjusted p-values ≤0.05 are shown, reflect-
ing significant enrichment in the gene set for decreased (↓) or increased (↑) expression.
GSEA used a Wilcoxon rank-sum test and 10,000 permutations. n.s. = non-significant.
The family history dataset regressed gene expression in healthy individuals against the
number of parents affected by T2D.

As shown in Table 9, the 50 T2D cis-NEMGs showed evidence of differential expression

compared to the total NEMGs in two out of four meta-analysed tissues and four of the

14 datasets and the family history dataset. Most strikingly, the T2D cis-NEMGs showed

evidence of significant decreased expression relative to all NEMGs in the family history
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dataset which, as noted above, is expected to provide the most power to detect heritable

changes in gene expression independent of disease status. None of the control gene sets

were significant. One control NEMG set showed evidence of differential expression in

one meta-analysis (control gene set 2 in adipose). In the individual datasets, the three

control NEMG sets were enriched for differential expression in a total of 5/45 (11%)

datasets, compared to 5/15 (33%) datasets for the T2D cis–NEMGs. A two-proportion,

one-tailed z-test provides a nominal p-value = 0.055. These results tentatively support the

hypothesis that ŜT2D and ŜeQTL co-location offers the power to detect cis-genes involved

in heritable disease risk, rather than disease onset.

GSEA RESULTS: enriched mitochondrial pathways

As described in Chapter 3, Section 3.5: Aim three: test cis-genes for enrichment

of mitochondrial pathways, four mitochondrial pathways showed evidence of gene

count enrichment in the total T2D cis–genes: valine, leucine and isoleucine degradation,

biotin carboxylases, propanoate metabolism and butanoate metabolism. The differential

expression of these four gene sets were also tested in the meta-analysed GEO datasets.

The results are shown in Table 10. The four enriched mitochondrial gene sets showed

consistent enrichment for decreased expression in T2D/IR cases compared to controls.

Liver, being the smallest analysis with only 2 datasets, returned three non-significant

results.

Gene Set (source) Muscle Adipose Liver Pancreas Muscle (FH)

Valine leucine and
isoleucine degradation

<2.50e-04 <1.67e-04 6.00e-03 2.50e-04 <2.50e-04

Biotin carboxylases 0.009 6.25e-04 n.s. 7.50e-04 0.054
Propanoate metabolism <2.50e-04 <1.67e-04 n.s. 3.33e-04 <2.50e-04
Butanoate metabolism 0.009 <1.67e-04 n.s. 2.50e-04 1.00e-03

Table 10: False discovery rate (FDR)-corrected p-values for gene set decreased expression
in meta-analysed T2D case-control gene expression datasets, calculated using 10,000 per-
mutations and a Wilcoxon statistic. All gene sets were sourced from KEGG, excluding
biotin carboxylases which was manually defined. The Muscle (FH) dataset contains fam-
ily history information, with gene expression for healthy individuals regressed against the
number of parents with T2D.
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4.4 Physical vs genetic distance: differential expression

As discussed in Chapter 3, Section 3.3.3: physical vs genetic distance: co-location

using 1 LDU, the co-location between ŜT2D and ŜeQTL can be defined using a physical

(e.g. 50 kb) or genetic distance (e.g. 1 LDU). A threshold of 1 LDU was used in this

study. This approach assumes that independent Ŝ which co-locate within a tight genetic

distance represent shared causal variant(s), which in this case both increase risk of T2D

and regulate gene expression. The argument raised in Chapter 3 is that a physical co-

location threshold ignores the ‘step’ and ‘block’ nature of LD, such that physically close

ŜT2D-ŜeQTL may still be separated by a large LDU distance (LD breakdown) and the

variants will be independently inherited. Defining shared signals using a small genetic

distance may therefore be expected to reduce the type I error rate (the number of false

positive results). This section aims to investigate how the size of the co-location threshold

influences cis–gene discovery, by using differential gene expression in independent T2D

cases to as a proxy for the potential enrichment of true positive T2D cis–genes.

Adipose differential expression plotted against ŜT2D-ŜeQTL distance
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Figure 25: Adipose differential expression, shown as absolute Z-score from the adipose
meta-analysis of T2D/IR cases vs control gene expression, plotted against ŜT2D-ŜeQTL

distance in either genetic LDU or physical kb.

The strength of the relationship between ŜT2D-ŜeQTL distance and the cis–gene differen-

tial expression, as measured by summary Z-score, was investigated using regression. Dif-

ferential gene expression was used from the adipose meta-analysis since the ŜeQTL were

mapped using subcutaneous adipose expression data. All nominally significant ŜeQTL
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(p-value ≤0.05, stderr <900) estimated by Lau et al. for cis–genes within ±1.5Mb of a

replicated ŜT2D were considered. The total 265 T2D loci for which two or more ŜT2D

co-located within 100 kb, as provided by Lau et al. (2017), were included in order to

maximise the data available. The distance between ŜeQTL and the nearest ŜT2D was mea-

sured in genetic LDU or physical kb (see Figure 25). Two models were run, either a linear

regression or with distance included as a quadratic term to test for non-linearity:

Model 1: lm(|Z| ∼ LDU)

Model 2: lm(|Z| ∼ LDU + LDU2)

Model 3: lm(|Z| ∼ kb)

Model 4: lm(|Z| ∼ kb + kb2)

The results are shown in Tables 11 and 12. As shown in Table 11, ŜT2D-ŜeQTL distance

in LDU was negatively associated with the magnitude of cis–gene differential expression

(Z-score), with Model 2 providing a significant fit (p-value = 0.016). These results pro-

vide independent validation that a smaller genetic distance between the ŜT2D and ŜeQTL

corresponds to increased cis–gene differential expression between T2D cases and controls.

This might be interpreted as an increasing enrichment for true positive T2D cis–genes

which are regulated by shared T2D-risk variants.

Cis-gene differential expression regressed on ŜT2D-ŜeQTL distance (LDU)

Model 1 (linear) Model 2 (quadratic)

β p-value β p-value

T2D-eQTL distance (LDU) -0.013 0.081 -0.044 0.004**

T2D-eQTL distance2 (LDU2) - - 0.003 0.022*

Adjusted R2 5.82e-04 0.002
Omnibus p-value 0.081 0.016*

* p-value <0.05, ** p-value <0.01, *** p-value <0.001

Table 11: Regression of genetic distance between ŜT2D and ŜeQTL, measured in LDU,
against adipose case-control differential expression (absolute Z scores).

Regressing ŜT2D-ŜeQTL physical distance (kb) against Z-score, shown in Table 12, showed
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Cis-gene differential expression regressed on ŜT2D-ŜeQTL distance (kb)

Model 3 (linear) Model 4 (quadratic)

β p-value β p-value

T2D-eQTL distance (kb) -7.47e-05 0.166 -9.30e-05 0.385

T2D-eQTL distance2 (kb2) - - 6.93e-09 0.843

Adjusted R2 2.60e-04 -1.29e-05
Omnibus p-value 0.166 0.376

* p-value <0.05, ** p-value <0.01

Table 12: Regression of physical distance between ŜT2D and ŜeQTL, measured in kb,
against adipose case-control differential expression (absolute Z scores).

no evidence of a significant relationship between physical co-location distance and cis–gene

differential expression. This may result from a lower specificity with which T2D cis-genes

are identified, since a co-location threshold based on physical distance does not utilise

LD information to quantify shared association. Testing genetic co-location, however,

can exclude physically close ŜT2D and ŜeQTL which are separated by LD breakdown and

therefore are likely to be independent signals.

4.5 Discussion

The aim of this chapter was to investigate if the T2D cis-genes and cis-NEMGs identified

in Chapter 3 showed evidence of differential expression in T2D or IR cases compared

to healthy controls. To recap, T2D cis-genes were identified based on association with

subcutaneous adipose ŜeQTL mapped in a population-based European cohort, which co-

located within 1 LDU of independent ŜT2D. The associated cis-genes are hypothesised to

be regulated by the same causal variant(s) which increase risk of T2D and as such, were

expected to show differential expression in T2D cases compared to healthy controls.

Differential gene expression (DGE) analysis was carried out using gene expression data

from 13 datasets of T2D or IR cases vs healthy controls from the GEO database (of which

one contained both skeletal muscle and adipose samples and one contained family history

data for the healthy controls, bringing the total to 15 separate analyses). Gene set en-

richment analysis (GSEA) provided significant evidence that the 763 T2D cis-genes were
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enriched for differential expression in T2D cases compared to controls, across multiple

datasets and tissues. This is consistent with the identification of T2D cis–genes with

multi-tissue effects, despite ŜeQTL being mapped in subcutaneous adipose only. There

was also evidence of tissue specificity, with some data sets showing an enrichment for

decreased expression, while several adipose datasets showed enrichment for increased ex-

pression and two pancreas datasets showed mixed differential expression (both increased

and decreased). The enrichment for differential expression was significant when compared

to three control gene sets of adipose cis–genes with eQTL >2Mb away from a ŜT2D. This

is consistent with ŜT2D-ŜeQTL co-location being required to identify true T2D cis–genes

which are regulated by T2D risk variants.

Both the 50 T2D cis–NEMGs and the NEMG control sets were enriched for decreased ex-

pression in cases across datasets, compared to the genomic background. This is consistent

with the observation of general mitochondrial dysfunction in T2D, which may be either

induced by disease onset or potentially driven by heritable changes in the expression of a

subset of NEMGs. In order to address this confounding, a GSEA was carried out to test

the expression of the 50 T2D cis–NEMGs compared to all known NEMGs. The T2D cis–

NEMGs showed significant enrichment for differential expression compared to all NEMGs

in both the adipose and pancreas meta-analyses and across several individual datasets.

Most strikingly, the expression of the T2D cis–NEMGs was also decreased relative to all

NEMGs in the skeletal muscle of healthy individuals with an increasing number of parents

with T2D. The control sets for these data showed no evidence of differential expression.

The analysis of healthy individuals with a positive family history is expected to reduce

confounding due to disease onset and improve the power to detect heritable changes in

gene expression. These results provide independent evidence for a primary effect of the 50

cis–NEMGs and supports their follow-up as strong candidate genes. The four mitochon-

drial gene sets which were enriched in the total T2D cis–genes also showed enrichment

for decreased expression across datasets: valine, leucine and isoleucine degradation, biotin

carboxylases, propanoate metabolism and butanoate metabolism.

The potential considerations in interpreting these results include the limited power con-
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ferred from using gene expression arrays and small cohorts of potentially heterogenous

individuals. The “gene-centric” analysis used here assumes that the probes measuring

each gene have the same direction of effect. However, probes may different isoforms and

potentially different patterns of expression. While probes could be measured individually,

a combined score for each gene is required for the meta-analysis of studies which use in-

dependent expression arrays. In future analysis, RNA-seq case-control data may be used,

in which individual transcripts can be annotated.

The inclusion of potentially heterogenous cohorts, for example T2D cases who may rep-

resent different T2D sub-phenotypes (Udler, 2019), may also reduce the power to detect

differential gene expression. The meta-analysis of heterogeneous cohorts has previously

been cautioned against, since the analysis may converge on generic signals of differen-

tial expression (Crow et al., 2019). Strict inclusion and exclusion criteria were used in

this study to minimise potential heterogeneity. An additional quality control step might

be to compare the genes identified in this analysis to be differentially expressed with a

list of genes showing a high probability of generic differential expression, as reported by

Crow et al. (2019). In order to minimise heterogeneity and enrich for individuals with a

heritable predisposition to T2D, a family history dataset was included to measure gene

expression in healthy individuals depending on the number of parents with T2D. Both

the total T2D cis–genes and cis–NEMGs were enriched for decreased expression with

an increasing number of affected parents, while all control datasets were non-significant.

The observed differential expression of the control gene sets in some individual T2D/IR

vs control datasets, but not in the family history dataset, is consistent with the family

history dataset providing a cleaner analysis enriched for detecting heritable changes in

gene expression. Furthermore, it shows that mapping T2D cis–genes based on ŜT2D and

ŜeQTL co-location has the power to identify changes in gene expression prior to disease

onset.

A further question that remains is whether the T2D cis–NEMGs, for which evidence

suggests are regulated by T2D risk variants, drive the observed mitochondrial dysfunction

and differential expression of other NEMGs. To investigate this, networks of mitochondrial
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genes could be used to determine whether the 50 cis–NEMGs represent core genes which

are highly correlated with other NEMGs. Perturbing gene expression through in vitro

functional studies will provide further evidence regarding the impact on overall NEMG

expression.

4.5.1 Conclusions

To conclude, the analysis of independent gene expression datasets comparing T2D and

insulin resistant cases and controls to healthy individuals validated the T2D cis–genes

as being enriched for differential expression. The 50 T2D cis–NEMGs showed evidence

of differential expression compared to the background of NEMGs, providing evidence

of a primary effect for this subset of NEMGs. An informative family history dataset

confirmed that ŜT2D-ŜeQTL co-location has the power to detect T2D cis–genes which are

differentially expressed prior to disease onset.
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5 Fine-mapping a candidate locus

5.1 Introduction

5.1.1 Fine-mapping

WHY FINE-MAP?

Fine-mapping aims to identify the putative causal variant(s)71 at a trait or disease-

associated locus. Mapping the causal variant(s) is important for several reasons. Firstly,

confirming the causal variant allows for the downstream biological mechanism to be stud-

ied. This is particularly important when concerning non-coding variants, since the mech-

anism can differ greatly depending on the tissue or context-specific activity of regulatory

elements. Determining the downstream biological mechanism can potentially reveal novel

therapeutic candidates and provide a greater understanding of disease aetiology, including

causal mechanisms which precede disease onset. In addition, knowing the causal variant

will allow direct genotyping to accurately assess the effect on disease risk, as well as its as-

sociation with disease complications, prognosis and therapeutic success. Follow-up studies

may investigate potential epistatic interactions with genetic background and environment

and the impact of the variant across populations and subtypes of disease.

