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ABSTRACT 

Shear strength of reinforced concrete beams significantly enhances when loads are applied 

closer to the support due to the arching action. This enhancement is widely investigated and 

has been included in the design codes. However, scarce resources are available in the 

literature regarding this enhancement for the case of multiple point loads applied within the 

enhancement zone; in addition, the available literature focuses on loads applied to the 

flexural compression face. Situations where multiple point loads are applied on the tension 

face are found in practice in structures like balanced-cantilever crosshead girders of bridges 

and transfer girders near the supports. Nevertheless, research considering this configuration 

has not been found in the available literature.  The aim of this research is to study the effect 

of the loading arrangements on the shear strength enhancement of deep beams loaded on 

the compression or tension face with multiple point loads. This research was motivated by 

differences in the principal compressive stress trajectories obtained with nonlinear finite 

element analysis for the two different configurations. 

The author conducted an experimental program to investigate the influence of loading face, 

the effect of varying the ratio between loads applied within the enhancement zone and the 

influence on shear enhancement of partly loading the beam outside the enhancement zone. 

Detailed measurements of the crack kinematics and global deformation were obtained during 

the tests using the digital images correlation system. These measurements were used to 

provide descriptive models of the deformed beams and to evaluate the shear transfer actions 

of the tested beams. 

Strength of the tested beams was estimated using design codes (BS8110, EC2 2004 and 

MC2010) and non-linear finite element analysis. A novel practical strut-and-tie model was 

developed for the case of multiple point load applied to the tension face of the beams. This 

model correctly predicted the failure plane, fairly represented the stress field, and it is 

suitable for multiple loads applied entirely inside or partly outside the shear enhancement 

zone. 
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ANNOTATIONS 

𝐴𝑐,𝑒𝑓𝑓  Effective area of the concrete  

𝑎1 Centreline distance between the inner load and the support plate 

𝑎2 Centreline distance between the outer load and the support plate 

𝐴𝑠𝑤 Cross sectional area of the shear reinforcement  

𝑎𝑣 Clear shear span 

𝑎𝑣1 Clear shear span of the inner load plate 

𝑎𝑣2 Clear shear span of the outer load plate 

𝐴𝑥  Projected contact areas for a unit crack area in the x directions 

𝐴𝑦 Projected contact areas for a unit crack area in the y directions 

𝑏𝑤 Width of the beam for shear 

𝑐 Concrete cover 

𝑑 Effective depth of the beam 

𝑑′ Concrete cover (STM) 

𝑑𝑎𝑔𝑔 Mean aggregate size 

𝑑𝑔 Maximum aggregate size(MC2010) 

𝐷𝑚𝑎𝑥  Maximum aggregate size(Walraven model) 

𝑑𝑝 Diameter of bottom longitudinal bars. (2PKT) 

𝑑𝑦(𝜃) Vertical displacement caused by a global rotation of the beam around the roller support 

𝑑𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  Corrected vertical displacement of transducer #5 

𝐸′ Post peak stiffness of reinforcement bar 

𝐸𝑐 Concrete elastic modulus  

𝐸𝑠 Steel elastic modulus 

𝐸𝑠
′ post-peak stiffness of the reinforcement 

𝑓𝑏𝑑 Design value of the ultimate bond strength  

𝐹𝑏𝑑 Bond force available along the design length  

𝑓𝑏𝑑,0 Basic bond strength 

𝑓𝑐
′  Concrete compressive strength  

𝑓𝑐𝑐  Concrete cubic compressive strength 

𝑓𝑐𝑑𝑡  Design concrete tensile strength 

𝑓𝑐𝑘 Characteristic compressive strength of the concrete 

𝑓𝑐𝑚  Mean concrete compressive strength 

𝑓𝑐𝑡 Concrete tensile strength  

𝑓𝑐𝑢 Concrete cubic compressive strength (Warlaven,1980) 
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𝐹𝑑 Dowel force 

𝐹𝑑𝑢 Ultimate dowel force 

𝑓𝑟  Modulus of rupture for the concrete 

𝑓𝑡  Reduced tensile strength of the concrete (FEA) 

𝑓𝑦 Yielding strength of the reinforcement 

𝑓𝑦𝑤𝑑  Yielding strength of the stirrups 

𝐺12 Tangential shear modulus 

𝐺𝑓  Foundation modulus for concrete  (Millard and Johnson, 1984) 

𝐺𝑓𝑐  Compressive fracture energy  

𝐺𝑓𝑡 Tensile fracture energy 

ℎ Height of the beam 

ℎ Crack band width (FEA) 

𝐻𝑖  Horizontal component of force in strut (STM) 

𝐼𝑠 Second moment of area for a reinforcement bar 

𝐾𝑐  Foundation modulus for concrete (Soroushian, 1987) 

𝑘𝑐  Concrete strength reduction factor (MC2101) 

𝑘𝑑𝑔  Aggregate size factor (MC2010) 

𝐾𝑖  Initial dowel stiffness 

𝑘𝑠 Reduction factor due to the state of strain in the web (MC2010) 

𝑘𝑣  Reduction factor of the design shear resistance attributed to the concrete (MC2010) 

𝐿 Effective bond length 

𝑙  horizontal projections of the strut-node interface 

𝐿0 Length of the heavily cracked zone 

𝐿1 Bond length of the plastic zone (Sigrist, 1995) 

𝐿2 Bond length of the elastic zone (Sigrist, 1995) 

𝐿𝑏1𝑒  Effective width of the loading plate 

𝑙𝑏𝑑 Design anchorage length  

𝐿𝑐𝑜𝑚𝑝  Length over which the transfer pressure is spread 

𝐿𝑔  DIC gauge length 

𝐿ℎ  Vertical distance between the two RHS transducers at the edge of the beam 

𝐿ℎ
′  Vertical distance between the two DIC at the centre of the beam 

𝐿𝑘 Length between the kinks in the flexural reinforcement 

𝐿𝑆𝐺  Length between strain gauges before and after the support/load plates 

𝑙𝑡 Width of the top loading plate 
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𝑀𝐸𝑑  Design moment at the critical section 

𝑀𝑚𝑎𝑥  Maximum beam moment 

𝑛 Number of stirrups within the central ¾ of the clear shear span (BS8110) 

𝑛𝑎𝑣𝑖  Number of stirrups in the shear span 𝑖 

𝑃1 Load applied at the inner loading plate 

𝑃2 Load applied at the outer loading plate 

𝑃𝑡𝑟 Transfer pressure near the load/support plate 

𝑟 Ratio of the sliding displacement to the crack opening  (CDM) 

𝑅1 Ratio of the inner load to the total RHS load 

𝑅2 Ratio of the outer load to the total RHS load 

𝑅𝑒𝑓𝑓  Percentage of the load on the right-hand side of the rig applied to the load/ support  

𝑠 Crack sliding 

𝑆𝐶𝑅  Distance travelled by the corner of the beam during the test 

𝑆𝑚𝑎𝑥  Spacing of the radial cracks at the bottom of the section  (2PKT) 

𝑆𝑚𝑥  Crack spacing in the longitudinal reinforcement directions 

𝑆𝑚𝑦 Crack spacing in the transverse reinforcement directions 

𝑠𝑣  Stirrup spacing 

𝑆𝑥𝑒 Effective crack spacing 

𝑆𝜃 Crack spacing (MCFT) 

𝑇 Tensile force in the flexural reinforcement  

𝑡𝐶𝑅  Distance between the bottom corner and the centre of rotation of the rigid body 

𝑇𝑠𝑖  Force in stirrups set 𝑖 

𝑢 Vertical projection of the strut-node interface 

𝑉𝑎 Contribution of aggregate interlock 

𝑉𝑐  Contribution of the compression zone 

𝑣𝑐𝑖 Shear stress on the crack 

𝑉𝐶𝐿𝑍 Contribution of the critical loading zone 

𝑉𝑑 Contribution of the dowel action 

𝑉𝐸𝑑 Design shear force 

𝑉𝑓𝑙𝑒𝑥 Shear force resulting from flexural equilibrium (five -spring mode) 

𝑉𝑟  Contribution of the residual tensile strength 

𝑉𝑅𝑑 Design shear resistance 

𝑉𝑅𝑑,𝑐 Design shear resistance attributed to the concrete 

𝑉𝑅𝑑,max Maximum strength corresponding to the minimum inclination of the compressive stress 
field (MC2010) 
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𝑉𝑅𝑑,𝑠  The design shear resistance provided by shear reinforcement 

𝑉𝑅𝐻𝑆 Shear force in the right-hand side of the beam 

𝑉𝑠 Contribution of stirrups 

𝑣𝑢 Shear strength of the beam 

𝑤 Crack opening 

𝑤 Strut width, normal to its centreline, at the strut-node interface (STM) 

𝑤𝑚𝑖𝑛 Crack opening corresponding to the maximum concrete tensile strain 

𝑤𝑜 Initial crack opening 

𝑋𝐶𝑅  X ordinate of the centre of rotation 

𝑋𝑖 Horizontal projection of the width of strut i at the node 

𝑥 Flexural compression zone depth 

𝑋𝑜𝑢𝑡  X ordinate of the  RHS bottom corner of the beam 

𝑋𝑜𝑢𝑡
′  X ordinate of the deformed RHS bottom corner of the beam 

𝑥𝑤,𝑜𝑢𝑡  X ordinate of the bottom horizontal transducer 

𝑥𝛥𝑐  Distance from the origin of the 2PKT to the location where vertical displacement is 
measured 

𝑌𝑖  Vertical projection of the width of strut i  at the node 

𝑧 Effective shear depth 

𝑍𝐶𝑅  Z ordinate of the centre of rotation 

𝑍𝑜𝑢𝑡  Z ordinate of the  RHS bottom corner of the beam 

𝑍𝑜𝑢𝑡
′  Z ordinate of the deformed RHS bottom corner of the beam 

ɣ Slope of the crack opening and sliding curve (Ulaga,2003) 

ɣ𝑐  Material factor of the concrete 

ɣ𝑐𝑟  Crack shear strain 

ɣ𝑐𝑟 ,𝑢𝑙𝑡  Limiting value of the crack shear strain 

Ø Bar diameter 

Ø𝑏𝑙𝑜𝑐𝑘  Rotation of the rigid body  

Ø𝑏𝑙𝑜𝑐𝑘
′  Difference between the rigid block rotation and the global rotation of the beam 

Ø𝑔𝑙𝑜𝑏𝑎𝑙  Global rotation of the beam 

𝛼 Ratio of the axial stress to the yielding strength of a bar (Millard and Johnson,1984) 

𝛼 Inclination of the critical crack 

𝛼 Concrete compressive strain (FE) 

𝛼1 Stress field angle given by the (MCFT ) 

𝛼𝑃 Strain corresponding to the maximum compressive stress (FE) 

𝛽 Shear retention factor (FEA) 
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𝛽 Shear enhancement factor 

𝛽 Compressive strength softening parameter (MCFT) 

𝛽1 Shear enhancement factor for the inner load 

𝛽2 Shear enhancement factor for the outer load 

𝛽𝑖  Ratio of the horizontal component of the force in strut (𝑖) to the total compression force in 
the flexural compression zone 

𝛽𝜎𝑐𝑟 Concrete strength reduction factor due to lateral cracking (FEA) 

𝛿 Crack Sliding (Ulaga, 2003) 

𝛥 Total displacement of the shear span (2PKT) 

𝛿𝑏𝑜𝑡𝑡𝑜𝑚  Horizontal displacement at the bottom edge of the beam 

𝛥𝑐  Shear displacement (2PKT) 

𝛥𝑐
′  Shear displacement of the intermediate zone of the beam 

𝛥𝑠 Crack sliding (Walraven and Reinhardt, 1981) 

𝛥𝑡  flexural displacement of the shear span 

𝛿𝑡𝑜𝑝 Horizontal displacement at the top edge of the beam 

𝛿𝑡𝑜𝑡𝑎𝑙 Total measured vertical displacement  

𝛿𝑤 , 𝑜𝑢𝑡 Vertical displacement near the bottom edge of the beam 

𝛿𝑥 Deformation of points in  the x direction 

𝛿𝑧 Deformation of points in the z direction 

휀𝑐𝑜𝑛  Solid strain (concrete strain) (FEA) 

휀𝑛𝑛
𝑐𝑟  Crack strain (FEA) 

휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟  Ultimate crack strain (FEA) 

휀0 Concrete ultimate strain 

휀1 Principal tensile strain 

휀11 Initial maximum principal strain 

휀2 Principal compressive strain 

휀22 Initial minimum principal strain 

휀𝑐𝑡,max Maximum concrete tensile strain 

휀𝑐𝑥 Concrete strains in the x directions (MCFT) 

휀𝑐𝑦 Concrete strains in the y directions (MCFT) 

휀𝑠 Strain in the reinforcement bar 

휀𝑠𝑥  Reinforcement strains in the x directions (MCFT) 

휀𝑠𝑦 Reinforcement strains in the y directions (MCFT) 

휀𝑡,1 Reinforcement strain in section 1 (2PKT) 

휀𝑡,2 Reinforcement strain in section 2 (2PKT) 
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휀𝑡,𝑎𝑣𝑔 Average tensile strain in the reinforcement  

휀𝑡,𝑚𝑖𝑛 Minimum average tensile strain in the reinforcement  

휀𝑥  Longitudinal strain at the mid-depth of the effective shear depth 

𝜂𝑓𝑐  Reduction factor for the brittle behaviour of concrete with higher strength 

𝜃 Inclination of the compressive stress field 

𝜃𝑚𝑖𝑛 Minimum inclination of the compressive stress field (MC2010) 

𝜇 Coefficient of friction 

𝜌 Percentage of shear reinforcement 

𝜎 Normal stress on the crack surface 

𝜎𝑛𝑛
𝑐𝑟  Crack stress (FEA) 

𝜎11 Initial maximum principal stress 

𝜎22 Initial minimum principal stress 

𝜎𝑎𝑣𝑔 Average stress in the critical loading zone 

𝜎𝑝𝑢 Matrix yielding strength 

𝜎(𝑅𝑑,𝑚𝑎𝑥) Strength of the strut/node (EC2 2004) 

𝜏 Shear stress on the crack surface 

𝜏𝑐𝑟 Crack shear stress  (FEA) 

𝜏0 The bond stress of the stirrups and surrounding concrete (Sigrist, 1995) 

𝜏𝑢 Maximum shear stress (Gambarova and Karakoç, 1983) 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Despite extensive research, there is still little consensus on an adequate theory to describe 

the shear behaviour of reinforced concrete (RC) elements, particularly for elements without 

shear reinforcement. The importance of the study of the shear arises from the nature of shear 

failure, which can be brittle occurring with little or no warning. Consequently, shear failure 

can lead to disastrous loss of infrastructure and associated casualties. A famous example of 

structural concrete shear failure is the collapse under self-weight of the roofs of two U.S. air 

force bases in 1955 (Stamenkovic, 1977) and 1956 (Delatte Jr, 2008). Key milestones in 

research into shear include the 1962 report of the joint ACI-ASCE Committee 326 (ACI-

ACSE326), the work of Kani (Kani, 1964) and the CEB-FIB model code introduced in 1978. A 

noticeable milestone in the modelling of shear behaviour was the Modified Compression Field 

Theory (MCFT) of Vecchio and Collins (Vecchio and Collins, 1986). This theory forms the basis 

of the shear provisions in the AASTHO-LRFD (AASHTO-LRFD, 2012), CSA (CSA, 2004) as well as 

fib MC2010 (fib, 2010). Recent developments in this field include the critical shear crack 

theory (Muttoni and Fernández Ruiz, 2008), the two parameter kinematic theory (Mihaylov 

et al., 2013) and the five-spring model (Mihaylov, 2015). A noticeable milestone in the 

modelling of deep beams is strut-and-tie modelling (Schlaich et al., 1987). 

The shear strength of reinforced concrete beams is enhanced by arching action when loads 

are applied to the top face of the beam within around twice the beam effective depth (d) of 

supports. The strain distribution in these so-called “disturbed” regions is not uniform. 

Consequently, the hypothesis that plane sections remain plane does not apply. Considerable 

effort has been expended in the experimental and numerical study of shear enhancement as 

outlined by Reineck and Todisco (2014) and Todisco et al. (2016). Despite this, the vast 

majority of pertinent laboratory tests are on simply supported beams with single point loads 

applied within 2𝑑 of supports. Such tests are unrepresentative of the typical design scenario 

where beams are continuous and top loaded on the tension face near supports. Experimental 

investigation is essential for the development of improved design methods but is expensive, 

time-consuming and subject to adequate selection of loading and boundary conditions. 

Nonlinear finite element analysis (NLFEA), on the other hand, can be used to predict 

https://www.researchgate.net/profile/Leonardo_Todisco2?_sg=tKjvGBcwaEkhK65-OsBo_MvkcBCnxW_d0Ac2TKzQu68B5hmjxAQCvHcIzzbDBG1A40xUqto.C-sAsAXbTW1KFuDTbmafyA3E5Jt9yAmxC73ZgFiMjCqUXf77P1lBkL4YcdPVyPAImpsW7hU0KLaVUm8UnOmr0A
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behaviour before tests if correctly calibrated. Consequently, NLFEA can be used to inform the 

choice of critical parameters to be investigated in the laboratory, which significantly reduces 

cost as well as enhancing the usefulness of test results. NLFEA can also be refined after testing 

to conduct parametric studies on non-investigated parameters. 

With the exception of the tests of Brown and Bayrak (2007) and Vollum and Fang (2014, 

2015), which considered beams loaded on their flexural compression face, little attention has 

been given to the behaviour of beams with multiple point loads applied either entirely within 

or partly within 2 of supports. Design codes typically provide simplified methods for modelling 

shear enhancement in beams loaded on their top face within 2d of supports. Most codified 

design methods relate shear resistance to either the flexural reinforcement strain or the 

flexural reinforcement ratio. Of these, only strain-based formulations (e.g. fib Model Code 

2010 (fib, 2013)) are sensitive to the beam support conditions (e.g. simply supported or 

continuous) and hence whether or not loads are applied to the flexural tension or 

compression face. The author is unaware of any previous tests investigating the shear 

resistance of either continuous or cantilever beams with two point loads applied within 2d of 

supports. Furthermore, very low priority has been given to the case of beams loaded on their 

flexural tension face in the past 60 years with only 1% of the research directed to such cases 

as demonstrated by (Collins et al., 2008). 
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Figure 1.1: History of research in shear in the past 60 years(Collins et al., 2008). Figure 

reproduced with permission of the rights holder, Magazine of Concrete Research. 

Beams loaded with multiple point loads on their tension face are commonly found in 

structures like bridges cross head girders and the internal supports of continuous transfer 

girders. Although very common, the code design methods do not differentiate between 

tension and compression loading face in design methods for shear resistance. 

1.2. Research Aim and Objectives 

This research aims to study the effect of loading arrangement, and sign of bending moment, 

on shear enhancement in RC beams loaded on their top face. This will be achieved through 

experimental investigation, non-linear finite element analysis, strut and tie modelling and 

analysis of the test results using available models and design codes. The research will shed 

light on the influence of the sign of bending moment (i.e. hogging/sagging) on the shear 

resistance and deformation of beams loaded on their top face with multiple point loads. In 

addition, a practical strut-and-tie model will be developed for the latter case, which is suitable 

for use, by practitioners.  

The main objectives of this research are: 
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1. To develop and calibrate a nonlinear finite element modelling procedure using 

pertinent test results. The resulting modelling procedure is used to inform the design 

of the experimental campaign. 

2. To conduct an experimental program to investigate the influences of loading beams 

on the tension and compression face, varying the ratio of pairs of loads applied within 

2d from the face of the support and the effect of partly loading the beam outside 2d 

from the support. 

3. To describe the deformation of beams loaded on the tension face with multiple point 

loads using displacements obtained with Digital Image Correlation (DIC). 

4. To evaluate and compare the contributions of the shear transfer mechanisms (i.e. 

contributions of aggregate interlock, residual tensile stress, dowel action, flexural 

compression zone and shear reinforcement) of beams loaded on the tension and 

compression face. The individual contribution of the shear resisting mechanisms will 

be assessed using cracks kinematics obtained from DIC. 

5. To examine the applicability of the shear strength provisions in codes of practice for 

short shear span beams with loads applied on the flexural tensile face, namely the 

former British Standard BS8110 (BSI, 1997), the current Eurocode (BSI, 2004) and fib 

Model code 2010 (fib, 2010). 

6. To construct strut and tie models (STM) for beams loaded on the tension face with 

pairs of loads applied within 2d of supports. 

7. To carry out parametric studies using NLFEA to evaluate the effect of parameters not 

investigated in the experimental program. 

1.3. Thesis Outline 

This work is spread over eight chapters. The outline of each chapter is as follows: 

Chapter 1: Introduction 

This current chapter provides a brief background to the research, addresses the research 

question, states the research aim and objectives and outlines the description of the thesis 

chapters. 
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Chapter 2: Literature Review 

The available literature in the research topic is explored in this chapter; this includes the 

different models of shear transfer mechanisms and recent advances in this field, provisions 

for the shear strength in different codes of practice, a review of various design models of 

shear strength of deep beams and introduction to strut and tie modelling. 

Chapter 3: The Experimental Program 

This chapter describes the experimental program carried out by the author in the heavy 

structures laboratory at Imperial College London. Three sets of four short shear span beam 

specimens were tested. Each set investigates one of the variables described in objective (2). 

This chapter also describes the manufacturing process of the beams, the loading 

configurations, instrumentation and procedures used to obtain crack kinematics with DIC. 

Chapter 4: The Experimental Results 

This chapter presents the material properties of the concrete and reinforcement used in the 

beams as well detailed results of the beam tests (i.e. the global load-deflection response, 

failure modes and crack patterns, the surface strain of the concrete and reinforcement strain 

gauge readings). 

Chapter 5: Crack kinematics and Shear Transfer Actions 

This chapter provides a description of deformation and ultimate load for beams loaded on 

the compression and tension face based on the two parameters kinematic theory (Mihaylov 

et al., 2013) and the five-spring model (Mihaylov, 2015). These theories are modified in this 

chapter to account for the load configuration and boundary conditions. Shear transfer actions 

are evaluated using the five-spring model as well as in terms of crack displacements 

determined with the aid of the DIC system. 

Chapter 6: Non-linear Finite Element Methodology 

This chapter comprises three parts. The first part reviews the main features of the NLFEA and 

defines the basic constitutive models and solution procedure available on the software used 

(TNO Diana v10.2). The experimental results obtained in Chapter 4 are used in the second 

part to calibrate the FEM and to assess the sensitivity of the model to several parameters. 

Finally, the selected models and solution procedures are decided and the load-deflection 

response of the adopted parameters are compared with the test results. 

Chapter 7: Analysis of the Experimental Results 
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Results obtained from the experimental program are used in this chapter to assess the 

provisions of current design codes regarding the shear strength of short shear span beams. A 

novel STM is developed for cantilever beams loaded with pairs of point loads on the tension 

face. The model is validated using the author’s test results and refined NLFEM. NLFEM is used 

in this chapter to carry out parametric studies to investigate other aspects such as prediction 

of critical failure plane, the influence of tension face loading on shear resistance and the effect 

of the transfer compression on the bond force near the load/support plates. Comparisons are 

also made with the predictions of the five-spring model. 

Chapter 8: Conclusions and Recommendations 

This chapter provides a summary of the research, highlights key conclusions and recommends 

further work. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

Shear failure in reinforced concrete structure has been subject to investigation since the early 

20th century.  The significance of the shear failure in reinforced concrete structures arises 

from its brittle nature and its limited capacity of deformation. The truss analogy was the first 

and basic model proposed to simulate the shear behaviour in reinforced concrete structures 

(Mörsch, 1922).  Since then, extensive research has been conducted to understand shear 

behaviour, particularly shear transfer actions. 

RC deep beams are shear critical members. As such, their behaviour in shear has been  widely 

investigated both experimentally and theoretically (Mihaylov et al., 2013, Mihaylov, 2015, 

Mihaylov et al., 2015, Kyoung-Kyu Choi and Hong-Gun, 2016, Vollum and Fang, 2015). 

This chapter briefly reviews the relevant literature, which includes: 

1. Shear transfer actions in RC beams. 

2. Essential models for shear in RC beams (Modified compression field theory (MCFT), 

the simplified MCFT, Two-parameter kinematic theory (2PKT) and Park’s model). 

3. Shear strength predictions in some design codes. 

4. Strut-and-tie models (STM). 

2.2. Shear Transfer Actions in Reinforced Concrete Beams  

Shear failure is characterised by the formation of a critical shear crack (Muttoni and 

Fernández Ruiz, 2008). After the critical shear crack is formed, concrete can still transfer force 

through the crack via different shear transfer actions. There is a growing consensus about the 

main actions for shear transfer in reinforced concrete beams, which are (Figure 2.1): 

 Aggregate interlock mechanism (𝑉𝑎), 

 Contribution of the compression zone (𝑉𝑐), 

 Dowel action mechanism (𝑉𝑑), 

 Shear reinforcement mechanism (𝑉𝑠) – if present, and. 

 Residual tensile stress mechanism (𝑉𝑟)  
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Figure 2.1: Shear transfer actions in reinforced concrete beams 

Although considerable research has gone into studying these actions in isolation, the 

interaction between actions, as well as their individual contributions to overall shear 

resistance, are still the subject of much research (Campana et al., 2013, Cavagnis et al., 2015, 

Fang, 2013, Elwakeel et al., 2018). 

Up to recently, quantitative studies into the relative contributions of each shear resisting 

action have been based on manual measurements of crack kinematics that were stopped 

prior to failure, for reasons of safety (Campana et al., 2013, Cavagnis et al., 2015, Fang, 2013, 

Elwakeel et al., 2018). Recently, the development of advanced Digital Image Correlation (DIC) 

methods has opened up the possibility of measuring crack kinematics up to and beyond peak 

load. 

In the following sections, shear transfer actions in RC deep beams are reviewed and available 

models to evaluate them are discussed. Residual tensile strength contributes significantly to 

the shear strength of slender but not short shear span beams. This is due to differences in the 

shape and kinematics of the critical shear crack.  In slender beams, the critical shear crack has 

an almost horizontal upper branch along which shear is resisted by residual tensile strength ( 

Yang 2014). The contribution of residual tensile strength to shear resistance is much less in 

short shear span beams where the critical shear crack typically runs diagonally between the 

loading plate and support (Fang 2013). Consequently, the contribution of residual tensile 

strength is not be discussed further in this thesis. 
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2.2.1. The contribution of aggregate interlock 

The contribution of aggregate interlock to the shear resistance of cracked reinforced concrete 

beams is widely acknowledged (Campana et al., 2013, Fang, 2013, Fernández Ruiz et al., 2015, 

Walraven and Reinhardt, 1981). Previous studies show that the shear force transferred 

through aggregate interlock depends on parameters including the crack slip, crack width, 

maximum aggregate size, concrete strength and crack normal stress. 

Constitutive models for aggregate interlock can be classified into two categories: 

1. Physical crack models which are based on the shape of the crack surface and have 

rational formation (e.g. (Walraven, 1980, Li, 1989))  

2. Empirical crack models where the crack stress relationships are derived from 

experimental test results (e.g. (Walraven and Reinhardt, 1981, Hamadi and Regan, 

1980, BAZANT and GAMBAROVA, 1980, Gambarova and Karakoç, 1983)). 

The physical models are based on mechanical, geometric, material and statistical 

considerations and are consequently more complicated than empirical models derived from 

curve fitting test results. 

Walraven two-phase model 

Walraven (1980) developed a physical model of aggregate interlock as part of a wider 

investigation into the shear behaviour of pre-cracked push-off shear specimens - Figure 2.2. 

The Walraven two-phase model is widely used to estimate the contribution of aggregate 

interlock (Cavagnis et al., 2017). 

The model treats concrete as a two-phase material consisting of aggregate (with diameter > 

2.5 mm) and mortar (cement + fine aggregate with diameter < 2.5 mm). Walraven linked the 

normal and the shear resistance developed on the aggregate surface to several parameters 

including crack width and crack slip, the maximum aggregate size and the total aggregate 

volume of the concrete. Direct and shear force are given as: 

 𝜎 = 𝜎𝑃𝑢(𝐴𝑥 − µ × 𝐴𝑦) Equation 2.1 

 𝜏 = 𝜎𝑃𝑢(𝐴𝑦 + µ × 𝐴𝑥) Equation 2.2 

Where 𝐴𝑥 and 𝐴𝑦  are the projected contact areas (as in Figure 2.2 – a) for a unit crack area in 

the x and y directions, 𝜎𝑃𝑢 is the matrix yielding strength (given as 6.39 × 𝑓𝑐𝑐
0.56 MPa) and µ is 

the coefficient of friction. 
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Figure 2.2: Walraven two-phase model: a) Push-off test specimen, b) Aggregate interlock in 

the shear crack plane and c) Contact area during shear displacement (Walraven and 

Reinhardt, 1981) 

Walraven’s two-phase model gives good predictions of the response of his push-off tests. This 

is illustrated in Figure 2.3, which shows good agreement for a wide range of crack opening 

and sliding displacements for both shear and normal stresses. 

In terms of the crack kinematics, the model assumes all crack sliding (𝛿) occurs after the full 

development of the crack opening (𝑤0). The reliability of this assumption has been 

questioned by several researchers (Guidotti, 2010 and Ulaga, 2003). Guidotti (2010) 

suggested that only part of the crack opening (𝑤0) is necessary for the sliding (𝛿) to initiate, 

after that both the crack opening and sliding increase at an angle (𝛾 = arctan (𝑤𝑓/𝛿) ) where 

𝑤𝑓 = 𝑤 − 𝑤0. Ulaga (2003), on the other hand, stated that cracks initiate at an angle (𝛾) 

with 𝑤0 = 0. The Modifications to the Walraven (1980) kinematics and their effect on the 

direct and shear strength are presented in Figure 2.4. 

 

(a) 

(b) 

(c) 
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Figure 2.3: Comparing the Walraven two-phase model with the test results Walraven and 

Reinhardt, 1981).  