Multiple variants are associated with disease at a typical GWAS signal due to LD between

the causal variant(s) and SNPs inherited on the same haplotype (see Chapter 2, Sec-

tion 2.4.2: Linkage disequilibrium and association mapping for a more in-depth

discussion on haplotype blocks and LD). Since these SNPs are inherited with the causal

variant(s), they are themselves associated with disease. The resolution to determine the

causal variant is therefore limited by the extent of LD around it, although there are

methods discussed throughout this Chapter which can be used to address this.

71At any give trait or disease associated locus there may be just one causal variant. However there
may also be allelic heterogeneity, which occurs where more than one allele associates independently with
the trait or disease.

133



IS THE LEAD SNP THE CAUSAL SNP?

The lead SNP at a significant GWAS locus is defined as the SNP with the smallest p-value

in a test of association. However, the lead SNP is not guaranteed or even likely to be the

causal variant. Several simulation studies have confirmed that the lead SNP is unlikely

to be causal and that even if directly genotyped, the causal variant may not have the

smallest p-value (Zaykin and Zhivotovsky, 2005; Van de Bunt et al., 2015).

It is important to consider that a p-value can be influenced by multiple factors. As dis-

cussed in detail in Chapter 2, conventional GWAS use indirect genotyping to genotype

select ‘tag’ or ‘marker’ SNPs and impute all other genotypes using reference panels. In-

accurate imputation of a causal variant may lead to an underestimated p-value. This is

particularly likely to occur when haplotype frequencies differ significantly between cases

and controls, since imputation is carried out for both cases and controls using generic

population reference panels. Causal variants in low LD may also be more prone to inac-

curate imputation since reliable inference depends on high pairwise LD with genotyped

tag SNPs. Notably, this class of variants are enriched for disease heritability (Gazal et al.,

2017; Wainschtein et al., 2019). Missing data, including failed genotyping, also reduces

marker coverage.

GWAS arrays exclusively genotype single nucleotide polymorphisms (SNPs) and as such,

the lead SNP is unlikely to be causal when the causal variant is a small insertion or deletion

(indel), copy number variant (CNV), variable number of tandem repeats (VNTR) or large

structural variant (SV). While genotyped SNPs may capture the association of non-SNP

variants, the causal variant must be accurately imputed to achieve a highly significant

p-value. Notably, the recent GWAS by Mahajan et al. (2018) carried out imputation using

a reference panel from which indels are absent, while the more recent GWAS by Vujkovic

et al. (2020) does not acknowledge any type of structural variants. Other scenarios in

which the lead SNP is not the causal variant may include ‘synthetic associations’, where

a common SNP achieves a significant p-value due to multiple rare causal variants arising

on the same haplotype background (Dickson et al., 2010).
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METHODS FOR FINE MAPPING

There is a plethora of approaches to fine-mapping, which are covered in detail in several

excellent review papers (see Spain and Barrett (2015); Schaid et al. (2018); Lin and

Musunuru (2018)) and are discussed briefly below.

Fine-mapping methods can be largely divided into computational in silico and functional

in vitro or in vivo studies. Since any variant in LD may be driving the association

of a lead SNP, it is impossible for a standard statistical test to improve the resolution

beyond the extent of LD surrounding a causal variant. However, statistical methods have

been developed to weight variants by systematically incorporating additional information,

such as quantitative trait loci associated with gene expression (eQTL) (Zhu et al., 2016)

and chromatin accessibility (caQTL) (Tehranchi et al., 2019), or functional and genomic

annotation such as predicted measures of pathogenicity and chromatin annotation marks

(see FGWAS, for example (Pickrell, 2014)). There are several categories of statistical

fine-mapping methods (Schaid et al., 2018). Bayesian methods are most popular; these

aim to identify the SNP with the highest probability of being causal. These include

posterior probability and credible set72 approaches which have been used in T2D GWAS.

For example, Mahajan et al. (2018) fine-mapped T2D loci using credible sets, including

those weighted for variants which overlapped pancreatic islet regulatory elements.

Another way to improve resolution is to carry out trans-ethnic fine-mapping (discussed

in Chapter 2, Section 2.4.4: Trans-ethnic GWAS and defining replication).

Assuming that the causal variant is shared, precision can potentially be improved since a

smaller set of variants will be consistently associated across populations with different LD

structures (Mahajan et al., 2014b; Van de Bunt et al., 2015; Asimit et al., 2016). Fine-

mapping must also consider the possibility of allelic heterogeneity, where there is more

than one causal variant at a disease locus. Conditional analysis is often used to identify

independent signals, since including the putative causal variant as a variable in the test

for association should remove the dependent association of SNPs in high LD.

72Credible sets are the minimum number of SNPs which explain the highest posterior probability of
containing the causal SNP(s).
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The number of causal variants is just one factor which influences the efficiency of different

fine-mapping methods, others include the minor allele frequency and surrounding LD.

For regions of LD breakdown where imputation has lower accuracy, sequence data can

be used to obtain accurate genotypes. While this may be impractical for a genome-wide

study, follow-up analysis can sequence replicated loci in cases and controls. A range of

statistical methods can then be leveraged to help identify the causal variant(s). For non-

coding regions, epigenomic annotation can help pinpoint which variants are more likely to

be functional regulatory variants. These may include chromatin functional annotations,

chromatin features (e.g. accessibility, histone modification enrichment, TF binding, 3D

chromatin interactions, etc) as well as cross-species conservation (Cebola, 2019). Individ-

ual variants can be investigated for their potential to disrupt transcription factor binding

sites and for independent evidence of association with quantitative traits, such as gene

expression, methylation levels, metabolite levels or chromatin accessibility.

While in silico fine-mapping methods cannot determine causality, they can provide strong

evidence for candidate causal variants. These can then be investigated using targeted

functional studies such as enhancer reporter assays, or by altering the genotype of the

putative causal variant or the expression of the predicted cis–gene transcript in vitro or

in vivo. Several examples illustrating fine-mapping approaches in the context of T2D are

described below.

FINE-MAPPING EXAMPLES IN T2D

Multiple T2D risk loci have been fine-mapped to a single causal variant. By way of ex-

ample, Kycia et al. (2018) fine-mapped the intergenic rs7163757, nearby the C2CD4A

gene, as the causal variant at the chr15q22.2 risk locus from a total of 16 strongly as-

sociated variants in high LD. Using in silico data, the authors demonstrated that these

variants fell within a conserved pancreatic β-cell ‘super-enhancer’. rs7163757 specifically

fell within open chromatin and, using functional reporter assays, was shown to increase

enhancer activity two-fold and cause differential binding of β-cell transcription factors.

The authors identified the likely downstream mechanism by demonstrating the rs7163757
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was associated with C2CD4B expression, itself shown to regulate inflammatory cytokines

in islets.

Small et al. (2018) fine-mapped a female-specific T2D risk locus upstream of the KLF14

gene, which encodes a transcriptional co-repressor associated with MODY. 29 risk vari-

ants in high LD were fine-mapped to identify five variants within an active adipose en-

hancer using ChromHMM73 to annotate active regulatory elements. Gene expression data

confirmed that the risk haplotype was an adipose-specific eQTL for KLF14. By investi-

gating gene expression in response to altered KLF14 expression, the risk haplotype was

shown to reduce lipogenesis and adipocyte maturation, associating with fewer but larger

adipocytes and favouring abdominal over gluteal adipose. Increased deposits of visceral,

including abdominal adipose, are associated with insulin resistance and increased risk of

T2D (Bjørndal et al., 2011; Direk et al., 2013).

Fine-mapping of the strongly associated TCF7L2 region has involved targeted sequenc-

ing and conditional analysis to demonstrate that the association with disease status de-

pended on the genotype at a single SNP: rs7903146 (Palmer et al., 2011; Maller et al.,

2012). Gaulton et al. (2010) mapped rs7903146 to open chromatin in pancreatic islets,

demonstrating that the SNP altered the chromatin state. rs7903146 is associated with

TCF7L2 expression in pancreatic islets (Viñuela et al., 2019) and deletion of the rs7903146

enhancer alters TCF7L2 expression (Miguel-Escalada et al., 2019). Other examples in-

clude Gaulton et al. (2015) identifying rs10830963 as driving the T2D association at the

MTNR1B gene, encoding the melatonin receptor 1B and Yan et al. (2016) reporting

rs508419 as the causal variant at the ANK1 locus.

FINE-MAPPING AND GENETIC LDU MAPS

An example of improving fine-mapping resolution using LDU-based gene mapping can

be seen in Direk et al. (2014). LDU-based gene mapping was used to obtain a precise

location estimate for a causal variant at the PARL/ABCC5 disease locus, which covers a

73ChromHMM tracks annotate likely chromatin states using histone modifications as input to a mul-
tivariate Hidden Markov Model (Ernst and Kellis, 2012).
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∼250 kb region of high LD. The locus had been previously implicated in T2D, but with

contradictory evidence pointing to a strong biological candidate, PARL, as the poten-

tial candidate gene. PARL encodes the mitochondrial intramembrane cleaving protease,

PARL. Using genetic LDU maps, Direk et al. (2014) reported an identical location esti-

mate within the nearby ABCC5 intron 26 associated with T2D, fasting insulin:glucose

serum ratio levels, increased visceral fat deposits and ABCC5 expression levels. Increased

expression of ABCC5, which encodes the ATP binding cassette subfamily C member 5,

was independently associated with an increased risk of T2D. Whereas the region had pre-

viously been implicated by linkage studies, but had failed to replicate in any subsequent

single-SNP GWAS, the Direk et al. study achieved precise fine-mapping by integrating

genetic maps with genotype data. Crucially, a follow-up knock-out of ABCC5 in mice

confirmed a diabetes-related phenotype of improved insulin sensitivity, decreased fat mass

and increased levels of the incretin hormone GLP-1 (Cyranka et al., 2019).

5.1.2 ACAD11, fatty acid oxidation and diabetes

Chapter 5 aims to fine-map one candidate T2D locus from this study, for which targeted

next generation sequencing data was available for an independent cohort of T2D cases

and controls (described in the next section). The candidate locus was selected based on

the co-location of ŜT2D with a ŜeQTL for the cis–NEMG ACAD11. ACAD11 or Acyl-

CoA Dehydrogenase Family Member 11 is an acyl dehydrogenase involved in fatty acid

β-oxidation, which catalyses the production of acetyl-CoA from long-chain fatty acids

(LCFAs) and very long-chain fatty acids (VLCFAs) with carbon chains between 20 and

26 carbons long (He et al., 2011). β-oxidation is a pathway which has been repeatedly

implicated in T2D, making ACAD11 a particularly strong candidate gene. β-oxidation,

including the link with T2D, is described below.

FATTY ACID β-OXIDATION (FAO) AND ACAD11

The breakdown of fats, glucose and amino acids comprise the three major energy sources,

and mitochondrial fatty acid β-oxidation (FAO) is the primary pathway for the breakdown

of fatty acids (FAs) (Houten and Wanders, 2010). FAO is of particular importance in
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fasting conditions where glucose is limited. In the liver, FAs are converted to ketone

bodies which are utilised by all tissues as an additional energy source, but particularly by

the brain which cannot directly utilise fats for energy.

Free fatty acids (FFAs) formed by the break down of triglycerides (lipolysis) or the synthe-

sis from acetyl-CoA (de novo lipogenesis) are degraded by mitochondrial or peroxisomal

β-oxidation. Insulin stimulates lipogenesis and inhibits lipolysis. FFAs are esterified

or ‘activated’ by an acyl-CoA synthetase (ACS) enzyme prior to their transport across

the mitochondrial membrane via the carnitine shuttle, whereby acyl-CoAs are converted

into acylcarnitines by carnitine palmitoyltransferase I (CPT1) on the mitochondrial outer

membrane and then enter the mitochondria where they are converted back to acyl-CoAs

by CPT2. β-oxidation is a cyclic pathway in which fatty acyl-CoAs are shortened by two

carbons per cycle to form an acetyl-CoA molecule and two electron carriers. Acetyl-CoA

enters the citric acid or ‘TCA’ cycle and the electrons are transported to the electron

transport chain (ETC). Each β-oxidation cycle consists of four reactions, of which the

first is catalysed by an acyl-coenzyme A dehydrogenase (ACAD) enzyme (Houten and

Wanders, 2010), such as ACAD11. In the final cycle, even-chain fatty acids produce two

acetyl-CoA molecules and odd-chain fatty acids produce one acetyl-CoA (2 carbons, 2C)

and one propionyl-CoA (3C). Priopionyl-CoA is converted to methylmalonyl-CoA via the

biotin-dependent propionyl-CoA carboxylase, which is then converted to succinyl-CoA

and enters the TCA cycle. The α chain of propionyl-CoA carboxylase is encoded by the

PCCA gene, which was also detected as a T2D cis–gene in this study.

Some fatty acyl-CoAs are too long to enter the mitochondria and are instead oxidised

in the peroxisome; this may be the case for fatty acyl chains ≥22C. Peroxisomal β-

oxidation (peroxidation) is oxidative and electrons are transferred to oxygen, forming

hydrogen peroxide (H2O2). It has been debated whether ACAD11 is localised to the

mitochondria or the peroxisome. ACAD11 was first identified in peroxisomes from rat

liver (Kikuchi et al., 2004; Islinger et al., 2007; Wiese et al., 2007). Despite containing

a peroxisomal targeting signal, He et al. (2011) found that the majority of ACAD11

localised to plasma membrane-associated vesicles and the mitochondria. ACAD11 is
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present in the MitoCarta2.0 database of mitochondrial proteins (Calvo et al., 2016)74.

Camões et al. (2015) recently presented evidence that ACAD11 is exclusively localised to

the peroxisome.

FATTY ACID β-OXIDATION AND T2D

Fatty acid β-oxidation has been widely implicated in diabetes, insulin resistance and

insulin deficiency (IS Sobczak et al., 2019). Perturbed lipid metabolism may be one of the

earliest features of T2D (Bell et al., 2020). Observational studies have routinely reported

the association of circulating and dietary saturated fatty acids with T2D. Circulating

levels of medium odd-chain FAs are negatively associated with risk of T2D, while even-

chain FAs are positively associated (Forouhi et al., 2014; Lu et al., 2016; Imamura et al.,

2018; Huang et al., 2019) and that this relationship may be stronger for women (Imamura

et al., 2018). Furthermore, higher levels of acylcarnitines75 in T2D are indicative of

incomplete β-oxidation, since fatty acyl-CoAs can be transported out of the mitochondria

as acylcarnitines and then enter the blood stream (Koves et al., 2008). Increased levels of

acylcarnitines have been observed across T2D and prediabetic states (Wang-Sattler et al.,

2012; Mai et al., 2013; Ha et al., 2012; Adams et al., 2009; Mihalik et al., 2010; Floegel

et al., 2013; Lin et al., 2018b; Möder et al., 2003), as well as in women with gestational

diabetes (Batchuluun et al., 2018).

Circulating levels of short-chain FAs derived from gut microbes have also been associated

with T2D (Sanna et al., 2019; Müller et al., 2019). At the other end of the spectrum,

circulating levels of very-long chain fatty acids (VLCFAs), including those which are

substrates for ACAD11 (C20: arachidic acid, C22: behenic acid, C23: tricosanoic acid,

C24: lignoceric acid) are inversely associated with risk of T2D, such that lower levels

are associated with a higher risk of disease (Forouhi et al., 2014; Lemaitre et al., 2015;

Fretts et al., 2019; Ardisson Korat et al., 2020). Changes in lipid levels and the adipocyte

74MitoCarta2.0 reported ACAD11 as having an exclusively mitochondrial protein domain, increased
in expression in models of mitochondrial proliferation and co-expression with known nuclear-encoded
mitochondrial genes (NEMGs).

75Odd-chain acylcarnitines (C3: propionylcarnitine and C5: isovalerylcarnitine) are produced during
amino acid catabolism. Butyrylcarnitine (C4) results from the degragation of both FAs and amino acids
as does acetylcarnitine (2C), which is produced from acetyl-CoA
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fatty acid binding protein (A-FABP) have also been observed in the first-degree relatives

of T2D patients (Jacob et al., 1999; Axelsen et al., 1999; Hu et al., 2016). Providing

further evidence that altered fat levels may causally contribute to T2D are a multitude of

functional studies. Intake of fatty acids in humans was shown to cause insulin resistance

(Boden et al., 1991; Homko et al., 2003) and the chronic exposure of pancreatic β-cells

to FAs caused impaired glucose-stimulated insulin release in vitro and in in vivo rodent

models (Zhou and Grill, 1994, 1995; Roomp et al., 2017). High-fat diets cause insulin

resistance in mice (Liu et al., 2015b; Kothari et al., 2017; Avtanski et al., 2019; Lang

et al., 2019) and are often used to model T2D (Heydemann, 2016).

Although it was previously thought that increased β-oxidation may cause hyperglycemia

by increasing the utilisation of fats relative to glucose (Randle, 1963), it is now more

widely accepted that reduced or incomplete β-oxidation is characteristic of T2D. For

example, the in vitro capacity of skeletal muscle myocytes for FAO was shown to reflect

in vivo insulin sensitivity (Ukropcova et al., 2005). Higher expression of ACC2, which is

known to inhibit β-oxidation, is observed in T2D patients (Debard et al., 2004). Directly

inhibiting β-oxidation caused the T cells from lean subjects to become more similar to T

cells from T2D patients, with increased use of 16C-fatty acylcarnitine in the production of

Th17 inflammatory cytokines (Nicholas et al., 2019). Lee et al. (2017) reported that the

loss of hepatic β-oxidation in mice improved glucose tolerance, however Lundsgaard et al.

(2020) demonstrated that the long-term inhibition of β-oxidation caused increased glucose

production, increased circulating fatty acids, hepatic steatosis, reduced insulin sensitivity

and glucose intolerance. Alternatively, it has been suggested that an increased rate of

β-oxidation may cause incomplete oxidation if the rate is greater than that of the TCA

cycle (Koves et al., 2008). The β-oxidation end-product, acetyl-CoA, can be transported

out of the mitochondria as acetylcarnitine (Schroeder et al., 2012) or converted to ketone

bodies in the liver, consistent with the raised levels of acetylcarnitine and the ketone body

β-hydroxybutyrate observed in T2D (Mahendran et al., 2013).

Several mechanisms have been proposed to impact insulin sensitivity and glucose-stimulated

insulin release as a consequence of inefficient β-oxidation (reviewed by Park and Seo
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(2020)). Increased intracellular levels of fatty acyl-CoAs can activate signalling cascades

and inhibit insulin receptor signalling through the phosphorylation of insulin receptor

substrate-1 (IRS-1) (Lowell and Shulman, 2005). Intracellular FAs and fatty acyl-CoAs

can cause widespread alterations to signalling networks, epigenetic modifications and

metabolic processes and may disrupt the translocation of the glucose receptor GLUT4

to the cellular membrane (Dittmann et al., 2019; Gonzalez-Becerra et al., 2019; Park and

Seo, 2020). Raised levels of saturated FAs may also increase endogenous glucose produc-

tion, reduce the potency of incretin hormones to stimulate insulin secretion (Astiarraga

et al., 2018) and cause lipotoxicity and death of pancreatic β-cells (Boden and Shulman,

2002; Shimabukuro et al., 1998; Yang et al., 2016; Acosta-Montaño and Garćıa-González,

2018); lipotoxicity in β-cells is reviewed by Oh et al. (2018); Acosta-Montaño and Garćıa-

González (2018); Ye et al. (2019); Lytrivi et al. (2020).

Increased levels of medium-chain acylcarnitines may impair insulin secretion and induce

NF-κB mediated inflammation (Lee et al., 2001, 2003, 2004; Weatherill et al., 2005; Zhao

et al., 2007; Adams et al., 2009; Batchuluun et al., 2018). Chronic NF-κB activation

may cause lipotoxicity-mediated death of pancreatic β-cells and immune-mediated dia-

betes (Salem et al., 2014; Bagnati et al., 2016; Chen et al., 2018a). Acylcarnitines may

also contribute to diabetes pathology by influencing membrane permeability and intra-

cellular calcium (Ca2+) levels (McCoin et al., 2015). Low levels of fat oxidation have

also been linked to the conversion of LCFAs to the intermediates diacylgylcerol (DAG)

and ceramides, which have independently been implicated in insulin resistance (Erion and

Shulman, 2010; Jornayvaz and Shulman, 2012; Perry et al., 2014; Jornayvaz and Shulman,

2012; Sokolowska and B lachnio-Zabielska, 2019).

The peroxisome, in which ACAD11 may potentially be located, has itself been associ-

ated with T2D. Elsner et al. (2011) reported that H2O2 produced by the peroxisome, but

not the mitochondria, was responsible for lipotoxicity induced by long-chain FAs in pan-

creatic β-cells. ROS from the peroxisome are important regulators of adipogenesis and

adipocyte metabolism (Liu et al., 2019). For example, peroxisomes initiate lipogenesis

and metabolise poly-unsaturated fatty acids, which are the natural ligands for PPARγ,
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a well-known regulator of fat and adipose metabolism. Increased lipid peroxidation has

been observed in T2D patients (Colas et al., 2011).

In addition to the above, multiple genetic studies have implicated genetic perturbations of

fat metabolism and β-oxidation in T2D. Genetic variants in the gene encoding long-chain

acyl-CoA synthetase 1 (ACSL1 ), which activates and channels fats towards β-oxidation,

have been associated with T2D and fasting glucose (Manichaikul et al., 2016). Knock-

down of ACSL1 reduced β-oxidation and increased glucose utilisation in mice (Ellis et al.,

2011); this is consistent with the short term-effects of inhibiting β-oxidation observed by

Lundsgaard et al. (2020). Genetic variants in the fatty acid desaturases FADS1/2 were

observed to drive the association of seven fatty acids with T2D (Yuan and Larsson, 2020).

T2D also associates with variants in the glucokinase regulatory protein GCKR (Ling et al.,

2011; Stančáková et al., 2012; Shen et al., 2013; Simons et al., 2016) and with missense

mutations in the adipokine adiponectin ADIPOQ which regulates both glucose and lipid

metabolism (Stumvoll et al., 2002; Hivert et al., 2008; Gao et al., 2013; Tao et al., 2014).

Common and rare variants in PPARG, which encodes the nuclear receptor PPARγ, have

also been associated with risk of T2D (Vergotine et al., 2014; Majithia et al., 2014).

PPARγ is highly expressed in adipose tissue and regulates whole-body lipid metabolism

(Ahmadian et al., 2013). PPARγ agonists including thiazolidinedione (TZD), a known

diabetes treatment, improve insulin sensitivity (Tontonoz and Spiegelman, 2008), while

genetic variants which disrupt PPARγ binding may modulate response to TZD (Soccio

et al., 2015).

Several of the T2D cis–genes identified in the current study are involved in fat metabolism.

In addition to ACAD11, other cis–genes include ACADS, the short-chain acyl-CoA dehy-

drogenase (SCAD) gene and ACSS1, which encodes acetyl-CoA synthetase 1 and PPARG,

which regulates the uptake of FAs, glucose homeostasis and inflammation in adipose and

skeletal muscle. Also included are PISD, which encodes phosphatidylserine decarboxy-

lase, a protein involved in phospholipid metabolism, and LACTB, which regulates PISD

(Keckesova et al., 2017).
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ACAD11 AND T2D

ACAD11 is likely to confer risk of T2D through its role as an acyl-CoA dehydrogenase

involved in the β-oxidation of long and very-long chain FAs. ACAD11 has a particular

affinity for saturated C22-CoA (He et al., 2011) and is highly expressed in the brain,

particularly white matter, as well as the liver, heart and kidney (He et al., 2011). Ac-

cording to GTEx, ACAD11 has near ubiquitous expression with this being the highest

in the liver, uterus and ovaries. ACAD11 has been reported to contribute to variation in

serum metabolite levels (Hong et al., 2013), residual food intake in cattle (Karisa et al.,

2013) and to be necessary for cell survival during glucose starvation as part of an evo-

lutionary conserved targeting by the cell survival protein p53 (Jiang et al., 2015). p53

has itself been implicated in diabetes-related phenotypes (Minamino et al., 2009; Kung

and Murphy, 2016; Strycharz et al., 2017; Itahana and Itahana, 2018). Both p53 and

ACAD11 may play a role in adipogenesis, with ACAD11 implicated in the formation of

beige adipocytes in mice (Liang et al., 2019).

Of interest are several studies reporting a link between ACAD10, a paralog of ACAD11,

and T2D. Genetic variants in ACAD10 have been previously associated with T2D in

Pima Indians (Hanson et al., 2007; Bian et al., 2010), showing nominal associations with

insulin resistance, lower lipid oxidation rate and larger subcutaneous abdominal adipocyte

size. ACAD10 knock out in mice caused impaired glucose tolerance and hyperinsulinemia

(Bloom et al., 2018).

5.1.3 Aims and hypothesis

The following analysis aims to fine-map and prioritise putative causal variants at the

ACAD11/NPHP3 chr3q22.1 locus, at which T2D association was detected in two inde-

pendent European cohorts by Lau et al. (2017) using LDU-based gene mapping. Previ-

ously generated targeted sequence data for a carefully selected cohort of 94 T2D cases

with a positive family history of T2D and 94 healthy controls with no family history, will

be used to carry out fine-mapping. The chr3q22.1 locus has previously been associated

with T2D-end-stage renal disease (Guan et al., 2016), but has not been identified by any
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T2D GWAS. As such, it might be hypothesised that the causal variant(s) at this locus

represent a genetic architecture which is challenging to map using single-SNP GWAS,

instead requiring the more powerful LDU-based gene mapping. This may include low

levels of LD which prevent accurate imputation, low-frequency or rare variants, non-SNP

variation such as indels or structural variants, or multiple causal variants on different hap-

lotypes (alleleic heterogeneity). As such, the methods described in the following sections

will test for general evidence of association, as well as low-frequency, rare and non-SNP

variation.

5.2 Methods

5.2.1 Targeted sequencing: the data

Targeted sequencing of 104 T2D loci was previously carried out by Lau et al. for a French

cohort of 94 T2D cases and 94 controls. As described in Lau et al. (2017), T2D cases

and controls were 1:1 matched for age, BMI, and sex. Cases with a family history of

T2D were selected from a cohort previously recruited for a T2D linkage analysis (Vionnet

et al., 2000) and controls were selected from families without a family history of T2D

previously recruited for an obesity study (Meyre et al., 2004). The case and control

characteristics are shown below in Table 13, adapted from Supplementary Table S2 in

Lau et al. (2017).

Targeted sequencing was carried out using the Agilent SureSelectXT2 capture kit for

100ng of DNA. The raw data, sequenced on an Illumina HiSeq 2500 as 150bp paired-end

reads, was re-analysed as part of this project to call variants using current gold-standard

tools according to the Genome Analysis Toolkit (gatk) (McKenna et al., 2010). Pre-

processing and variant calling was carried out for the entire dataset prior to variant and

sample filtering based on the subsetted chr3q22.1 sequenced region, covering ∼220 kb.

The analysis steps are described below.
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Gender # Age Bmi
Cases Male 49 43.5±7.5 25.9±3.5

Female 57 47.4±7.0 27.1±4.6
Controls Male 49 40.7±7.1 27.0±3.6

Female 57 47.8±7.3 27.7±4.0

Table 13: Case-control cohort used for targeted NGS sequencing. The number of samples
(#) is presented along with the mean ± standard deviation of age and BMI. A total of
94 cases and 94 controls were included in the following analysis.

5.2.2 Pre-processing, variant calling and filtering

PRE-PROCESSING

FastQC quality reports were generated for all samples. Adapter sequences were trimmed

using fastp (Chen et al., 2018b) and trimmed reads were aligned to the most recent refer-

ence genome (hg38) using bwa mem with default parameters (Li, 2013) (coordinates later

converted to hg19 for consistency). Duplicate reads were marked using picard MarkDu-

plicates and base quality score recalibration (BQSR) from the gatk toolkit was carried

out in order to correct for systematic technical errors in quality scores. For the structural

variant (SV) calling, samblaster was used to exclude duplicate reads and extract split-

ter and discordant reads as recommended in the lumpy SV-calling pipeline (Layer et al.,

2014). Briefly, splitter reads align across a SV breakpoint, resulting in separate parts of

the read aligning to distinct locations in the reference genome. Discordant reads occur

when paired reads do not align within the expected distance and orientation.