 

Figure 2.4: Modifications to Walraven (1980) kinematics and their effect on the direct and 

shear strength (Campana et al., 2013). Figure reproduced with permission of the rights 

holder, Magazine of Concrete Research. 
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The interaction between the crack kinematics (𝑤 𝑎𝑛𝑑 𝛿) depends on the type, location and 

orientation of the critical shear crack. In slender beams, the critical crack can be separated 

into a quasi-horizontal part with no sliding and an inclined part with the opening and sliding 

(Muttoni and Fernández Ruiz, 2008). In deep beams, however, the critical crack is inclined 

between the load and the support and mainly governed by shear displacement (Kueres and 

Hegger, 2018). The selection of the appropriate models hence is a case dependent and needs 

experimental verification. 

Walraven and Reinhardt linear regression (1981) 

Walraven and Reinhardt (Walraven and Reinhardt, 1981) used linear regression to develop a 

widely used aggregate interlock model which accounts for the effect of several parameters 

considered in their push-off tests. This model has widely been used to evaluate the 

contribution of aggregate interlock due to its simplicity and acceptable results. The 

investigated parameters included the flexural reinforcement ratio, bar diameter, concrete 

strength and crack plane roughness. The model provides two sets for normal and lightweight 

concrete in which the crack shear (𝜏𝑐𝑦), and direct (𝜎𝑐𝑦) stresses are expressed by the crack 

opening and sliding only. For normal concrete, the equations are as follows: 

 
𝜏𝑐𝑟 = −

𝑓
𝑐𝑢

30
+ [1.8.𝑤−0.8 + 𝑓

𝑐𝑢
. (0.234.𝑤−0.707 − 0.2)]. 𝑠 Equation 2.3 

 
𝜎𝑐𝑟 = −

𝑓
𝑐𝑢

20
+ [1.35.𝑤−0.63 + 𝑓

𝑐𝑢
. (0.191.𝑤−0.552 − 0.15)]. 𝑠 Equation 2.4 

Where for lightweight concrete: 

 
𝜏𝑐𝑟 = −

𝑓
𝑐𝑢

80
+ [1.495𝑤−1.233 −1]. 𝑠 Equation 2.5 

 
𝜎𝑐𝑟 = −

𝑓
𝑐𝑢

40
+ [1.928𝑤−0.87 − 1]. 𝑠 Equation 2.6 

In which s is the crack sliding. Predictions obtained from this model have been verified by 

Walraven and Reinhardt as shown in Figure 2.5 for both normal and lightweight concrete. 

However, this model ignores contributions of parameters known to influence the aggregate 

contribution like the aggregate size and the strength of the mortar. 
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Figure 2.5: Comparing the Walraven and Reinhardt model with the test results for a) Normal 

concrete and b) Lightweight concrete, Walraven and Reinhardt (1981).  

 The Rough Crack model (BAZANT and GAMBAROVA, 1980) and (Gambarova and Karakoç, 

1983) 

Bazant and Gambarova (1980) developed the semi-empirical rough crack model by 

considering the crack surface as a regular array of trapezoidal asperities. The model was 

influenced by a series of tests into aggregate interlock performed by Paulay and Loeber in un-

reinforced concrete/reinforced concrete (Paulay and Loeber, 1974). The main observations 

they concluded from these results, which became model assumptions, were: 

1. The shear stress-displacement increases up to a horizontal plateau at a ratio r=1.2 

(where r is the ratio of the sliding displacement to the crack opening i.e.:  𝑟 = 𝑠/𝑤 ) 

2. The effect of the crack opening on the maximum shear stress is negligible. 

3. The shear stress-displacement curve is proportional to the ratio of the sliding 

displacement to the crack opening. 

The curve that best fits the results for the un-reinforced concrete obtained by Paulay and 

Loeber (1974) relates the shear and normal stress to the ratio of the sliding displacement to 

the crack opening, the concrete strength (𝑓𝑐  ) and the maximum particle diameter (𝐷𝑚𝑎𝑥 ). 

The equations of the rough crack model are as follows: 

 
𝜏 = 𝜏𝑢. 𝑟.

𝑎3 + 𝑎4. |𝑟|
3

1 + 𝑎4. 𝑟4
 Equation 2.7  

 𝜎 = −
𝑎1
𝑤
. (𝑎2. |𝜏 |)

𝑝 Equation 2.8 

 

(a) (b) 
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In which: 

𝜏𝑢 = 𝜏0.
𝑎0

𝑎0 +𝑤2
, 𝜏0 = 0.245.𝑓

′, 𝑝 = 1.3(1 −
0.231

1+ 0.185.𝑤 + 5.63.𝑤2
) 

𝑎0 = 0.01.𝐷𝑚𝑎𝑥;  𝑎1 = 5.34 × 10
−4 𝑁

𝑚𝑚
;   𝑎2 = 145

𝑚𝑚2

𝑁
;  𝑎3 =

2.45

𝜏0

𝑁

𝑚𝑚2
; 

  𝑎4 = 2.44. (1 −
4
𝜏0⁄

𝑁

𝑚𝑚2
) 

𝜏𝑢 is the maximum shear strength when 𝑟 tends to infinity and 𝜏0 is the limiting shear stress. 

Additionally, Bazant and Gambarova suggested a more complicated numerical model for use 

in finite element software. In this model, a smeared crack approach was adopted assuming 

the reinforced concrete to be divided into a reinforcement net and cracked concrete (solid 

concrete + cracks) with strain decomposition. The prediction of this model, as well as the 

model for unreinforced concrete, are shown in Figure 2.6 below. 

  

Figure 2.6: Test results compared to the rough crack model (BAZANT and GAMBAROVA, 

1980). Figure reproduced with permission of the rights holder, Journal of Structural 

Engineering. 

This model was later modified, to take into account the effect of the aggregate size and the 

confinement condition, by Gambarova and Karakoç (Gambarova and Karakoç, 1983) as 

follows: 
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𝜏 = 𝜏0.(1 −√

2.𝑤

𝐷𝑚𝑎𝑥
) . 𝑟.

(𝑎3 +𝑎4. |𝑟|
3)

(1 + 𝑎4. 𝑟4)
 Equation 2.9 

 𝜎 = −𝑎1. 𝑎2.
𝑟

(1 + 𝑟2)0.25
. 𝜏  Equation 2.10  

𝑎1. 𝑎2 = 0.62, 𝑎3 =
2.45

𝜏0
, 𝑎4 = 2.44.(1 −

4

𝜏0
) , 𝜏0 = 0.25.𝑓

′
 

This model accounts for the aggregate size and boundary conditions. However, for reasons 

discussed earlier, it is more realistic to express the shear and direct stresses in terms of the 

crack opening and sliding rather than the ratio between them. 

The Contact Density Model (CDM) 

The contact density model, which have been developed by Li et al. (1989), describes the 

aggregate interlock resistance using contact density probability functions )( . A crack plane 

is assumed here to consist of contact units with different inclinations in the range of –π/2 to 

π/2. The mathematical expression for this model is given by the following equations  

 
𝜏𝑐𝑟 = ∫ 𝜎𝑐𝑜𝑛𝐾(𝑤)𝐴𝑡𝛺(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃

𝜋/2

−𝜋/2

 Equation 2.11  

 
𝜎𝑐𝑟 = ∫ 𝜎𝑐𝑜𝑛𝐾(𝑤)𝐴𝑡𝛺(𝜃)𝑐𝑜𝑠𝜃𝑑𝜃

𝜋/2

−𝜋/2

 Equation 2.12  

 K w is the effective ratio of contact area that presents the contact stage along the crack 

when w is large enough compared with the roughness of the crack surface. The density 

function  Ω   is proposed as a trigonometric formula which is independent of the size, 

strength, type of the aggregate and the grading (Li, 1989). 𝐴𝑡 (which represent the surface 

area) is proposed to be 1.27 time of the section area of crack plane.  

Later work Li, Maekawa, Okamura & Soltani established a simplified formula based on their 

original model in which the stress depends on /r s w , which is similar to the rough crack 

model. 

 

𝜏𝑐𝑟 =
3.83𝑓′(

1
3
)𝑟2

1 + 𝑟2
 Equation 2.13  

 
𝜎𝑐𝑟 = 3.83𝑓′(

1
3
)[
𝜋

2
− cot−1 𝑟 −

𝑟

1 + 𝑟2
] Equation 2.14  
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Hamadi and Regan model (1980) 

Hamadi and Regan conducted a series of 27 push-off tests and developed an empirical crack 

dilatancy model for aggregate interlock based on their test results (Hamadi and Regan, 1980). 

The model relates shear stress to the crack displacements, normal stress and aggregate type. 

Natural gravel aggregates and expanded clay aggregate were considered with the principal 

difference between the two being crack roughness. The main difference between the two 

types of concrete is that the crack surface for the natural aggregate concrete is rougher than 

that of the clay aggregate. The shear and direct stresses are given by the following 

expressions: 

 
𝜏 =

𝑘

𝑤
. 𝑠 Equation 2.15  

 𝜏𝑢 = 𝑐+ 𝜇. 𝜎 Equation 2.16  

The values for 𝑘, 𝑐 and 𝜇 for the natural gravel are given as 5.4𝑁 𝑚𝑚2⁄ , 4.0𝑁 𝑚𝑚2⁄  and 0.7 

respectively (Hamadi and Regan, 1980).  

Discussion 

There are some significant differences between the underlying assumptions of these models 

which can result in large differences in predictions between them as shown by Elwakeel et al. 

(Elwakeel et al., 2018). The mechanical model of Walraven (1980) accounts for aggregate 

type, maximum aggregate size, concrete strength, the coefficient of friction and the ratio 

between the total volume of the aggregate and the volume of concrete. The model also 

assumes no crack sliding occurs prior to crack opening which is not always the case as shown 

by Campana (Campana et al., 2013). The linear regression model of Walraven and Reinhardt 

(1981) is simple and widely used but it does not take into account the effect of the maximum 

aggregate size or type. The Gambarova and Karakoç (1983) model considers maximum 

aggregate size as well as the crack path 𝑟 = 𝑠/𝑤 and has been reported as giving reasonable 

predictions of shear transfer in deep beams (Fang, 2013, Sagaseta, 2008). The Hamadi and 

Regan model (1980) is a simple model for aggregate interlock; however, it has been reported 

to overestimate this contribution (Fang, 2013, Sagaseta and Vollum, 2011). In this research, 

the contribution of the compression zone is calculated using the Walraven two-phase model 

(Walraven, 1980) and for consistency with the five-spring model, the CDM (reference) (Li, 

1989)is used in the calculation of the strength as seen in Chapter 5 
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2.2.2. The contribution of dowel action 

Dowel action depicts the shear force transferred through cracks by combined shear and 

flexure in the reinforcement bars. Dowel action is commonly analysed using a beam on an 

elastic foundation analogy – Figure 2.7. The main parameters which influence dowel action 

are vertical displacement, bar diameter, concrete strength, shear reinforcement if present, 

and the concrete cover (Campana et al., 2013). 

 

Figure 2.7: Beam in elastic foundation theory for the dowel mechanism (Walraven, 1980) 

Three models for the contribution of the dowel action are discussed here: Walraven and 

Reinhardt model (Walraven and Reinhardt, 1981), Millard and Johnson model (Millard and 

Johnson, 1984) and He and Kwan model (He and Kwan, 2001).  

Walraven and Reinhardt model (1980) 

According to Walraven and Reinhardt, the dowel force depends on the bar diameter, crack 

opening and sliding displacements and concrete strength. This can be expressed based on the 

theory of a beam in an elastic foundation as follows: 

 

𝐹𝑑 = 𝛽3EI. 2. s   with 𝛽 = √
∅𝐺𝑓
4𝐸𝐼

4

 Equation 2.17  

Where 𝑠 is the crack-sliding equivalent to the vertical displacement of the bar and 𝐺𝑓 is the 

foundation modulus of the concrete. The value of 𝐺𝑓 depends on the concrete quality under 

the bar, direction of the bar relative to the casting direction and the concrete cover. There is  

noticeable scatter in the literature regarding the value of 𝐺𝑓 (Walraven, 1980). A value of 𝐺𝑓 =

34√𝑓𝑐𝑐 . 𝑠−0.85 was adopted by Walraven and Reinhardt where 𝑓𝑐𝑐  is the concrete cube 
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strength. Assuming no axial force exists in the bar ignoring the influence of the crack width 

on as a free length, the dowel force can be given as: 

 𝐹𝑑 = 50. 𝑠 
0.36. ∅1.75. 𝑓𝑐

′ 0.38 Equation 2.18  

𝑭𝒅 is multiplied by ξ (Eleiott, 1974) to account for the reduction in the dowel strength caused 

by the presence of the tension force in the reinforcement: 

 𝜉 = 0.2. (𝑤 + 0.2)−1 Equation 2.19 

Millard & Johnson model (1984) 

Millard & Johnson (1984) also based their model for the shear resistance provided by dowel 

reinforcement on the analysis of a beam on an elastic foundation. The dowel contribution in 

this model depends on the foundation modulus for the concrete (Gf) which was given as  𝐺𝑓 =

126.26 × √𝑓𝑐𝑢 where 𝑓𝑐𝑢 is the concrete cube compressive strength. 

In the elastic stage, the initial dowel stiffness is expressed in this model as: 

 𝐾𝑖 = 0.166. 𝐺𝑓
0.75. ∅1.75. 𝐸𝑠

0.25 Equation 2.20 

Where 𝐸𝑠 is the elastic modulus of the bar. However, due to the high-stress concentration 

beneath the bar, the assumption of elastic behaviour is not valid. This non-linear behaviour 

may occur due to concrete crushing/splitting or plastic yielding of the bar. 

The dowel resistance is assumed to depend on the ratio (𝛼) between the axial stresses in the 

bar and its yield strength. The dowel resistance is expressed as: 

 
𝐹𝑑 = 𝐹𝑑𝑢 . (1 − exp (

−𝐾𝑖𝑠

𝐹𝑑𝑢
)) Equation 2.21 

𝐹𝑑𝑢 Is the ultimate dowel force given by 𝐹𝑑𝑢 = 1.3. ∅
2. 𝑓𝑐𝑢

0.5(𝑓𝑦 . (1 − 𝛼
2))

0.5
 and 𝛼 is the ratio 

between the reinforcement stress and yield strength. 

He and Kwan model (2001) 

The He and Kwan (2001) model is based on the analysis of a beam on an elastic foundation. 

The dowel force in this model is given by: 

 𝐹𝑑 = 𝐸𝑠. 𝐼𝑠 . 𝜆
3. 𝑠 Equation 2.22 

In which 𝐸𝑠  is the modulus of elasticity of the flexural reinforcement. 𝐼𝑠  Is the moment of 

inertia of the bar and 𝜆 is a parameter signifies the foundation relative stiffness and has been 

stated as: 
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𝜆 = √
𝐾𝑐 . ∅

4. 𝐸𝑠. 𝐼𝑠

4

 Equation 2.23 

In which 𝐾𝑐 is the foundation modulus of the concrete around the reinforcement bar which 

is calculated using the formula recommended by Soroushian et al. (Soroushian et al., 1987) 

as 𝐾𝑐 =
127.𝑐1.𝑓𝑐

′1/2

∅2/3
.  ( 1c  is 0.6 for a clear bar spacing of 25mm and 1.0 for larger bar spacing). 

The ultimate dowel action in this model was obtained using regression analysis on the test 

results of Dulacska (Dulacska, 1972) and is given by: 

 𝐹𝑑𝑢 = 1.27. ∅
2. (𝑓𝑐 . 𝑓𝑦)

1/2 Equation 2.24  

Discussion 

The Walraven and Reinhardt model relates dowel resistance to the crack opening and sliding 

displacements, unlike the other two presented models, which relate the dowel force to the 

crack sliding displacement. Selection of an appropriate model for the dowel contribution 

depends on the stress state of the reinforcement and the required level of accuracy.  The 

Walraven and Reinhardt model accounts for the influence of the tensile force in the 

reinforcing bar through the crack width. On the other hand, the Millard and Johnson model 

relates the dowel resistance to the ratio between the tensile stresses in the bar and 

reinforcement yield strength.  The model proposed by He and Kwan is often used in finite 

element analysis as it adopts a linear response for the doweling action but this is not generally 

observed in experiments(Millard and Johnson, 1984). There are other models in the 

literature, which were not discussed here and can be found elsewhere ((Baumann and Rüsch, 

1970, Campana et al., 2013), etc.). 

Failure of dowel action can result from loss of concrete cover, longitudinal splitting of the 

concrete, concrete crushing, and formation of plastic hinges in the reinforcement or a 

combination of these. The upper limit of the dowel contribution based on the mentioned 

failure mechanisms is defined empirically in these models. 

2.2.3. The contribution of shear reinforcement 

Extensive research has been carried out to formulate the relationship between crack opening 

and the stresses induced in shear reinforcement crossing the crack. The model of Sigrist and 

Marti (1998) has been adopted by several researchers (Sigrist, 1995, Muttoni and Fernández 

Ruiz, 2007, Ruiz et al., 2010, Huber et al., 2016, Campana et al., 2013). The model is based on 



Shear Enhancement in RC Beams Loaded on the Tension Face Literature Review 

 

56 
 

a stepped rigid plastic behaviour for the bond between the shear reinforcement and 

surrounding concrete. Once the crack opens, the shear reinforcement is assumed to resist all 

the tensile stress previously resisted by concrete. Hence, the tensile force is maximized in the 

shear reinforcement at intersections with cracks and reduced in between cracks. 

The bond strength between the shear reinforcement and the surrounding concrete is 

assumed constant and equals to twice the tensile strength of the concrete before yielding. 

After reinforcement yields, the bond strength reduces to the concrete tensile strength and 

plastic strains localize in stirrups in the zone near the crack. Figure 2.8 demonstrates the 

model behaviour of the shear reinforcement and its associated bond stress.  

 

Figure 2.8: behaviour of the shear reinforcement in cracked concrete and bond stress 

according to Sigrist’s model (Campana et al., 2013). Figure reproduced with permission of 

the rights holder, Magazine of Concrete Research. 

According to this model, the stepped bond behaviour may be modelled in two phases before 

and after yielding - as shown in Figure 2.9.  
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Figure 2.9: Sigrist stepped bond behaviour. Figure reproduced with permission of the rights 

holder, Magazine of Concrete Research. 

The relationship between the stress in the bar (𝜎𝑠) and the crack opening (𝑤) is derived using 

the strain-crack width relationship below: 

 
𝑤 = 2.∫ 휀𝑠. 𝑑𝑥

𝐿

0

 Equation 2.25 

In which L is the effective bond length.  

Stirrups in the elastic stage 

Before stirrups yield, the bond stress is assumed constant (𝜏𝑏0 = 2. 𝑓𝑡) and the effective bond 

length over which the slip occurs can be expressed as:  

 
𝐿 =

𝜎𝑠. 𝐴𝑠𝑤
𝜋. ∅. 𝜏𝑏0

 Equation 2.26 

For a known crack opening (𝑤), the stress in the stirrups (𝜎𝑠) can be found as: 

 

𝜎𝑠 = √
2. 𝜋. 𝐸𝑠 . ∅. 𝑓𝑡

𝐴𝑠𝑤
. 𝑤 Equation 2.27 

Stirrups in the elasto-plastic stage  

After stirrups yield, the constant bond stress reduces to 𝜏𝑏1 = 𝑓𝑐𝑡. The bond length of the 

elastic zone (𝐿2) and that of the plastic zone (𝐿1) can be expressed as: 

 
𝐿1 =

(𝜎𝑠 − 𝑓𝑦)

𝜋. ∅. 𝜏𝑏1
. 𝐴𝑠𝑤 Equation 2.28 

  
𝐿2 =

𝑓𝑦
𝜋. ∅. 𝜏𝑏0

. 𝐴𝑠𝑤 Equation 2.29 

As stated earlier, the crack width (𝑤) can be obtained by the integration of the steel strains. 

In this case, the crack width (𝑤) can be expressed as follows:  
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𝑤 = 2𝐴𝑠𝑤 (
𝑓𝑦
2

2. 𝐸𝑠. 𝜋. ∅. 𝜏𝑏0
+

(𝜎𝑠 − 𝑓𝑦)
2

2. 𝐸′𝜋. ∅. 𝜏𝑏1
+

𝜎𝑠 . 𝑓𝑦
𝐸𝑠𝜋. ∅. 𝜏𝑏1

−
𝑓𝑦
2

𝐸𝑠𝜋. ∅. 𝜏𝑏1
) 

Equation 2.30 

Where𝜎𝑠 > 𝑓𝑦  and 𝐸′ is the post-peak stiffness of the reinforcement, which can be obtained 

from bar tests.  Consequently, 𝜎𝑠 can be estimated in terms of the known crack width (𝑤). 

Aside from the model proposed by Sigrist, several researchers have also proposed other 

models to evaluate the contribution of the shear reinforcement (Shima et al., 1987, Maekawa 

and Qureshi, 1996, Soltani et al., 2003, Ruiz et al., 2007). However, the model proposed by 

Sigrist is widely used due to its simplicity and accepted outcomes (Campana et al., 2013, Fang, 

2013). 

2.2.4.  The contribution of the compression zone 

Numerous studies have been carried out to determine the contribution of the compression 

zone to shear resistance ((Tureyen and Frosch, 2003), (Choi et al., 2007),(Park et al., 2006) 

and (Mihaylov et al., 2015)). These studies show that the contribution of the compression 

zone depends on the acting normal and shear stresses and the depth of the compression zone 

at the failure location, which cannot be reliably predicted. 

Park et al (Park et al., 2006) developed a strain based shear model for slender beams without 

shear reinforcement in which shear stress is assumed to be resisted by the compression zone 

of the intact concrete. The compression zone is subject to combined normal and shear stress 

resulting from the flexural moment and shear force. Although this model is applicable for 

slender beams where the stress distribution in the compression zone is assumed linear, it is 

presented here as it gives good background to the contribution of the compression zone for 

different load levels. In their study, the shear resistance of the compression zone is directly 

related to the normal stress and depends on the applied moment. The model adopts Rankin’s 

failure criteria (Figure 2.10 (a)).  

Four load stages are defined in this model as shown in Figure 2.10 (b). Before flexural cracking 

(AB), shear is resisted by the entire cross-section and the shear capacity is not significantly 

affected by micro-cracks. In the flexural cracks initiation stage (BC), the shear stress rapidly 

decreases as the effective depth resisting shear decreases. Stage (CD) applies once the cracks 
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reach the neutral axis when the shear force is assumed taken by the compression zone only. 

In the softening stage (DE), the effective compression zone of the intact concrete that resists 

the shear stress reduces since the softened extreme fibres do not contribute to the shear 

resistance. 

According to Rankine’s failure criteria, the material fails when its tensile stress reaches or 

exceeds its tensile strength or when its compressive stress reaches or exceeds its compressive 

strength. In concrete, the tensile strength is significantly less than the compressive strength; 

therefore, failure is governed by the tensile strength of the concrete. 

 

Figure 2.10: Park et al model (2003) for compression zone contribution. a) Mohr’s circle for 

the Rankine's failure mode. b) loading stages c) compression and tension controlled shear 

capacity. Figure reproduced with permission of the rights holder, ACI Structural Journal. 

As seen in Figure 2.10 (c), due to the low tensile strength of the concrete and regardless of 

the magnitude of the flexural deformation, the shear capacity controlled by tension is 
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significantly less than that controlled by compression. Equations for shear failure controlled 

by tension are given by (Park et al., 2006): 

 
𝑉 = 𝑏∫ 𝑣𝑢(𝑧). 𝑑𝑧

𝑐

0
≈ √𝑓

𝑡
′
[𝑓
𝑡
′ + �̅�] . 𝑏. 𝑐        

𝑓
𝑟
𝐸𝑐
⁄ < 𝛼휀0 < 휀0 Equation 2.31 

 
𝑉 = 𝑏∫ 𝑣𝑢(𝑧). 𝑑𝑧

𝑐
𝛼⁄

0
≈ √𝑓

𝑡
′
[𝑓
𝑡
′ + �̅�] . 𝑏. 𝑐 𝛼⁄         𝛼휀0 > 휀0 Equation 2.32 

Where �̅� = 

 
(𝛼−

𝛼2

3
)    
𝑓
𝑟
𝐸𝑐
⁄          < 𝛼휀0 < 휀0

2

3
𝑓
𝑐
′                                      𝛼휀0 > 휀0

}
 
 

 
 

 Equation 2.33 

 
𝑓
𝑟
= 0.625.√𝑓

𝑐
′  Equation 2.34 

𝑓𝑡
′ is the tensile strength of the concrete, 𝑣𝑢  is the shear strength at failure, 𝛼 is the ratio of 

the current strain to the ultimate strain 휀𝑜, �̅� is the average normal stress in the section, 𝑐 is 

the depth of the compression zone and  𝑓
𝑟
 is the modulus of rupture for the concrete. 

Calculations of the depth of the compression zone and concrete compressive strain are 

complicated for non-linear behaviour and usually requires an iterative procedure. It is 

common to assume an elastic behaviour of the compression zone particularly for slender 

beams where the behaviour is governed by the flexural capacity. This is not the case in shear 

critical elements like deep beams where the behaviour is non-linear and the contribution of 

the compression zone is critical. Hence, several models for the shear transfer actions of deep 

beams have been developed with particular emphasis on the contribution of the compression 

zone as discussed in the next sections. 

2.2.5. Evaluation of crack kinematics using DIC 

The shear transfer actions mentioned earlier are highly dependent on the kinematics and 

shape of the critical shear crack. Evaluation of these contributions includes two levels of 

uncertainties: the accuracy of the obtained crack kinematics and the validity of the models 

used. The first uncertainty has recently been limited with the use of the Digital Image 

Correlation (DIC) system while the latter is still an undergoing debate. 

DIC is a non-contact tool used to obtain the displacement of samples during tests by means 

of digital photogrammetry. It has several advantages over conventional instruments like 

mechanical extensometers and cross transducers. The use of mechanical extensometers is 
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both tedious and potentially hazardous near failure. Furthermore, they do not provide 

continuous reading and can only gather information at discrete predetermined locations. 

Conversely, DIC systems provide continuous remote strain reading throughout the monitored 

area. 

The use of DIC has recently been introduced to evaluate crack kinematics and orientation in 

the calculation of the shear transfer actions by several researchers (De Wilder et al., 2015, 

Cavagnis et al., 2015, Cavagnis et al., 2017, Huber et al., 2016, Huber et al., 2019).  

The user needs to post-process the data gathered by the DIC system to obtain crack 

kinematics at selected load steps and the post-failure response (Figure 2.11- a) as described 

in Chapter 3. For certain DIC software packages, the user may also be able to directly obtain 

concrete surface strains (Figure 2.11- b). Further details about the processing of DIC and its 

accuracy can be found in Chapter 3. 

 

(a) 
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(b) 

Figure 2.11: Results obtained using DIC for a) crack kinematics (Huber et al., 2019) and b) 

concrete surfaces strains (Cavagnis et al., 2017). Figure reproduced with permission of the 

rights holder, a) Structural Concrete and b) Engineering Structures. 

2.3. Provisions for Shear Strength in Different Codes of 

Practice 

Design approaches for shear in national and international design codes can be classified into 

empirical, semi-empirical and mechanically based approaches. Influential milestones in code 

development include the 1962 report of the joint ACI-ASCE Committee 326 (ACI-ACSE326),  

the work of Kani (Kani, 1964) as shown in Figure 2.12. The CEB-FIB model was introduced in 

1978 about the same time Kani’s book was published (in the late 1970s) followed by adoption 

of the Strut-and-tie-model by the Canadian Standards Association CSA. A noticeable 

milestone in the modelling of shear behaviour was the Modified Compression Field Theory 

(MCFT) presented in 1986 by Vecchio and Collins (Vecchio and Collins, 1986). This theory 

formed the basis of the shear provisions later in the AASTHO-LRFD (AASHTO-LRFD, 2012), CSA 

(CSA, 2004) and in some levels of approximations of the FIB MC2010 (fib, 2010). 

Despite much time and effort spent in codifying shear capacity in design codes, there are still 

clear differences in code strength predictions, especially for deep beams. Several researchers 

have reported noticeable variance and sometimes very conservative/unsafe estimations of 

shear capacity of deep beams (Mihaylov et al., 2013, Mihaylov et al., 2015, Fang, 2013, 

Sagaseta, 2008). This is partly due to differences in underlining assumptions and variations in 

the approaches adopted to account for the various associated parameters. 
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This section reviews design code provisions for estimating the shear strength of reinforced 

concrete beams, namely: Eurocode 2 (BSI, 2004), British standards 8110-97 (BSI, 1997) and 

Model Code 2010 (fib, 2010). This section also compares the provisions provided in each code 

to take into account the shear strength enhancement when the load is applied close to the 

support. In the last part of this section: approaches to estimating the shear resistance of 

beams loaded with multiple point loads are also discussed. 

 

Figure 2.12: Background in shear research of members without shear reinforcement (Collins 

et al., 2008). Figure reproduced with permission of the rights holder, Magazine of Concrete 

Research. 
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2.3.1. Shear Strength in EC2 

Beams not requiring design shear reinforcement  

EC2 uses an empirical formula to calculate the shear strength of reinforced concrete members 

without shear reinforcement. The shear strength is a function of the compressive strength of 

the concrete, longitudinal reinforcement, size effect and dowel action. Shear strength is given 

by: 

 𝑉𝑅𝑑,𝑐 = (𝐶𝑅𝑑,𝑐𝑘(100𝜌𝑙𝑓𝑐𝑘)
1
3⁄ + 𝑘1𝜎𝑐𝑝) 𝑏𝑤𝑑 ≥ (𝑣𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 Equation 2.35 

The recommended values of 𝐶𝑅𝑑,𝑐 , 𝑘1 𝑎𝑛𝑑 𝑣𝑚𝑖𝑛  𝑎𝑟𝑒 
0.18

𝛾𝑐
, 0.15 𝑎𝑛𝑑 0.35𝑘

3
2⁄ 𝑓
𝑐𝑘

1
2⁄  

respectively. Where 𝐴𝑙 is the area of the longitudinal reinforcement, 𝑏𝑤 is the least width of 

the section in the tensile zone, 𝑑 is the effective depth,  𝛾𝑐  is the material factor (taken as 1.5 

for the concrete) and 𝜎𝑐𝑝 is the axial stress in the section =
𝑁𝐸𝑑

𝐴𝑐
≤ 0.2𝑓𝑐𝑑  (BSI, 2004). 𝑘 =

(1 + √200 𝑑⁄ ) ≤ 2.0 (D in mm) and 𝜌𝑙 =
𝐴𝑙

𝑏𝑤.𝑑
≤ 0.02. 