VARIANT CALLING

For SNPs and indels, the gatk HaplotypeCaller (Poplin et al., 2017) was used to call

variants from pre-processed reads. HaplotypeCaller was run in GVCF mode to generate

intermediate variant call files (gVCF) per individual. Intermediate files were consolidated

using GenotypeGVCFs to generate one joint VCF file. Lumpyexpress was used to call

structural variants (Layer et al., 2014).

VARIANT AND SAMPLE FILTERING

The joint SNPs and indels vcf file was imported into R and assessed using the vcfR
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package (version 1.10.0) (Knaus and Grünwald, 2016). The data was subsetted for the

candidate locus (chr3q221). 12 samples, 10 cases and two controls, were removed due to

failed sequencing (>50% missing data). Guidelines from Lin et al. (2014) regarding how

to filter targeted sequencing data were adapted for the following steps. Samples for which

>65% of the sites had a depth of <15× were removed, giving 82 cases and 89 controls.

Multi-allelic variants were removed. Each genotype was required to have a read depth

>10×, a minimum of two reads supporting the alternative allele and a genotype quality

phred-score of >20. Following these steps, variants with >20% missing data were removed

as per Lin et al. (2014), resulting in the removal of 209 variants with 549 remaining. The

number of singletons (variants observed in only one individual) per sample was assessed

across the 220 kb region. The mean was 1.48 singletons per sample, with a standard

deviation of 3.59. One outlier (a case sample) was removed for having 45 singletons. A

total of 482 variants over 170 samples remained after excluding monomorphic variants.

Variants were tested for Hardy-Weinberg equilibrium, although all p-values were >10−5.

The mean coverage across the samples was 50×, with a standard deviation of 11.8 and a

minimum of 33×.

For indels, individual genotypes with a depth of <10, genotype quality <20, or less than

two alleles supporting the alternative allele at a heterozygous genotype were removed.

Variants with an overall >20% missingness were removed. Multi-allelic indels were cor-

rected to 0 for the reference allele and 1 for a non-reference allele. Two variants not in

HWE were removed. 75 total indels across the samples were included in the following test

of association. For structural variants, quality scores were assigned to the SVs called by

lumpyexpress using SVtyper (Chiang et al., 2015). SVs were required to have a minimum

phred quality score of 20.

5.2.3 Variant annotation and association

ANNOTATION AND PREDICTING PATHOGENICITY

SNPs and indels were annotated using ANNOVAR (Wang et al., 2010b) with gene-based

annotation from refGene (hg38) and minor allele frequencies from ExAC (ExAC 65000
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exome allele frequency data) and the 1000 Genome Project. Pathogenicity scores were

added for coding variants from SIFT and PolyPhen-2. Briefly, SIFT assesses conserva-

tion across highly related sequences (Vaser et al., 2016) and PolyPhen-2 HDIV uses a

naive Bayes classifier to incorporate sequence conservation in closely related mammalian

species (Adzhubei et al., 2010). To estimate pathogenicity for all variants including non-

coding variants, CADD (Combined Annotation Dependent Depletion) scores were calcu-

lated (Rentzsch et al., 2019). CADD models multiple genomic features, including genetic

context, conservation, epigenetic modifications and functional predictions, with scores

calculated using a machine-learning algorithm trained on proxy-neutral fixed variants

which have become fixed following the human-ape split and are presumed to be benign

(Rentzsch et al., 2019). CADD scores are scaled for the entire genome, such that a CADD

score of 20 indicates the variant is in the top 1% of estimated deleterious variants in the

genome.

CASE-CONTROL ASSOCIATIONS

Variants were tested for disease association using the R package SNPassoc (version 1.9-2)

(Gonzlez et al., 2014). SNPassoc fitted a logistic regression model for each SNP and

case-control status, coded as case = 1 and control = 0, based on a co-dominant (additive)

model of inheritance.

ANNOTATE REGULATORY ELEMENTS

The Roadmap Epigenomics Project was used as the primary source of regulatory anno-

tations. A total of six datasets were investigated, including five primary tissues (adipose

nuclei: E063, skeletal muscle, female: E108, adult liver: E066, pancreatic islets: E087,

pancreas: E098) and the liver HepG2 carcinoma cell line (E118). ChiP-seq data was down-

loaded for histone modifications characteristic of enhancers and promoters (H3K27ac and

H3K9ac) and promoters (H3M4me1). Detailed information regarding the six datasets is

available via ROADMAP.

To define regulatory element boundaries and test for overlapping variants, ChromHMM

tracks were downloaded from ROADMAP. ChromHMM tracks annotate likely chromatin
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states using histone modifications as input to a multivariate Hidden Markov Model (Ernst

and Kellis, 2012). The ROADMAP ChromHMM tracks annotate 15 states based on

the integration of five chromatin marks: H3K4me3, H3K4me1, H3K36me3, H3K27me3,

H3K9me3. The 15 states include: (1) Active Transcription Start Site (TSS), (2) Flank-

ing Active TSS, (3) Transcription at gene 5’ and 3’, (4) Strong transcription, (5) Weak

transcription, (6) Genic enhancers, (7) Enhancers (Enh), (8) ZNF genes & repeats, (9)

Heterochromatin, (10) Bivalent/Poised TSS, (11) Flanking Bivalent TSS/Enh, (12) Bi-

valent Enhancer, (13) Repressed PolyComb, (14) Weak Repressed PolyComb and (15)

Quiescent/Low.

ChromHMM tracks were downloaded from https://egg2.wustl.edu/roadmap/data/byFile

Type/ChromHMMSegmentations/ChmmModels/coreMarks/jointModel/final/.

TRANSCRIPTION FACTOR BINDING SITES

The R package motifbreakR was used to test select variants for evidence of disrupting

transcription factor binding sites (TFBS). TFBS were obtained from the Homo Sapi-

ens Comprehensive Model Collection (HOCOMOCO) which contains manually curated

sequence motifs represented by position weight matrices for 401 human transcription fac-

tors (Kulakovskiy et al., 2013). MotifbreakR was used with the recommended settings

unless otherwise stated, with a threshold p-value of 1e-4.

LINKAGE DISEQUILIBRIUM

The LD between candidate variants were queried from the 1000 Genomes Project using

the LDpop Tool from the National Cancer Institute: https://ldlink.nci.nih.gov.
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5.3 Results
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Figure 26: Plot showing the chr3q22.1 disease locus. ŜT2D from the WTC and MTC
European datasets are shown, along with ŜeQTL within 1 LDU for the cis–genes ACAD11,

NPHP3, SRPRB, SLCO2A1 and RYK, with dotted lines connecting the ŜeQTL estimates
with the cis–genes. Other genes are not shown.

The chr3q22.1 T2D locus (shown in Chapter 2, see Figures 7, 9 and 11) was initially

selected for follow-up fine-mapping due to the cis–NEMG ACAD11 (Acyl-CoA Dehydro-

genase Family Member 11) which is involved in the highly relevant pathway of fatty acid

β-oxidation. This locus has been previously associated with T2D-associated end-stage

kidney disease in African Americans, for which the lead SNPs are shown in Figure 27

(Guan et al., 2016).

ŜT2D location estimates were generated by running the adapted Malecot model as de-

scribed in Chapter 2, Section 2.7: Association mapping using LDU maps on

the genomic coordinates chr3:132065563-132884215 (hg19). This analytical window ex-
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Figure 27: The chr3q22.1 disease locus with European T2D estimates (ŜT2D) from the
WTC and MTC cohorts, showing Z-score likelihood curves and the HapMap LDU map
(European). The minimum Z values reflect the estimated location of the causal variant,
with ŜT2D point estimates (shown as arrows) interpolated onto the high resolution LDU
map. The locations of two SNPs previously reported to be associated with end-stage
kidney disease in T2D are shown in red (Guan et al., 2016).

tends a total of 819 kb (10.5 LDU). The two European datasets gave significant ŜT2D at

chr3:132436519 (WTC), p-value = 4.83e-03 and chr3:132429438 (MTC), p-value = 1.03e-

09. The output of the model included Z-score likelihood curves, with the most likely

estimate of the causal variant located at the minimum Z. These curves are plotted in

Figure 27. The ŜT2D estimates were interpolated from the Z-curves, which depend on

the resolution of the array used for the case-control genotyping76, onto the higher reso-

lution LDU map. The WTC and MTC ŜT2D estimates are located 0.086 LDU apart or

7.08 kb when converted to physical coordinates. It is worth noting that many GWAS

papers define replication where lead SNPs are within ±500 kb (Vujkovic et al., 2020);

the distances used here are comparatively very small. Notably, if the ŜT2D occurs in an

LDU block, the ŜT2D effectively corresponds to the entire block since the LDU distance

is zero. A point estimate of the ŜT2D is typically shown for simplicity. 1 LDU extends

76The metabochip included only 21 SNPs across this 819 kb analytical window.
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chr3q22.1 cis-genes

Cis-gene ŜeQTL (hg19)
eQTL
p-value LDU distance kb distance

ACAD11 chr3:132451038 1.62e-09 0.23 LDU 14.52 kb

NPHP3 chr3:132436437 5.66e-25 0.00 LDU 0.09 kb

SRPRB chr3:132447854 1.98e-03 0.23 LDU 11.34 kb

SLCO2A1 chr3:132446548 1.13e-06 0.13 LDU 10.03 kb

RYK chr3:132437389 5.56e-04 0.13 LDU 0.87 kb

Table 14: Cis-genes of the chr3q22.1 disease locus. LDU and kb distance from the ŜeQTL

to the nearest ŜT2D.

ACAD11 across the region, with the closest eSNP located between the two ŜT2D, 225bp

downstream of the WTC ŜT2D. A limitation of the LDU-based Malecot model is the

assumption that there is one causal variant within the analytical window. Hence only one

location estimate is given, even if there are multiple eQTL. The benefit of fine-mapping

is that candidate SNPs can be identified and further studied to confirm if they associate

with both disease status and gene expression levels.

CHROMATIN INTERACTIONS (PANCREATIC ISLETS)

Human islet chromatin interactions in the locus were investigated using the Capture HiC

Plotter (https://www.chicp.org/) (Schofield et al., 2016). Capture HiC data from Miguel-

Escalada et al. (2019) was available for pancreatic islets and is plotted for the chr3q22.1

locus in Figure 29. Significant interactions are shown with coloured lines and the ŜT2D

region can be seen to have extensive interactions, with most interactions for this locus

contacting the ŜT2D region. While the ŜeQTL data for this project is for adipose, the

interaction plot highlights potential other candidate genes for which promoters interact

with the ŜT2D locus in islets, including TMEM108, BFSP2, CDV3, TOPBP1 and TFP1.

Interestingly, TMEM108 was detected as a T2D cis–gene in this study for a different

ŜT2D locus ∼830 kb upstream. To conclude, the HiC plot confirms that the ŜT2D locus

is highly interactive and may be implicated in the dysregulation of multiple genes. To

further investigate tissue-specific effects on gene expression, ŜeQTL for other tissues should

be generated.
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NPHP3

NPHP3, or Nephrocystin 3, is implicated in the development of several organs through

ciliogenesis (Zhou et al., 2010) and localises to the Inv compartment of the cilia shaft

(Shiba et al., 2012). NPHP3 mutations cause Nephronophthisis (NPHP), an autosomal

recessive kidney disorder with co-morbitities of tapeto-retinal degeneration, hepatic fibro-

sis and end-stage kidney disease (Olbrich et al., 2003) and Senior-Løken Syndrome, which

manifests with juvenile nephronophthisis and retinal degeneration (Ronquillo et al., 2012).

Notably, retinopathy is the most common complication of diabetes (Simó-Servat et al.,

2019), while kidney disease (nephropathy) occurs in up to 20-40% of diabetes patients

and between 25-45% of patients with end-stage kidney disease have diabetes (Persson and

Rossing, 2018). NPHP3 mutations have also been linked with multi-organ polycystic dis-

ease, affecting both the kidneys and pancreas (Leeman et al., 2014) and are a documented

cause for Renal-Hepatic-Pancreatic dysplasia (RHPD) (Neuhaus et al., 1996; Bergmann

et al., 2008). Interestingly, renal cysts are a known co-morbidity of Maturity-onset di-

abetes of the young (MODY) caused by HNF-1β mutations (Bingham and Hattersley,

2004; Clissold et al., 2015). Patients with autosomal dominant polycystic kidney disease

have dyslipidemia and are at a higher risk of developing diabetes (Fliszkiewicz et al.,

2019) and mouse models of kidney disease have altered lipid metabolism (Menezes et al.,

2016). This is consistent with the previous association of this locus with T2D-associated

end-stage kidney disease (Guan et al., 2016).

A link between cilia function and diabetes has been discussed in the literature, with

evidence suggesting a role for primary cilia in leptin and insulin signalling pathways,

as well as satiety signalling in the hypothalamus (Lee et al., 2015a; Volta and Gerdes,

2017). Other ciliopathies, notably Alström syndrome and Bardet-Biedl syndrome have

been observed to manifest with obsesity, early-onset diabetes and retinopathy (Kim et al.,

2015a) and Gerdes et al. (2014) provided evidence that cilia influence insulin secretion and

insulin signalling in rat pancreatic β-cells. Furthermore, both diabetes and ciliopathies

are associated with male infertility (Inaba and Mizuno, 2016; Condorelli et al., 2018) and

polycystic ovary syndrome (PCOS) (Gambineri et al., 2012; Tsang et al., 2018), presenting
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further phenotypic overlap. Volta et al. (2019) discuss how defective cilia in pancreatic

β-cells causes defective insulin secretion.

SRPRB

The Signal Recognition Particle (SRP) receptor (SR) is localised to the endoplasmic

reticulum (ER) in eukaryotic cells and facilitates the import of secretory and membrane

peptides into the ER. The ubiquitous RNA-protein SRP complex recognises translating

peptides at ribosomes and transports them to the ER where it interacts with the SR (Lee

et al., 2018). SRPRB encodes the β subunit of the SR (SR-β); a transmembrane GTPase

that localises the α subunit, which interacts with the signal recognition particle, to the

membrane (Ogg et al., 1998; Jadhav et al., 2015; Lee et al., 2018). SR-β is essential for

protein translocation across the ER membrane (Fulga et al., 2001).

Although there is no direct evidence linking SRPRB to diabetes, the related gene SEC61A1

caused diabetes in mice when mutated by triggering ER stress and β-cell apoptosis (Lloyd

et al., 2010). SEC61A1 encodes a subunit of the ER protein-translocation pore which

transports peptides into the ER following the targeting of translating ribosomes to the ER

via the SRP/SR (Lang et al., 2017). SEC61A1 was shown to negatively regulate SRPRB

which in turn may activate apoptosis via the NF-κB apoptosis pathway (Ma et al., 2017).

The role of ER stress in β-cell apoptosis, hepatic insulin resistance and adipose insulin

resistance is further reviewed in Meyerovich et al. (2018), Kim et al. (2015b) and Khan

and Wang (2014), respectively.

SLCO2A1

SLCO2A1, or Solute Carrier Organic Anion Transporter Family Member 2A1, encodes the

prostaglandin transporter (PGT) which mediates the degradation of prostaglandins (Liu

et al., 2015a). Prostaglandins are lipids produced at sites of injury and infection which

are involved in the regulation of inflammation and other biological processes. Their levels

are reduced in diabetes presumably through enhanced degradation (Liu et al., 2015a).

Nonsense mutations in SLCO2A1 may cause familial digit clubbing, hypertrophic osteo-

arthropathy and colon cancer (Seifert et al., 2012; Guda et al., 2014), whereas missense
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and less severe mutations may cause Hereditary Enteropathy (intestinal disease) (Umeno

et al., 2015). Enteropathy is a less well-known complication of diabetes (Meldgaard et al.,

2018). Conversely, inhibiting PGT has been shown to improve the reduced wound-healing

seen in diabetes by increasing prostaglandin-induced angiogenesis (Syeda et al., 2012;

Baltzis et al., 2014; Liu et al., 2015a).

PGT transports prostaglandins including PGD2, PGE1, PGE2 and PGF2A, which have

been individually linked with diabetes-related phenotypes. For example, reducing levels

of PGD2 in mice via the knock out of lipocalin-type prostaglandin D2 synthase (L-PGDS)

accelerated glucose intolerance and insulin-resistance (Ragolia et al., 2005). The PGE2

receptor (EP3) was shown to blunt glucose-stimulated insulin secretion and antagonise

GLP-1 signalling upon stimulation (Ragolia et al., 2005; Kimple et al., 2013) and PGE2

levels are also significantly raised in patients with Diabetic retinopathy complications

(Schoenberger et al., 2012) and with reduced glycemic control (Fenske et al., 2017).

RYK

RYK, or Receptor-Like Tyrosine Kinase, is a growth factor receptor of the non-canonical

Wnt signalling pathway. RYK is one of two co-receptors of the Frz receptor which binds

Wnt ligands and triggers β-catenin-independent Wnt signalling, activating either the

Wnt/Ca2+ or Wnt/planar cell polarity (PCP) signalling pathways (Foulquier et al., 2018).

Non-canonical Wnt signalling may mediate adipogenesis resulting from high levels of

glucose (Keats et al., 2014) and a switch from canonical to non-canonical Wnt signalling

has been linked to fatty liver phenotypes (Ackers and Malgor, 2018).

5.3.2 chr3q22.1 cis-gene expression

The case-control expression of the five cis–genes was tested using the gene expression

datasets meta-analysed in Chapter 4. The results are shown in Table 15. ACAD11

was not present on any of the arrays used in the expression studies. The other four

cis–genes showed significant differential expression in several tissues. NPHP3 was signif-

icantly down-regulated in T2D cases in skeletal muscle. Consistent with the literature,

SLCO2A1 expression was increased with T2D (Liu et al., 2015a). SRPRB did not show

157



Cis-gene expression in T2D cases vs. controls

Cis-gene Muscle Adipose Liver Pancreas
Family history
(muscle)

ACAD11 NA NA NA NA NA

NPHP3 -3.18 -0.30a NA -1.55b -0.90

SRPRB -0.91 1.83 1.12 -0.87 0.33

SLCO2A1 5.91 -0.27 2.32 -0.41 2.06

RYK -6.41 -0.41 4.34 0.01 -2.70

Table 15: Case-control expression of the cis–genes. Meta-analysed Z scores are pre-
sented, with positive numbers representing higher expression in cases compared to con-
trols and vice versa. NA values indicate missing data. aMeta-analysis for 5/6 adipose
datasets (excluding GSE94752), bZ-score for 1/3 pancreas datasets (excluding GSE25724
and GSE41762).

independent evidence for differential expression in these datasets. RYK was significantly

down-regulated in muscle, however showed increased expression in liver. The potential

tissue-specific regulation of RYK may be an interesting area of further study. This anal-

ysis provides a convenient means to confirm that the putative cis–genes are differentially

expressed in T2D. However, further fine-mapping and functional studies will be needed

to confirm that these genes are regulated by the causal T2D-associated variant(s) at this

locus. The following sections describe the fine-mapping results.

5.3.3 Targeted sequencing results

Targeted sequencing was carried out for French T2D cases and controls (n = 82 cases

and n = 89 controls after quality control). The sequenced region is highlighted in Figure

30. The following sections describe the analysis of four classes of variants, (1) nominally

signifiant variants, (2) coding variants, (3) rare variants and (4) promoter variants.

(1) NOMINALLY SIGNIFICANT VARIANTS

SNPs and indels were included in a test of association with disease status, as described

in Section 5.2.3: Variant annotation and association. Five SNPs and one indel

were nominally significant (p-value ≤0.05); these are listed in Table 16 and are plotted

in Figure 31. According to the 1000 Genomes European cohort (CEU), the rs16839460

and rs3860501 SNPs are in high LD (R2 = 0.82). rs114923567 and rs75185415 are located

477bp apart and are in complete LD (R2 = 1), with the minor alleles found in the same four

158





SNPs/indels association with T2D

132300000 132350000 132400000 132450000

chr3 (hg19)

ACAD11 NPHP3UBA5
ACKR4

NPHP3−AS1

0
.0

0
.5

1
.0

1
.5

2
.0

−
lo

g
1

0
 p

−
v
a

lu
e

→

→

→

S
^

T2D (WTC)

S
^

T2D (MTC)

S
^

eQTL

Figure 31: The association results for all variants across the chr3q22.1 T2D locus. The
-log10 p-value is plotted, with SNPs giving a p<0.05 highlighted in red and indels in blue.

be consistent with just one causal SNP driving the association. When conditioned on

these two SNPs, the p-values for rs114923567, rs75185415 and rs2085316 decreased to

<0.01, demonstrating that these are independent signals.

When entered into the Genotype-Tissue Expression (GTEx) database, rs16839460 and

rs3860501 were reported to be significant eQTL for NPHP3 ; rs16839460 in 18 different

tissues, including in subcutaneous adipose (p = 4.1e-05), omental adipose (p = 8.8e-05)

and skeletal muscle (p = 3.0e-06) and rs3860501 in 27 different tissues, including skele-

tal muscle (p = 2.4e-12), subcutaneous adipose (p = 2.8e-09), omental adipose (p =

6.0e-07) and pancreas (p = 3.3e-05). The minor alleles of both SNPs associated with

higher expression of NPHP3 ; this can be seen in Figure 32 for rs16839460. This is no-

tably inconsistent with the decreased expression of NPHP3 observed in the T2D gene

expression datasets (see Table 15). Further functional studies may be required to deter-

mine whether the rs16839460 minor allele actively alters NPHP3 expression and increases

T2D risk. The other four variants were not reported as significant eQTL, however these

are all low-frequency variants and may be underpowered to detect association with gene
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Nominally significant SNPs (ChIP-seq)

Figure 33: ROADMAP ChiP-seq tracks for the chromatin enhancer marks (H3K27ac,
H3K4me1 and H3K9ac) surrounding the five nominally significant SNPs at the chr3q22.1
locus. The T2D-relevant tissues adipose, skeletal muscle, liver (liver and HepG2 are shown
combined) and pancreas (pancreas and islet are combined) are shown. A 162bp deletion
found in one control is shown at the rs16839460 locus.

FOXP3 expression is characteristic of T regulatory (Treg) cells (Onodera et al., 2015),

which are decreased in patients with T2D and obesity and potentially contribute to high

glucose levels, inflammation and glucose intolerance (Wagner et al., 2013; Zhang et al.,

2014a). Treg are highly dependent on fatty acid oxidation (FAO) for proliferation, dif-

ferentiation and protection from fatty acid-induced cell death (Howie et al., 2017; Chen

et al., 2019b) and this is dependent on FOXP3 expression (Howie et al., 2017). This
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et al., 2011; Lacroix et al., 2016) and to modulate p53 transcriptional activity (Le Cam

et al., 2006). As described on page 144, ACAD11 responds to p53 activity to mediate cell

survival. NR2E3 is expressed in the retina and has a potential link with retinopathy, as

does NPHP3 (Li et al., 2020). The other two nominally significant SNPs did not appear

to overlap active regulatory elements in the four tissues tested (adipose, muscle liver and

pancreas), however both were significantly matched to TF binding motifs when investi-

gated using motibreakR; rs3860501A>G to a POU3F2 binding motif and rs2085316C>T

to a HAND1 motif. The possibility that these variants may have other tissue-specific ef-

fects or act through other mechanisms, such as affecting DNA structure, should be further

investigated to either include or exclude them as candidates.

(2) CODING VARIANTS

The genes ACAD11, NPHP3, UBA5 and ACKR4 were included in the targeted sequenc-

ing. UBA5 encodes the E1-like activating enzyme UBA5, which is required for ufmylation

(a post-translational protein modification in which the ubiquitin-like protein UFM1 is con-

jugated to target proteins) and ACKR4 encodes the atypical chemokine receptor 4. A

total of 28 coding mutations were detected within ACAD11, NPHP3 and ACKR4. These

included one splicing and 14 non-synonymous mutations shown in Table 18 with predicted

pathogenicity scores from SIFT, PolyPhen-2 (HDIV) and CADD (see Section 5.2.3:

Variant annotation and association for methods). Of these, six non-synonymous

SNVs and one splicing mutation were detected in ACAD11. The splicing mutation was

not observed in any controls, however was present in three cases and was predicted by

both SIFT and PolyPhen-2 to be deleterious. It also obtained the highest CADD score

of all the variants across the sequenced region (CADD score = 33). For the remaining

variants, there was no evidence of a significant enrichment for potentially deleterious vari-

ants in T2D cases. However, the frequency of the ACAD11 splicing mutation may be an

interesting candidate for further study.
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(3) RARE VARIANTS

Case-only and control-only variants were compared using CADD scores of estimated

pathogenicity (see methods Section 5.2.1: NGS methods). Of a total 482 variants,

215 were singletons (present in only one individual). 107 occurred in the 82 cases and

108 occurred in the 89 controls. There was no significant difference between the CADD

scores of these variants. All case-only and control-only variants not limited to singletons

included 131 case-only variants and 118 control-only variants. There was no significant

difference between the distribution of CADD scores for the case-only and control-only

variants. Interestingly, the top three scoring variant were case-only, these included the

ACAD11 splicing variant observed in 3 cases (rs41272317, CADD = 33.0) and two vari-

ants observed in one case each: rs373870292, a NPHP3 missense variant and rs144771431,

an ACAD11 missense variant. Case and control-only variants were investigated for in-

tersections with enhancer or promoter elements using ChromHMM tracks, however there

was no clear enrichment of case-only variants overlapping annotated elements compared

to control-only variants. The results are shown in Table 19.

Case-only and control-only variants overlapping ChromHMM elements

Case Control
Enhancer Tss Enhancer Tss

Adipose (E063) 15 6 14 8
Muscle (E108) 2 2 1 6
Liver (E066) 0 5 0 7
HepG2 (E118) 8 5 7 5
Islet (E087) 7 4 8 6
Pancreas (E098) 9 1 7 4

Table 19: The number of case-only and control-only variants which overlap ROADMAP
ChromHMM annotated enhancers or transcription start sites (Tss).

(4) PROMOTER VARIANTS: ACAD11/UBA5

Variants intersecting the ChromHMM Active TSS or Flanking Active TSS states at the

ACAD11/UBA5 back-to-back promoters were further investigated. Two case-only, two

control-only and three common SNPs were located in the annotated TSS. The ChromHMM

tracks are shown in Figure 36 and ChiP-seq tracks are plotted in Figure 37 for adipose
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Figure 36: ROADMAP ChromHMM data for the ACAD11/UBA5 promoters. Case-only
and control-only variants are shown with red and blue dotted lines, respectively. Two
variants disrupting transcription factor binding sites are circled in red.

nuclei. In both figures, the case-only and control-only variants are highlighted with red

and blue dotted lines, respectively. All seven variants were tested for evidence of alter-

ing TF binding sites using motifbreakR with the recommended p-value <1e-4 and a filter

for ‘strong’ effects. The three common SNPs (rs59426843, rs2168435 and rs3749272) as

well as the rare control-only variant did not return significant results. However the two

case-only variants, circled in red in Figures 36 and 37, were both predicted to disrupt

TF binding sites. rs73000573 was observed in three T2D cases and chr3:132378324C>T

was observed in one case. In Figure 36, rs73000573 can also be seen to overlap an active

enhancer annotated in muscle.

rs73000573 was predicted to have a strong effect on TF binding for four TFs, these are

shown in Figure 38: NR1H2 (LXR-β), NR2F6 (COUP-TFγ), NR2F2 (COT2/COUP-

TFII, or COUP-TFβ) and NR2A1 (HNF4α). All of these TFs have been implicated

in the regulation of FAO or related processes, making them strong candidates for the
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Figure 37: ROADMAP ChiP-seq and ChromHMM data for adipose nuclei (E063) around
the ACAD11/UBA5 back-to-back promoters. ChiP-seq tracks are truncated at a -log10

p-value of 40. Chromatin modifications typical of enhancers (H3K4me1), enhancers and
promoters (H3K27ac, H3K9ac) and promoters (H3K4me3) are shown.

regulation of ACAD11. All four TFs may bind DNA as heterodimers with the retinoid

X receptor (RXR). COUP-TFII, COUP-TFγ and HNF4α also bind fatty acids, while

LXR-β is regulated by a variety of lipophilic molecules including thyroid hormone, fatty

acids, bile acids, and sterols (Weikum et al., 2018). COUP-TFII positively regulates β-

fatty acid oxidation in the liver (Ashraf et al., 2019) and has been quoted as a master

regulator of metabolism, influencing adipogenesis, gluconeogenesis, insulin sensitivity and

even insulin secretion (Perilhou et al., 2008; Ashraf et al., 2019; Polvani et al., 2020).