The shear stress at failure reduces with increasing beam depth due to the so called “size 

effect”. The above equation of the EC2 takes into account the size effect using the factor 𝑘. 

Several explanations of the size effect are available in the literature. Bažant (1985) relates the 

size effect to the fracture mechanics and the residual tensile strength of concrete (Bažant, 

1985). On the other hand, Collins et al. link the reduction of shear strength to the crack 

spacing rather than the absolute element size (Collins et al., 2008).  

Beams requiring design shear reinforcement  

EC2 uses a variable angle truss model to calculate the shear resistance of beams with shear 

reinforcement. The inclination of the struts depicted as 𝜃 where 1 ≤ cot 𝜃 ≤ 2.5. In this 

model, the shear strength of beams with shear reinforcement is assumed to depend on the 

shear reinforcement alone and is given by: 

 
𝑉𝑅𝑑,𝑠 =

𝐴𝑠𝑤
𝑠
𝑧𝑓𝑦𝑤 cot 𝜃 ≤ 𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝛼𝑐𝑤𝑏𝑤𝑣1 𝑓𝑐𝑑 (cot𝜃 + tan 𝜃)⁄  Equation 2.36 

In the above expression, 𝐴𝑠𝑤is the area of stirrups, s is the spacing between stirrups, 𝑓𝑦𝑤 is 

the yield strength of the stirrups. The strength reduction factor for cracked concrete 𝑣1 is 

given as: 
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 0.6                       𝑓𝑐𝑘 ≤ 60𝑀𝑃𝑎

0.9 −
𝑓𝑐𝑘
200

          𝑓𝑐𝑘 > 60𝑀𝑃𝑎
} Equation 2.37 

The coefficient 𝛼𝑐𝑤  reflects the state of stress in the compression chord, it can be found using 

the expressions: 

 (1 +
𝜎𝑐𝑝
𝑓𝑐𝑑
)                       0 < 𝜎𝑐𝑝 ≤ 0.25𝑓𝑐𝑑

1.25                           0.25𝑓𝑐𝑑 < 𝜎𝑐𝑝 ≤ 0.5𝑓𝑐𝑑

2.5 (1 −
𝜎𝑐𝑝
𝑓𝑐𝑑
)        0.5𝑓𝑐𝑑 < 𝜎𝑐𝑝 ≤ 0.25𝑓𝑐𝑑 }

 
 

 
 

 Equation 2.38 

In RC beams with low amounts of shear reinforcement, ignoring the contribution of concrete 

to shear resistance can underestimate resistance (Sagaseta 2008). For example, Equation 2.36 

may give a lower resistance for beams with light shear reinforcement than Equation 2.35 for 

beams without shear reinforcement. This is misleading, since in reality even light shear 

reinforcement can significantly increase shear resistance as shown by Collins et al. (2008). 

2.3.2. Shear Strength in BS 8110-97 

Beams not requiring design shear reinforcement  

BS8110 gives the shear strength of beams without shear reinforcement as: 

 
𝑉𝑅𝑑,𝑐 =

0.79

𝛾𝑚
(
100𝐴𝑙
𝑏𝑤𝑑

)

1
3⁄

(
400

𝑑
)

1
4⁄

𝑏𝑤𝑑 Equation 2.39 

In which 𝐴𝑙 is the area of the longitudinal reinforcement, 𝑏𝑤 is the least width of the section 

in the tensile zone, 𝑑 is the effective depth,  𝛾𝑚 is the material factor (taken as 1.5 for the 

concrete). The value of (
100𝐴𝑙

𝑏𝑤𝑑
) should be less than or equal to 3.0 and (

400

𝑑
)
1
4⁄

 should be 

greater than or equal to 0.67. The shear strength here also reduces as the element size 

increases. It is affected also by the concrete strength and the reinforcement ratio. The 

strength given by this equation should be multiplied by a factor of (
𝑓𝑐𝑢

25
)
1
3⁄

 for concrete 

strengths greater than 25MPa. The maximum concrete cube strength in Equation 2.35 is 

limited to 40 MPa. 
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Beams requiring design shear reinforcement  

For beams with shear reinforcement, when the applied shear stress 𝑣 is greater the concrete 

shear strength 𝑣𝑐  , shear reinforcement is required to carry out the rest of the force. The 

required area of reinforcement 𝐴𝑠𝑤 is given as: 

 𝐴𝑠𝑤 ≥ 𝑏𝑣𝑠𝑣(𝑣 − 𝑣𝑐)/0.87𝑓𝑦𝑣 Equation 2.40  

In which 𝑠𝑣 is the spacing of the shear reinforcement and 𝑏𝑣 is the width of the beam for the 

shear calculations. 

2.3.3. Shear Strength in FIB MC2010 

The determination of design shear resistance in MC2010 depends on the level of accuracy 

required. MC2010 provides two levels of approximation for beams without shear 

reinforcement and four levels of approximation for beams with shear reinforcement of which 

level IV involves numerical modelling. The effort and complexity required to estimate the 

shear strength are proportional to the level of approximation. 

The analysis and design of structural members in shear using MC2010 requires determination 

of the longitudinal strain at mid-height of the effective shear depth of the element 𝑧 (taken 

as 0.9d). 

Beams not requiring design shear reinforcement  

The design shear strength of beams without shear reinforcement is given by: 

 
𝑉𝑅𝑑𝑐 = 𝑘𝑣

√𝑓𝑐𝑘
𝛾𝑐

. 𝑧. 𝑏𝑤 Equation 2.41  

In which 𝑓𝑐𝑘  is the concrete compressive strength with √𝑓𝑐𝑘 ≤ 8𝑀𝑃𝑎.  𝑏𝑤  is the web width 

and 𝛾𝑐  is the concrete material factor (recommended as 1.5). 𝑘𝑣 Is determined based on the 

level of approximation required as follows: 

For Level I Approximation: 

 
𝑘𝑣 =

180

1000 + 1.25𝑧
       (𝑧 𝑖𝑛 𝑚𝑚) Equation 2.42  

For Level II Approximation: 

 
𝑘𝑣 =

0.4

1 + 1500. 휀𝑥
.

1300

1000 + 𝑘𝑑𝑔. 𝑧
       (𝑧 𝑖𝑛 𝑚𝑚) Equation 2.43  

If the maximum aggregate size 𝑑𝑔 ≥ 16𝑚𝑚; 𝑘𝑑𝑔 can be taken as 1.0. Otherwise: 
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𝑘𝑑𝑔 =

32

16 +  𝑑𝑔
≥ 0.75 Equation 2.44  

In order to determine the shear capacity of a beam, one must first determine the longitudinal 

strain (휀𝑥) at the middle of the effective shear depth. This may require an iterative solution of 

the following equation to obtain the relevant strain: 

 
휀𝑥 =

1

2𝐸𝑠𝐴𝑠
. (
𝑀𝐸𝑑

𝑧
+ 𝑉𝐸𝑑) Equation 2.45  

Beams requiring design shear reinforcement  

The design shear resistance of beams with shear reinforcement in level III approximation is 

given as the summation of the contribution of the concrete shear resistance and stirrups 

resistance, while in level I and II only the stirrups are assumed to resist the shear force 

(i.e. 𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑠). The concrete shear resistance is the same as for beam without shear 

reinforcement whereas the shear resistance provided by the stirrups is: 

 
𝑉𝑅𝑑,𝑠 =

𝐴𝑠𝑤
𝑆𝑤

𝑧. 𝑓𝑦𝑤𝑑 . cot 𝜃 Equation 2.46  

The angle of strut inclination (𝜃) and 𝑘𝑣 are defined based on the level of approximation 

required as follows: 

For Level I Approximation: 

 𝜃 = 300 

 𝑘𝑣 = 0 
Equation 2.47  

For Level II Approximation: 

 𝜃 = 20
0 + 10,000. 휀𝑥  

 𝑘𝑣 = 0 
Equation 2.48  

For Level III Approximatoin: 

 𝜃 = 290 + 10,000. 휀𝑥 

 𝑘𝑣 =
0.4

1 + 1500. 휀𝑥
(1 −

𝑉𝐸𝑑
𝑉𝑅𝑑,max(𝜃𝑚𝑖𝑛)

)       (𝑧 𝑖𝑛 𝑚𝑚) 
Equation 2.49 

 
𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝑘𝑐

𝑓𝑐𝑘
𝛾𝑐
𝑏𝑤𝑧 sin 𝜃𝑚𝑖𝑛 cos𝜃𝑚𝑖𝑛  Equation 2.50 

 𝜃 𝑚𝑖𝑛 = 20
0 + 10000. 휀𝑥  Equation 2.51 

 𝑘𝑐 = 𝑘𝜀𝜂𝑓𝑐  Equation 2.52 
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𝜂𝑓𝑐 = (

30

𝑓𝑐𝑘
)

1
3⁄

 Equation 2.53 

 
𝑘𝜀 =

1

1.2 + 55. 휀1
≤ 0.65 Equation 2.54 

 휀1 = 휀𝑥 + (휀𝑥 + 0.002)𝑐𝑜𝑡
2𝜃 Equation 2.55 

The provisions given in MC2010 are based on the simplified MCFT presented by Bentz et al 

(2006) which takes into account the effect of multiple parameters and most importantly the 

state of the strain of the member. Furthermore, MC2010 allows the user to decide the level 

of approximation needed based on the desired design or analysis accuracy. Indeed, higher 

levels of approximations involve more calculations when compared to other provisions given 

in EC2 or BS8110. 

2.3.4. Shear Strength Enhancement of RC beams 

The shear strength of reinforced concrete beams is increased when load is applied within a 

distance of 2𝑑 from supports. This is due to the direct transfer of the load to the support 

through concrete in compression (arching action). The increase in the shear strength is linked 

to the ratio of the shear span to the effective depth of the beam (𝑎𝑣 𝑑⁄ ) as can be seen in 

Kani’s valley in Figure 2.13. In the context of this research, the shear span is the clear distance 

between the support and the loading plates. 

Design codes model this enhancement in various ways. For instance, EC2 2004 (BSI, 2004) 

reduces the contribution of the loads applied within a distance 𝑑 2⁄ ≤ 𝑎𝑣 ≤ 2𝑑 on the upper 

side by a factor 𝛽 =
𝑎𝑣

2𝑑
. For members with 𝑎𝑣 <

𝑑
2⁄  , 𝑎𝑣 should be taken as 0.5d. However, 

the shear force 𝑉𝐸𝑑  without reduction should be less than 0.5𝑣𝑓𝑐𝑑𝑏𝑤𝑑. For cases of 

continuous beam, the shear enhancement zone can be taken up to  
𝑎𝑣

3𝑑
 . 

The FIB MC2010 (fib, 2010) reduces the contribution to the design shear force of the loads 

applied within a distance 𝑎𝑣 ≤ 2𝑑 from the face of the support by a factor 𝛽 = 𝑎𝑣 2𝑑⁄ . 

The shear capacity should be checked at a control section located at a distance 𝑑 from the 

support face. If the load is applied in a distance less than 𝑑; then the shear capacity is 

calculated with 𝑎𝑣 𝑑⁄ = 1 (i.e. the load is assumed to be applied at 𝑎𝑣 = 𝑑). 
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Figure 2.13: Shear enhancement in Kani's Valley (regenerated from (Kani, 1964)) 

Unlike EC2 and MC2010, the BS 8110-97 (BSI, 1997) enhances the shear strength of the 

concrete 𝑣𝑅𝑑,𝑐for beams loaded within a distance 𝑎𝑣 less than 2𝑑 from the face of the support 

by a multiple of 
2𝑑

𝑎𝑣
. The enhanced shear stress is limited to a maximum of 0.8√𝑓𝑐𝑢  ≤ 

5 𝑁 𝑚𝑚2⁄ . 

In the case of load application within 2𝑑 of the support, BS8110-97 gives the enhanced shear 

strength as:   

 
𝑉𝑅𝑑 = (0.87𝑛𝐴𝑠𝑤𝑓𝑦𝑤)

𝑑

𝑎𝑣
+ 𝑣𝑐

2𝑑

𝑎𝑣
 Equation 2.56 

Although these codes capture the enhancement of shear resistance of RC beams due to 

arching action, the methods of shear enhancement are only equivalent subject to two 

conditions: i) a single load is applied within a distance of 2𝑑 from the support and ii) the 

member does not contain shear reinforcement. The latter condition is pertinent to slabs but 

not beams which codes require to have at least minimum shear reinforcement. Moreover, 

the application of these codes provisions regarding the shear strength enhancement in beams 

with multiple point loads applied within a distance of 2𝑑 from the support is unclear and 

conditional on the user’s interpretation. 

Fang (Fang, 2013) introduced modifications to the equations of shear capacity provided in 

EC2, BS8110 and MC2010 to account for the case of two points load applied within 2𝑑 from 

𝑀𝐶𝑅

𝑀𝐹𝐿
 % 

100 
FULL FLEXURAL 

CAPACITY 

𝑎

𝑑
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𝑎

𝑑
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the support. The basic assumption was to investigate two different failure planes explained 

in Figure 2.14. For instance, the design shear force for the EC2 was given as: 

 

Figure 2.14: Expected failure planes for beams loaded with two points within 2d (Fang, 2013) 

 𝛽1𝑃1

𝑚𝑎𝑥(𝑉𝑅𝑑,𝑐; 𝑛𝑎𝑣1𝐴𝑠𝑤𝑓𝑦𝑑)
+

𝛽2𝑃2

𝑚𝑎𝑥(𝑉𝑅𝑑,𝑐; 𝑛𝑎𝑣2𝐴𝑠𝑤𝑓𝑦𝑑)
≤ 1.0 Equation 2.57 

Where 𝛽1 and 𝛽2 correspond to the position of the load-application points and 𝑛𝑎𝑣𝑖  is the 

number of stirrups within the shear span 𝑎𝑣𝑖 . 

In cases where stirrups provide greater shear resistance than 𝑉𝑅𝑑,𝑐, the shear resistance 

according to Equation 2.53 is entirely governed by stirrups without any concrete contribution. 

Similarly, Vollum and Fang (2015) derived equations for estimating shear resistance with 

BS8110 and MC2010 when two points load are applied within 2𝑑 of the support. For BS8110, 

the failure load is governed by the least of the following: 

 
𝑃1 + 𝑃2 ≤ 𝑉𝑅𝑑,𝑐 .

2𝑑

𝑎𝑣1
+ 𝑛𝑎𝑣1𝐴𝑠𝑤𝑓𝑦𝑑

𝑑

𝑎𝑣1
 

𝑃2 ≤ 𝑉𝑅𝑑,𝑐 .
2𝑑

𝑎𝑣2
+ 𝑛𝑎𝑣2𝐴𝑠𝑤𝑓𝑦𝑑

𝑑

𝑎𝑣2
 

Equation 2.58  

For MC2010: 

 𝛽1𝑃1 + 𝛽2𝑃2 ≤ 𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑐 + 𝑉𝑅𝑑,𝑠 Equation 2.59  

Equation 2.59 assumes that failure occurs at the failure control section irrespective to the 

ratio between 𝑃1 and 𝑃2.  

In the context of the present research, it is pertinent to note that none of the considered 

approaches take into consideration whether the load is applied on the tension or compression 

face of the beam.  
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2.4. Essential Models for Shear in RC Beams 

Many models are proposed in the literature for estimating the shear strength of RC beams 

(Collins et al., 2008, Zararis, 2003, Vecchio, 2000, Mihaylov et al., 2013, Mihaylov, 2015, Bentz 

et al., 2006, Vecchio and Collins, 1986). Of these, the Modified Compression Field Theory 

(MCTF) (Vecchio and Collins, 1986) and the Two Parameters Kinematic Theory (2PKT) 

(Mihaylov et al., 2013) are discussed in this thesis. 

The MCTF is described since it is one of the most comprehensive models used to predict the 

shear behaviour of reinforced concrete elements. It forms the basis of the design equations 

for shear in MC2010 and it is incorporated into several commonly used computer programs 

(VecTor2 and Response-2000). The 2PKT is described since it provides good estimates for the 

shear strength of deep beams as well as the full displacement field at any point in the shear 

span during loading. 

2.4.1. The Modified Compression Field Theory (MCFT) 

Introduction 

The MCFT and the simplified MCFT form the basis of shear calculations in several international 

design standards as well as the provisions of the strut-and-tie models (CSA, 2004, fib, 2010, 

AASHTO-LRFD, 2008). The MCFT can also be implemented as a smeared rotating crack model 

in NLFEA. 

The earliest design procedures for shear in beams with shear reinforcement were very 

conservative since shear was assumed to be resisted by a 45-degree truss without any 

contribution from the tensile strength of the concrete (Mörsch, 1922). In 1986, Vecchio and 

Collins (Vecchio and Collins, 1986) proposed an analytical model to predict the behaviour of 

rectangular reinforced concrete elements subject to shear and axial loads (membrane stress). 

The model was calibrated using the results of a series of membrane panels tested under 

various combinations of shear and axial force. It is an extension of the previous compression 

field theory (CFT) proposed earlier by Mitchell and Collins (1974). Both models defined 

cracked concrete as a new material and developed its equilibrium conditions, compatibility 

conditions and stress-strain relationship in terms of average stress and strain. However, 

unlike the compression field theory, the modified compression field theory takes into account 
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the tension in the concrete between cracks. The model also considers the shear stress 

required for equilibrium at cracks. 

Assumptions of the MCFT 

The main assumptions of the MCFT are as follows: 

1. The direction of average principal stresses and strains coincides and cracks develop 

perpendicular to the direction of the principal tensile strain. This co-axiality 

assumption did not exactly match the test results but has generally been found 

reasonable (Vecchio, 2000). 

2. Only one stress state exists for each strain state with no account taken of previous 

loading history. 

3. The bond between the concrete and reinforcement is perfect. 

4. Reinforcement (longitudinal and transverse) is uniformly distributed along the 

element. 

5. Reinforcement does not resist shear stress applied perpendicular to its cross section.  

 Compatibility conditions 

According to the perfect bond assumption, the compatibility condition requires any 

deformation accrues in the concrete to be accompanied by the same deformation in the 

reinforcement, i.e.: 

 휀𝑥 = 휀𝑠𝑥 = 휀𝑐𝑥 

휀𝑦 = 휀𝑠𝑦 = 휀𝑐𝑦 
Equation 2.60 

In which: 휀𝑐𝑥 and 휀𝑐𝑦 are the concrete strains in the x and y directions. 휀𝑠𝑥  and 휀𝑠𝑦 are the 

reinforcement strains in the x and y directions. Recalling from Mohr’s strain circle Figure 2.15 

below: 

 𝛾
𝑥𝑦=

2(𝜀𝑥−𝜀𝑦)

𝑡𝑎𝑛𝜃

 Equation 2.61 

 휀𝑥 + 휀𝑦 = 휀1 + 휀2 Equation 2.62 

 𝑡𝑎𝑛2𝜃 =
휀𝑥 − 휀2
휀𝑦 − 휀2

=
휀1 − 휀𝑦
휀1 − 휀𝑥

=
휀1 − 휀𝑦
휀𝑦 − 휀2

=
휀𝑥 − 휀2
휀1 − 휀𝑥

 Equation 2.63 

Where  휀1 and 휀2 are the principal tensile and compressive strains respectively. 
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Figure 2.15: Strain conditions in the MCFT (Vecchio and Collins, 1986). Figure reproduced 

with permission of the rights holder, ACI Structural Journal. 

Equilibrium conditions 

The applied force develops stresses in both the concrete and the reinforcement. The 

equilibrium equations can be derived from Figure 2.15as follows 

 𝑓𝑥 = 𝑓𝑐𝑥 + 𝜌𝑠𝑥 . 𝑓𝑠𝑥  

𝑓𝑦 = 𝑓𝑐𝑦 + 𝜌𝑠𝑦 . 𝑓𝑠𝑦 

𝑣𝑥𝑦 = 𝑣𝑐𝑥 + 𝜌𝑠𝑥 . 𝑣𝑠𝑥 

𝑣𝑦𝑥 = 𝑣𝑐𝑦 + 𝜌𝑠𝑦 . 𝑣𝑠𝑦  

Equation 2.64 

In which𝑓𝑐𝑥 , 𝑓𝑐𝑦 , 𝑓𝑠𝑥and 𝑓𝑠𝑦  are the stresses in the concrete and the steel in the x and y 

directions respectively. The stress state of the concrete can be obtained as follows: 

 𝑓𝑐𝑥 = 𝑓𝑐1 −
𝑣𝑐𝑥𝑦

tan 𝜃𝑐
⁄  

𝑓𝑐𝑦 = 𝑓𝑐1 − 𝑣𝑐𝑥𝑦 . tan 𝜃𝑐  

𝑓𝑐2 = 𝑓𝑐1 − 𝑣𝑐𝑥𝑦 . (tan 𝜃𝑐 + 1/𝜃𝑐) 

Equation 2.65 

Stress-strain relationship 

The MCFT relates the average principal compressive and tensile strains in the concrete to the 

corresponding mean strains. An elastic-perfectly plastic stress-strain relationship is assumed 

for reinforcement as follows: 

 𝑓𝑠𝑥 = 𝐸𝑠. 휀𝑠𝑥 ≤ 𝑓𝑦𝑥  

𝑓𝑠𝑦 = 𝐸𝑠 . 휀𝑠𝑦 ≤ 𝑓𝑦𝑦  
Equation 2.66 

   Reinforcement Cracked Concrete Reinforced Concrete  
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Figure 2.16: Stress-strain relationship in the MCFT (Vecchio and Collins, 1986). Figure 

reproduced with permission of the rights holder, ACI Structural Journal. 

The MCFT also assumes that the compressive strength of cracked concrete is reduced by 

transverse principal tensile strain. The relationship between stress and the strain in the 

cracked concrete is given in terms of a softening parameter 𝛽:  

 
𝑓𝑐2 = 𝛽. [2. (

휀2
휀𝑐′
⁄ ) − (

휀2
휀𝑐′
⁄ )

2

] . 𝑓𝑐
′  Equation 2.67 

 
𝛽 =

1

0.8 − 0.34. (
휀1
휀𝑐′
⁄ )

≤ 1.0 Equation 2.68 

Subsequently, these expressions for the softening parameter 𝛽 and the compression curve 

were modified by Vecchio and Collins (Vecchio and Collins, 1993). In their research, the 

Thorenfeldt compression curve was adopted (Thorenfeldt et al., 1987), 𝛽 was defined in 

terms of the average principal tensile strain 휀1 and the concrete cylinder strain at peak load 

휀𝑜  as follows (Vecchio and Collins, 1993): 

 
𝛽 =

1

1 + 𝐾𝑐
≤ 1.0 Equation 2.69 

 𝐾𝑐 = 0.27. (
휀1
휀0
 ⁄ − 0.37) Equation 2.70 

Prior to cracking, the average principal tensile stress is assumed proportional to the average 

principal tensile strain. After cracking, the stress reduces with increasing strain as follows: 

 𝑓𝑐1 = 𝐸𝑐 . 휀1   𝑓𝑜𝑟 휀1 < 휀𝑐𝑟  Equation 2.71 

 
𝑓𝑐1 =

𝑓𝑐𝑟

1 + √200. 휀1
   𝑓𝑜𝑟 휀1 > 휀𝑐𝑟  Equation 2.72 

𝑓𝑐𝑟  and 휀𝑐𝑟  are stress and the strain of the concrete at cracking. 
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Shear stress on the crack 

The tensile stress in the concrete is greatest at mid-way between cracks and reduces to zero 

at cracks, where the tensile stress in the reinforcement is greatest. In order to satisfy 

equilibrium, shear stresses 𝑣𝑐𝑖 are assumed to develop along cracks leading subsequently to 

yielding of the most highly stressed reinforcement. The shear stress 𝑣𝑐𝑖 is theoretically 

accompanied by a small normal stress 𝑓𝑐𝑖. The values for the shear and normal stresses was 

adopted from Walraven and Reinhardt model (1981) 

 
𝑣𝑐𝑖 = 0.18. 𝑣𝑐𝑖,𝑚𝑎𝑥 + 1.64. 𝑓𝑐𝑖 − 0.82.

𝑓𝑐𝑖
2

𝑣𝑐𝑖,𝑚𝑎𝑥
⁄  Equation 2.73 

Where  

 
𝑣𝑐𝑖,𝑚𝑎𝑥 =

√−𝑓𝑐′

0.31 + 24.
𝑤

𝑎 + 16

 Equation 2.74 

 𝑤 = 휀1. 𝑆𝜃 Equation 2.75 

 
𝑆𝜃 =

1

sin 𝜃
𝑆𝑚𝑥
⁄ + cos𝜃 𝑆𝑚𝑦

⁄
 Equation 2.76 

In which (w) is the crack width, 𝑆𝜃  is the crack spacing with  𝑆𝑚𝑥 and 𝑆𝑚𝑦  are the crack spacing 

in the longitudinal and transverse reinforcement directions. 

The simplified MCFT 

The MCFT can predict the complete load-deflection response of cracked membrane panels. 

However, implementation of the model using hand calculations is tedious and time-

consuming. A simplified version of the model has been introduced in 2006 (Bentz et al., 2006) 

with simpler calculations which only give the shear strength of the cracked concrete elements. 

Unlike the MCFT, the simplified model takes into account the size effect and the aggregate 

size in estimating the softening parameter. The shear strength can be obtained using the 

following equations 

 𝑣 = 𝑣𝑐 + 𝑣𝑠 = 𝛽.√𝑓𝑐′ + 𝜌𝑦. 𝑓𝑦 . cot 𝜃 Equation 2.77 

 
𝛽 =

0.4

1 + 1500. 휀𝑥
.

1300

1000 + 𝑆𝑥𝑒
 Equation 2.78 

 
𝜃 = (29𝑜 + 7000. 휀𝑥). (0.88 +

𝑆𝑥𝑒
2500

) ≤ 75𝑜 Equation 2.79 

 
𝑆𝑥𝑒 =

35. 𝑆𝑚𝑥
𝑎 + 16

≤ 0.85. 𝑆𝑥 Equation 2.80 

𝑆𝑥𝑒  is the effective crack spacing that considers the aggregate size. The crack width will be 

controlled in the presence of the shear reinforcement that meets the crack width 
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requirements, in such case 𝑆𝑥𝑒  should be taken as 300mm (BENTZ, 2008). The equation for 

the inclination of the strut is set to avoid crushing of the concrete, while its upper limit into 

ensuring that the shear reinforcement yields. 

The MCFT and the SMCFT are remarkable developments in the science of estimating the shear 

capacity of structural elements. The MCFT refines the compression field theory by considering 

the stiffening effect of tensile stress in the concrete between cracks. The greatest merits of 

the MCFT are its relative simplicity and ability to predict the full load-deflection response 

along with ultimate shear capacity. However, some of its underlying assumptions are 

questionable and its use is theoretically restricted to applications where the reinforcement is 

evenly distributed. Like most NLFEA approaches, it neglects dowel action. On the other hand, 

SMCFT is simple and can easily be used by engineers. Nevertheless, it fails to predict the full 

load displacement response. 

2.4.2. The Two-Parameter Kinematic Theory (2PKT) 

Among the various shear models of deep beams, the 2PKT (Mihaylov et al., 2013) provides a 

detailed description of the deformed shape of deep beams during tests including crack 

opening and sliding, shear and flexural displacements, maximum deflection, flexural and 

shear reinforcement strains and a complete displacement field. It also calculates the ultimate 

shear resistance in terms of the different shear transfer actions. 

Description of Beams Deformation Using 2PKT  

The model considers concrete above the critical shear crack to behave as a rigid body subject 

to a vertical translation ∆𝑐 and a rotation 𝜑𝑏𝑙𝑜𝑐𝑘  about the top of the crack in the compression 

zone. Concrete beneath the critical crack is modelled as a series of rigid radial struts as shown 

in Figure 2.17. The rotation is associated with the average tensile strain in the 

reinforcement 휀𝑡,𝑎𝑣𝑔, and hence, this model is fully described using only two parameters: ∆𝑐 

and 휀𝑡,𝑎𝑣𝑔. To describe the full displacement field, the following sets of equations can be used 

with the aid of Figure 2.18: 
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Figure 2.17: Details of the 2PKT (Mihaylov et al., 2013). Figure reproduced with permission of 

the rights holder, ACI Structural Journal. 

 

 

Figure 2.18: describing the full displacement using the 2PKT DoF (Mihaylov et al., 2013). 

Figure reproduced with permission of the rights holder, ACI Structural Journal. 

 For points below the crack 

δ𝑥(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. 𝑥 Equation 2.81 

δ𝑧(𝑥, 𝑧) =
휀𝑡,𝑎𝑣𝑔. 𝑥

2

ℎ − 𝑧
 

Equation 2.82 

𝑆𝑚𝑎𝑥  
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 For points above the crack  

δ𝑥(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. (ℎ − 𝑧) cot 𝛼 Equation 2.83 

δ𝑧(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. 𝑥 cot 𝛼 + ∆𝑐 Equation 2.84 

Where 𝛼 is the angle of the critical crack and ℎ is the height of the beam. The angle 𝛼 is 

defined by the crack extending from the inner edge of the support to the end of the effective 

width of the loading plate 𝑙𝑏1𝑒 , which depends on the loading arrangement. To obtain the 

vertical translation ∆𝑐, the geometry of the critical loading zone (CLZ) adopted in the theory 

is used, which simulates the compression zone as a varying width cantilever. 

 

∆𝑐=
0.0035× 3𝑙𝑏1𝑒 cos 𝛼

sin 𝛼
= 0.0105𝑙𝑏1𝑒 cot 𝛼 

Equation 2.85 

 

 

Figure 2.19: Geometry of the critical loading zone in the 2PKT (Mihaylov et al., 2013). Figure 

reproduced with permission of the rights holder, ACI Structural Journal. 

The value of 0.0035 represents the concrete crushing strain; further details of the critical 

loading zone are given later. 𝑙𝑏1𝑒  Is the effective width of the loading plate and equals to 

(𝑉/𝑃). 𝑙𝑏1. It shall not be taken as less than three times the maximum aggregate size.  