COUP-TFII may act to repress gene expression by acting competitively with HNF4α to

dimerise with RXR (Stroup and Chiang, 2000; McMullen et al., 2014; Ashraf et al., 2019).

HNF4α is itself involved in the formation and maintenance of the liver and pancreas (Lau

et al., 2018) and mutations in HNF4α cause MODY1. LXR-β has been implicated in the

growth of adipocytes, glucose homeostasis and pancreatic β-cell function (Gerin et al.,
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Figure 39: ChiP-seq for COUP-TFII and HNF4A plotted for two liver samples. ChiP-seq
tracks are truncated at -log10 p-value of 30.

accessions: COUP-TFII = ENCSR338MMB and HNF4α = ENCSR601OGE) and one 4

year old female (COUP-TFII = ENCSR168SMX and HNF4α = ENCSR445QRF). As seen

in Figure 39, rs73000573 is located in the middle of a peak for these two TFs, confirming

the binding of COUP-TFII and HNF4α at this position. In GTEx, rs73000573 was

reported as a significant eQTL associated with lower expression of both ACAD11 and

NPHP3 across multiple tissues. The results from GTEx are shown in Figure 40.

The LD between rs73000573 and the previously reported candidate SNPs was investi-

gated. rs73000573 was found to be in complete LD with the ACAD11 splicing mutation

and the minor alleles were found in the same three T2D cases. This low-frequency haplo-

type therefore has both an ACAD11 splicing mutation and promoter/enhancer mutation

disrupting HNF4α and COUP-TFII binding. The splicing mutation, rs41272317, was also

associated with lower expression of NPHP3 and ACAD11 in GTEx, as expected. Since

both variants are in complete LD, further study will be needed to determine if one or

both SNPs alter gene expression.

171







Through its role in organ development and cilia function, NPHP3 mutations also cause

pancreatic dysplasia (Fiskerstrand et al., 2010), suggesting an interesting link between

NKX2-2, NPHP3 expression and β-cell development which may warrant further investi-

gation. However, the control-only mutations were also predicted to disrupt TF binding,

suggesting that there is no significant differences between case and control mutations at

this location.
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Figure 42: ROADMAP ChiP-seq data for a ∼21 kb region surrounding the ŜT2D and
NPHP3/NPHP3-AS1 promoters. The nominally significant SNP (rs3860501) and indel
(rs138040526) are highlighted as a red and blue cross, respectively. ChiP-seq data for
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line (E118), pancreatic islet (E087) and pancreas (E098).
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Figure 43: ROADMAP ChiP-seq data for the NPHP3/NPHP3-AS1 promoter region (∼7
kb). Variants which were predicted to have a ‘strong’ effect on transcription factor binding
by motifbreakR are circled in red. Case-only and control-only variants are indicated by
red and blue dotted red lines, respectively.

5.4 Discussion

This Chapter aimed to fine-map the chr3q22.1 T2D disease locus using targeted sequence

data for a cohort of 82 T2D cases and 89 controls and publicly available functional an-

notation data. The chr3q22.1 locus was observed to be associated with T2D in two

independent European cohorts, with genetic LDU maps used to obtain precise location

estimates of T2D causal variants (ŜT2D) at chr3:132436519 (WTC) and chr3:132429438

(MTC). These are separated by only 7 kb. eQTL mapped for adipose tissue in a cohort of

ageing, population-based Europeans returned eQTL estimates (ŜeQTL) for five cis–genes

all located within less than 15 kb: ACAD11, NPHP3, SRPRB, SLCO2A1 and RYK. The

closest of these was NPHP3, with the ŜeQTL reported at the exact same coordinate as the

WTC ŜT2D.

The causal variant(s) at this locus were hypothesised to either have low-frequency or be
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in low LD with marker SNPs, due to the absence of this locus from previous T2D single-

SNP GWAS. However, this locus was previously associated with T2D-associated end-stage

kidney disease (Guan et al., 2016), suggesting that its detection required the increase in

power achieved by the stratification of extreme phenotypes. The two lead SNPs from this

study, rs74504809 and rs78174962, which were both low-frequency (MAFs between 2 to

3% in the 1000G Project), were not associated with gene expression in GTEx and did

not overlap any active enhancers in the ChromHMM tracks used in this analysis. The

association of this region with end-stage kidney disease in T2D is likely due to the altered

expression of NPHP3, which is reported to cause renal cysts and kidney dysplasia when

mutated. To further fine-map the locus, targeted sequence data for a 189.57 kb region

covering the ŜT2D estimates and the downstream NPHP3 and ACAD11 genes were used

to investigate nominally significant, coding, rare and promoter variants. This analysis

identified several candidates. The key findings are summarised below.

Two low-frequency haplotypes were identified as potential candidates. The first included

two SNPs found in four T2D cases and no controls: rs114923567 and rs75185415. These

variants, which were separated by 477bp, gave p-values of 0.05 when tested for associ-

ation with T2D status, or <0.01 when conditioned on the rs16839460 genotype. Both

SNPs overlapped an annotated enhancer, for which significant ChiP-seq peaks for chro-

matin marks characteristic of enhancers can be seen in Figure 33, particularly for adipose.

motifbreakR returned nominal evidence of matches for both SNPs to several different TF-

BSs. These include several candidates of particular biological interest, including those

which may be particularly active in adipose (SMAD3/SMAD4). Additional ChiP-seq

data should be used to confirm whether the suggested TFs bind at this locus. Further

analysis may investigate whether the strength of the ChiP-seq peaks depend on the geno-

type of these two SNPs, or whether the minor alleles disrupt TF binding or enhancer

activity in enhancer reporter assays. The most significant associations of these two SNPs

reported in the T2D Knowledge Portal are with BMI (p-value = 0.024 from the GIANT-

UK Biobank GWAS) and neither were reported to be eQTL in GTEx.

The second low-frequency haplotype was found in three T2D cases and no controls
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and included two candidate mutations: rs41272317, an ACAD11 splicing mutation and

rs73000573, a mutation within an enhancer at the ACAD11 promoter region predicted

to disrupt the binding of COUP-TFII/HNF4α. The binding of COUP-TFII and HNF4α

was confirmed using ChiP-seq data, with rs73000573 located in the centre of a peak for

both transcription factors (see Figure 38). Functional experiments such as enhancer re-

porter assays should be carried out to confirm that rs73000573 disrupts HNF4α binding.

Alternatively, ChiP-seq may be stratified for individuals with the major and minor al-

leles to test for differential binding in individuals with the minor allele. Both SNPs are

significant eQTL in GTEx and were associated with lower expression of ACAD11 and

NPHP3 across multiple tissues. This is consistent with the lower expression of NPHP3

observed in T2D cases. ACAD11 was not included on any of the genotyping arrays used

in the T2D case-control gene expression analysis (see Chapter 4) and may require fur-

ther investigation using RNA-seq datasets. According to the T2D Knowledge Portal,

rs73000573 and rs41272317 were associated with LDL cholesterol levels in the Japanese

Biobank GWAS with modest p-values of 2.52e-03 and 1.96e-03, respectively. rs41272317

was also associated with BMI by the GIANT Consortium (p-value = 5.30e-03).

These interesting candidates were both low-frequency haplotypes and therefore were ob-

served in only a few T2D cases; rs114923567 and rs75185415 had a MAF of 1% in the

1000 Genomes cohort, while rs41272317 had a MAF of 1.4% in the ExAc non-Finnish

European cohort. An important next step will be to replicate the association of these

haplotypes in an independent cohort. Investigating the quality with which these variants

can be imputed will also address the prior hypothesis that these SNPs may not have been

reported in previous GWAS due to their low frequency inaccurate imputation. Further

studies may benefit from directly genotyping these variants in order to obtain accurate

estimates of their frequency77. Functional studies may provide alternative validation that

these variants affect cis–gene expression and T2D-related outcomes78.

77However, there are few large case-control cohorts with high-quality whole-genome sequence data
available. One approach may be to stratify individuals with the risk haplotypes in large Biobank projects
with whole-genome sequence data and investigate any differences between phenotypic measures, such as
T2D prevalence, BMI and cholesterol.

78If there is evidence to suggest that both haplotypes affect gene expression in a similar way, then their
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The common SNP rs16839460 was associated with T2D status with a p-value of 0.026

and a MAF in cases of 10.5% compared to 4.5% in controls. rs16839460 overlapped an

annotated enhancer and was predicted by motifbreakR to increase the binding of FOXP3.

rs16839460 is in high LD with another nominally significant SNP, rs3860501, and neither

SNP was significant when conditioned on the other. rs3860501 did not appear to over-

lap any annotated regulatory elements in the tissues tested, suggesting that rs16839460

may drive the association. Both minor alleles were associated with higher expression of

NPHP3 in GTEx, despite NPHP3 expression being lower in T2D cases (see Table 15). In-

terestingly, FOXP3 expression is characteristic of T regulatory (Treg) cells, which are not

included in the GTEx database. Treg cells are highly reliant on fatty acid oxidation and

are also significantly decreased in T2D. The potential link between rs16839460, ACAD11

expression and Treg cells may be an interesting area of further study. This may involve

gene expression and ChiP-seq data for Treg cells, although it should be considered that

Treg cells which reside in different tissues display markedly different gene expression pro-

files (Niedzielska et al., 2018). FOXP3 was observed to bind just downstream of ACAD11

(chr3:132261091-132262533) (Sadlon et al., 2010), suggesting that it may be involved in

regulating cis–genes at this locus. Further work may aim to replicated the association of

this variant and to demonstrate that the genotype alters enhancer activity. Cohorts strat-

ified for the reference and risk alleles may be compared to gain measures of inflammation

and adiposity, for example.

It should be considered that these candidate variants were prioritised based on genomic

annotation obtained from ROADMAP for four tissue types: adipose, skeletal muscle, liver

and pancreas/pancreatic islets. Further analysis may consider ChiP-seq and eQTL data

from other databases, such as ENCODE and GTEx, to capture enhancers which may differ

in activity across samples. On this note, ŜeQTL estimates for the entire GTEx dataset will

soon be made available from ongoing work following the Lau et al. (2017) publication. In

the current study, the limited selection of tissues types may have prevented the mapping of

combined frequency may be considered. In this dataset the combined haplotypes are present in seven
T2D cases compared to zero controls (fisher test p-value = 0.005)
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relevant enhancers in other tissues. ChromHMM tracks for multiple tissues could be used

to identify the relevant tissue type based on active enhancers overlapping the significant

SNPs, for example as carried out by Claussnitzer et al. (2015) to identify the relevant

cell-type at the obesity-associated FTO region. Importantly, regulatory elements can be

tissue-specific and may also be active at different times of development or in response

to different stimuli. Therefore is is important to investigate a variety of datasets. This

analysis also prioritised genomic annotation characteristic of enhancer elements, however

mutations may also prevent the formation of heterochromatin or disrupt Scaffold/matrix

attachment regions (S/MARs) to disrupt higher-order DNA structure (Narwade et al.,

2019). These alternative mechanisms may be considered in additional analysis.

After fine-mapping, several questions remain:

1. If there is allelic heterogeneity, do the independent risk alleles have the

same functional impact, or might there be distinct molecular mecha-

nisms? For example, different variants may disrupt different tissue-specific regula-

tory elements.

2. If the causal variant(s) regulate multiple cis–genes, do they all contribute

to T2D, or can they be divided into cis–genes which drive the pheno-

type and co-regulated cis–genes which do not directly impact T2D risk?

This scenario may occur where a risk variant disrupts an enhancer which makes

contact with multiple genes, such as an enhancer hub, or a chromatin insulator

which alters the local DNA structure, for example. In a theoretical scenario where

ACAD11 was the causal gene, the co-regulated cis–genes including would not drive

T2D risk directly. However, their dysregulation along with ACAD11 may lead

to other co-morbities such as renal-failure (NPHP3, causes the Mendelian disease

pancreatic-renal hepatic dysplasia) and delayed wound healing (SLCO2A1, trans-

ports prostaglandins during wound healing).

If both scenarios are considered, independent risk variants at a locus would all be expected

to regulate the causal gene, however some variants may also regulate other cis–genes. In
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this scenario, allelic heterogeneity should be carefully considered since only some variants

may increase the risk of co-morbidities. Functional studies may be used to further inves-

tigate the causal gene(s), for example by knocking-down individual cis–genes in vitro or

in vivo. Alternatively, if a candidate gene is associated with more than one independent

ŜT2D, then this provides additional evidence that it it is implicated in disease risk.

An additional consideration is the NPHP3-AS1 transcript. The function of this long

non-coding RNA is unclear. There are also several enhancers within the NPHP3-AS1

region which were not captured in this analysis and two SNPs within NPHP3-AS1 have

been associated with response to antidepressants in Major Depressive Disorder, a known

co-morbidity of T2D (Garriock et al., 2010; Bădescu et al., 2016). Further studies should

aim to characterise the function of the NPHP3-AS1 long non-coding RNA and also the

reported NPHP3-ACAD11 read-through transcript.

5.5 Conclusions

LDU-based gene mapping can be used to identify risk loci which are challenging to map

using single-SNP association methods. Subsequent fine-mapping with targeted sequence

data identified several candidate functional variants at the chr3q22.1 locus, including two

low-frequency haplotypes (MAF ∼1%) and one candidate SNP (MAF ∼9.5%). Further

study will be needed to replicate these results and functionally validate whether these

variants may fail to be correctly imputed, hence providing an explanation to why this

locus may have been missed by previous single-SNP GWAS.
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metabolism abnormalities among patients with autosomal dominant polycystic kidney disease. Kidney
and Blood Pressure Research, 44(6):1416–1422.

Floegel, A., Stefan, N., Yu, Z., Mühlenbruch, K., Drogan, D., Joost, H.-G., Fritsche, A., Häring, H.-U.,
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Gamazon, E. R., Segrè, A. V., van de Bunt, M., Wen, X., Xi, H. S., Hormozdiari, F., Ongen, H.,
Konkashbaev, A., Derks, E. M., Aguet, F., et al. (2018). Using an atlas of gene regulation across 44
human tissues to inform complex disease-and trait-associated variation. Nature genetics, 50(7):956–
967.

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J.,
Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J., et al. (2015). A gene-based association method
for mapping traits using reference transcriptome data. Nature genetics, 47(9):1091.

Gambano, G., Anglani, F., and D’Angelo, A. (2000). Association studies of genetic polymorphisms and
complex disease. The Lancet, 355(9200):308–311.

Gambineri, A., Patton, L., Altieri, P., Pagotto, U., Pizzi, C., Manzoli, L., and Pasquali, R. (2012).
Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective
study. Diabetes, 61(9):2369–2374.

Gannon, N. P., Schnuck, J. K., and Vaughan, R. A. (2018). Bcaa metabolism and insulin sensitivity–
dysregulated by metabolic status? Molecular nutrition & food research, 62(6):1700756.

Gao, H., Kerr, A., Jiao, H., Hon, C.-C., Rydén, M., Dahlman, I., and Arner, P. (2018). Long non-coding
rnas associated with metabolic traits in human white adipose tissue. EBioMedicine, 30:248–260.

Gao, M., Ding, D., Huang, J., Qu, Y., Wang, Y., and Huang, Q. (2013). Association of genetic variants
in the adiponectin gene with metabolic syndrome: a case-control study and a systematic meta-analysis
in the chinese population. PloS one, 8(4):e58412.
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Islinger, M., Lüers, G. H., Li, K. W., Loos, M., and Völkl, A. (2007). Rat liver peroxisomes after
fibrate treatment a survey using quantitative mass spectrometry. Journal of Biological Chemistry,
282(32):23055–23069.

Itahana, Y. and Itahana, K. (2018). Emerging roles of p53 family members in glucose metabolism.
International journal of molecular sciences, 19(3):776.

Iyengar, S. K. and Elston, R. C. (2007). The genetic basis of complex traits. In Linkage Disequilibrium
and Association Mapping, pages 71–84. Springer.

Jabalameli, M., Vergara Lope Gracia, N., Horscroft, C., Ennis, S., Collins, A., Pengelly, R., et al. (2019).
Whole-genome linkage disequilibrium maps for european and african populations. Scientific Data,
6(208).

197



Jacob, S., Machann, J., Rett, K., Brechtel, K., Volk, A., Renn, W., Maerker, E., Matthaei, S., Schick,
F., Claussen, C.-D., et al. (1999). Association of increased intramyocellular lipid content with insulin
resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes, 48(5):1113–1119.

Jadhav, B., Wild, K., Pool, M. R., and Sinning, I. (2015). Structure and switch cycle of srβ as ancestral
eukaryotic gtpase associated with secretory membranes. Structure, 23(10):1838–1847.

James, W., Johnson, R., Speakman, J., Wallace, D., Frühbeck, G., Iversen, P., and Stover, P. (2019).
Nutrition and its role in human evolution. Journal of internal medicine, 285(5):533–549.

Jeffreys, A. J., Kauppi, L., and Neumann, R. (2001). Intensely punctate meiotic recombination in the
class ii region of the major histocompatibility complex. Nature genetics, 29(2):217–222.

Jeffreys, A. J. and Neumann, R. (2002). Reciprocal crossover asymmetry and meiotic drive in a human
recombination hot spot. Nature genetics, 31(3):267–271.

Jeffreys, A. J., Neumann, R., Panayi, M., Myers, S., and Donnelly, P. (2005). Human recombination hot
spots hidden in regions of strong marker association. Nature genetics, 37(6):601–606.

Jheng, H.-F., Tsai, P.-J., Guo, S.-M., Kuo, L.-H., Chang, C.-S., Su, I.-J., Chang, C.-R., and Tsai, Y.-S.
(2012). Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal
muscle. Molecular and cellular biology, 32(2):309–319.
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(2011). Molecular signatures database (msigdb) 3.0. Bioinformatics, 27(12):1739–1740.

Lim, J., Lee, J., Suh, Y. H., Kim, W., Song, J., and Jung, M. (2006). Mitochondrial dysfunction
induces aberrant insulin signalling and glucose utilisation in murine c2c12 myotube cells. Diabetologia,
49(8):1924–1936.

Lin, H., Wang, M., Brody, J. A., Bis, J. C., Dupuis, J., Lumley, T., McKnight, B., Rice, K. M., Sitlani,
C. M., Reid, J. G., et al. (2014). Strategies to design and analyze targeted sequencing data: cohorts
for heart and aging research in genomic epidemiology (charge) consortium targeted sequencing study.
Circulation: Cardiovascular Genetics, 7(3):335–343.

Lin, H.-Y., Weng, S.-W., Chang, Y.-H., Su, Y.-J., Chang, C.-M., Tsai, C.-J., Shen, F.-C., Chuang, J.-H.,
Lin, T.-K., Liou, C.-W., et al. (2018a). The causal role of mitochondrial dynamics in regulating insulin
resistance in diabetes: link through mitochondrial reactive oxygen species. Oxidative Medicine and
Cellular Longevity, 2018.

Lin, J. and Musunuru, K. (2018). From genotype to phenotype: a primer on the functional follow-up
of genome-wide association studies in cardiovascular disease. Circulation: Genomic and Precision
Medicine, 11(2):e001946.

Lin, J.-s., Dong, H.-l., Chen, G.-d., Chen, Z.-y., Dong, X.-w., Zheng, J.-s., and Chen, Y.-m. (2018b). Ery-
throcyte saturated fatty acids and incident type 2 diabetes in chinese men and women: A prospective
cohort study. Nutrients, 10(10):1393.
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A. A., Jonkers, D. M., Oosting, M., et al. (2019). Causal relationships among the gut microbiome,
short-chain fatty acids and metabolic diseases. Nature genetics, 51(4):600–605.

Saxena, R., Elbers, C. C., Guo, Y., Peter, I., Gaunt, T. R., Mega, J. L., Lanktree, M. B., Tare, A.,
Castillo, B. A., Li, Y. R., et al. (2012). Large-scale gene-centric meta-analysis across 39 studies
identifies type 2 diabetes loci. The American Journal of Human Genetics, 90(3):410–425.

Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I., Chen, H., Roix, J. J., Kathiresan,
S., Hirschhorn, J. N., Daly, M. J., et al. (2007). Genome-wide association analysis identifies loci for
type 2 diabetes and triglyceride levels. Science, 316(5829):1331–1336.

Schaid, D. J., Chen, W., and Larson, N. B. (2018). From genome-wide associations to candidate causal
variants by statistical fine-mapping. Nature Reviews Genetics, 19(8):491–504.

Scharfe, C., Zaccaria, P., Hoertnagel, K., Jaksch, M., Klopstock, T., Dembowski, M., Lill, R., Prokisch,
H., Gerbitz, K., Neupert, W., Mewes, H., and Meitinger, T. (2000). Mitop, the mitochondrial proteome
database: 2000 update. Nucleic Acids Research, 28(1):155–8.

Schoenberger, S. D., Kim, S. J., Sheng, J., Rezaei, K. A., Lalezary, M., and Cherney, E. (2012). Increased

214



prostaglandin e2 (pge2) levels in proliferative diabetic retinopathy, and correlation with vegf and
inflammatory cytokines. Investigative ophthalmology & visual science, 53(9):5906–5911.

Schoenfelder, S. and Fraser, P. (2019). Long-range enhancer–promoter contacts in gene expression control.
Nature Reviews Genetics, page 1.

Schofield, E., Carver, T., Achuthan, P., Freire-Pritchett, P., Spivakov, M., Todd, J. A., and Burren, O. S.
(2016). Chicp: a web-based tool for the integrative and interactive visualization of promoter capture
hi-c datasets. Bioinformatics, 32(16):2511–2513.

Schork, N. J., Murray, S. S., Frazer, K. A., and Topol, E. J. (2009). Common vs. rare allele hypotheses
for complex diseases. Current opinion in genetics & development, 19(3):212–219.

Schroeder, M. A., Atherton, H. J., Dodd, M. S., Lee, P., Cochlin, L. E., Radda, G. K., Clarke, K., and
Tyler, D. J. (2012). The cycling of acetyl-coenzyme a through acetylcarnitine buffers cardiac sub-
strate supply: a hyperpolarized 13c magnetic resonance study. Circulation: Cardiovascular Imaging,
5(2):201–209.

Schulman, I. G. (2017). Liver x receptors link lipid metabolism and inflammation. FEBS letters,
591(19):2978–2991.

Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., Erdos, M. R.,
Stringham, H. M., Chines, P. S., Jackson, A. U., et al. (2007). A genome-wide association study of
type 2 diabetes in finns detects multiple susceptibility variants. science, 316(5829):1341–1345.
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A Appendix

A.1 Appendix 1: T2D cis–NEMG functions

Summary functions of the 50 T2D cis–NEMGs, as seen in Figure 19.

Gene Summary of protein function
Mitochondrial Translation and transcription
GATC Glutamyl-TRNA(Gln) amidotransferase, subunit C. Allows the for-

mation of correctly charged Gln-tRNA(Gln) through the transami-
dation of misacylated Glu-tRNA(Gln) in the mitochondria.

TRMT11 Catalytic subunit of an S-adenosyl-L-methionine-dependent tRNA
methyltransferase complex that mediates the methylation of the
guanosine nucleotide at position 10 (m2G10) in tRNAs.

MRPS33 Mitochondrial ribosomal protein S33
MTERFD3 Mitochondrial transcription termination factor.
NIF3L1 NGG1 interacting factor 3 like 1. May function as a transcription

corepressor through its intersection with COPS2, negatively regu-
lating the expression of genes involved in neuronal differentiation.

MARS2 Methionyl-tRNA synthetase 2, mitochondrial. This gene produces
a mitochondrial methionyl-tRNA synthetase.

C12ORF65 Chr12 open reading frame 65. A mitochondrial matrix protein that
appears to contribute to peptide chain termination in the mito-
chondrial translation machinery. May help rescuing stalled mitori-
bosomes during translation.

Oxidative phosphorylation
COQ10B Coenzyme Q10B. Required for the function of coenzyme Q in the

respiratory chain. May serve as a chaperone or be involved in the
transport of Q6 from its site of synthesis to the catalytic sites of
the respiratory complexes.

NDUFB4 NADH:Ubiquinone Oxidoreductase subunit B4. Respiratory chain
complex I accessory subunit (not catalytic).

COX7A2 Cytochrome C oxidase subunit 7A2. Encodes polypeptide 2 (liver
isoform) of subunit Vlla of the terminal component of the mito-
chondrial respiratory chain.

COA6 Cytochrome C oxidase assembly factor 6. Involved in the matu-
ration of the mitochondrial respiratory chain complex lV subunit
MT-CO2/COX2.

NDUFV3 NADH dehydrogenase (ubiquinone) flavoprotein 3. Accessory sub-
unit of the mitochondrial membrane respiratory chain NADH de-
hydrogenase (complex l).

Lipid Metabolism
GPAM Glycerol-3-phosphate acyltransferase. Catalyses an essential step

in glycerolipid biosynthesis (esterifies acyl-group from acyl-ACP to
the sn-1 position of glycerol-3-phosphate).
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PISD Phosphatidylserine decarboxylase. Catalyses the formation of the
phospholipid phosphatidylethanolamine (PE) and is involved in in-
terorganelle trafficking of phosphatidylserine.

CYB5R2 NADH-cytochrome b5 reductase 2. Involved in multiple processes
including desaturation and elongation of fatty acids, cholesterol
biosynthesis, drug metabolism.

LACTB Serine beta-lactamase-like protein. Regulates PISD levels and thus
lipid metabolism (PMID:28329758). Forms stable filaments in the
mitochondrial intermembrane space, promoting mitochondrial or-
ganization and micro-compartmentalization (PMID:19858488).

ACAD11 Acyl-CoA dehydrogenase family member 11. An acyl-CoA dehy-
drogenase enzyme involved in fatty acid β-oxidation.

ACADS Acyl-CoA dehydrogenase short chain. Catalyses steps in the fatty
acid β-oxidation and BCAA catabolism.

PCCA Propionyl-coA carboxylase subunit alpha. Encodes the alpha
subunit (the biotin binding subunit) of the heterodimeric mi-
tochondrial enzyme propionyl-coA carboxylase, which catalyses
the carboxylation of propionyl-coA (product of valine, isoleucine,
methionine, threonine and odd-chain fatty acid metabolism) to
methlmalonyl coA.

Amino Acid Metabolism
ACSS1 Acyl-CoA synthetase short chain family member 1. Converts ac-

etate to acetyl-CoA for entry to the TCA cycle and synthesizes
propanoate from the product of isoleucine degradation (propanoyl-
CoA). Important for maintaining normal body temperature during
fasting and energy homeostasis. Essential for energy expenditure
under ketogenic conditions.

ACADS Acyl-CoA dehydrogenase short chain. Catalyses steps in the mito-
chondrial fatty acid β-oxidation pathway and branched chain amino
acid catabolism.