To obtain the second parameter of the model (휀𝑡,𝑎𝑣𝑔), the following formula can be used. 

휀𝑡,𝑎𝑣𝑔 = [휀𝑡,𝑚𝑎𝑥(𝑑 cot 𝛼 − 𝑙𝑘) + 휀𝑡,𝑚𝑖𝑛𝑙𝑘]
tan 𝛼

𝑑
 

Equation 2.86 

The minimum strain 휀𝑡,𝑚𝑖𝑛 can be taken as the moment under the load (i.e. 휀𝑡,𝑚𝑖𝑛=휀𝑡,𝑚𝑎𝑥)  

yet, more accurate results can be obtained if the contributions of the stirrups and dowel 

action are evaluated. The length 𝑙𝑘 is the length between the kinks in the flexural 

reinforcement. Length 𝑙𝑘 is given by the expression: 

𝑙𝑘 = 𝑙0 + 𝑑(cot𝛼 − cot 𝛼1) Equation 2.87 

𝑙0 = 1.5(ℎ − 𝑑) cot 𝛼1 ≥ 𝑆𝑚𝑎𝑥  Equation 2.88 
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Angle 𝛼1 is the stress field angle given by the MCFT (Vecchio and Collins, 1986), 𝑙0 is the length 

of the heavily cracked zone and 𝑆𝑚𝑎𝑥 is the spacing of the radial cracks at the bottom of the 

section expressed as (see Figure 2.17): 

𝑆𝑚𝑎𝑥 =
0.28 𝑑𝑏
𝜌𝑙

2.5(ℎ − 𝑑)

𝑑
 

Equation 2.89 

In which 𝑑𝑏  is the diameter of bottom longitudinal bars. 

Although the crack opening is only given at mid-depth of the beam height in this theory, crack 

opening at different heights can be obtained using similar triangles as the opening varies 

linearly from zero at the crack tip to a maximum value near flexural reinforcement in this 

model. Crack opening at mid-depth is given as: 

𝑤𝑙/2 = ∆𝑐 cos𝛼 +
휀𝑡,𝑚𝑖𝑛𝑙𝑘
2 sin 𝛼

 
Equation 2.90 

Equation 2.90 gives the crack opening at mid-height of the beam; the first term of the crack 

opening is constant (referred to as 𝑤0) over the crack length resulting from the vertical 

translation ∆𝑐. The second term is due to the rotation and linearly varies depending on the 

length 𝑙  from the crack tip. The vertical translation ∆𝑐 results in a constant crack slip of a value 

(∆𝑐 sin 𝛼) along the crack length. 

In order to obtain the crack kinematics along the crack, Equation 2.90 can be written as 

(Kueres and Hegger, 2018): 

𝑤𝑙 = 𝑤0 +
휀𝑡,𝑚𝑖𝑛𝑙𝑘. 𝑙

2𝑑 sin 𝛼
 

Equation 2.91 

𝑠𝑙 = (∆𝑐 sin 𝛼) Equation 2.92 

Equation 2.81 to Equation 2.92 can be used to describe the full displacement field of the shear 

span area and the crack kinematics numerically. The predictions of the deformed shape have 

been assessed by the developers of the theory using a grid of targets in the experiment. 

According to the authors, 27 out of 28 targets were very accurately modelled (Mihaylov et al., 

2013). Furthermore, from Figure 2.18 and using appropriate instrumentation, it can be seen 

that the two degrees of freedom of this model can be obtained experimentally. For example, 

if the rotation of the rigid body 𝜙𝑏𝑙𝑜𝑐𝑘  is measured using either two side transducers or an 

inclinometer, then the value of the average strain can be determined as follows: 

𝜙𝑏𝑙𝑜𝑐𝑘 =
𝛿𝑥,𝑑
𝑑

= 휀𝑡,𝑎𝑣𝑔 . (
𝑑. 𝑐𝑜𝑡(𝛼)

𝑑
) = 휀𝑡,𝑎𝑣𝑔. 𝑐𝑜𝑡(𝛼) 

Equation 2.93 
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Also, if two vertical transducers are placed on the two sides of the effective width of the plate, 

the shear displacement ∆𝑐 can be evaluated. 

This model is based on a single point load applied on the compression face of the support and 

does not take into account if an additional force is applied within 2𝑑 from the face of the 

support either if the load was in the tension or the compression face. Application of additional 

point load between the initial load of the model and the support may affect the rotation of 

the rigid block (or the average strain 휀𝑡,𝑎𝑣𝑔) for beams loaded in the compression face, while 

in beams loaded in the tension face, it may influence the vertical translation ((∆𝑐). 

 

Figure 2.20: 2PKT for beams with multiple point loads within the shear span 

Fang (2013) estimated the shear strength of beams loaded with single and two-point loads 

within the shear span of deep beams using the 2PKT. The predictions for the beams with two 

point loads (5 beams) were less accurate compared to those of single point loads (7 beams) 

(Fang, 2013) raising questions about its accuracy in beams with multiple point loads. This 

inaccuracy can be investigated better if the full displacement field of the deformed shape is 

available. The introduction of the DIC system allows detailed measurements of the 

deformation and can provide a better assessment of the model for beams with multiple point 

loads within the shear span. 

Another assumption that has been made in the model is that the rigid body above the crack 

rotates around the intersection between of the crack and the loading plate. The validity of 

this assumption has been investigated by Kueres (2018) who found that the location of the 

centre of rotation and the deformation are affected by the span to effective depth ratio (see 

Figure 2.21). For very compact slabs, the deformation is governed by the vertical 
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translation (∆𝑐) and the centre of rotation is located further away from the root of the shear 

crack. In slender slabs, the deformation is governed by the flexural rotation (or the average 

strain 휀𝑡,𝑎𝑣𝑔) and the centre of rotation is located close to the crack tip as assumed in the 

2PKT. 

 

 

 

Figure 2.21: Different locations of the centre of rotation of the rigid body(Kueres et al., 

2018). Figure reproduced with permission of the rights holder, Engineering Structures. 

Strength prediction and the Five-spring model 

The shear strength in the 2PKT is given as the summation of the shear transfer actions, 

namely: Aggregate interlock (𝑉𝑐𝑖), dowel action (𝑉𝑑), stirrups (𝑉𝑠) and the compression zone 

depicted as the critical loading zone CLZ (𝑉𝐶𝐿𝑍). Failure is governed in the model by crushing 

of the concrete in the CZL. The description of these contributions and the solution criteria was 

extended later to the Five-spring model (Mihaylov, 2015). 

In the five-spring model, the shear span is characterised by two series of springs, a set of four 

parallel springs representing the shear transfer actions mentioned earlier and deforms by the 

shear displacement ∆𝑐 and a fifth spring representing the flexural behaviour of the beam and 

deforms by the flexural displacement ∆𝑡. The total displacement of the beam ∆ is given as: 
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Figure 2.22: Five-spring model for deep beams (Mihaylov, 2015). Figure reproduced with 

permission of the rights holder, Structural Concrete. 

∆= ∆𝑡 + ∆𝑐=
휀𝑡,𝑎𝑣𝑔. 𝑙𝑡. 𝑎

𝑑
+ ∆𝑐 

Equation 2.94 

At equilibrium, the summation of the shear transfer actions of the rigid block shown in 

Figure 2.23 is equal to the vertical force derived from the moment equilibrium of the shear 

span as described by Figure 2.23 below. 

 

Figure 2.23 Equilibrium of the rigid block in the five-spring model (Mihaylov, 2015). Figure 

reproduced with permission of the rights holder, Structural Concrete. 

𝑉 =
𝑇(0.9𝑑)

𝑎
= 𝑉𝐶𝐿𝑍 + 𝑉𝑐𝑖 + 𝑉𝑑 + 𝑉𝑠  

Equation 2.95 

The tensile force in the flexural reinforcement 𝑇 takes into account the tension stiffening 

effect of the concrete. The tensile force 𝑇 is expressed as a function of the average strain in 

the reinforcement 휀𝑡,𝑎𝑣𝑔 as 

𝑇 = 휀𝑡,𝑎𝑣𝑔. 𝐸𝑠𝐴𝑠 +
0.33√𝑓𝑐

√1 + 200휀𝑡,𝑎𝑣𝑔
𝐴𝑐,𝑒𝑓𝑓 

Equation 2.96 

The effective area of the concrete 𝐴𝑐,𝑒𝑓𝑓  is the area width of the beam 𝑏 times the minimum 

of 2.5(ℎ − 𝑑) and ℎ/2. 
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From Figure 2.19 the triangular CLZ is described using the crack angle 𝛼 and the effective 

width of the loading plate 𝑙𝑏1𝑒 . The average stress (𝜎𝑎𝑣𝑔) in the CLZ is diagonal and relates to 

the linear strain in the CLZ (휀𝑐). The max concrete strain 휀𝑐,𝑚𝑎𝑥  can be obtained for a given 

shear displacement ∆𝑐 as follows:  

휀𝑐,𝑚𝑎𝑥 =
∆𝑐
3𝑙𝑏𝑒1

tan (𝜃) 
Equation 2.97 

The contribution of the CLZ (𝑉𝐶𝐿𝑍) is then expressed in terms of the average concrete 

stress 𝜎𝑎𝑣𝑔 as: 

𝑉𝐶𝐿𝑍 = 𝜎𝑎𝑣𝑔. (𝑙𝑏1𝑒 sin(𝛼) . 𝑏). sin (𝛼) Equation 2.98 

The contribution of the CLZ depends on the size of the zone or in other words of the effective 

width of the loading plate. This length is defined by the exact path of the crack and may 

sometimes need correction based on visual inspection of the CLZ in the test (Mihaylov, 2015). 

The contribution of the aggregate interlock in this model is taken from the contact density 

model (Li et al., 1989) in terms of the average shear stress (𝑣𝑐𝑖) as follows 

𝑣𝑐𝑖 = 3.83𝑓𝑐

1
3

𝜑2

1 + 𝜑2
          𝜑 =

𝑠

𝑤
 

Equation 2.99 

𝑉𝑐𝑖 = 0.18𝑣𝑐𝑖𝑏𝑑 Equation 2.100 

The contribution of dowel action is calculated assuming the reinforcement behaves as an 

elastic built in beam with support settlement ∆𝑐 with an upper limit corresponding to the 

formation of plastic hinges at the support. The expression given below also reduces the upper 

limit based on the stress state at the reinforcement bar: 

𝑉𝑑 =
12𝐸𝑠𝜋𝑑𝑏

4

64𝑙𝑘
3 ∆𝑐≤

𝑛𝑏𝑓𝑦𝑑𝑏
3

3𝑙𝑘
[1 − (

𝑇

𝐴𝑠𝑓𝑦
)

2

] 
Equation 2.101 

The last component of the shear transfer actions (the stirrups contribution 𝑉𝑠) is given as a 

function of the average strain of the reinforcement given as: 

휀𝑣 = 2.
∆𝑐 + 0.25휀𝑡,𝑎𝑣𝑔𝑑𝑐𝑜𝑡

2𝛼1
0.9𝑑

 
Equation 2.102 

𝑉𝑠 = (휀𝑣𝐸𝑠𝑣)𝜌𝑣𝑏(𝑑𝑐𝑜𝑡𝛼1 − 𝑙0 − 1.5𝑙𝑏1𝑒) Equation 2.103 

Plotting the load-displacement curves 

The load-displacement curve is defined in this model by several polylines followed by a 

nonlinear response. The first linear response of the beam is from the start of the test up to 

the cracking load 𝑉𝑐𝑟,𝑓𝑙  after which, the second linear response until the load forming the first 
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diagonal crack 𝑉𝑐𝑟,𝑠ℎ. The last linear response is the sectional capacity 𝑉𝑠𝑒𝑐𝑡  given by MC2010 

LoA III. After the load exceeds the sectional capacity, the shear transfer actions (according to 

this model) are activated and the behaviour is no longer linear. To obtain this nonlinear part 

of the response, a trial and error procedure is suggested as below. 

The total displacement ∆ is given by Equation 2.94 consists of two components. Imposing a 

total displacement ∆ and assuming one component (∆𝑡) yields the two DoF of the model ∆𝑐   

and 휀𝑡,𝑎𝑣𝑔. These parameters are used to obtain the different shear actions and to solve 

Equation 2.95. An iterative solution may be required to obtain the DoF corresponding to the 

imposed displacement, which satisfies the equilibrium condition. 

The 2PKT and the five-spring model are powerful tools to predict the shear strength and 

deformation during the test. The accuracy of the models has been proven very accurate in 

terms of both strength and deformation. However, the uncertainties associated with the size 

of the CLZ in these models and the need to inspect the zone visually during the test raise 

questions regarding the applicability of these models to predict the behaviour prior to testing. 

Bearing in mind that the failure of beams in shear in these models is triggered by the failure 

of the CLZ. Moreover, the average strain 휀𝑡,𝑎𝑣𝑔 depends on the loading arrangement in the 

shear span. For cases of multiple loads where shear failure is not identified, the equilibrium 

equations need modifications to account for these cases. 

2.5. Introduction to Strut-and-Tie Models 

2.5.1.  B and D regions 

The Bernoulli hypothesis of plane strain assumes a linear strain distribution over the depth of 

the section allowing internal stresses to be determined easily. Regions in which plane sections 

remain plane are referred to as B regions, where B stands for Bernoulli. 

For regions where the strain distribution is not linear (e.g. corners, openings, near 

concentrated loads, etc. – see Figure 2.24) the Bernoulli hypothesis is not applicable and other 

design methods like the strut-and-tie method (STM) should be used. D regions can occur due 

to either geometrical discontinuity (e.g. presence of holes, change in cross-section or 

direction) or due to static discontinuity (e.g. regions near concentrated loads/reactions). In 

certain cases (e.g. corbels, dapped ends and joints) D regions form due to both static and 

geometrical discontinuities.  
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The STM was first introduced in the middle of the last century as a development of the truss 

analogy method proposed by Morsch in 1908 (Leondardt, 1965). The method was further 

developed and brought to widespread attention by Schlaich et al. in 1987 (Schlaich et al., 

1987). 

 

Figure 2.24:  Stress trajectories in B and D regions (Schlaich et al., 1987), Permission 

requested on 10/10/2019. 

The STM is based on the lower bound theorem of plasticity, which states that a structure will 

not collapse if the applied loads are in equilibrium with an internal stress distribution in which 

material strengths are not exceeded. For the theorem to be applicable, sufficient ductility 

should be available in the member.  

In the early stages of loading, an elastic stress distribution exists prior to concrete cracking. 

After concrete cracks, the elastic state is disturbed due to the re-orientation of the internal 

force and the structure can be modelled using strut-and-tie model (STM). In an STM, concrete 

struts carry the compressive force and reinforcement ties transmit the tensile force. Concrete 

struts and reinforcement ties meet at virtual nodal zones referred to as nodes. More details 

about components of the STM and their dimensions will follow in section 2.5.4. 

2.5.2. Constructing a strut-and-tie model 

STMs are appealing to design engineers since load paths are clearly defined making it easy to 

check that equilibrium is satisfied. STM can be used for both design and assessment. It can be 

constructed in the iterative procedure described below: 

1. Define the B and D regions within the studied structure. The definition of the D regions 

is based on the presence of static or geometrical discontinuities. A structure can 
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comprise both B and D regions. Saint Venant’s Principle is used as a quantitative guide 

to decide the extension of the D regions, although it is a conceptual estimation. 

Figure 2.25 shows the definition of B and D regions in some structures. 

2. Propose a model based on the force path and stress fields.  Struts can be aligned with 

the direction of the elastic principal compressive stress and up to ∓15𝑜(James K. 

Wight, 2012). 

3. Determine the forces in STM members using equilibrium equations. 

4. In design, calculate the area of reinforcement required to resist tensile forces in the 

ties obtained from (3). Ties can be aligned either in the direction of the principal tensile 

stress or orthogonal to the member edges for convenience. However, there is less 

restriction on the conformance of ties with the direction of the principal tensile stress 

as ties should be positioned to give practical reinforcement layout. 

5. Dimension nodes and struts based on codes provisions for limiting the strength of 

struts, ties and nodes. The selected dimensions should yield internal stresses in the 

model elements lower than the assumed strength of the elements. 

2.5.3. Model optimization 

The STM is based on a lower bound theory of plasticity in which a stress field satisfying 

equilibrium conditions is assumed. This suggests that more than one model satisfying 

equilibrium can be assumed; arising doubts of whether the selected model is the optimum 

model. 

Optimization techniques are used to distinguish between a “good” and a “bad” model. The 

main concept is that loads tend to select the path with the least forces and deformations (the 

path with the least strain energy). Since reinforcement bars are much ductile than concrete, 

generally, the model with the least and shortest ties is the best. This criterion is established 

from the principle of the minimum strain energy for the elastic behaviour after cracking and 

has been formulated as follows (Schlaich and Schafer, 1991) 

 

 ∑𝐹𝑖. 𝑙𝑖 . 휀𝑖 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 Equation 2.104  
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Figure 2.25: Examples of B and D regions in different structures (James K. Wight, 2012). 

Figure reproduced with permission of the rights holder, Pearson. 

Where  𝐹𝑖 is the force in the model member (a strut or tie i), 𝑙𝑖 is the length of the member 

and 휀𝑖 is the mean strain in the member. Ties are much deformable than concrete struts, thus, 

struts contribution in the strain energy can be neglected. 

2.5.4. Dimensioning strut-and-tie model 

Dimensioning of an STM involves sizing individual elements of the model (struts and ties) and 

detailing of the nodes. There is a strong relationship between the strength of the model 

elements and the nodal dimensions, which govern the strut width. 

Nodes 

Nodes are defined in STM as regions of the intersection of three or more elements i.e. struts 

or ties. Nodes may also reflect a change in the direction of forces. They can be classified into 

concentrated (or singular) nodes; where a strut or a tie represents a concentrated stress field 
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(typically under loading or support plates) or smeared (continuous) nodes; where a spread 

stress fields join each other or join a tensile tie consists of smeared reinforcement. Examples 

of concentrated and smeared nodes are shown in Figure 2.26 below. 

 

Figure 2.26: Concentrated and smeared nodes (Schlaich et al., 1987) - regenerated, 

Permission requested on 10/10/2019. 

Nodes are commonly dimensioned using the width of the loading or support plates and the 

cover to the reinforcement for nodes with reinforcement ties, especially in tests. Yet, in case 

of concrete joints and real structures, dimensioning nodes can be more problematic. 

Nodes are also defined according to the force in its associated elements as three-compression 

elements node (CCC), two compressive strut and a tie (CCT), a compressive strut and two ties 

(CTT) and three ties node (TTT) (see Figure 2.27). A CCC node is defined as hydrostatic if the 

stresses are equal in all the node sides (Schlaich et al., 1987). However, they are not common 

in real problems due to geometrical constraints and, hence, non-hydrostatic nodes are usually 

adopted in solving design problems. 

 

Figure 2.27: Examples of basic types of nodes (Schlaich et al., 1987) – regenerated, 

Permission requested on 10/10/2019. 

 

Smeared node Concentrated node 

CTT Node 
TTT Node 

CCT Node 
CCC Node 
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Struts 

Concrete struts, whether compressive or tensile struts, are two or three-dimensional stress 

fields, unlike reinforcement ties that are usually one-dimensional elements. The stress field 

in struts is typically depicted as fan-shaped, bottle-shaped or prismatic (i.e. parallel sided - 

Figure 2.28). 

Transverse tension does not develop in the prism and fan stress fields (Schlaich et al., 1987). 

Consequently, concrete in the fan and prism stress fields can develop the full uniaxial 

compressive concrete strength, unlike concrete in a bottle stress field where transverse 

tension develops away from the nodes (Vecchio and Collins, 1986). The presence of 

transverse tensile stress accompanied by the compressive stress reduces the strength of the 

strut significantly which may result in early failure (Vecchio and Collins, 1986). Apart from the 

stress field in the strut, the strut strength is influenced by several factors such as disturbance 

due to cracking or transverse reinforcement, the angle between the strut and the adjacent 

reinforcement and the confinement effect. 

 

 

Figure 2.28: Basic compression fields (Schlaich et al., 1987) –regenerated, permission 

requested on the 10/10/2019. 

Reinforcement ties 

Ties are designed to resist tensile forces in STM and may consist of either concentrated or 

smeared reinforcement bars. Pre-stressed reinforcements are also considered as a part of ties 

resisting the tensile force. The tie force is generally associated with the yielding capacity of its 

reinforcement and sometimes is given as a fraction of the yielding capacity of the 

Fan Bottle Prism 
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reinforcement. Anchorage of ties is crucial and should be designed and checked according to 

the designated codes. 

2.5.5. Models for beams with horizontal and vertical shear reinforcement 

The STM is the most common tool in estimating the strength of deep beams (Liu and 

Mihaylov, 2016). It includes three load carrying mechanism (See Figure 2.29) depending on 

the load, beam geometry and shear reinforcement: direct strut mechanism, vertical truss 

mechanism and a horizontal truss mechanism. However, ways of estimating the proportion 

of each of these actions are still not widely agreed upon. Hwang et al. (2000) assumed that 

the proportion of force taken by these actions depends on the strut angle and whether or not 

shear reinforcement yield. Other authors ((Matamoros and Wong, 2003) and (Russo et al., 

2005)) have proposed semi-empirical models with correction factors to estimate the forces 

resisted by each mechanism. 

 

 

Figure 2.29: Load carrying mechanisms in the strut-and-tie model 

Yang and Ashour (2010) proposed an STM for deep beams that takes into account the size 

effect based on the crack band theory. The model divides the diagonal strut into a crack band 

zone and a stress relief strip and uses energy equilibrium in the two zones - Figure 2.30. 
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Figure 2.30: Idealised crack band zone and stress relief strip in a strut (Yang and Ashour, 

2010). Figure reproduced with permission of the rights holder, Journal of Structural 

Engineering. 

While the models in Figure 2.29 depend on direct super-position, other models (Amini 

Najafian et al., 2013, Sagaseta and Vollum, 2010, Vollum and Fang, 2014, James K. Wight, 

2012) have been developed using the stress field method. Wight and Mac Gregor (2012) used 

the principal of nodal subdivision to divide the load applied to the nodes into several 

components. This can be utilised to estimate the load carried out by the direct strut, vertical 

and horizontal shear reinforcement as in Figure 2.31. This nodal sub-division allow the 

consideration of distributed loads (Dead loads of deep beams for instance) in the STM. The 

tensile force develops in the longitudinal reinforcement due to the distribution of the vertical 

shear reinforcement simulate better the force developed in the simple beam elastic theory. 
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Figure 2.31: Use of nodal sub-division to estimate the contribution of a) vertical, b) 

horizontal shear reinforcement and c) longitudinal tensile force is STM (James K. Wight, 

2012)- figure reproduced with permission of the rights holder, Pearson. 

While the model shown in Figure 2.31 simulates the actual forces and evaluates the element 

forces individually, solving such a system can be time-consuming and not practical for 

engineers. The Sagaseta and Vollum model (2010) for beams with vertical shear 

reinforcement also uses the principal of nodal sub-division. However, the vertical 

reinforcements have been treated as a single bar at the centroid of the stirrups set with an 

equivalent area. This model has been used and modified by several researchers (Amini 

Najafian et al., 2013, Vollum and Fang, 2015) Figure 2.32. 

The above-mentioned model calculates the strength of beams with/without shear 

reinforcement for symmetrical one/two points loads applied on the compression face of the 

beam. Shear strength is typically governed by simultaneous yielding of shear reinforcement 

(a) (b) 

(c) 
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and crushing of strut I at the CCT node. However, this model fails to estimates the shear 

strength in the case of multiple points load applied to the compression face.  

 

Figure 2.32: Sagaseta and Vollum model for deep beams with vertical shear reinforcement 

(Sagaseta and Vollum, 2010). Figure reproduced with permission of the rights holder, 

Magazine of Concrete Research. 

Vollum and Fang (2013) used a similar approach to develop an STM for deep beams with and 

without shear reinforcement loaded with four-point loads as described in Figure 2.33. The 

selection of the model depends on whether the shear force resisted by the stirrups is greater 

than the applied force (𝑃2). 

 

  

Figure 2.33: STMs proposed by Fang for beams with four-point loads (Fang, 2013). 

 

Model A Model B 
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The above model transmits the load through a combination of strut and truss model. This 

model was developed making use of stress fields derived using nonlinear finite element 

analysis. The horizontal component of the loads at the support is carried by the flexural 

reinforcement while strut IV on top carries the horizontal compression force between the two 

loading points. However, this is not always the case. For instance, beams loaded in the tension 

face with multiple loads (e.g. cantilevers, continuous beams, etc.) behave differently and 

tension reinforcement is placed on the top face. Accordingly, the need for an STM that 

considers such load configuration arises. 

2.5.6. Codes provisions of the strut-and-tie models 

The STM is codified in most modern design standards. Whilst there is a certain degree of 

consensus on estimating the strength of ties, various approaches are adopted for estimating 

the strength of nodes and struts. Several codes specifications for the strut-and-tie model are 

presented here in this regards. 

Euro Code 2  (BSI, 2004) 

EC2 allows the use of STM if a non-linear strain distribution develops. The strength of struts, 

nodes and ties are evaluated as follows: 

Strength of struts 

1. In the presences of transverse compressive stresses or the absence of the tensile 

stress, the strength of the strut is calculated using the expression: 𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑓𝐸𝑐𝑑  

2. In the presence of transverse tension, the compressive strength is calculated by the 

expression: 

 𝜎𝑅𝑑,𝑚𝑎𝑥 = 0.6. 𝑣
′. 𝑓𝐸𝑐𝑑  , 𝑣′ = 1 −

𝑓𝑐𝑘
250
⁄  Equation 2.105 

Strength of nodes 

Based on the node types as described in section 2.5.4, EC2 gives the following provision 

regarding the strength of nodes 

1. In CCC nodes where no ties are associated with the node, the strength is obtained 

using: 

 𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘1. 𝑣
′ . 𝑓𝐸𝑐𝑑  Equation 2.106  

2. In CCT nodes where ties are provided in only one direction, the strength is given using: 
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 𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘2. 𝑣
′. 𝑓𝐸𝑐𝑑  Equation 2.107  

3. In CTT nodes where ties are provided in more than one direction, the strength is given 

using: 

 𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘3. 𝑣
′. 𝑓𝐸𝑐𝑑  Equation 2.108  

Where: 

𝑣′ = 1 −
𝑓𝑐𝑘

250
⁄  , 𝑘1, 𝑘2 and 𝑘3 are nationally determined parameters with recommended 

values of 1.0, 0.85 and 0.75 respectively. EC2 also gives provisions for transverse 

reinforcement in bottle stress fields. Two compression regions are defined here Figure 2.34: 

partial or full discontinuity. The tensile force (T) can be obtained using the following formulae: 

 
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 

1

4

𝑏 − 𝑎

𝑏
. 𝐹, 𝑏 ≤

𝐻

2

𝐹𝑢𝑙𝑙 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 
1

4
(1 − 0.7

𝑎

ℎ
) . 𝐹, 𝑏 >

𝐻

2

} Equation 2.109  

 

Figure 2.34: Details of transverse tensile force in smeared reinforcement for bottle stress 

field (BSI, 2004) 

FIB Model Code 2010  (fib, 2010) 

The strength of model elements in MC2010 is related to the direction of the reinforcement in 

the model. A reduction factor, Kc is applied to the concrete design strength to evaluate the 

strength of the elements as follows: 

 

 

 

Full discontinuity  Partial discontinuity  
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Strength of struts 

1. For struts with undisturbed uniaxial stress field, or with transverse compression, 𝑘𝑐 =

1.0. 𝜂𝑓𝑐 . 𝜂𝑓𝑐 , where 𝜂𝑓𝑐a factor takes into account the more brittle failure behaviour 

of concrete with a compressive strength greater than 30 MPa, 𝜂𝑓𝑐 = (
30

𝑓𝑐𝑘
)
1
3
. 

2. For struts with cracks in the direction of the compression stress field and tension 

reinforcement perpendicular to it 𝑘𝑐 = 0.75. 𝜂𝑓𝑐. 

3. For struts with reinforcement running obliquely with the direction of the compression 

stress field 𝑘𝑐 = 0.55. 𝜂𝑓𝑐. 

Strength of nodes 

1. For nodes with only compression struts are associated, 𝑘𝑐 = 1.0. 𝜂𝑓𝑐 . 

2. For nodes with one or two ties anchored to it 𝑘𝑐 = 0.75. 𝜂𝑓𝑐. 

Canadian Standards Association (CSA, 2004) 

Strength of struts 

Provisions for the strength of struts in the Canadian code are obtained from the MCFT 

described earlier in section 2.4.1. The MCFT relates strut strength to the strain in the 

connected tie at the node and its angle of inclination as follows: 

 

 
𝑓𝑐𝑢 =

𝑓𝑐
′

0.8 + 170. 휀1
≤ 0.85. 𝑓𝑐

′ Equation 2.110 

 휀1 = 휀𝑠 + (휀𝑠 + 0.002). 𝑐𝑜𝑡
2(𝜃) Equation 2.111 

휀𝑠 Is the strain in the adjoining tie and  𝜃 is the smallest angle between the strut and the 

adjoining ties. In struts with longitudinal compression reinforcement, parallel to the strut, CSA 

2004 allows the strut strength to be enhanced by the reinforcement capacity in compression. 

Strength of nodes 

The strength of the node is given as: 

1. 𝑓𝑐𝑢 = 0.85𝑓𝑐
′  for nodes with struts and bearing plates only. 

2. 𝑓𝑐𝑢 = 0.75𝑓𝑐
′  for nodes anchoring one tie. 

3. 𝑓𝑐𝑢 = 0.65𝑓𝑐
′  for nodes anchoring more than one tie. 
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2.5.7. Problems in constructing strut-and-tie models 

Despite its simplicity and rationality, researchers have reported difficulties in constructing 

strut-and-tie models ((Schlaich and Schafer, 1991), (Sagaseta, 2008), (Fang, 2013) among 

others). The main drawback of the STM is that its geometry depends on the loading as well as 

the structure geometry. Consequently, the designer needs to propose a unique model for 

each different geometry or load arrangement. Obtaining the optimum model needs 

engineering experience, which could be subjective and usually involves iterative adjustment 

for the model. Although STM was first introduced in the 1960s (Leondardt, 1965), there are 

still uncertainties regarding the dimensioning of model elements, particularly nodes, and 

estimating the strength of the elements. Moreover, STM is typically statically indeterminate. 