PCCA Propionyl-coA carboxylase subunit alpha. Encodes the alpha
subunit (the biotin binding subunit) of the heterodimeric mi-
tochondrial enzyme propionyl-coA carboxylase, which catalyses
the carboxylation of propionyl-coA (product of valine, isoleucine,
methionine, threonine and odd-chain fatty acid metabolism) to
methlmalonyl coA. MCCC1 paralog.

ABAT 4-Aminobutyrate aminotransferase. Involved in BCAA, alanine,
aspartate and glutamate metabolism, plus catabolism of the neu-
rotransmitter GABA into succinic semialdehyde. Can also convert
delta- aminovalerate and beta-alanine.

MCCC1 Methylcrotonoyl-CoA carboxylase 1. Biotin-attachment subunit of
the 3-methylcrotonyl-coA carboxylase, an enzyme that catalyzes
the conversion of 3-methylcrotonyl-coA to 3-methylglutaconyl-coA,
a critical step for leucine and isovaleric catabolism. PCCA paralog.

SUOX Sulfite oxidase. Catalyses oxidation of sulphite to sulfate, the final
reaction in cysteine and methionine degradation.
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GLS2 Glutaminase 2. Catalyses the hydrolysis of glutamine to glutamate
and ammonia. Promotes mitochondrial respiration and increases
ATP generation in cells by catalysing the synthesis of glutamate
and α- ketoglutarate. Increases cellular anti-oxidant function via
NADH and glutathione production.

ALDH2 Aldehyde dehydrogenase 2 family member. The second enzyme
of the major oxidative pathway of alcohol metabolism. Oxidize
aldehydes to generate carboxylic acids for use in the muscle and
heart.

CPS1 Carbamoyl-phosphate synthase 1. Catalyzes synthesis of carbamoyl
phosphate from ammonia and bicarbonate, the first committed step
of the urea cycle. May also be a core mitochondrial nucleoid protein.

Glycolysis / TCA cycle / Pyruvate Metabolism
PDHA2 Pyruvate dehydrogenase E1 alpha 2 subunit. The pyruvate dehy-

drogenase complex catalyses conversion of pyruvate to acetyl-CoA
and CO2, linking the glycolytic pathway to the TCA cycle.

ACSS1 Acyl-CoA synthetase short chain family member 1. Converts ac-
etate to acetyl-CoA for entry to the TCA cycle and synthesizes
propanoate from the product of isoleucine degradation (propanoyl-
CoA). Important for maintaining normal body temperature during
fasting and for energy homeostasis. Essential for energy expendi-
ture under ketogenic conditions.

IDH3A Isocitrate dehydrogenase (NAD+) 3 alpha. Catalyses the decar-
boxylation of isocitrate to 2-oxoglutarate.

ALDH2 Aldehyde dehydrogenase 2 family member. The second enzyme
of the major oxidative pathway of alcohol metabolism. Oxidize
aldehydes to generate carboxylic acids for use in the muscle and
heart.

Propanoate Metabolism
ABAT 4-Aminobutyrate aminotransferase. Involved in BCAA, ala-

nine, aspartate and glutamate metabolism. (Also responsible for
catabolism of the neurotransmitter GABA into succinic semialde-
hyde). Can also convert delta-aminovalerate and beta-alanine.

ACSS1 Acyl-CoA synthetase short chain family member 1. Converts ac-
etate to acetyl-CoA for entry to the TCA cycle and synthesizes
propanoate from the product of isoleucine degradation (propanoyl-
CoA). Important for maintaining normal body temperature during
fasting and for energy homeostasis. Essential for energy expendi-
ture under ketogenic conditions.

PCCA Propionyl-coA carboxylase subunit alpha. Encodes the alpha
subunit (the biotin binding subunit) of the heterodimeric mi-
tochondrial enzyme propionyl-coA carboxylase, which catalyses
the carboxylation of propionyl-coA (product of valine, isoleucine,
methionine, threonine and odd-chain fatty acid metabolism) to
methlmalonyl coA. MCCC1 paralog.
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ALDH2 Aldehyde dehydrogenase 2 family member. The second enzyme
of the major oxidative pathway of alcohol metabolism. Oxidize
aldehydes to generate carboxylic acids for use in the muscle and
heart.

Butanoate Metabolism
ACADS Acyl-CoA dehydrogenase short chain. Catalyses steps in the mito-

chondrial fatty acid β-oxidation pathway and branched chain amino
acid catabolism.

ABAT 4-Aminobutyrate aminotransferase. Involved in BCAA, ala-
nine, aspartate and glutamate metabolism. (Also responsible for
catabolism of the neurotransmitter GABA into succinic semialde-
hyde). Can also convert delta-aminovalerate and beta-alanine.

PDHA2 Pyruvate dehydrogenase E1 alpha 2 subunit. The pyruvate dehy-
drogenase complex catalyses conversion of pyruvate to acetyl-CoA
and CO2, linking the glycolytic pathway to the TCA cycle.

ALDH2 Aldehyde dehydrogenase 2 family member. The second enzyme
of the major oxidative pathway of alcohol metabolism. Oxidize
aldehydes to generate carboxylic acids for use in the muscle and
heart.

Apoptosis
PGAM5 PGAM family member 5, mitochondrial serine/threonine protein

phosphatase). Involved in the TNF signalling pathway. May be
regulator of mitochondrial dynamics. Acts as a central mediator for
programmed necrosis induced by TNF, by reactive oxygen species
and by calcium ionophore.

DIABLO Diablo IAP-binding mitochondrial protein. Promotes apoptosis by
activating caspases in the cytochrome c/Apaf-1/caspase-9 pathway.

Mitochondrial Organization/Dynamics
MARCH5 Membrane associated ring-CH-type finger 5. Ubiquitin-protein lig-

ase that plays a crucial role in the control of mitochondrial mor-
phology by acting as a positive regulator of mitochondrial fission.
May play a role in the prevention of cell senescence acting as a
regulator of mitochondrial quality control.

LACTB Serine beta-lactamase-like protein. Regulates PISD levels and thus
lipid metabolism (PMID:28329758). Forms stable filaments in the
mitochondrial intermembrane space, promoting mitochondrial or-
ganisation and micro-compartmentalization (PMID:19858488).

PGAM5 PGAM family member 5, mitochondrial serine/threonine protein
phosphatase. May be regulator of mitochondrial dynamics. Acts
as a central mediator for programmed necrosis induced by TNF, by
reactive oxygen species and by calcium ionophore.

MFF Mitochondrial fission factor. Encodes a protein that functions in
mitochondrial and peroxisomal fission. Recruits dynamin-1-like
protein (DNM1L) to the mitochondria.

MTFR1L Mitochondrial fission regulator 1-like.

230



Mitochondrial Protein/Ion Transport
ABCB9 ATP-binding cassette subfamily B member 9. ATP-dependent low-

affinity peptide transporter which translocates a broad spectrum of
peptide from the cytosol to the lysosomal lumen.

TOMM20 Translocase of outer membrane 20. Central component of the recep-
tor complex responsible for the recognition and translocation of cy-
tosolically synthesized mitochondrial preproteins, including tRNA.

HSPD1 Heat shock protein family D (Hsp60) member 1. Encodes a member
of the chaperonin family. May act as a signalling molecule in the
innate immune system. Essential for the folding and assembly of
newly imported proteins in the mitochondria.

ABCA13 ATP binding cassette subfamily A member 13. Transmembrane
transporter potentially involved in cholesterol transport.

CLIC4 Chloride intracellular channel 4. Forms a poorly selective ion chan-
nel that may also transport chloride ions (depending on the pH).
Membrane insertion may only occur under oxidizing conditions.
Promotes cell- surface expression of HRH3. Has potential roles in
angiogenesis and maintaining apical-basolateral membrane polarity
during mitosis and cytokinesis. Could also promote endothelial cell
proliferation and regulate endothelial morphogenesis.

SFXN2 Sideroflexin 2. Cation transmembrane transporter activity.
SLC25A26 Solute carrier family 25 member 26. Involved in the transport of

S-adenosylmethionine (SAM) into the mitochondria. Mutations in
this gene are associated with combined OXPHOS deficiency 28.

DNA Damage Response
FEN1 Flap structure-specific endonuclease 1. Removes 5’ overhang in

DNA repair (long patch base excision repair pathway) and processes
the 5’ ends of okazaki fragments in lagging strand DNA synthesis.

ALKBH3 AlkB homolog 3, alpha-ketoglutarate dependent dioxygenase.
Dioxygenase that mediates demethylation of DNA and RNA con-
taining 1-methyladenosine (m1A).

Autophagy & calcium homeostasis
CCDC58 Coiled-coil domain containing 58. Potential GWAS hit associated

with calcium measurement. CISD2 CDGSH iron sulfur domain
2. Regulator of autophagy that contributes to antagonize BECN1-
mediated cellular autophagy at the endoplasmic reticulum. Partic-
ipates in the interaction of BCL1 with BECN1 and is required for
BCL2-mediated depression of endoplasmic reticulum Ca2+ stores
during autophagy.

MAIP1 Matrix AAA peptidase interacting protein 1. Promotes sorting of
SMDT1/EMRE (the mitochondrial calcium unipoter complex) in
mitochondria by ensuring its maturation.

HEBP1 Heme binding protein 1. An intracellular tetrapyrrole-binding pro-
tein. May bind free porphyrinogens that may be present in the cell
and thus facilitate removal of these potentially toxic compounds.
Promotes calcium mobilization and chemotaxis in monocytes and
dendritic cells.
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A.2 Appendix 2: Mitochondrial gene sets

All 41 gene sets were obtained from the Molecular Signatures Database (MSigDB) Liber-

zon et al. (2011), curated gene sets (C2). The gene sets have been collated from different

sources which are referenced in brackets. Details for these gene sets can be found at

https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=C2.

MSigDB C2 Gene Set (Source)

(KEGG)

Alanine aspartate and glutamate metabolism

Arginine and proline metabolism

Beta alanine metabolism

Butanoate metabolism

Citrate/TCA cycle

Fatty acid metabolism

Glycolysis and gluconeogenesis

Glycine, serine and threonine metabolism

Glyoxylate and dicarboxylate metabolism

Lysine degradation

Oxidative phosphorylation

PPAR signaling pathway

Propanoate metabolism

Pyruvate metabolism

Tryptophan metabolism

Valine leucine and isoleucine degradation

(Reactome)

Activated AMPK stimulates fatty acid oxidation in muscle

Branched chain amino acid catabolism

Fatty acid triacylglycerol and ketone body metabolism

Fatty-acyl CoA biosynthesis
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Gluconeogenesis

Mitochondrial fatty acid β oxidation

Metabolism of amino acids and derivatives

Mitochondrial biogenesis

Mitochondrial calcium ion transport

Mitochondrial protein import

Mitochondrial tRNA aminoacylation

Purine catabolism

Pyrimidine catabolism

Pyrimidine metabolism

Pyruvate metabolism and citric acid TCA cycle

Release of apoptotic factors from the mitochondria

Respiratory electron transport

Synthesis and interconversion of nucleotide di- and triphosphates

Synthesis of very long chain fatty acyl CoAs

TCA cycle and respiratory electron transport

Tyrosine metabolism

(Others)

Mitochondria (Mootha)

Mitochondria pathway (Biocarta)

Mitochondria gene module (Wong)

Biotin carboxylases (manually defined)

(Hallmark)

Fatty acid metabolism

Oxidative phosphorylation (OXPHOS)
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A.4 Appendix 4: GSEA results, T2D cis–NEMGs vs the ge-

nomic background

GSEA results: T2D cis–NEMGs vs the genomic background

Dataset Tissue

50 T2D
cis–NEMGs
vs ALL

50 random cis–NEMGs vs
ALL (3 control gene sets)

Meta-analysis Muscle ↓<1.0e-04 ↓<1.0e-04 ↓<1.0e-04 ↓<1.0e-04
Meta-analysis Adipose ↓8.0e-04 ↓0.002 ↓2.0e-04 ↓2.0e-04
Meta-analysis Liver n.s. n.s. ↓0.036 n.s.
Meta-analysis Pancreas ↓<4.0e-04 ↓4.0e-04 ↓0.001 ↓6.7e-04

GSE13070 Muscle ↓<1.0e-04 ↓<1.0e-04 ↓<1.0e-04 ↓<1.0e-04
GSE25462 Muscle ↓<4.0e-04 ↓0.018 ↓0.005 ↓0.043
GSE22435 Muscle ↓<2.0e-04 ↓2.0e-04 ↓2.0e-04 ↓2.0e-04
GSE101492 Adipose ↓0.049 n.s. ↓0.030 n.s.
GSE26637 Adipose n.s. n.s. n.s. n.s.
GSE94752 Adipose ↓0.014 ↓0.006 n.s. ↓4.0e-04
GSE20950 Adipose ↓<1.7e-04 ↓<1.3e-04 ↓<1.3e-04 ↓<1.3e-04
GSE27949 Adipose n.s n.s n.s n.s
GSE13070 Adipose ↓0.047 n.s. ↓0.047 ↓0.001
GSE64998 Liver ↓0.008 n.s. ↓0.002 ↓0.009
GSE15653 Liver n.s. n.s. n.s. n.s.
GSE76894 Pancreas n.s. ↓0.001 ↓0.012 ↓0.001
GSE25724 Pancreas ↓<1.3e-04 ↓<1.3e-04 ↓2.0e-04 ↓<1.3e-04
GSE41762 Pancreas n.s. n.s. n.s. n.s.

Family history datasets

GSE25462 Muscle ↓ 0.002 ↓ 0.010 ↓ 0.022 ↓ 0.005

Table 21: Gene set enrichment analysis results comparing T2D cis-NEMGs to the genomic
background. FDR-adjusted p-values ≤0.05 are shown, reflecting significant enrichment
in the gene set for increased expression (↑), decreased expression (↓) and both increased
and decreased, or ‘mixed’ expression (no arrow). GSEA used a wilcoxon statistic and
10,000 permutations. n.s. = not significant. As a comparison, GSEA was carried out for
three random sets of 50 adipose cis-genes with eQTL > 2Mb away from a T2D location
estimate. A p-value with < indicates that the GSEA returned the minimum FDR-adjusted
p-value obtainable with 10,000 permutations.
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