Consequently, their solution includes assuming a yield condition or a failure criterion. 

Although considerable efforts have been invested to optimise STMs for beams with web 

reinforcement, there is still a gap in estimating the proportions of the different mechanisms 

(direct strut, vertical and horizontal shear reinforcement). The direct super-positioning of the 

mechanisms provides a quick estimation, nevertheless, does not provide an accurate detailing 

of nodes and struts dimensions. The use of semi-empirical correction factors helps to estimate 

the total shear resistance easily but is data driven where STM is ultimately a case dependent 

solution. A better tactic is to use the stress field approach with nodes sub-division. Although 

this procedure is lengthier than the two previous approaches, it gives acceptable predictions 

and simulates the stress patterns when compared to FEM (Sagaseta, 2008, Fang, 2013).  

2.6. Conclusions 

Despite many years of effort, research into the shear strength of RC deep beams continues to 

be the subject of considerable research. This chapter reviewed some relevant literature on 

the shear strength of RC deep beams. 

Early 20th century researchers assumed that, the shear resistance of diagonally cracked 

reinforced concrete members could be calculated using a 45-degree truss model neglecting 

any tensile contribution from the concrete. Subsequent research has shown that diagonally 

cracked concrete can resist shear through a variety of different shear transfer actions. These 

actions (aggregate interlock, dowel contribution, residual tensile strength, the contribution 

of the compression zone and stirrups) are highly dependent on the kinematics and shape of 
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the shear cracks. Evaluation of these contributions includes two levels of uncertainties: the 

accuracy of the obtained crack kinematics and the validity of the models used. The first 

uncertainty has recently been limited with the use of the Digital Image Correlation system 

while the latter is still an undergoing debate. 

Calculation of the shear strength of RC beams has been codified in design codes since the 

1960s. While the majority of code provisions are based on empirical equations (e.g. EC2 for 

members without shear reinforcement, BS8110 and ACI-318), a few have recently adopted 

physical models for the prediction of the shear strength (EC2 for members with shear 

reinforcement, MC2010 and AASHTO _LRFD). For beams loaded with concentrated load near 

the support, design codes allow the utilization of the shear strength enhancement resulting 

from arching action. These methods apply to beams loaded on the top face within 𝑎𝑣 ≤ 2𝑑. 

BS 8110 enhances the shear resistance provided by concrete 𝑣𝑅𝑑,𝑐 for beams loaded within 

𝑎𝑣 ≤ 2𝑑 by the multiple 
2𝑑

𝑎𝑣
 . Conversely, EC2 and MC2010 reduce the contribution to the 

design shear force of loads applied within 𝑎𝑣 ≤ 2𝑑 by the multiple 𝛽 =
𝑎𝑣

2𝑑
 where 𝛽 is limited 

to a minimum of 0.25 in EC2 and 0.5 in MC2010. Although these approaches appear similar, 

there can be significant differences between the enhanced shear resistances given by EC2, 

MC2010 and the BS8110. Moreover, application of the EC2 shear enhancement design 

provisions are unclear for beams with shear reinforcement and multiple point loads applied 

within 𝑎𝑣 ≤ 2𝑑 as discussed by Vollum and Fang (2015). These sectional methods are also not 

sensitive to the load application face or the boundary conditions.  

In terms of shear prediction models, several models are available in the literature but two of 

them were discussed here, namely: the modified compression field theory MCFT (and its 

successor the simplified MCFT In this section) and the two parameters kinematics theory (and 

its successor the five-spring model). The MCFT is one of the earliest and most comprehensive 

theories for describing the behavior of RC panels under membrane action. It forms the 

essence of sectional shear prediction in design codes like MC2010 and its strength strain 

equations are used in several software (VecTor2 and Response-2000). However, it is lengthy 

and difficult to solve using hand calculations. The simplified MCFT is a simpler version of the 

MCFT and has been adopted in the calculations of the shear capacity of MC2010. The 2PKT 

(and the five-spring model) is pertinent to deep beams. It can predict the full displacement 
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field of the shear span during loading, yet, is case sensitive, and needs modifications to 

account for variations in load arrangements and boundary conditions. 

Another popular method for estimating the shear capacity of members with discontinuity 

regions is the strut-and-tie model. Several design codes suggest using STM to account for the 

shear strength enhancement in deep beams.  

STM for beams with shear reinforcement can be constructed assuming direct superposition, 

semi-empirical formulae, or more conveniently using stress field method based on the 

principal of nodal subdivisions. The model developed by Sagaseta and Vollum (Sagaseta and 

Vollum, 2010) simplified the principal of nodal sub-division suggested by Wight and Mac 

Gregor (James K. Wight, 2012). This model has been used and modified by several researchers 

(Amini Najafian et al., 2013, Vollum and Fang, 2015) to account for different loading 

arrangements. However, when loads are applied in the tension face instead of the 

compression face, these models will not be valid due to changes in the stress fields. This 

observation was supported by the differences in behaviour and failure load for the identical 

beams loaded on the tension and compression faces based on an initial FE investigation. 
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CHAPTER 3. EXPERIMENTAL PROGRAM 

3.1. Overview 

Shear failure in reinforced concrete structures is hard to predict realistically due to its brittle 

nature and limited deformation at failure. This thesis is concerned with shear enhancement 

in reinforced concrete (RC) beams. Shear enhancement arises due to arching action when 

loads are applied to the top surface of beams within around twice the beam effective depth 

(2d) of supports. The shear behaviour of RC deep beams has intensively been studied in the 

past decades (Liu and Mihaylov, 2016, Boyan et al., 2013, Yang and Ashour, 2008, Fernández 

Ruiz et al., 2015, Sagaseta and Vollum, 2011, Cavagnis et al., 2017).  

Many studies have investigated shear enhancement in single span simply supported beams 

with a single point load applied to their compression face within 2𝑑 of supports. However, 

very little research has been carried out into shear enhancement in beams with several point 

loads applied within 2𝑑 of supports. This situation can occur in practice in structures like 

bridge crosshead girders where multiple point loads can be applied to either the flexural 

tension or the compression face dependent on the structural arrangement. Previous research 

into this problem has focussed on the situation where pairs of equal point loads are applied 

to the flexural compressive face of the beam.  (Brown and Bayrak, 2007, Vollum and Fang, 

2014). Furthermore, the effect of the shear enhancement in beams partly loaded outside 2𝑑 

from the support has received virtually no attention apart from the work of Filiagi Pastore 

and Vollum (Pastore and Vollum, 2019a, Pastore and Vollum, 2019b). 

This research considers the case of pairs of concentrated loads applied to the tension face of 

cantilever beams both within and partly within 2𝑑 from the face of the support. This chapter 

describes the experimental program carried out by the author in the Heavy Structures 

Laboratory at Imperial College London to investigate these issues. The main objectives of the 

experimental program were to investigate the effect of the following parameters on shear 

enhancement in RC beams: 

1. The influence of loading face and structural arrangements on shear enhancement in 

top loaded RC beams. 

2. The effect of varying the ratio between loads applied within 2𝑑 of the face of the 

support. 
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3. The effect on shear enhancement of partly loading the beam outside 2𝑑 from the face 

of the support. 

A recent technical development in laboratory testing of RC beams is the use of the digital 

image correlation (DIC) systems to measure crack kinematics and the full displacement field 

during testing. The use of DIC improves the quality of surface strain measurements, captures 

the full displacement field of the specimen throughout the load displacement response 

including post-peak behaviour and produces continuous reading without the need to 

interrupt the test (Huber et al., 2016, Cavagnis et al., 2015, Sas et al., 2012, De Wilder et al., 

2015, Cavagnis et al., 2017). In these tests, a two-camera DIC system supplied by LaVision 

GmbH (LaVision, 2017) was used to measure crack kinematics throughout the tests. Further 

description of the DIC system used is provided in Section 3.5.1 of this chapter.  

3.2. General Test Description 

A total of 12 beams were tested in the experimental program (three sets of four beams, 

depicted series A to C). All the beams measured 2800 mm long by 250mm wide by 500mm 

deep. Four test configurations were adopted in this program to accommodate the different 

loading conditions as described in Section 3.4. Series A was designed to investigate the 

influence on shear enhancement in top loaded beams of loading either the flexural tension 

or compression face of otherwise identical beams without and with shear reinforcement. Two 

simply supported beams were loaded on their compression face within 2𝑑 of supports while 

the remaining two beams were loaded as balanced cantilevers on their tension face. These 

two configurations are comparable in terms of the shear span to effective depth ratio, flexural 

and shear reinforcement, cross sectional dimensions and moment lever arms. However, the 

shear force and bending moment diagrams are different, as shown in Figure 3.1. In each case, 

the maximum shear force occurs at the support but the bending moment at the support is 

zero for the simply supported beam and a maximum for the cantilever. This difference is only 

addressed in MC2010, where the shear strength is related to the reinforcement strain at the 

critical section. 
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Figure 3.1. Shear force and bending moment diagrams of beams in series A 

Series B considered the influence of varying the ratio between the inner and outer loads on 

the shear resistance of balanced cantilever beams with stirrups positioned at 200 mm centres. 

The third set (Series C) compared the shear strengths of beams loaded entirely within and 

partially outside 2𝑑 of supports. Series C included beams with and without shear 

reinforcement. 

Where provided, shear reinforcement in the critical shear span consisted of 8 mm diameter 

links at 200 mm centres. The left-hand sides of all of the beams were reinforced with B10mm 

stirrups. This was done to ensure that failure occurred on the right-hand side of the beams, 

which was monitored by DIC. The test ID describes the test series, loading face, shear 

reinforcement and loading ratio. For example, BT200 (0.3/0.7):“B” – test Series, “T” – loaded 
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on tension face,“200” spacing of 8 mm diameter stirrups in critical shear span and “0.3/0.7” 

ratio of inner (P1) (closest to support) and outer loads (P2) to total load (P).   

3.2.1. First series of beams (Series A)  

This series consisted of four beams. Beams AC0 (0.5/0.5) and AC200 (0.5/0.5) were simply 

supported and loaded on their flexural compression face while beams AT0 (0.5/0.5) and 

AT200 (0.5/0.5) were balanced cantilevers loaded on their tension face. Each shear span was 

loaded with two equal point loads positioned at 0.76d and 1.63d from the centreline of the 

adjacent support. The shear span to effective depth ratio, shear reinforcement ratio and lever 

arms between the loads and the centre of the support were similar for beams loaded on 

tension and compression faces to obtain comparable results. The flexural reinforcement in all 

beams consisted of two layers of 3B25mm (𝜌=2.36%) and one layer of 2B16mm as a 

compression reinforcement (𝜌=0.322%). The concrete cover to the shear reinforcement was 

25mm. The cross-sectional dimensions and reinforcement detailing are shown in Figure 3.2, 

Figure 3.3 and Table 3.1. 

a) 

 

b) 

 

Figure 3.2: Cross section of the series A of test beams a) beams loaded in the compression 

face and b) beams loaded in the tension face. 

The test setup and configuration of the first series are described in detail in Section 3.2.13.4.1. 

In summary, loads were applied using two actuators connected to two hydraulic jacks. The 

loading plates were 100 mm long with the same width as the beams. The length of support 

plates was 150 mm for beams loaded in the compression face and 300 mm for beams loaded 

on the tension face. 
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Table 3.1: Geometry and reinforcement details of the series A of test beams  

Beam Loading Face 

Reinforcement 

Ratio % 

Centreline distance 

to the support 

Span to depth 

ratio 

Flexu
re

 

Sh
ear 

a1(mm) a2(mm) av1/d av2/d 

AC0 (0.5/0.5) Compression 2.36 0 450 825 0.76 1.63 

AC200 (0.5/0.5) Compression 2.36 0.201 450 825 0.76 1.63 

AT0 (0.5/0.5) Tension 2.36 0 525 900 0.76 1.63 

AT200 (0.5/0.5) Tension 2.36 0.201 525 900 0.76 1.63 

 

a) 

 

b) 
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c) 

 

d) 

 

Figure 3.3: Geometry and reinforcement details of series A of test beams (Beams a) AC0 

(0.5/0.5), b) AC200 (05/0.5), c) AT0 (0.5/0.5) and d) AT200 (0.5/0.5) 

3.2.2. Second series of beams (Series B)  

This series consisted of four beams all with the same length and cross-sectional dimensions 

as the first series. The beams were tested as balanced cantilevers and loaded on the tension 

face at the same positions as in Series A. The objective was to examine the effect on shear 

strength of varying the ratio between pairs of loads applied within 2d from the face of the 

support. The reinforcement arrangement for all the beams in Series B was the same as that 

for beam AT200 (0.5/0.5) of Series A (see Figure 3.2 – b). 

The control beam of series B (beam BT200 (0.5/0.5)) was notionally a duplicate of beam AT200 

(0.5/0.5) of the first series but the applied loading ratios differed slightly for reasons explained 

subsequently. Loading ratios were varied as follows: pairs of equal point loads (beam BT200 

(0.5/0.5), 30% of the load on the inner plate and 70% of the load at the outer plate (beam 

BT200 (0.3/0.7), single load in the inner plate (beam BT200 (1.0/0) and single load in the outer 

plate (beam BT200 (0/1.0) as demonstrated in Figure 3.4 and Table 3.2. 
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Table 3.2: Geometry and reinforcement details of the series B of test beams 

Beam 

Reinforcement 

Ratio Distance 

a =b* 

Centreline 

distance to the 

support (mm) 

Span to 

depth ratio 

Load 

ratio 

Flexu
re

 

Sh
ear 

a1 a2 av1/d av2/d 
At 

a1 

At 

a2 

BT200 (0.5/0.5) 2.36 0.201 712.5 525 900 0.76 1.63 0.5 0.5 

BT200 (1.0/0) 2.36 0.201 525 525 0 0.76 0 1 0 

BT200 (0/1.0) 2.36 0.201 900 0 900 0 1.63 0 1 

BT200 (0.3/0.7) 2.36 0.201 787.5 525 900 0.76 1.63 0.3 0.7 

*Distance (a) and (b) are shown in Figure 3.10. 

a) 

 

b) 
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c) 

 

d) 

 

Figure 3.4: Geometry and reinforcement details of series B of test beams 

3.2.3. Third series of beams (Series C) 

This series consisted of two pairs of beams with and without shear reinforcement. The tests 

investigated the effect on shear strength of applying loads both within and outside 2𝑑 from 

the face of the support. Beams CT0 (1.0/0) and CT200 (1.0/0), without and with shear 

reinforcement respectively, were loaded with a single point load at 1.66d from the centreline 

of the support. An additional load was applied at 3𝑑 from the centreline of the support in 

tests CT0 (0.6/0.4) and CT200 (0.6/0.4). It was not possible to load the final two beams 

symmetrically since the required length of the beams was greater than the available width 

within the loading rig. Hence, beams CT0 (0.6/0.4) and CT200 (0.6/0.4) were loaded 

asymmetrically as shown in Figure 3.5. Details of the loading arrangement, beam geometry 

and reinforcement are given in Figure 3.5 and Table 3.3. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.5: Geometry and reinforcement details of the series C of test beams. a) CT0 (1.0/0), 

b) CT200 (1.0/0), c) CT0 (0.6/0.4) and d) CT200 (0.6/0.4) 
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Table 3.3: Geometry and reinforcement details of the series C of test beams 

Beam 

Reinforceme

nt Ratio % 

Centreline distance to the 

support (mm) 

Span to 

depth ratio 

Load 

ratio 

Flexu
re

 

Sh
ear 

b 

(LHS) 

RHS 

a v
1
/d

 

a v
2
/d

 

a1 a2 

a a1 a2 

CT0 (1.0/0) 2.36 0.201 712.5 712.5 712.5 0 1.19 0 1 0 

CT200 (1.0/0) 2.36 0.201 712.5 712.5 712.5 0 1.19 0 1 0 

CT0 (0.6/0.4) 2.36 0.201 712.5 947.5 712.5 1300 1.19 2.56 0.6 0.4 

CT200 (0.6/0.4) 2.36 0.201 712.5 947.5 712.5 1300 1.19 2.56 0.6 0.4 

3.3. Manufacturing and Curing 

Beams preparation included four main operations: fixing of reinforcement cages, attaching 

the strain gauges to the reinforcement, moulds manufacture and concrete casting. The three 

series of the experimental program were prepared in sequence to allow for modifications if 

needed. 

The assembled reinforcement cages are shown in Figure 3.6, which also shows the locations 

of strain gauges. The reader is referred to Section 3.5.2 for further details regarding fixing of 

the strain gauges. 

 

 

Figure 3.6: Rebar cage for beams a) without b) with shear reinforcement 

 

(a) 
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After fixing the strain gauges into position, the reinforcement cages were placed in the 

formwork, which was constructed from 19mm plywood. The moulds were oiled to ease the 

de-moulding process and to prevent concrete bonding with the plywood – see Figure 3.7. 

Strain gauge lead wires were securely fixed to the top face of the moulds inside plastic bags 

as shown in Figure 3.7. Positions of anchorage links and shear reinforcement bars were 

marked on the moulds as well. 

 

Figure 3.7: Reinforcement cages inside the moulds before casting. 

Beams were cast in three groups of four with each group cast from a single batch of ready-

mixed concrete supplied by CEMEX. The concrete was specified to have strength class C25/30, 

consistency class S3 and limestone aggregate with a maximum size of 20mm. The concrete 

was loaded into an upright concrete skip with a central discharge hose and then poured 

vertically into the moulds. An internal vibrator was used to compact the concrete. 

For Series A, a total of 36 cubes (100mm), 12 cylinders (100mm diameter and 200mm height) 

for compressive strength and 12 cylinders (150mm diameter and 300mm height) for split 

cylinder tensile strength were cast. Half the control specimens were cured in water at 20o C 

with the remainder cured in air alongside the beams. The cube strengths were used to 

determine the development of concrete strength with time. Cylinders were used to evaluate 

the compressive and tensile strength of the concrete at the time of the first and last beam 
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tests. The strength of the remaining two beams was evaluated by interpolation using the 

strength development curve derived from the cube tests. The concrete beams and air cured 

control specimens were stored under a plastic cover. The specimens were sprayed with water 

every other day (Figure 3.9) apart from in the summer when specimens were sprayed daily 

on account of the warmer weather. 

 

Figure 3.8: Pouring of the concrete 

3.4. Beams setup and Test Configuration 

3.4.1. Setup for Series A 

The aim of Series A was to compare the shear strengths of otherwise identical beams loaded 

on the flexural tension and compression face. Two different test configurations (defined as 

Config-1 and Config-2) were adopted in this series (Figure 3.10). The beams were loaded with 

two 1000 kN Instron actuators since the estimated failure loads exceeded the maximum 

capacity of a single actuator. 
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Figure 3.9: Beams and air cured specimens wrapped for curing 

For beams loaded on the compression face (Config-1), three spreader beams were needed to 

transfer the load from the actuators to the four loading plates as demonstrated in Figure 3.10 

a-b. This was the case because the minimum possible spacing between the two actuators of 

660 mm was greater than the distance between the centreline of the pairs of loads in each 

shear span. Therefore, a top spreader beam was introduced to transfer the load from the 

actuators to the bottom spreader beams as shown in Figure 3.10  a-b. The spreader beams 

were fabricated from mild steel cross sections measuring 125 mm wide by 150 mm deep. 
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(a) Config. – 1 

Actuators 

Top Spreader Beam 

Bottom Spreader Beams 

DIC control zone 

(b) 
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Figure 3.10: Test configurations for the series A a) Config -1 and b) Config -2. 

 

(c) Config. – 2 

 

ACTUATO

RS 

SPREADER 

BEAMS 

(d) 
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For beams loaded on the tension face with 4-point loads (Figure 3.10  c-d), the required 

actuator spacing was sufficiently large for the actuators to directly load the spreader beams. 

Distances (a) and (b) in Config-2 (Figure 3.10  c) equalled 712.5 mm for tension face loaded 

beams in Series A. The bottom supporting plate rested on a captured roller to allow rotation 

but not translation (Figure 3.11 – right). 

The load was applied in displacement control to capture the post-failure behaviour. 

Marginally different displacement rates were required in each actuator of the simply 

supported beams to maintain similar loads in each. This was the case due to each shear span 

having different stiffness due to the differing amounts of shear reinforcement.  

For beams loaded on the tension face, the left actuator was kept fixed in place with zero-

displacement while loading the right actuator in displacement control. This resulted in similar 

but not exactly equal loads in both actuators. To investigate the cause of this discrepancy, 

load cells were inserted between each loading plate and the spreader beam as shown in 

Figure 3.9-c. The load cell readings showed that due to unintended rotational friction in the 

loading arrangement, the split between the inner (P1) and outer loads (P2) was 0.58/0.42 in 

Series A rather than the intended 0.5/0.5. This unintended difference between P1 and P2 was 

eliminated in subsequent tests by inserting a roller between the actuator and spreader beam 

as shown in Figure 3.11.  

 

 

Figure 3.11: Load cells (Left) and Seating ball (Right) in series A of beams 
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3.4.2. Setup for Series B 

The second series was tested to examine the effect of varying the ratio between the inner (P1) 

and outer (P2) loads. The loading ratios in Series B were (1.0/0), (0.3/0.7), (0.5/0.5) and 0/1.0). 

Consequently, two beams were loaded with 4-point loads and two with 2-point loads.  

For beams loaded with 4-point loads, Config. – 2 (Figure 3.10– b) was used with distances a = 

b = 712.5 mm for beams with 0.5/0.5 load split and a = b = 787.5 mm for beams with load split 

of 0.3/0.7. For beams loaded with one point load in each shear span, load was applied directly 

to the loading plates as shown in Config. – 3 in Figure 3.12.   

3.4.3. Setup for Series C 

The four beams in Series C were designed to investigate the effect of partly loading beams 

within and outside 2𝑑 from the support. These tests were motivated by the very different 

strength predictions given for this loading case by the shear enhancement methods of the 

superseded UK code BS8110 and(BSI, 1997) EC2 (BSI, 2004). The critical shear span of beams 

CT0 (1.0/0) and CT200 (1.0/0) was loaded within 2𝑑 of the support by a single point similar to 

Config – 3 with distances a = b = 712.5 mm (𝑎/𝑑 = 1.66). The loading arrangement in test CT0 

(1.0/0) and CT200 (1.0/0) is statically equivalent to that in test beam BT200 (0.5/0.5). The 

critical shear span of beams CT0 (0.6/0.4) and CT200 (0.6/0.4) was also loaded with an 

additional concentrated load positioned at a = 1300 mm (𝑎/𝑑=3.0) where shear enhancement 

is minimal. An asymmetric loading arrangement was adopted due to the beam length 

constraints of the rig (see Config. – 4 in Figure 3.13). A 500 mm long loading plate was used 

on the LHS of the beam to enhance its shear resistance sufficiently that shear failure occurred 

in the RHS of the beam. Details of the spreader beam and the loading arrangements are given 

in Figure 3.14 below. 
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Figure 3.12: Test configuration Config. – 3 
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Figure 3.13: Test configurations for series C (Config. - 4) 
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Figure 3.14: Spreader beam and loading plate in the LHS of the third series 

3.5. Instrumentation 

3.5.1. General Aspects 

Measurements during the tests included concrete surface strains, crack displacements, 

reinforcement strains, global displacements and rotation of the beams. The instruments used 

were: 

a) Digital image correlation (DIC) system. 

b) Reinforcement strain gauges. 

c) Linear variable displacement transducers (LVDT). 

d) An inclinometer. 

Specifications and setup of each of the above mentioned are discussed separately below. 

3.5.1. Digital Image Correlation (DIC) System 

DIC is a non-contact experimental technique used to obtain displacement fields of samples 

during tests. The principle of the DIC is to record and analyse series of images captured during 

the test with high-resolution cameras. DIC algorithms trace a random pattern on the surface 

of the specimen and calculate its displacement field using a correlation between deformed 

and un-deformed images. 

A spreader Beam 

Loading Plate 
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DIC has several advantages over conventional instruments like manual extensometers 

(DEMCs) and cross transducers. Manual extensometers are both tedious to use and 

potentially hazardous towards failure. Furthermore, they do not provide continuous readings 

and like cross transducers can only gather information at predefined discrete locations. 

Conversely, DIC systems provide continuous remote strain readings throughout the test 

without user intervention. 

In cases, where there are no visible features on the surface of the sample, a speckle pattern 

can be applied to a painted surface on the specimen. This is typically the case for concrete 

beams instrumented with DIC. In this research, the speckle pattern was applied using 

paintbrush and refined with a marker with a dot size equals to the recommended spackle 

pattern size. The optimum diameter of the speckle pattern depends on the size of the pixels 

and the monitored area. The quality of DIC results is affected by choosing the correct 

optimum size of the speckle pattern and the subset size (Pan et al., 2008). For this program, 

the optimum diameter of the pattern ranged between 0.3 – 0.4 mm based on the area of 

interest. A typical speckle pattern is demonstrated in Figure 3.15. 

 

Figure 3.15: Typical speckle pattern for DIC 

The 3D DIC system used for this program consisted of a programmable timing unit, two high-

resolution cameras and two illumination lights all connected to a CPU – Figure 3.16. The 

system can import also force or displacement inputs from the test data logger. 
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Figure 3.16: DIC System used on the experimental program 

Calibration of the system is necessary to remove lens distortions and to scale images. 

Calibration was performed using a calibration plate Type 1000 Figure 3.17. The plate was 

placed in front of the beam and five images with different plate positions were obtained for 

calibration. Automatic calibration and scaling were performed by the software and calibrated 

images were calculated and corrected. Actuator load and displacement were imported into 

the system with data recorded at a frequency of 1 Hz. 

 

Figure 3.17: Calibration board for DIC calibration 

Calculations of crack kinematics 

The main purpose of using the DIC system was to measure crack propagation and crack 

kinematics during the test. DIC software can generate displacement and strains in different 

directions. However, calculations of crack kinematics needs to be performed outside the 

software using provisions from literature (Campana et al., 2013, Hamadi and Regan, 1980), as 

these kinematics are not given by the software.  

Programmable timing unit 

High-resolution cameras 

Illumination lights 
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Two virtual gauges were placed perpendicular to each other at steps of 25mm along the 

height of the crack (Figure 3.18). Gauges limits were checked visually to ensure that each 

gauge intersected only the critical crack and no gauge end was located outside beam 

boundaries. Gauges limits at the top and bottom of the crack were also checked to ensure 

that the end-points were within the beam. Gauge length or location was changed if the gauge 

intersected more than one crack or if its limits exceeded the beam boundaries. The sensitivity 

of the measurements to the gauge length is discussed later in this section. A MATLAB code 

was developed to extract the horizontal and vertical displacements of the gauge end-points. 

Using the provisions given by Campana (Campana et al., 2013) and described below, the crack 

opening and sliding were calculated. 

 

Figure 3.18: Typical virtual gauges along the critical crack (Beam BT200 (0.5/0.5)) 

To calculate the displacement fields of two rigid bodies located at different sides of a crack, 

the displacement of two reference points at each side can be used as follows: 

The displacement field of each segment was obtained by tracking two points at each segment. 

Assuming the initial positions of the points are (𝑃1
𝑖 , 𝑃2

𝑖 , 𝑃3
𝑖  𝑎𝑛𝑑 𝑃4

𝑖  ) and the final positions after 

deformation were (𝑃1
𝑓
, 𝑃2

𝑓
, 𝑃3

𝑓
 𝑎𝑛𝑑 𝑃4

𝑓
 ), the displacement fields can be described by 

 𝑤1(𝑥, 𝑦) = {
𝑎1 − 𝑒1. 𝑦
𝑏1 + 𝑒1. 𝑥

 Equation 3.1 

 

 𝑤2(𝑥, 𝑦) = {
𝑎2 − 𝑒2. 𝑦
𝑏2 + 𝑒2. 𝑥

 Equation 3.2 

 

 

 
𝜃 
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Figure 3.19: Measurements for calculation of crack kinematics 

In which: 

 
[

𝑎1
𝑏1
𝑒1

] = (𝐴1
𝑇 . 𝐴1)

−1. (𝐴1
𝑇 . 𝑐1) 

Equation 3.3 

 
[

𝑎1
𝑏1
𝑒1

] = (𝐴1
𝑇 . 𝐴1)

−1. (𝐴1
𝑇 . 𝑐1) 

Equation 3.4 

 

 

𝐴1 =

[
 
 
 
 
1      0    − 𝑃1,𝑦

𝑖

0      1        𝑃1,𝑥
𝑖

1      0    − 𝑃2,𝑦
𝑖

0      1        𝑃2,𝑥
𝑖 ]
 
 
 
 

 and 𝐴2 =

[
 
 
 
 
1      0    − 𝑃3,𝑦

𝑖

0      1        𝑃3,𝑥
𝑖

1      0    − 𝑃4,𝑦
𝑖

0      1        𝑃4,𝑥
𝑖 ]
 
 
 
 

 

Equation 3.5 

 

 

 

𝑐1 =

[
 
 
 
 
 𝑃1,𝑥

𝑓
− 𝑃1,𝑥

𝑖

𝑃1,𝑦
𝑓
− 𝑃1,𝑦

𝑖

𝑃2,𝑥
𝑓
− 𝑃2,𝑥

𝑖

𝑃2,𝑦
𝑓
− 𝑃2,𝑦

𝑖
]
 
 
 
 
 

 and 𝑐2 =

[
 
 
 
 
 𝑃3,𝑥

𝑓
− 𝑃3,𝑥

𝑖

𝑃3,𝑦
𝑓
− 𝑃3,𝑦

𝑖

𝑃4,𝑥
𝑓
− 𝑃4,𝑥

𝑖

𝑃4,𝑦
𝑓
− 𝑃4,𝑦

𝑖
]
 
 
 
 
 

 

Equation 3.6 
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The relative displacements 𝑤𝑓(𝑑𝑥,𝑓 , 𝑑𝑦,𝑓) of a point (𝑓) located in the crack path can be found 

as the difference between the two displacements 𝑤1(𝑥𝑓, 𝑦𝑓) and 𝑤2(𝑥𝑓, 𝑦𝑓) 

 𝑤𝑓(𝑑𝑥,𝑓 , 𝑑𝑦,𝑓) = 𝑤2(𝑥𝑓, 𝑦𝑓) − 𝑤1(𝑥𝑓, 𝑦𝑓) Equation 3.7 

To obtain the crack opening (𝑤) and sliding (𝑠) for a beam as described in Figure 3.18 with a 

crack inclination angle of (θ), the axis rotation matrices in Equation 3.8 and Equation 3.9 can 

be used. Because the crack propagates in different orientations (from right bottom to left top 

in beams loaded on the compression face and from left bottom to right top for breams loaded 

in the tension face), two rotation matrices were used based on the loading face. 

For beams loaded in the tension face (similar to Figure 3.18):  

 [
𝑤
𝑠
] = [

−sin θ       cos θ
  cos θ          sin θ

] .𝑤𝑓(𝑑𝑥,𝑓 , 𝑑𝑦,𝑓) Equation 3.8 

 

For beams loaded in the compression face: 

 [
𝑤
𝑠
] = [

cosθ      sin θ
−sin θ       cos θ

] .𝑤𝑓(𝑑𝑥,𝑓, 𝑑𝑦,𝑓) 
Equation 3.9 

 

The above equations give the crack opening and sliding if these four points are crossed only 

by a single crack and the two sides are rigid bodies. Detailed description of the procedures 

and the MATLAB code are provided in Appendix I. 

DIC accuracy and result refinement 

Images are processed in DIC systems in windows of pixels called subsets. The accuracy of the 

results depends on the sizes of the subset (LaVision, 2018). A small subset size increases the 

spatial resolution but decreases vector accuracy and large subset size increases the accuracy 

of the associated vector but decreases spatial resolution. In this work, a subset size of 30 

pixels was used with a step size (specifies the evaluation window overlap in pixel) of 10 as 

recommended for similar cases (LaVision, 2018). 

The accuracy of the DIC results is also related to the length of the strain gauge and the 

magnitude of the developed strains (Acciaioli et al., 2018, Lee et al., 2011). To obtain accurate 

results, the length of the strain gauge needs to be maximized (Lee et al., 2011). However, 

using a long gauge in varying strain field zones is inaccurate; in addition, longer strain gauges 

may cross more than one crack particularly for micro-cracks. Hence, in this program, a 

sensitivity analysis of the crack opening and sliding with variable gauge lengths was 
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conducted. The gauge length was varied from 25mm to 150mm in steps of 25mm in several 

locations to investigate the effect of the gauge length on the accuracy of the results. The 

results (as shown in Figure 3.20) showed negligible or no sensitivity for gauges lengths ranging 

between (75 -150) mm. The calculated crack opening and sliding were similar when the gauge 

length was varied between 75-150mm. However, for shorter gauges (25 and 50 mm), the 

results appeared to deviate particularly for gauges with a length of 25mm. samples of results 

are presented below. 
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Figure 3.20: Sensitivity Analysis for DIC gauge length 

Refined crack measurements 

DIC measurements for small magnitude strains of homogenous materials may contain 

inherited errors (Acciaioli et al., 2018). Furthermore, rather than being rigid as assumed in the 

calculation of crack displacements, concrete deforms in tension prior to cracking. Hence, a 

minimum crack opening (𝑤𝑚𝑖𝑛) corresponding to the maximum concrete tensile strain 

(휀𝑐𝑡,𝑚𝑎𝑥) was calculated for different gauge lengths (𝐿𝑔) as demonstrated in Equation 3.10. 

Any opening less than the minimum crack opening was taken as zero with relevant sliding also 

set to zero. 

 𝑤𝑚𝑖𝑛 = 휀𝑐𝑡,𝑚𝑎𝑥 . 𝐿𝑔 Equation 3.10 

Images were taken in a frequency of (1) Hz. However, for calculations of the shear transfer 

actions, crack kinematics were obtained at load steps of 0.1𝑉𝑚𝑎𝑥. To obtain crack kinematics 

at steps of 0.1𝑉𝑚𝑎𝑥  it was necessary to average the number of images. Because the number 

of frames captured for each beam was high (≈2500 -3500 frames/beam), it was common to 

find several frames corresponding to each load step of 0.1𝑉𝑚𝑎𝑥. A MATLAB code was 

developed to extract frames corresponding to each load step of 0.1𝑉𝑚𝑎𝑥  and to average their 

crack opening and sliding in order to use it for the calculations of the shear transfer actions. 

Figure 3.21 confirms that the averaged kinematics (the ten values of the crack opening and 

sliding corresponding to each load step of 0.1𝑉𝑚𝑎𝑥) fits well with the full response of the crack 

kinematics of the beam obtained using all the frames and the average kinematics can be used 

to calculate the shear transfer actions. 



Shear Enhancement in RC Beams Loaded on the Tension Face Experimental Program 

 

127 
 

  

Figure 3.21: Typical measurements for full and reduced crack kinematics - Beam 

AC0(0.5/0.5) 

3.5.2. Strain Gauges 

Strains in longitudinal and shear reinforcement were measured using strain gauges. Strain 

gauges type (YFLA-5-F-1LJC-F) provided by Tokyo Sokki Kenkyuijo Co. Ltd was used with a 

gauge length of 5mm, electric resistance of 119.8±0.5 Ω and a gauge factor of 2.11±2%. 

Operations on rebar surface preparation included grinding of the rebar to provide a flat 

surface, cleaning the surface with acetone to remove any dirt or grease and neutralizing the 

acid using MNA5-2 neutralizer. Gauges were fixed with a glue on the rebar and coated with 

epoxy to protect it during concreting. A typical strain gauge is shown in Figure 3.22 below. 

 

Figure 3.22: Fixing and coating of a strain gauge 

To maintain the bond between concrete and the rebar and to minimize loss of cross-sectional 

area due to grinding the strain gauge positions, the strain gauges were typically fixed on the 

sides of the rebar where the ribs vanish (Figure 3.23 a). However, depending on the purpose 

of the strain gauges, the gauges were also placed in a few cases on the top and bottom of the 

rebar, where part of the ribs and rebar section was ground (Figure 3.23 –b). Several gauges 
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were lost in Series A and B in locations where strain gauges were placed over the ribs of the 

bar. Accordingly, an additional third gauge was placed to the side to evaluated strains in case 

one of the gauges was lost in series C.  

 

Figure 3.23: Positioning strain gauges on the a) sides or b) ribs of the rebar. 

Strain gauges were used to measure strains in locations where: (see Figure 3.24 below) a) the 

flexural stresses are greatest, b) to capture the dowel effect (strain gauges were placed on 

the top and bottom of the bar as in Figure 3.23 –b), c) to confirm adequate anchorage of 

reinforcement and d) NLFEA predicted shear reinforcement stresses to be greatest.   

 

Figure 3.24: Location of strain gauges for beams loaded in the compression and tension 

faces. 

The locations of the strain gauges were measured from a reference stirrup. This stirrup was 

then located in its exact position in the wooden moulds to insure the reinforcement cage (and 

hence strain gauges as well) were positioned correctly. Locations of strain gauges in all of the 

test beams are shown in Figure 3.25. 

(a) (b) Strain Gauges 

Bar section 

Bar ribs 
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a) AC0 (0.5/0.5) 

 

b) AC200 (0.5/0.5) 

 

c) AT0 (0.5/0.5) 

 

d) AT200 (0.5/0.5) 
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e) BT200 (0.5/0.5) 

 

f) BT200 (1.0/0) 

 

g) BT200 (0/1.0) 
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h) BT200 (0.3/0.7) 

 

i) CT0 (1.0/0) 

 

j) CT200 (1.0/0) 

 

k) CT0 (0.6/0.4) 
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l) CT200 (0.6/0.4) 

 

Figure 3.25: Locations of stain gauges in all of the test beams (Dimensions in mm) 

3.5.3. Linear Variable Displacement Transducers (LVDT) 

The global deformation of the beams was recorded using LVDTs located as shown in 

Figure 3.26. LVDT#1, LVDT#2, LVDT#3 and LVDT#4 were located at the ends of the beams to 

measure horizontal displacement and rotation. The length  𝐿ℎ between pairs of LVDTs was 

recorded for each test and used to evaluate the rotation along with the inclinometer. For 

Config. – 1, vertical transducers LVDT#6 and #7 were placed 150mm away from the support 

plate to evaluate the vertical displacement near the crack. Transducers LVDT#8 and #9 were 

placed vertically in the centreline of the beam to measure maximum vertical deflection. 

For beams tested in Config. – 2, vertical transducers LVDT#6 and #7 were placed on the RHS 

loading plates to evaluate the vertical deflection beneath the load. LVDT#8 was placed in the 

location of the fixed LHS actuator. This transducer evaluates the vertical difference between 

the imposed zero actuator displacement and the vertical displacement due to upward load 

from the actuator onto the internal reaction rig. Transducer LVDT#5 was placed 50 mm from 

the RHS edge of the beam to evaluate the maximum vertical displacement. 

Similar arrangements were applied to transducers in Config. – 3 and Config – 4 with the 

exception of transducer LVDT#8 which was at the bottom corner of the LHS for Config. – 3. 
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Figure 3.26: Locations of LVDTs for the different configurations 

 

LDTVs for Config. - 1 

LDTVs for Config. - 2 

LDTVs for Config. - 3 

LDTVs for Config. - 4 
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3.6. Conclusions 

This chapter gives details of the 12 beams tested in this research as well as the experimental 

methodology. The experimental campaign was designed to investigate the effect of loading 

arrangement and loading face on shear enhancement in top loaded beams. All the beams 

measured 2800 mm long by 250mm wide by 500mm deep. The beams were tested in three 

series of four, depicted A to C. Each series of four tests had separate objectives. Series A was 

designed to investigate the influence of loading the tension or compression face of otherwise 

identical beams without and with shear reinforcement. Series B examined the effect of 

varying the ratio between the inner and outer loads on the shear strength of balanced 

cantilever beams with stirrups. Series C compared the shear resistance of beams loaded inside 

and partly outside the shear enhancement zone.  

Details are given of the beam construction, material control tests, beam instrumentation and 

loading procedure. Measurements during beam testing included concrete surface strains 

(using DIC system), crack displacements (also using DIC system), reinforcement strains (strain 

gauges), global displacements of the beams (using linear variable displacement transducers 

(LVDT)) and the rotation of the beams (with an inclinometer). Results of the experimental 

campaign are presented in Chapter 4.
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CHAPTER 4. EXPERIMENTAL RESULTS 

4.1. Introduction 

The results of the experimental program described in the previous chapter are presented and 

discussed here. The first part of the chapter describes the material properties of the concrete 

and the reinforcement. The second part provides a detailed description of the behaviour of 

the beams during testing comprising the global load-deflection response, failure modes and 

crack patterns and reinforcement strain. 

4.2. Material Properties 

4.2.1. Concrete material properties 

Concrete was ready-mix concrete supplied by CEMEX. The concrete in all the beams was 

specified as Consistency Class S3, strength class C25/30 with limestone coarse aggregate of 

maximum size 20 mm. The concrete strengths for each set of beams are presented below. 

Series A 

All the beams in Series A were cast from a single batch of concrete. As described in Chapter 4, 

a total of 36 cubes (100mm), 12 cylinders (100mm diameter by 200mm height) for 

compressive strength and 12 cylinders (150mm diameter by 300mm height) for split cylinder 

tensile strength were cast. The tensile splitting test was used to evaluate concrete tensile 

strength in the experimental program. These strengths are used in the FEA presented in this 

thesis based on calibration studies presented in Chapter 6. The splitting strength is generally 

greater than direct tensile strength and lower than the flexural strength (ASTM, 2017).The 

strength development of the cubes is given in Table 4.1 below. 

Table 4.1: Strength development using cubes strength (100mm x 100mm) – series A 

Testing Date Age at Testing Curing Condition Density* (Kg/m3) Strength (MPa) 

16-Mar 9 
air 2525.5 22.96 

Water 2547.5 23.11 

21-Mar 14 
air 2547.5 26.22 

Water 2547.5 26.05 

28-Mar 21 
air 2498.2 33.80 

Water 2563.9 30.00 
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Half the control specimens were cured in water at 20o C with the remainder cured in air 

alongside the beams. The cube readings were used to monitor the development of the 

concrete strength and to obtain the cube compressive strength of the concrete at each test 

date. 

Due to technical issues in the grinding machine, cylinders were tested alongside cubes on the 

day of testing the second and fourth beams of Series A instead of the first and fourth beams 

as follows in series B and C. The resulting cylinder and cube strengths are presented in 

Table 4.2 and Table 4.3 respectively. The water cured 40-day cube and cylinder strengths were 

unexpectedly less than the corresponding 34-day strengths. The reason for the lower 40-day 

water cured strengths is unknown but is not considered representative of the in-situ strength 

of the beams. The development of the cube compressive strength with time is plotted in 

Figure 4.1. 

Table 4.2: Compressive cylinder strength (100mm dia. x 250mm Height) – series A. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

10-Apr 34 

air 

2358.5 30.42 

30.32 2365.1 30.98 

2371.7 29.55 

water 

2434.3 32.02 

29.32 2434.3 28.00 

2421.1 27.93 

16-Apr 40 

air 

2308.2 31.92 

31.15 2315.6 31.04 

2342.1 30.49 

water 

2394.0 27.69 

27.47 2397.3 27.86 

2390.6 26.85 
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Table 4.3: Compressive cube strength (100mm) – series A. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

10-Apr 

 

34 

 

air 

 

2443.4 38.3 

37.58 2448.9 37.55 

2476.2 36.9 

water 

 

2547.5 35.95 

35.26 2498.2 36.43 

2542.0 33.39 

16-Apr 

 

40 

 

air 

 

2503.6 38.08 

38.34 2514.6 37.92 

2459.8 39.02 

water 

 

2514.6 33.03 

32.43 2525.5 32.54 

2563.9 31.73 

 

 

Figure 4.1: Strength development using cube strength – series A 

The tensile strength of the concrete was found from split cylinder tests. The tensile strength 

(𝑓𝑡) was calculated using the formula 𝑓𝑡 = 2𝑃 𝜋𝐿𝐷⁄  where P is the splitting force, 𝐿 and 𝐷 are 

the diameter and length of the cylinder respectively. The tensile strength was established on 

days of testing of the first and fourth beams. The results are shown in Table 4.4. 
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Table 4.4: Tensile strength (150 diameter x 300 Height) – series A. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

06-Apr 

 

30 

 

air 

 

2552.9 2.361 

2.505 2308.3 2.524 

2314.0 2.629 

water 

 

2300.7 2.340 

2.401 2373.1 2.227 

2360.7 2.636 

16-Apr 

 

40 

 

air 

 

2366.4 2.7639 

2.764 2280.7 2.824 

2290.2 2.122 

water 

 

2366.4 2.582 

2.419 2372.1 2.262 

2359.8 2.412 

The air cured control specimens are considered most representative of the in-situ concrete 

strength of the beams. Based on the strength development of the air-cured cubes , the in-situ 

compressive strength of the concrete in the first and third beams was estimated by linear 

extrapolation/interpolation from the air cured cylinder strengths of the second and fourth 

beams as shown in Figure 4.2. A similar approach was adopted for tensile strength. The values 

of the compressive and tensile strength of the beams are summarized in Table 4.5. 

Table 4.5: Compressive and tensile strength for series A 

Beam ID Casting Day Testing Day Age at testing 𝑓𝑐
′(MPa) 𝑓𝑡

  (MPa) 

AC0 (0.5/0.5) 

07-Mar 

 

06-Apr 30 29.76 2.505 

AC200 (0.5/0.5) 10-Apr 34 30.32 2.608 

AT0 (0.5/0.5) 12-Apr 36 30.59 2.660 

AT200 (0.5/0.5) 16-Apr 40 31.15 2.764 
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Figure 4.2: Compressive strength for beams in series A 

Series B 

As described in Chapter 4, a total of 18 cubes (100mm), 12 cylinders (100mm diameter and 

200mm height) for compressive strength and 12 cylinders (150mm diameter and 300mm 

height) for split cylinder tensile strength were cast. Half of the specimens were cured in water 

and the other half were cured in the room temperature. Table 4.6 shows the strength 

development of the cubes. 

Table 4.6: Strength development using cubes compressive strength – Series B. 

Testing Date Age at Testing Curing Condition Density* (Kg/m3) Strength (MPa) 

09-May 

 

7 

 

water 2342 21.14 

air 2323 20.80 

16-May 

 

14 

 

water 2314 23.81 

air 2353 25.23 

23-May 

 

21 

 

water 2349 35.75 

air 2350 25.00 

The cube, compressive cylinder and split cylinder tensile strengths are presented in Table 4.7, 

Table 4.8 and Table 4.9 respectively. The in-situ concrete strengths of the second and third 

beams were derived from the strengths of the first and last beams using linear interpolation. 
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Table 4.7: Compressive cube strength (100mm) – Series B. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

04-Jun 33 

air 

2261.20 33.13 
33.17 

 
2257.50 33.05 

2223.00 33.32 

Water 

2342.00 27.79 
27.94 

 
2347.00 27.95 

2330.00 28.09 

11-Jun 40 

air 

2261.70 35.39 
35.10 

 
2262.50 35.34 

2270.00 34.58 

Water 

2349.50 27.73 

28.28 2343.00 26.90 

2362.00 30.22 

Table 4.8: Compressive cylinder strength (100mm diameter x 200mm height) – Series B. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

04-Jun 

33 air 

2291.50 26.66 

28.43 2304.43 28.36 

2302.28 30.28 

33 

 
Water 

2280.61 23.39 

24.11 2279.69 25.17 

2291.18 23.76 

11-Jun 

40 air 

2379.70 28.25 

29.24 2356.55 29.17 

2358.42 30.30 

40 Water 

2379.70 26.70 

26.97 2356.55 26.61 

2358.42 27.60 

 

The in-situ compressive strength of the concrete in the second and third beams was estimated 

by linear interpolation from the air cured cylinder strengths of the first and fourth beams. This 
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approach is consistent with the strength development of the air-cured cubes shown in 

Figure 4.3. A similar approach was adopted for the tensile strength of the concrete.  

 

Figure 4.3: Strength development using cube strength – Series B. 

Table 4.9: Tensile cylinder strength (150mm diameter x 300mm height) – Series B. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

04-Jun 33 

air 

2298.18 2.84 
2.58 

 
2275.33 2.01 

2313.57 2.89 

Water 

2338.55 2.65 
2.52 

 
2374.22 2.58 

2374.42 2.32 

11-Jun 40 

air 

2286.17 2.54 
2.82 

 
2281.14 3.17 

2328.59 2.76 

Water 

2353.36 2.78 

2.78 2357.53 2.90 

2350.42 2.66 
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The values of the compressive and tensile strength of the beams are summarised in Table 4.10 

below. 

Table 4.10: Compressive and tensile strength for series B 

Beam ID Casting Day Testing Day Age at testing 𝑓𝑐
′(MPa) 𝑓𝑡

  (MPa) 

BT200 (0.5/0.5) 

02-May-18 

 

02-Jun-18 33 28.43 2.58 

BT200 (0.3/0.7) 07- Jun-18 34 28.78 2.68 

BT200 (1.0/0) 08- Jun-18 36 28.89 2.72 

BT200 (0/1.0) 11- Jun-18 40 29.24 2.82 

 

Figure 4.4: Compressive strength for beams in series B 

Series C 

As described in Chapter 3, a total of 18 cubes (100mm), 12 cylinders (100mm diameter and 

200mm height) for compressive strength and 12 cylinders (150mm diameter and 300mm 

height) for split cylinder tensile strength were cast. Half of the specimens were cured in water 

and the other half were cured in the room temperature. The development of compressive 

cube strength with time is shown in Table 4.11. Compressive cube, cylinder and split cylinder 

tensile strengths are presented in Table 4.12, Table 4.13 and Table 4.14  respectively. The 

strength development is plotted in Figure 4.5. The difference between the cube strength of 

the first and last beam was less than 0.3 MPa, and hence, all the beams had almost similar 
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cubes strength. This was also the case for the tensile strength of the beams. However, the 

difference between the compressive cylinder strength of the first and last beam was 2 MPa. 

Table 4.11: Strength development using cubes compressive strength – Series C. 

Testing Date Age at Testing Curing Condition Density (Kg/m3) Strength (MPa) 

07-Jul 8 
Water 2334.90 24.03 

Air 2313.10 24.76 

13-Jul 14 
Water 2303.10 25.90 

Air 2302.00 29.50 

20-Jul 21 
Water 2328.20 31.09 

Air 2323.00 32.56 

Table 4.12: Compressive cube strength (100mm) – Series C. 

Testing 

Date 

Age at 

Test 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

01-Aug 33 

air 

2272 36.19 

37.12 2286 38.19 

2251 36.98 

Water 

2316 32.02 

32.13 2364 31.11 

2333 33.26 

08-Aug 40 

air 
2277 37.27 

37.37 
2226 37.47 

Water 

2360 32.51 

33.02 2349 33.13 

2332 33.43 
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Table 4.13: Compressive Cylinders Strength (100mm diameter x 200mm Height) – Series C. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

01-Aug 33 

air 

2283.63 26.81 
26.90 

 
2275.10 26.85 

2277.72 27.02 

Water 

2300.52 27.12 
25.10 

 
2317.23 24.79 

2309.18 23.38 

08-Aug 40 

air 

2337.12 29.23 
28.90 

 
2342.76 29.40 

2332.07 28.06 

Water 

2337.12 22.59 

24.13 2342.76 24.04 

2332.07 25.76 

 

Figure 4.5: Strength development using cube strength – series C 
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Table 4.14: Tensile cylinders strength (150mm diameter x 300mm height) – Series C. 

Testing 

Date 

Age at 

Testing 

Curing 

Condition 

Density 

(Kg/m3) 

Strength 

(MPa) 

Average strength 

(MPa) 

01-Aug 33 

air 

2328.62 2.35 
2.59 

 
2286.82 2.77 

2296.96 2.65 

Water 

2333.18 1.63 
1.82 

 
2330.59 1.76 

2309.36 2.08 

08-Aug 40 

air 

2284.85 2.48 
2.60 

 
2282.85 2.37 

2263.92 2.95 

Water 

2339.85 2.04 

1.93 2339.21 1.84 

2312.98 1.91 

For consistency with Series A and B, the in-situ compressive strength of the concrete in the 

second and third beams was estimated by linear interpolation from the air cured cylinder 

strengths of the first and fourth beams. The resulting cylinder compressive strengths are 

presented in Figure 4.6. Values of the compressive and tensile strength of the beams are 

summarised in Table 4.15. There were noticeable differences between the air and water 

cured strength. In the analysis of the results, the air-cured strength was used as it represents 

the curing condition of the beams. 
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Figure 4.6: Compressive strength for beams in series C 

Table 4.15: Compressive and tensile strength for the series C 

Beam ID Casting Day Testing Day Age at testing 𝑓𝑐
′(MPa) 𝑓𝑡

  (MPa) 

CT0 (1.0/0) 

29-Jun-18 

 

01-Aug-18 33 26.90 2.59 

CT200(1.0/0) 05-Aug-18 37 28.04 2.59 

CT0 (0.6/0.4) 06-Aug-18 38 28.33 2.60 

CT200 (0.6/0.4) 08-Aug-18 40 28.90 2.60 

4.2.2. Reinforcement material properties 

Grade 500 deformed reinforcement with different sizes was used for longitudinal and shear 

reinforcement in these tests. This comprised four different bar sizes (25mm, 16mm, 10mm 

and 8mm). The properties of the reinforcement were obtained from tensile tests on 400mm 

offcuts of each bar diameter. A digital video extensometer was used to measure axial strains. 

Stress-strain curves for the different sizes are shown in Figure 4.7. Average yield strength 

(𝑓
𝑦𝑘,0.2

) obtained by the 0.2% strain role, modulus of elasticity (𝐸𝑠), maximum tensile strength 

(𝑓
𝑡𝑘

) and corresponding strain (휀1) were calculated with the aid of Figure 4.7 as in Table 4.16. 
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Table 4.16: Reinforcement properties for the experimental program 

Size 𝑓𝑦𝑘,0.2 (MPa) 𝐸𝑠 (GPa) 𝑓𝑡𝑘 (MPa) 휀1(%) 

25 mm 570 235* 670 8.89 

16 mm 550 200 670 10.81 

10 mm 520 205 650 9.15 

8 mm 560 200 689 5.36 

*This value was discarded as it was above the code limit and a value of 200 MPa was assumed. 
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Figure 4.7: Stress-strain curves for the different reinforcement diameters (D) 

4.3. Results of Series A 

4.3.1. Summary of the results 

Series A consisted of four beams (AC0 (0.5/0.5), AC2 00(0.5/0.5), AT0 (0.5/0.5), and AT200 

(0.5/0.5)). Beams AC0 (0.5/0.5) and AC200 (0.5/0.5) were loaded on the flexural compression 

face while beams AT0 (0.5/0.5) and AT200 (0.5/0.5) were loaded on the flexural tension face. 

Details of the beam geometry, reinforcement and loading arrangement are given in 

section 3.2.1. All four beams in series A failed in shear due to the formation of a shear crack 

which extended between the inner edges of the support and furthest (outer) loading plate. 

Table 4.17 summarizes the results of the first series of the beams. Beams AT0 (0.5/0.5) and 

AT200 (0.5/0.5) were loaded as double cantilever beams where the external forces are 

calculated from the equilibrium. Due to rotational friction in the loading arrangement, which 

was eliminated in subsequent tests, the loading ratios in tests AT0 (0.5/0.5) and AT200 

(0.5/0.5) were 0.58/0.42 rather than 0.5/0.5 as intended. In subsequent tests, the loading 

ratios were as specified including beam BT 200 (0.5/0.5) which was identical to beam AT200 

(0.5/0.5) apart from a minor difference in concrete strength.  

Table 4.17: Summary of the results for series A 

Beam ID 𝑓𝑐
′ (MPa) 𝑓𝑡

  (MPa) 𝜌𝑣 (%) 
𝑉𝑓𝑎𝑖𝑙𝑢𝑟𝑒  RHS (KN) 𝑉𝑓𝑙𝑒𝑥  

RHS (KN) Inner Outer Total 

AC0 (0.5/0.5) 29.8 2.505 0 269.4 269.4* 538.8 885 

AC200 (0.5/0.5) 30.3 2.608 0.201 370.9 370.9* 741.7 885 

AT0 (0.5/0.5) 30.6 2.660 0 260.4 188.6* 449.0 795 

AT200 (0.5/0.5) 31.2 2.764 0.201 425.3 308.0* 733.3 795 

* indicates the critical shear plane 

 



Shear Enhancement in RC Beams Loaded on the Tension Face Experimental Results 

 

149 
 

Table 4.17 shows that the outer failure load of comparable beams was consistently less for 

beams loaded on the tension than compression face with the difference greatest for beams 

without stirrups. The NLFE investigation in Chapter 7 suggests that the observed differences 

in strength for compression and tension face loading are real despite being within the range 

of scatter typically found in shear tests of identical beams. This scatter is most pronounced in 

beams without shear reinforcement but is somewhat difficult to quantify due to relative lack 

of repeat tests on identical beams. One way of quantifying the scatter is through statistical 

analysis of Ptest/Pcalc calculated using refined analysis methods. For example, Sagaseta (2008) 

found the coefficient of variation (COV) in Ptest/Pcalc to be around 11% for his STM of short 

shear span beams. A similar COV of 9% is obtained in this thesis for the NLFEA of the tested 

beams (see Table 6.5). This implies that the COV for scatter in the strength of notionally 

identical specimens is less than 10% since the calculation of Ptest/Pcalc includes model 

uncertainty.Modes of failure and development of cracks 

The development of cracks during testing and post-failure crack patterns are shown in 

Figure 4.8  and Figure 4.9 respectively (solid black lines representing post failure cracks).  

Crack patterns in Series A are shown in Figure 4.9. Red, green blue and pink colours are used 

in this figure to define the first, second third and fourth cracks observed in the test. Failure 

occurred in the right hand shear span of all beams as intended. In all the four beams, the 

critical shear crack extended from the inner edge of the support plate to the inner edge of 

the outer loading plate. Hence, shear failure was not critical between the inner loading plate 

and the support. Minor flexural cracks were also observed in locations of maximum bending 

moments. These cracks are more observable in the crack strains obtained with the DIC (See 

Figure 5.16). 

Beam AC0 (0.5/0.5), without shear reinforcement, was loaded in the compression face. The 

critical crack initiated at mid height of the beam and propagated from there towards the outer 

load plate and the adjacent support. The development of the critical crack was followed by a 

sudden brittle failure characterised by crushing of the concrete at the outer loading plate. 

Beam AC200 (0.5/0.5), with shear reinforcement, was also loaded on its compression face. 

Two secondary cracks developed prior to the critical diagonal crack. The shear failure was 

relatively ductile compared to AC0 (0.5/0.5) owing to the presence of the shear 

reinforcement. At failure, concrete crushing occurred at the outer loading plate as in beam 
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AC0 (0.5/0.5). Subsequently, the cover to the compression reinforcement was lost between 

the loading plates after peak load due to reinforcement buckling. The critical diagonal crack 

in beam AC200 (0.5/0.5) was cranked as shown in Figure 4.9 rather than straight as in beam 

AC0 (0.5/0.5).  

Beams AT0 (0.5/0.5) and AT200 (0.5/0.5), without and with shear reinforcement respectively, 

were loaded on their tension face. Beam AT0 (0.5/0.5) failed suddenly in a brittle manner due 

to concrete crushing in the compression zone. The failure was preceded by opening of the 

critical diagonal crack running between the edges of the support and outer loading plate.  In 

the case of beam AT200 (0.5/0.5), a secondary crack developed prior to the critical diagonal 

crack which ran between the near loading plate and the support. At failure, several smeared 

cracks developed between the support and the far loading plates with the critical crack being 

less obvious to distinguish. The beam exhibited severe concrete crushing at failure with the 

height of the crushed zone greater than one third of the beam depth (see Figure 4.9).   

 

 

Figure 4.8: Development of the cracks during the test – Series A 
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Figure 4.9: Crack patterns (post-peak) for Series A 

4.3.2. Concrete surface strains and crack kinematics 

Crack kinematics were derived using DIC. Virtual gauges were placed along the critical crack 

with a typical gauge length ranging between 75mm to 150mm based on the sensitivity 

analysis conducted in Chapter 6. Two orthogonal virtual gauges were positioned at intervals 

of 25mm along the height of the crack (Figure 4.10). Gauges limits were checked to ensure 

each gauge intersected only the critical crack. Gauges limits at the top and bottom of the crack 

were also checked to ensure end-points lie within the beam. The gauge length or gauge 

location were modified if the gauge intersected more than one crack or if its ends fell outside 

the beam boundaries. 

AC0 (0.5/0.5) AC200 (0.5/0.5) 

AT (0.5/0.5) AT200 (0.5/0.5) 
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Figure 4.10: Typical virtual gauges along the critical crack (Beam BT200 (0.5/0.5)) 

Crack opening and sliding were obtained at steps of 0.1Pu where Pu is the total failure load 

applied to the failing side of the beam. The maximum crack opening and sliding displacements 

along the crack at peak load are shown in Table 4.18 for the beams in Series A. Also shown in 

Table 4.18 are the locations of maximum crack displacement as well as the crack orientation 

at these positions. 

Table 4.18: Maximum crack opening and sliding for the beams in series A at peak load. 

Beam Max. opening Height Angle* Max. sliding Height Angle* 

 (mm) (mm) (Degrees) (mm) (mm) (Degrees) 

AC0 (0.5/0.5) 1.56 252.1 -44.9 0.60 352.1 19.9 

AC200 (0.5/0.5) 0.95 245.2 -45.9 0.24 162.6 28.6 

AT0 (0.5/0.5) 1.47 253.4 27.6 1.28 145.7 59.9 

AT200 (0.5/0.5) 1.48 167.9 23.1 1.28 87.9 42.8 

 * Positive angle (𝜃) is the angle between the horizontal axis and the critical crack measured 
counter-clockwise as in Figure 4.10. 
The variation, over the depth of the beam, in the critical shear crack opening and sliding 

displacements is shown at failure in Figure 4.11. In the beams without shear reinforcement, 

the crack opening displacements are similar for tension and compression face loading. For 

beams with shear reinforcement, where failure was ductile, crack opening was greater in 

beam AT200 (0.5/0.5) than AC200 (0.5/0.5). Sliding displacements are noticeably higher for 

the beams loaded on the tension face.  

 

 

 

 𝜃 
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a) Cracks opening 

  
b) Cracks Sliding 

  

Figure 4.11: a) Crack opening and b) sliding along the beam heights at failure for series A 

 

The crack kinematics during the tests are presented in Figure 4.12 to Figure 4.15 from which 

the crack development can be deduced. For instance, the sudden failure of beam AT0 

(0.5/0.5) is evident in Figure 4.14 since crack displacements are zero until crack formation at 

90% of the failure load. Post-failure crack kinematics were not obtained in all the beams due 

to spalling of the concrete in the compression face after failure, which disturbed the surface 

measurements of the DIC. The “-” sign in front of the load step indicates post failure load, if 

applicable (e.g. Figure 4.14 - a) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.12: Crack Kinematics for beam AC0 (0.5/0.5 ) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.13: Crack Kinematics for beam AC200 (0.5/0.5) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.14: Crack Kinematics for beam AT0 (0.5/0.5) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.15: Crack Kinematics for beam AT200 (0.5/0.5) 
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Comparison of the crack patterns and kinematics gives useful insights into the difference 

between the beams of Series 𝐴 loaded on the tension and compression face. Figure 4.16 uses 

superposition to compare the crack patterns of comparable beams loaded on the tension and 

compression face. The crack patterns are inverted for the beams loaded on the tension face. 

Figure 4.16 shows that the crack patterns were very similar in the beams loaded on the 

tension and compression faces despite the apparent reduced strength of beams loaded on 

the tension face. However, the crack kinematics are different for the two cases. The reduction 

of strength is discussed later in Chapter 7. 

 

Figure 4.16: Crack patterns for comparable beams in Series A a) beams AC0 (0.5/0.5) and 

AT0 (0.5/0.5), b) beams AT200 (0.5/0.5) and AC200 (0.5/0.5). 

4.3.3. Load-deflection response 

The load-deflection response was recorded using LVDTs as described in section 3.5.3. LVDT#5 

was positioned under the beams at mid span of the simply supported beams and at the ends 

of the cantilever beams (See Figure 4.17). Due to the limited available length between the 

uprights of the loading rig, the deflection of the beams loaded in tension was measured at a 

distance of 50 mm from their bottom corner.  

 

Figure 4.17: Location of the transducer (LVDT#5) in series A 
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Vertical displacement of the balanced cantilever beams was restrained at the centreline of 

the left hand actuator by setting the actuator displacement to zero while loading the RHS 

actuator in displacement control. Hence, the recorded end displacement of the RHS includes 

the deflection of the LHS. To determine the load deflection response of the RHS, 

displacements  at LVDT#5 were corrected for the rotation of the beam around the bottom 

support roller as shown in Figure 4.18. The vertical displacement measured by LVDT#5 

(named here 𝑑𝑦#5 shown in Figure 4.17 ) was reduced by the vertical displacement 

𝑑𝑦 (𝜃 shown in Figure 4.18) caused by a global rotation (𝜃) of the beam around the roller 

support.  

 

Figure 4.18: Vertical end displacement due to the rotation of the beam 

 

A 

B 

O 
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The displacement due to the beam rotation at the support (𝑑𝑦 (θ)) was determined as follows 

from the relative displacements of (A) and (B) in Figure 4.18 – b that were determined using 

DIC: 

𝑅 =
𝑌

1 −
𝑑𝐿2
𝑑𝐿1

 
Equation 4.1 

 

tan 𝜃 =
𝑑𝐿1
𝑅

 
Equation 4.2 

 

𝑑𝑦(𝜃) = 𝐿. tan 𝜃 Equation 4.3 

 

𝑑𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑑𝑦(𝐿𝑉𝐷𝑇#5) − 𝑑𝑦(𝜃) Equation 4.4 

 

In the above approximation, 𝑑𝑙2 is assumed to be zero since DIC showed the horizontal 

displacement 𝑑𝑥2 to be negligible. The centre of rotation 𝑜 was assumed to be at the centre 

of the roller support. 

Deflections in the cantilever beams have been corrected to allow for the rotation at the 

central support. The resulting load-displacement responses of the four beams are shown in 

Figure 4.19 
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Figure 4.19: Load-deflection response for beams of series A 

As mentioned earlier, the ratio of inner to outer loads was 58:42 in the Series (A) tension face 

tests rather than 50:50 as intended. The difference in loads resulted from rotational friction 

in the loading arrangement, which was eliminated in later tests. Comparison of the load 

deflection responses for beams with/without shear reinforcement shows that the presence 

of the shear reinforcement increases both the ultimate load and the stiffness of the beams 

loaded on the compression face (Figure 4.20). The increase in the failure load due to the 

presence of the shear reinforcement in beams loaded in the tension face (62%) was 

significantly greater than for beams loaded on the compression face (38%).  

  

Figure 4.20: Influence of shear reinforcement on the behaviour of series A for beams loaded 

on the a) compression and b) tension face. 

Comparison of load-deflection curves in Figure 4.21 shows that the shear force at the failure 

of the critical outer shear span was noticeably least for comparable beams of Series 𝐴 loaded 

on the tension face. Possible reasons for this are discussed in Chapter 7. 
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Figure 4.21: Influence of Comparison of load-displacement response for beams a) without 

and b) with shear reinforcement. 

4.3.4. Reinforcement strains 

Strain gauges were used to obtain strains in the longitudinal and shear reinforcement during 

loading. Strains were measured at locations of maximum moment (tensile or compressive), 

at positions of estimated maximum strain in shear reinforcement, adjacent to supports and 

loading plates and near the start of the bend in flexural reinforcement. Strain gauges locations 

and labels for beams in the series A are given in Figure 4.22 (faulty gauges are given in red).  

  

  

Figure 4.22: Strain gauges locations and labelled for beams series A 

Strain gauges were placed in mainly pairs on the sides of the longitudinal bars (see 
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bond between the reinforcement and concrete. In locations where flexure in the bar due to 

dowel action was of interest, strain gauges were placed on the top and bottom of the bar to 

measure changes in strain due to flexure. Axial strains in longitudinal bars were obtained by 

averaging strains in pairs of the strain gauges. Fixing the strain gauges on the top and bottom 

required grinding parts of the ribs and the bar itself, thereby marginally reducing the bar cross 

sectional area as well as affecting bond between the concrete and the reinforcement bar. Less 

grinding of the ribs maintains better bond but jeopardises the adhesion of the gauge due to 

unevenness of the bar surface. Hence, a balance must be achieved between ensuring 

adhesion of the gauge and maintaining bond as well as bar cross-sectional area.  

The axial strains in the reinforcement bars are presented in Figure 4.23, which shows that the 

tensile flexural reinforcement almost yielded at failure in beams AC200 (0.5/0.5) and AT200 

(0.5/0.5).  

  

  

Figure 4.23 Flexural reinforcement strains for beams of series A 

The influence of dowel action on reinforcement strain is presented in Figure 4.24. Results are 

unavailable for beam AC0 (0.5/0.5) due to gauge malfunction. One strain gauge was also lost 

on the compression reinforcement of beam AC200 (0.5/0.5). The strain readings show that 

there were noticeable differences in the axial strains at the top and bottom of the bars 

especially near failure. The difference in strain between the top and bottom gauges of the 
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tension bars was more significant for compression face loading (Beam AC200 (0.5/0.5)) than 

for tension face loading (Beams AT0 (0.5/0.5) and AT200 (0.5/0.5)) (see Figure 4.24). 

  

 

Figure 4.24 Dowel effect on the reinforcement strains for beams in series A 

To study the effect of transverse pressure on reinforcement anchorage, strain gauges were 

fixed to the longitudinal tension reinforcement to either side of supports/loading plates. The 

results show a very significant reduction in tensile reinforcement strain due to the presence 

of transverse confinement. This reduction in strain across supports/loading plates was greater 

for beams loaded on the compression face than the tension face as shown in Figure 4.25.The 

influence of transverse pressure in confinement is discussed further in Chapter 7. 
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Figure 4.25 Reduction in the longitudinal reinforcement strain due to the presence of 

transverse confinement in series A 

Shear reinforcement strains for series 𝐴 are presented in Figure 4.26. The strains indicate that 

yielding occurred in at least some stirrups before failure. It should not be concluded that 

stirrups did not yield if not indicated in Figure 4.26 since the location of strain gauges did not 

necessarily coincide with the position of maximum strain. Other methods of estimating the 

reinforcement strains (FEA and Sigrist model (Sigrist, 1995) using DIC results) are discussed 

later in Chapter 7.  

  

Figure 4.26: Shear reinforcement strains for series A 
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(0.3/0.7)) which were tested as balanced cantilevers. The critical shear span of all the beams 

was reinforced with B8 stirrups at 200 mm centres in their critical span. All the beams failed 

on the intended side (RHS). Results of this series are summarised in Table 4.19. The maximum 

deflection was obtained by correcting the displacement at LVDT#5 using the procedure 

illustrated in Figure 4.18.  
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A comparison of the capacity of the outer shear span can be seen by comparing the outer 

failure loads (𝑃2) of beams BT200 (0/1.0), BT200 (0.5/0.5) and BT200 (0.3/0.7). Beam BT200 

(0/1.0) was loaded at the outer plate only while beams BT200 (0.5/0.5) and BT200 (0.3/0.7) 

were loaded at both of the plates in different ratios. Shear failure of beams BT200 (0.5/0.5) 

and BT200 (0.3/0.7) was critical in the outer shear plane with reduced failure loads P2 of 

324.15 kN and 396.53 kN respectively compared with 423.1 kN for beam BT200 (0/1.0).  These 

results suggest that the application of the inner load P1 reduced the failure load of the outer 

shear span P2. Further analysis of this is available in Chapter 7. 

Table 4.19: Summary of the results for the series B 

Beam ID 
𝑓𝑐
′ 

MPa 

𝑓𝑡
  

MPa 

Load 

Ratio 
𝑉𝑓𝑎𝑖𝑙𝑢𝑟𝑒  RHS kN 𝑉𝑓𝑙𝑒𝑥  

kN 

𝛿𝑚𝑎𝑥 

mm 

(LDTV#5) R1 R2 Inner Outer Total 

BT200 (0.5/0.5) 28.4 2.58 0.5 0.5 324.2 324.2* 648.3 795 34.1 

BT200 (1.0/0) 28.9 2.72 1 0 610.3* 0 610.3 1079 29.8 

BT200 (0/1.0) 29.2 2.82 0 1 0 423.1* 423.1 630 24.3 

BT200 (0.3/0.7) 28.8 2.68 0.3 0.7 158.4 369.5* 527.9 720 25.9 

* indicates the critical shear plane 

4.4.2. Modes of failure and development of cracks 

The development of cracks and the modes of failure in Series B is illustrated in Figure 4.27 

and Figure 4.28 respectively. Figure 4.27 shows the development of cracking while Figure 4.28 

shows the final crack pattern. The cause of failure is most evident in Figure 4.28. Similar to 

Figure 4.8 red and green blue colours are used to define the first, second third and fourth 

cracks (if present) in Figure 4.27. Minor flexural cracks were also observed in locations of 

maximum bending moments. These cracks are more observable in the crack strains obtained 

with the DIC (See Figure 5.16). 

In beam BT200 (0.5/0.5) loaded with four equal point loads, the first crack initiated at the 

inner loading plate and extended downwards towards the support. At 80% of the failure load, 

a new diagonal crack, which became the critical shear crack, developed from the outer loading 

plate to the bottom support plate. 
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In beam BT200 (1.0/0), in which the load was applied only to the inner loading plate, the first 

diagonal crack initiated at the edge of the loading plate. Subsequently, a diagonal crack 

developed at the support plate. Near failure, the upper diagonal crack extended downwards 

and joined up with the lower crack forming the critical diagonal crack.  

In beam BT200 (0/1.0) load was only applied to the outer loading plate. In this beam, the 

critical diagonal crack initiated at mid-height of the beam. As the load increased, the crack 

extended each way to the top and bottom plates. A secondary crack branched out of the 

critical crack near failure at the centre of the beam.  

In beam BT200 (0.3/0.7), where the greatest load was applied at the outer support, the first 

crack initiated at the inner loading plate, while the critical crack developed subsequently and 

extended between the outer loading plate and the support. 

 

Figure 4.27: Development of the cracks during the test – series B 

A common feature of the cracking pattern in beams loaded on their tension face at the inner 

plate was that a secondary crack developed around 50-70% of the total failure load between 

the inner load and support plates. This was also the case for beam AT200 (0.5/0.5) in series 

A. This secondary crack was not critical in any of the beams including BT200 (1.0/0) but had 

an effect of the deformation pattern as discussed later in Chapter 5. Failure in series B was 

typically initiated by penetration of the critical diagonal crack into the flexural compression 
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zone. In beams, loaded at the outer loading plate, failure was characterised by crushing of 

concrete within the flexural compression zone as in series A. In beam BT200 (1.0/0) there is 

evidence of concrete crushing along the complete length of the critical diagonal shear crack. 

 

 

 

 

Figure 4.28: Failure modes and crack patterns (post-peak) for series B 

Figure 4.29 superimposes the critical shear crack in all the beams of Series B as well as beam 

AT200 (0.5/0.5) from Series A, which was similar to beam BT200 (0.5/0.5) apart from the 
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Secondary crack 

Critical crack 

First crack 
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First crack 

Critical crack 
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First crack 
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Crushing of 
the concrete 
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applied load ratio being 0.58/0.42 rather than 0.5/0.5 as intended. Two types of crack path, 

dependent on the loading arrangement, are evident in Figure 4.29. The crack path is convex 

in beams BT200 (0.5/0.5) and AT200 (0.58/0.42) but almost straight in beams BT200 (0/1.0) 

and (0.3/0.7). This suggests that the crack path is diverted by the inner load once it exceeds 

around 40% of the total failure load but further data are required to confirm this.  

 

Figure 4.29: Critical shear cracks for series B a) at 95% of Vmax and b) post failure 

4.4.3. Concrete surface strains and crack kinematics 

Similar procedures to series A were followed here. Crack kinematics were obtained from DIC 

with typical virtual gauges and crack orientation as given in Figure 4.10. The maximum crack 

opening and sliding displacements at peak load, corresponding height from the bottom of the 

beam and crack orientation are shown in Table 4.20 for Series B. 

Figure 4.30 through to Figure 4.33 describe the crack opening and sliding for beams in series 

B. Cracks generally initiated from the mid-height of the beams and propagated to the tension 

and compression face until failure. Crack sliding was dominant at early stages of loading while 

crack opening was dominant near and at failure. Crack displacements were generally larger 

in the compression zone than in the tension zone, except for beam BT200 (0.3/0.7). 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.30: Crack Kinematics for beam BT200 (0.5/0.5) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.31: Crack Kinematics for beam BT200 (1.0/0) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.32: Crack Kinematics for beam BT200 (0/1.0) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.33 Crack Kinematics for beam BT20 (0.3/0.7) 
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Table 4.20: Maximum crack opening and sliding for the beams in the series B at peak load 

Beam Max. opening Height Angle* Max. sliding Height Angle* 

 (mm) (mm) (Degrees) (mm) (mm) (Degrees) 

BT(0.5/0.5) 1.54 41.9 32.6 1.32 241.9 62.7 

BT(1.0/0) 1.34 143.6 45.0 1.03 116.9 72.2 

BT(0/1.0) 1.80 116.9 22.0 1.24 166.9 55.0 

BT(0.3/0.7) 1.17 231.3 36.3 0.56 56.3 35.2 

 * Positive angel (θ) is the angle between the horizontal axis and the critical crack measured 
counter-clockwise as in Figure 4.10.  

4.4.4. Load-deflection response 

The load-deflection response of beams in series B was measured using LVDTs positioned as 

described in section 3.5.3. Load-deflection responses of the beams were described by 

readings of the LVDT#5 bottom transducer as illustrated in Figure 4.34. All the beams in series 

C were loaded as balanced cantilevers with the LHS actuator displacement fixed to zero, which 

allows direct comparison of deflections without correction for beam rotations. Load-

deflection response for beams of series B is given in terms of the total RHS and critical plane 

- load versus LVDT#5 deflection in Figure 4.35. 

 

Figure 4.34: Location of LVDT#5 in series B 
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Figure 4.35: Load-deflection response for beams of series B (a) RHL vs deflection and b) 

Critical plane load vs deflection) 

The load-deflection response is presented in two different forms. First, in Figure 4.35a, as the 

total applied load (P) on the RHS of the beams versus displacement and second, in 

Figure 4.35b, as the outer load (P2) versus displacement. Results are shown in Figure 4.35b 

for all beams with tension face loading failing at the outer load plate within 2d of the face of 

the support including beam AT200(0.5/0.5). All these beams failed along the outer shear 

plane. Figure 4.35b shows that failure load (P2) was greatest for beam BT200 (0/1.0) and 

reduced as the inner load (P1) increased. The effect of the loading ratio on the capacity of the 

outer critical section is analysed further in Chapter 7. 

4.4.5. Reinforcement strains 

As in series A, strain gauges were used to record selected strains in the longitudinal 

reinforcement and stirrups. The strain gauge locations and numbering system are depicted in 

Figure 4.36 for series B. Labels of faulty gauges are indicated in red while gauges where 

reinforcement yielded were drawn in red. 
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Figure 4.36: Strain gauges locations and labels for beams series B 

The tensile and compressive strains in the longitudinal reinforcement of beams in series B are 

plotted in Figure 4.37. The strain gauge readings indicate that the compressive reinforcement 

yielded at failure in beam BT200 (0.5/0.5). This was also the case for beam AT200 (0.5/0.5) in 

series A which was similar to beam BT200 (0.5/0.5) apart from the loading ratio 

unintentionally being (0.58/0.42). As Figure 4.28 shows, beams exhibited severe concrete 

crushing at failure, and hence, the yielding of the compressive reinforcement could be related 

to the buckling of the reinforcement as stated earlier. 

  

  

Figure 4.37: Longitudinal reinforcement strains series B 

To study dowel action in the tension and compression reinforcement, two strain gauges were 

placed on the bottom and top of the compression reinforcement and four other gauges were 
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placed on the tensile flexural reinforcement were dowel was anticipated to happen. The crack 

was predicted to form between the support and the outer load plate for beams in series B, 

except where a single point load was applied at the inner plate (i.e. beam BT200 (1.0/0) and 

strain gauges were placed accordingly. 

Flexure in the compression reinforcement, due to dowel action, was captured in all of the 

beams of series B. However, strain gauge SG17 in beam BT200 (0.3/0.7) was damaged during 

concrete casting so the dowel effect was measured for the bottom layer of tensile 

reinforcement of this beam. Flexure due to the dowel action changed the sign of strain from 

compression to tension in the bottom reinforcement of beams BT200 (0.5/0.5) and BT200 

(1.0/0). Flexure due to dowel action also induced significant changes in tensile strain of the 

top longitudinal reinforcement in beams BT200 (1.0/0) and BT200 (0/1.0). The change in 

strain of the tensile reinforcement appeared to depend on whether the crack intercepted the 

top and bottom layers of the flexural reinforcement at locations of strain gauges. 

 
 

  

Figure 4.38: Reinforcement strains at dowel locations – Series B 

The enhancement in bond caused by the transverse pressure from the loading plate was 

investigated by comparing reinforcement strains before and after the plate. The comparison 

showed significant reductions in strain over the support width particularly for beams loaded 
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with two point loads. In beam BT200 (0.3/0.7) where the SG17 was lost, the change in strain 

was obtained using the lower reinforcement layer. The results of the four beams are 

presented in Figure 4.39. Enhancement of the bond due to lateral confinement is discussed 

in details in Chapter 7. 

  

  

Figure 4.39: Reduction in the longitudinal reinforcement strain due to the presence of 

transverse confinement in series B 

Strains in the shear reinforcement were obtained using strain gauges located in positions of 

predicted maximum stress. Results of the shear reinforcement strains for series B are 

presented in Figure 4.40. Yielding of shear reinforcement depends on the location of cracks 

relative to the reinforcement as well as the crack kinematics. For example, the stirrup closest 

to the flexural compression zone did not yield in any of the tests. However, at least one stirrup 

yielded in each test with some stirrups experiencing very high strains. However, strains were 

typically greater than measured in the stirrups since gauges were not typically positioned at 

the location of maximum strain, which depended on the crack pattern. 
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Figure 4.40: Shear reinforcement strains for series B 

4.5. Results of Series C 

4.5.1. Summary of the results 

Series C investigated the influence on the shear strength of applying part of the load within 

and part outside 2𝑑 of the face of the support. The beam geometry, reinforcement 

arrangement and loading configuration are described in (3.2.3). Beams CT0 (1.0/0) and CT200 

(1.0/0) were loaded with a single point load located at 1.66d from the centreline of the 

support. Beams CT0 (0.6/0.4) and CT200 (0.6/0.4) were loaded with point loads located at 

1.66d and 3.0d from the centreline of the support.  

Beam CT0 (0.6/0.4), without shear reinforcement, failed in the outer shear span while beam 

CT200 (0.6/0.4) failed in the inner shear span like beams CT0 (1.0/0) and CT200 (1.0/0). 

Results of Series C are summarised in Table 4.21. The total failure load of the beams loaded 

at 1.66d and 3.0d is seen to be slightly less than that of the companion beam loaded at just 

1.66d with the percentage difference greatest for the beams without shear reinforcement.  
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Table 4.21: Summary of the results for series C 

Beam ID 𝑓𝑐
′ 

(MPa) 

𝑓𝑡
  

(MPa) 

𝜌𝑣 (%) 𝑉𝑓𝑎𝑖𝑙𝑢𝑟𝑒  RHS (KN) 𝑎𝑣1

𝑑
  

𝑎𝑣2

𝑑
  𝑉𝑓𝑙𝑒𝑥   

Inner Outer Total 

CT0 (1.0/0) 26.9 2.59 0 441.0* 0 441.0 1.23 0 698 

CT200 (1.0/0) 28.0 2.59 0.201 542.8* 0 542.8 1.23 0 698 

CT0 (0.6/0.4) 28.9 2.60 0 227.0 151.3* 378.3 1.23 2.64 541 

CT200(0.6/0.4) 28.3 2.60 0.201 301.0* 200.6 501.6 1.23 2.64 541 

* indicates the critical shear plane 

4.5.2. Modes of failure and development of cracks 

The crack patterns of the beams in series C are shown in Figure 4.41 and Figure 4.42 . In beams 

loaded at 1.66d alone, the critical diagonal crack ran directly from the inner edge of the load 

plate to the inner edge of the support, although secondary cracks also developed as shown in 

Figure 4.42. Minor flexural cracks were also observed in locations of maximum bending 

moments. These cracks are more observable in the crack strains obtained with the DIC (See 

Figure 5.16). 

 

Figure 4.41: Development of the cracks during the test – series C 
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Figure 4.42: Modes of failure for beams of series C  

The first crack in CT0 (0.6/0.4) ran between the support and the inner load plate. The critical 

diagonal crack formed just before failure. It ran between the outer loading plate and the 

CT200 (1.0/0) 
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support. At failure, this crack extended along the flexural reinforcement to the right of the 

outer loading plate and propagated around the bend in the reinforcement (see Figure 4.42). 

In CT200 (0.6/0.4), the first two cracks developed at mid-depth of the beam and extended 

between the inner loading plate and the support. As the load approached failure, multiple 

cracks developed in the inner support shear span, which eventually coalesced to form the 

critical crack. The crack pattern in beams CT0 (0.6/0.4) and CT200 (0.6/0.4) were similar prior 

to failure but the failure plane was different as shown in Figure 4.42. 

4.5.3. Concrete surface strains and crack kinematics 

The maximum crack opening and sliding displacements for series C are presented in 

Table 4.22 along with the corresponding height from the bottom of the beam and crack 

orientation at peak load. 

Table 4.22: Maximum crack opening and sliding for the beams in series C at peak load 

Beam Max. opening Height Angle* Max. sliding Height Angle* 

 (mm) (mm) (Degrees) (mm) (mm) (Degrees) 

CT0(1.0/0) 1.39 241.9 33.2 0.85 191.9 59.9 

CT200(1.0/0) 0.11 266.3 49.9 0.12 316.9 43.0 

CT0(0.6-0.4) 1.08 341.9 29.2 0.61 293.6 46.5 

CT200(0.6/0.4) 1.17 207.3 29.5 0.72 232.3 54.2 

 

The crack kinematics for beams in series C are presented in Figure 4.43 to Figure 4.46. Three 

out of the four beams failed in the inner shear plane. Crack displacements in beams where 

the inner shear plane was critical were greatest at mid-height of the beams and reduced 

towards the crack ends. Figure 4.47 shows that the crack patterns were similar in the beams 

that failed along the inner shear plane particularly for beams CT200 (1.0/0) and CT200 

(0.6/0.4) with shear reinforcement. Figure 4.47 also shows that the final crack pattern 

between the inner loading plate and support was similar in beam CT0 (0.6/0.4) and CT200 

(0.6/0.4) despite CT0 (0.6/0.4) failing along the outer shear plane. 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.43: Crack Kinematics for beam CT0 (1.0/0) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 
(d)  crack sliding/opening 

Figure 4.44: Crack Kinematics for beam CT200 (1.0/0) 
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(a) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.45: Crack Kinematics for beam CT0 (0.6/0.4)
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(b) crack kinematics 

  

(b) crack opening (c) crack sliding  

 

(d)  crack sliding/opening 

Figure 4.46: Crack Kinematics for beam CT200 (0.6/0.4) 
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Figure 4.47: Overlapped crack patterns for beams in series C 

4.5.4. Load-deflection response 

Two different loading configurations were used in this series. Beams partially loaded outside 

the shear enhancement zone were asymmetric as described in section 3.4.3. Therefore, 

deflections from the two different loading arrangements are not directly comparable at 

LVDT#5 as shown in Figure 4.48. Hence, deflections were compared at LVDT#7, which 

measured displacement on the top of the beam at the inner loading plate. The position of 

LVDT#7 relative to the central support was the same for all the beams in series C. The load-

deflection responses of the beams are shown in Figure 4.49 

 

Figure 4.48: Location of the transducer (LVDT#7) in series C  
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Figure 4.49: Load-deflection response for beams of series C 

Figure 4.50 compares deflections in the pairs of beams without and with shear reinforcement. 

It shows that applying part of the load outside the shear enhancement zone at 3.0d reduced 

the total failure load compared with the companion beams just loaded at 1.66d from the 

support centreline. The reduction in strength is most significant for the beams without shear 

reinforcement. 

  

Figure 4.50: Effect of partially applying the load partially outside (2d) for beams a) without 

shear reinforcement and b) with shear reinforcement. 
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Figure 4.51 shows the influence of shear reinforcement on the displacement and failure load 

of beams loaded both entirely within and partly outside the shear enhancement zone. The 

figure shows the increase in strength provided by the shear reinforcement is noticeable for 

both cases. 

  

Figure 4.51: Effect shear reinforcement in beams loaded a) inside (2d) and b) partially 

outside (2d) 

4.5.5. Reinforcement strains 

Strain gauges were used to measure strain in the longitudinal reinforcement at the locations 

indicated in Figure 4.52. The strains in the longitudinal reinforcement of beams in series C are 

shown in Figure 4.53. No yielding occurred in the flexural tensile reinforcement of any of the 

beams. Only beam CT200 (0.6/0.4) experienced yielding of the compressive reinforcement at 

failure. 

Strain gauges were placed on the top and bottom longitudinal bars to either side of the 

loading plates. Since these gauges were subject to damage during casting or loading, three 

strain gauges were placed at the inside edge of the loading plate where dowel action is 

significant. Two gauges were placed on the top and bottom of the bar as previously with an 

additional gauge placed on the side of the bar. This enabled meaningful results to be obtained 

if either the top or bottom gauges was lost as was the case for beam CT0 (1.0/0). The strains 

at edges of loading and support plates are shown in Figure 4.54. 
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Figure 4.52: Strain gauges locations and labels for beams series C 

  

  

Figure 4.53: the flexural tensile and compressive strains of series C of beams 
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Figure 4.54 Reinforcement strains at dowel locations – series C 

Although three strain gauges were used at locations of dowel action, two strain gauges 

malfunctioned in one of the tensile reinforcement of beam CT200 (0.6/0.4). The 

measurement of stirrup strain was also affected in beam CT200 (0.6/0.4) by the failure plane 

being wrongly predicted by the NLFEA. This difference between actual and expected failure 

plane also influenced the stirrup strains as discussed later. 

The difference in longitudinal reinforcement strain to either side of the loading plates 

depends on the bond stress, which is enhanced by transverse confinement from the loading 

plate. This reduction in reinforcement strain across the width of the loading plate was 

greatest in beams loaded with single point load. This reduction was calculated based on the 

strains in the top reinforcement layer as shown in Figure 4.55. However, for beam CT0 

(0.6/0.4) it was calculated for the lower reinforcement layer as the upper reinforcement 

gauge malfunctioned earlier. 
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Figure 4.55: Reduction in the longitudinal reinforcement strain due to the presence of 

transverse confinement in series C 

Two beams in series C contained shear reinforcement. Readings of strain gauges indicated 

that yielding occurred only in one strain gauge out of the successful eight gauges attached to 

the shear reinforcement in these two beams. Although this does not necessarily mean the 

reinforcement did not yield, it indicates that the stress levels in the shear reinforcement were 

lower for this series of beams. 

  

Figure 4.56: Shear reinforcement strains for series C 
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4.6. Conclusions 

The results of the twelve beams tested in this research are presented in this chapter. 

Presented results include material strengths, beam failure loads and load-deflection 

response, crack development and kinematics and reinforcement strains. 

The beams were cast in three groups of four with each group cast from a single batch of ready-

mixed concrete specified to have strength class C25/30, consistency class S3 and limestone 

aggregate with a maximum size of 20mm. A total of 18 (36 for Series A) 100 mm cubes, 12 

cylinders (100 mm diameter × 200 mm long) for compressive strength, and 12 cylinders (150 

mm diameter × 300 mm long) for split cylinder tensile strength were cast with each series of 

beams. Half the specimens were cured in water at 20oC with the remainder cured in air 

alongside the beams. Cubes were tested at regular intervals to establish the development of 

compressive strength with time as well as the cube strength at the time of testing each beam. 

The cylinders were tested on the same day as the first and last beam test of each series. 

Compressive cylinder strengths were estimated for intermediate beam tests by interpolation 

making use of the strength development curve obtained from the cube tests. The 

reinforcement properties were obtained from tensile tests in which the axial strain was 

measured using a digital video extensometer. 

The beams were loaded in displacement control to capture the post-failure behaviour. Series 

A considered the influence of loading face for matching pairs of beams without and with shear 

reinforcement. Due to rotational friction in the loading arrangement, which was eliminated 

in subsequent tests, the loading ratios in tests AT0 (0.5/0.5) and AT200 (0.5/0.5) were 

0.58/0.42 rather than 0.5/0.5 as intended. The results for this series showed that that the 

shear force at failure of the critical outer shear span was noticeably least for comparable 

beams of Series 𝐴 loaded on the tension face. 

Series B investigated the influence of the loading ratio for pairs of loads applied within 2𝑑 

from the face of the support on the shear capacity. The result suggest that the application of 

the load inside 2𝑑 of the support reduced the failure load of the critical outer shear plane. 

The reduction in failure load of the outer shear plane increased with increasing inner load.  

Series C examined the effect of partially loading beams both within and outside 2𝑑 from the 

face of the support. The results showed that applying an additional point load outside the 

shear enhancement zone (2d) reduced the shear strength of the beam. The critical shear 
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plane was the outer for the beam without shear reinforcement while the shear plane was the 

inner for the beam with the shear reinforcement. 

The Influence of tension face loading on shear resistance, the prediction of critical failure 

plane for tested beams, the effect of the loading ratio on the failure plane and the effect of 

the transfer compression on the bond force are further discussed in details in Chapter 7.
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CHAPTER 5. CRACKS KINEMATICS AND SHEAR TRANSFER 

MECHANISMS 

5.1. Introduction 

Various models have been developed to describe the deformation and crack kinematics of 

beams loaded in shear (Mihaylov et al., 2013, Mihaylov et al., 2015, Vecchio and Collins, 1986, 

Mihaylov, 2015). Of these, the Two Parameter Kinematic Theory (2PKT (Mihaylov et al., 2013)) 

and the Five-Spring Model (Mihaylov, 2015) provide simple procedures for estimating the 

deformation, crack kinematics, contribution of each shear transfer action and ultimate 

strength of deep beams loaded in shear. However, the provisions of the 2PKT and the five-

spring model are derived for simply supported beams and are not directly applicable to the 

case of beams loaded with multiple point loads. Modifications are made in this chapter to the 

2PKT and the five-Spring model to enable them to be applied to the tested beams.   

Subsequently, deformation measurements obtained using DIC and LVDTs are used to assess 

the ability of the 2PKT and the five-spring model to describe the deformations of the tested 

beams. The estimated ultimate strength, load-deflection curves and crack kinematics 

obtained from the five-spring model are also compared with the experimental results. Finally, 

the contribution of each shear resisting mechanism to resistance is calculated using the five-

spring model as well as crack displacements derived from DIC measurements. The latter 

contributions are evaluated using a range of models from the literature, which are reviewed 

in Chapter 2. 

5.2. Description of Beams Deformation Using 2PKT 

The 2PKT gives acceptable estimations of the full displacement fields of simply supported 

deep beams during tests (Mihaylov et al., 2013). The accuracy of the predictions depends on 

the accuracy of the obtained deformation measurements and the model assumptions. Using 

DIC increases the accuracy of the measured deformations and allows the use of finer 

deformation grids than originally employed by Mihaylov (2013). In this section, the two 



Shear Enhancement in RC Beams Loaded on the Tension Face  Shear Transfer Mechanisms 

 

196 
 

parameters of the theory (the average strain 휀𝑡,𝑎𝑣𝑔  and the shear displacement ∆𝑐) are 

derived from DIC and LVDT measurements obtained during the tests as shown in Figure 5.1. 

The 2PKT and the five-spring model make use of the same assumptions and methodology to 

evaluate beam deformations (the parameters 휀𝑡,𝑎𝑣𝑔 and ∆𝑐). This is discussed below for the 

two configurations shown in Figure 5.1. 

 

Figure 5.1: Instrumentation used to calculate parameters of the 2PKT for beams loaded on a) 

the compression face and b) the tension face. 

5.2.1. Deformation of beams loaded on the compression face 

Apart from the second point load, this case is similar to the original configuration assumed in 

the 2PKT (Mihaylov et al., 2013). To calculate the average strain 휀𝑡,𝑎𝑣𝑔 , the rotation of the 

rigid body 𝜑𝑏𝑙𝑜𝑐𝑘  was first determined as follows: 

𝜑𝑏𝑙𝑜𝑐𝑘 =
(𝐿𝑉𝐷𝑇#3 − 𝐿𝑉𝐷𝑇#4)

𝐿ℎ
 

Equation 5.1 

In which LVDT#3 and #4 depict the horizontal displacements measured at these transducers 

(see Figure 5.1) and 𝐿ℎ is the vertical distance between the two transducers. The block 

rotation 𝜑𝑏𝑙𝑜𝑐𝑘  and the crack angle (α) can be used to calculate the average strain in the 

tension reinforcement (휀𝑡,𝑎𝑣𝑔) (Kueres, 2018) as follows: 

휀𝑡,𝑎𝑣𝑔 = 𝜑𝑏𝑙𝑜𝑐𝑘 .
𝑑

𝑙𝑡
 

Equation 5.2 

𝑙𝑡 = 𝑑 cot 𝛼 + 𝑆𝑐𝑟  Equation 5.3 

a) Beams loaded on the compression face  

b) Beams loaded on the tension face  

L’h 
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𝑆𝑐𝑟 =
∅ℎ

40𝜌𝑙𝑑
 

Equation 5.4 

The spacing between the radial cracks 𝑆𝑐𝑟  (named 𝑆𝑚𝑎𝑥 in the 2PKT) is expressed in terms of 

the longitudinal reinforcement ration 𝜌𝑙; the effective depth 𝑑 and the diameter of the bar 𝜙 

(refer to Figure 2.17 in Chapter 2 for the description of 𝑙𝑡, 𝜑𝑏𝑙𝑜𝑐𝑘 , 𝑆𝑐𝑟  etc.). The relative vertical 

displacement between DIC#1 and DIC#2 constitutes the shear displacement  ∆𝑐 for beams 

loaded on the compression face.  

A grid with an element size of 50mm was used to assess the ability of the 2PKT to describe 

the experimentally observed deformed shape of beams loaded on the compression face. To 

eliminate free body displacements, the measured deformations for compression face loading 

were corrected as follows: 

1. The 2PKT assumes the reference plane (shown in Figure 5.1) remains vertical with no 

flexural rotation. Test measurements showed that this reference plane rotated in the 

tests (refer to Figure 5.2). Measured rotations and displacements were corrected for 

beams loaded in the compression face by tracking two points in the original reference 

plane to calculate the correction angle (see Figure 5.2). Correction for the balanced 

cantilever beams is described later in section 5.2.2 

 

Figure 5.2: Correction of the rotation for beams loaded on the compression face 

2. While the bottom support should ideally be fixed in the vertical direction, small 

vertical displacements were recorded during the test (in location DIC#3 for beams 

loaded in the compression), which indicated a max settlement of the support 

(between 0.7 to 1.23 mm). This settlement was subtracted from the measured vertical 

deformations to obtain the beam deformation relative to the support. 

 Assumed reference plane  Actual reference plane 
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Using measured parameters 휀𝑡,𝑎𝑣𝑔 and ∆𝑐, the deformed shape can be evaluated using the 

2PKT as described by Equation 2.81 to Equation 5.5: (see section 2.4.2 of Chapter 2) 

 For points below the crack (Fan part with radial cracks – refer to Figure 2.18 in Chapter 

2) 

δ𝑥(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. 𝑥 Equation 5.2 

δ𝑧(𝑥, 𝑧) =
휀𝑡,𝑎𝑣𝑔. 𝑥

2

ℎ − 𝑧
 

Equation 5.3 

 For points above the crack (Rigid body block – refer to Figure 2.18 in Chapter 2) 

δ𝑥(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. (ℎ − 𝑧) cot 𝛼 Equation 5.4 

δ𝑧(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. 𝑥 cot 𝛼 + ∆𝑐 Equation 5.5 

Comparisons were made at three different load stages: 

1. After the appearance of first visual cracks (around 0.5 to 0.6𝑉𝑚𝑎𝑥), 

2. An intermediate point between the first crack and the failure load (around 0.75𝑉𝑚𝑎𝑥), 

3. Just prior to failure (around 0.95𝑉𝑚𝑎𝑥).  

The measured and predicted displacements are compared below in Figure 5.3 for beam AC0 

(0.5/0.5) which was loaded on the compression face. The measured deformation 

(deformation × 30) obtained from the DIC was drawn as shown in Figure 5.3. The deformed 

locations of the grid calculated using the 2PTK was plotted in blue circle (deformation × 30). 

As seen from the figure, predictions given by the 2PKT were reasonably accurate for beams 

loaded on the compression face, particularly for stages (1) and (2) described above where the 

average error between predicted and measured deformation was around ∓10%. For stage 

(3), where more flexural and shear cracks appeared, the error increased to around ∓20%. The 

2PKT also gave accurate predictions for the maximum deformation. As cracks widen, errors 

in predicted displacements increase in the cracked concrete as shown in Figure 5.3 – c. It can 

be seen that for beams loaded on the compression face, the deformations were reasonably 

accurately predicted for up to 95% of the maximum failure load, particularly for the rigid body 

where no flexural cracks appeared. 
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a) At 0.50Vmax 
 

 

b) At 0.75Vmax 

 

c) At 0.95Vmax 

Figure 5.3: Comparison between the 2PKT and the measured deformation for beam AC0 

(0.5/0.5) – Deformation X30 
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The maximum measured resultant deformation at location (0,-500) obtained using the DIC 

system during the test was plotted against the deformation predicted using the 2PKT for 

beams AC0 (0.5/0.5) and AC200 (0.5/0.5) loaded on their compression face. Comparison in 

Figure 5.4 shows good agreement between the measured and predicted deformation with 

the 2PKT slightly overestimating the deformation at early stages of the load and 

underestimating it at near failure. 

  

Figure 5.4: Comparison between measured and predicted maximum deformation at location 

(0,-500) of beams loaded on the compression face 

5.2.2. Deformation of beams loaded on the tension face 

For the double cantilever beams, the block rotation 𝜑𝑏𝑙𝑜𝑐𝑘  obtained using Equation 5.1 should 

be corrected to account for the global rotation 𝜑𝑔𝑙𝑜𝑏𝑎𝑙  of the beam due to the test 

configuration as mentioned earlier in Chapter 4.  Corrections regarding both the rotation and 

measured displacements due to the global rotation were carried out as follows.  

The global rotation 𝜑𝑔𝑙𝑜𝑏𝑎𝑙  can be obtained from (refer to Figure 5.1 – b). 

𝜑𝑔𝑙𝑜𝑏𝑎𝑙 =
(𝐷𝐼𝐶#1 − 𝐷𝐼𝐶#2)

𝐿′ℎ
 

Equation 5.6 

In which 𝐷𝐼𝐶#1 and 𝐷𝐼𝐶#2 measure the horizontal displacement at the centre of the beam. 

Length 𝐿ℎ
′  is the vertical distance between 𝐷𝐼𝐶#1 and 𝐷𝐼𝐶#2. In a few occasions, 

measurements LVDT#3 or #4 were not available and hence the block rotation 𝜑𝑏𝑙𝑜𝑐𝑘  was 

alternatively calculated using DIC#4 and #5. It can be seen from Figure 5.5 that these two 

methods give similar results. 
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Figure 5.5: Block rotation calculated using LVDTs and DIC for beams AT0 (0.5/0.5) 

The corrected block rotation 𝜑′𝑏𝑙𝑜𝑐𝑘  is the difference between the total block rotation and 

the global rotation of the beam: 

𝜑′𝑏𝑙𝑜𝑐𝑘 = 𝜑𝑏𝑙𝑜𝑐𝑘 −𝜑𝑔𝑙𝑜𝑏𝑎𝑙  Equation 5.7 

The shear displacement for the double cantilever beams was calculated using the provisions 

given by Kueres (2018) described in Figure 5.6. The shear deformation 𝛿𝑡 (equivalent to ∆𝑐 in 

this work) is the difference between the corrected total measured displacement 𝛿𝑡𝑜𝑡𝑎𝑙  and 

the flexural displacement 𝛿𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 , or: 

∆𝑐= 𝛿𝑡𝑜𝑡𝑎𝑙 − 𝜑
′
𝑏𝑙𝑜𝑐𝑘

. 𝑥∆𝑐 Equation 5.8 

In which 𝑥∆𝑐 is the distance from the origin to the location where 𝛿𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙  is measured. In 

this research, corrected total displacement was measured using LDTV#7 or DIC#3 positioned 

at a distance 𝑥∆𝑐 from the support, as shown in Figure 5.7. The corrected total displacement 

𝛿𝑡𝑜𝑡𝑎𝑙  was calculated using Equation 5.9 below. The second term in this equation is the 

deformation resulting from the global rotation (𝛥𝑠𝑢𝑝𝑝 is the support displacement). 

𝛿𝑡𝑜𝑡𝑎𝑙 = LDTV#7 (or DIC#3) − 𝜑𝑔𝑙𝑜𝑏𝑎𝑙 . 𝑥∆𝑐 − 𝛥𝑠𝑢𝑝𝑝 Equation 5.9 
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Figure 5.6: Calculations of the degrees of freedom for double cantilever beams (Kueres, 

2018). Figure reproduced with permission of the rights holder, KUERES, D. A. 

 

Figure 5.7: Calculation of the shear displacement for corrected double cantilever beams 

If the original provisions of the 2PKT for calculating the deflected shape are used for beams 

loaded on their tension face, the resulting displacements are less accurate than obtained for 

LDTV#7   
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beams loaded on their compression face. Figure 5.8 shows the deformation of beam CT0 

(0.6/0.4) loaded on its tension face. The significant appearance of the blue lines particularly 

from the inner shear span to the edge of the beam shows a noticeable reduction in the 

accuracy of predictions compared to Figure 5.3, where almost no blue lines appeared. The 

source of this error is investigated in the next section where a refinement is proposed to the 

2PKT for the tested cantilever beams, with two point loads in the shear span.  

 

Figure 5.8: The Deformed shape of beam CT0 (0.6/0.4) obtained with original 2PKT at 0.95 

𝑉𝑚𝑎𝑥  (deformation X30) 

5.2.3. Modification of the 2PKT’s description of the deformation for the double 

cantilever beams 

Kueres (2018) reported that in his slab test, which had a comparable configuration to the 

setup of the balanced cantilever beams; the centre of rotation (CoR) of the rigid body is not 

at the centre of the loading point (Point A) in Figure 5.8 as assumed in the 2PKT which partially 

corrects for this by introducing a shear displacement at A.  

Kueres (2018) determined the centre of rotation for reinforced concrete slabs with variable 

thicknesses failing in punching. He found that the experimentally observed location of the 

CoR varies dependent on the slenderness of the slabs (or the span to effective depth ratio). 

For regular slender slabs, the location of the CoR is approximately at the crack tip; however, 

this was not the case for compact slabs and footings. This assumption has been examined for 

Point A: Assumed location of CoR in the 2PKT 

 

Accurate zone 
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beams loaded on the tension face using the methodology given by Kueres and described as 

follows: 

The deformed location of the bottom corner (𝑥𝑜𝑢𝑡
′ , 𝑧𝑜𝑢𝑡

′ ) is given by the intersection of the 

lines 𝑧𝑤(𝑥) and 𝑧𝑟(𝑥) (see Figure 5.9). Kueres showed that the equation of the deformed 

horizontal line 𝑧𝑤(𝑥) can be expressed as: 

 

Figure 5.9: Location of the centre of rotation based on measured deformation (Kueres, 

2018). Figure reproduced with permission of the rights holder, KUERES, D. A. 

 

𝑧𝑤(𝑥) = 𝑎𝑤𝑥 + 𝑏𝑤  

𝑎𝑤 = − tan(𝜑′𝑏𝑙𝑜𝑐𝑘) 

𝑏𝑤 = −𝛿𝑤,𝑜𝑢𝑡 − 𝑎𝑤 . 𝑥𝑤.𝑜𝑢𝑡  

Equation 5.10 

While the equation of the deformed vertical line can be expressed as: 
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𝑧𝑟(𝑥) = 𝑎𝑟𝑥 + 𝑏𝑟  

𝑎𝑟 = cot(𝜑′𝑏𝑙𝑜𝑐𝑘) 

𝑏𝑟 = 𝑧𝑟,𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑎𝑟 . (𝑙 2⁄ + 𝛿𝑏𝑜𝑡𝑡𝑜𝑚) 

Equation 5.11 

The corrected rotation 𝜑′𝑏𝑙𝑜𝑐𝑘  (refer to Figure 5.7) was calculated with Equation 5.7. 

Deformation  𝛿𝑤,𝑜𝑢𝑡 is the vertical displacement near the bottom edge at the 

location (𝑥𝑤,𝑜𝑢𝑡), while 𝛿𝑡𝑜𝑝 and 𝛿𝑏𝑜𝑡𝑡𝑜𝑚 are the top and bottom horizontal deformations at 

the end of the beam. 𝑧𝑟,𝑏𝑜𝑡𝑡𝑜𝑚  Is the vertical ordinate of the bottom horizontal LVDT. The 

previously mentioned measured displacement was corrected for the global rotation 𝜑𝑏𝑙𝑜𝑐𝑘 . 

Solving the above equations yields the following location of the bottom corner after rotation 

𝑥𝑜𝑢𝑡
′ =

𝑏𝑤 − 𝑏𝑟
𝑎𝑟 − 𝑎𝑤

 
Equation 5.12 

𝑧𝑜𝑢𝑡
′ = 𝑎𝑟 (

𝑏𝑤 − 𝑏𝑟
𝑎𝑟 − 𝑎𝑤

) + 𝑏𝑟  
Equation 5.13 

Kueres showed that the dimensions 𝑆𝐶𝑅 ,𝑡𝐶𝑅  and the angle 𝛽𝐶𝑅  shown in Figure 5.9 can be 

obtained as (Kueres, 2018): 

𝑆𝐶𝑅 = √(
𝐿

2
− 𝑥𝑜𝑢𝑡

′ )
2

+ (𝑧𝑜𝑢𝑡
′ )2 

Equation 5.14 

𝑡𝐶𝑅 =
𝑆𝐶𝑅

2. tan (
𝜑𝑏𝑙𝑜𝑐𝑘
′

2 )

 
Equation 5.15 

𝛽𝐶𝑅 = arctan (
(𝐿/2 − 𝑥𝑜𝑢𝑡

′ )

−𝑧𝑜𝑢𝑡
′ ) 

Equation 5.16 

The actual location of the CoR of the rigid region of beams loaded on their tension face can 

be obtained using Equation 5.10 to Equation 5.16. The position varies as shown in Figure 5.10 

for the tested cantilever beams. The results in Figure 5.10 show that the CoR was located 

above its assumed location in the 2PKT (black dots in the figure indicate locations of the CoR 

for loads greater than 60% of the failure load and the arrow describes the direction of the 

movement of the CoR during the test). The consequence of the CoR being positioned above 

the x-axis was that a clockwise rotation of the rigid body is associated with a global horizontal 

displacement of the rigid body to the left. This horizontal shift was also noted by Kueres (2018) 

in his analysis of compact punching specimens. The great shift of the CoR in the horizontal 

displacement of beam BT200 (1.0/0), loaded with a single point load closer to the support, 
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indicated that the shear displacement was dominant, which agrees with the load 

configuration.  

 
AT0 (0.5/0.5) 

 
AT200 (0.5/0.5) 

 
BT200 (0.5/0.5) 

 
BT200 (1.0/0) 

 
BT200 (0/1.0) 
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BT200 (0.3/0.7) 

 
CT0 (1.0/0) 

 
CT200 (1.0/0) 

 
CT0 (0.6/0.4) 

 
CT200 (0.6/0.4) 

Figure 5.10: CoR for beams loaded as double cantilever beams 

As discussed previously, the vertical shift of the CoR above the x-axis evident in Figure 5.10 

indicates that a clockwise rotation of the rigid body below the diagonal failure crack 

introduces a global horizontal displacement of the rigid body to the left. This movement is 
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not captured by the 2PKT, which assumes that the CoR of the rigid body is positioned at point 

A in Figure 5.8. To illustrate the effect of the upwards shift in CoR, the variation of corrected 

horizontal displacement is plotted in Figure 5.11 at 0.95𝑉𝑚𝑎𝑥  for beam CT0 (1.0/0). The 

horizontal displacements are plotted along vertical planes positioned at x= -150, 0, 50, 150 

and 350mm. The horizontal displacement is seen to be zero at the reference vertical plane at 

the centreline of the support (x = -150 mm) as required as well as at x = 0. The displacement 

at the lowest ordinate of z = 50 mm is mainly due to axial shortening of the flexural 

compression zone of the beam. The positions of the CoR in Figure 5.10 are based on horizontal 

displacements measured using DIC along the line at x = -150 .Consequently, the positions of 

the CoR shown in Figure 5.11 relate to the horizontal displacement of the bottom of the free 

body at x = 0 in Figure 5.11.  

  

 

 

Figure 5.11: The variation of corrected horizontal displacement along the height of beam 

CT0 (1.0/0) 

The 2PKT defines the deformation of the rigid body below the shear crack, in Figure 5.8, in 

terms of a rotation about the intersection of the diagonal failure crack with the extreme 

flexural compression fibre (point A in Figure 5.8) and a uniform vertical shear displacement. 

Comparison of the measured and calculated displacements in Figure 5.3 and Figure 5.8 shows 

that the displacements calculated using these kinematics are more accurate for the 

compression face loaded beams of Series A than for CT0 (0.6/0.4), which is representative of 

the tension face loaded beams with two point loads. Furthermore, the shear displacement is 

not zero throughout the fan zone as assumed in the 2PKT, neither is the distribution of tensile 

strain in the reinforcement is uniform as assumed in the 2PKT. As shown below, the rigid body 

 

CL 
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coordinates are better estimated if calculated in terms of rotations about the true CoR shown 

in Figure 5.10. In this approach, deformations of the rigid body in the 𝑥 and 𝑧 directions are 

calculated as: 

𝛿𝑥 = 𝜑𝑏𝑙𝑜𝑐𝑘
′ . (𝑧 + 𝑧𝐶𝑜𝑅) 

𝛿𝑧 = 𝜑𝑏𝑙𝑜𝑐𝑘
′ . (𝑥 + 𝑥𝐶𝑜𝑅)  

Equation 5.17 

Where 𝑥𝐶𝑜𝑅 and 𝑧𝐶𝑜𝑅  define the position of the CoR. 

Figure 5.12 shows the resulting deformations of the rigid body coordinates of beam CT0 

(0.6/0.4) calculated again at 0.95𝑉𝑚𝑎𝑥. The displacement of the rigid body is seen to be well 

predicted by this approach with predictions much better than in Figure 5.8. 

 

 

Figure 5.12: Corrected deformation of beam CT0 (0.6/0.4) calculated using actual CoR at 

0.95 𝑉𝑚𝑎𝑥  (deformation X30) 

Unlike the 2PKT, which divides the deformed shape into a fan shaped arrangement struts and 

a rigid body, Figure 5.12 suggests that the deformed shape of beams loaded in two-point 

loads on their tension face can be divided into three parts: the fan zone, the rigid body and 

an intermediate zone. The fan zone is similar to the one defined in the 2PKT and its 

deformation can be described in terms of the average strain 휀(𝑡,𝑎𝑣𝑔) using equations 

Equation 2.81 and Equation 5.3 from the 2PKT. The deformation of the rigid body can be 

described solely in terms of the rotation about the actual CoR as shown above. 
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Figure 5.8 shows that the deformation of the intermediate zone in Figure 5.12 is not well 

predicted if calculated using Equation 2.81 and Equation 5.3 of the 2PKT. The reason for this 

is explained by the DIC displacements, which show that, for beams with two-point loads 

applied on the tension face, an additional secondary crack propagates inside the fan shape 

between the support and the inner shear plane. Although this crack was not critical, it 

introduced a “partial” shear displacement (∆𝑐
′ ) for this zone (see Figure 5.13) which needs to 

be included in the equation of its vertical deformation. 

 

 

Figure 5.13: Suggested deformation of beams with two-point loads on the tension face 

To validate this assumption, Figure 5.14 shows the variation of the measured vertical 

deformation with height in the critical shear span of beam CT0 (0.6/0.4) from 𝑥 = 50 𝑡𝑜 𝑥 =

 

Original fan zone (2PKT) 

Introduced secondary displacement 
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1200 mm. Two clear shifts in the vertical deformations can be distinguished in Figure 5.13. 

These shifts correspond to the locations of the two shear cracks in the beam and support the 

idea of introducing a vertical shear displacement into the equation of vertical displacement 

for the intermediate zone. Hence, to describe the deformation of the intermediate zone, 

which is treated as a fan shape in the original model, a constant shear displacement is 

introduced as follows: 

δ𝑥(𝑥, 𝑧) = 휀𝑡,𝑎𝑣𝑔. 𝑥 Equation 5.18 

δ𝑧(𝑥, 𝑧) =
휀𝑡,𝑎𝑣𝑔 . 𝑥

2

ℎ − 𝑧
+ ∆′𝑐 

Equation 5.19 

Where ∆′𝑐 is the first shear displacement shown in Figure 5.14. To evaluate ∆′𝑐, locations of 

DIC#3 and 𝐿3 shown in Figure 5.1 were used instead of LVDT#7 and 𝑥𝑜𝑢𝑡 used to estimate ∆𝑐 

earlier in Equation 5.8. 

 

Figure 5.14: Variation of vertical deformation in the shear span with the height of double 

cantilever beams with two-point loads 

Figure 5.14 also validates the assumption of the rigid body made by Mihaylov in the 2PKT 

(2013). The figure shows that the vertical deformation is constant in the rigid zone for a given 

horizontal distance (𝑥). The final deformed shaped of beam CT0 (0.6/0.4) after introducing 

this modification is shown in Figure 5.15. It can be seen that the accuracy of the predictions 

First Shear disp. 

 

The Rigid Body 

Second Shear disp. 

Main shear crack 

Secondary shear crack 
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is enhanced significantly for the intermediate and rigid zones after introducing these 

modifications. The predictions for the other cantilever beams at 0.95𝑉𝑚𝑎𝑥  are presented in 

Figure 5.16. 

 

Figure 5.15: Final corrections for the deformed shaped of beam CT0 (0.6/0.4) at 0.95 

𝑉𝑚𝑎𝑥  calculated using modified 2PKT (deformation X 3) 
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Figure 5.16: Comparison between the 2PKT and the measured deformation (X30) for beams 

loaded on their tension face at 0.95𝑉𝑚𝑎𝑥  

The maximum vertical displacement at (𝑎𝑣,𝑐𝑟𝑡, −500) of the shear span measured using the 

DIC system was compared to displacement calculated using the modified provisions of the 

2PKT for beams loaded as double cantilevers. The comparison shown in Figure 5.17 shows 

good agreement between the measured and predicted displacements with the modified 

provisions slightly underestimating the displacement near failure. 
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Figure 5.17: Comparison between measured and predicted maximum deformation of beams 

loaded as a double cantilever 

Overview 

As demonstrated in Figures 5.10 to 5.12, the 2PKT does not fully describe the observed 

displacement of the double cantilever beams tested in this research. This is particularly the 

case for beams with two-point loads where a shear displacement developed within the fan 

shaped region of the 2PKT that is not accounted for in the 2PKT. Additionally, the location of 

the CoR of the rigid body below the diagonal failure crack was found to lie vertically above 

the x-axis. This implies that the rigid body displaced horizontally to the left as it rotated as 

previously observed in compact punching specimens by Kueres and Hegger (2018). 

Comparisons of Figure 5.8 (without corrections) and Figure 5.12 (with corrections) for beam 

CT0 (0.6/0.4) shows that these modifications improved the predicted deformation 

significantly compared to the original provisions. Further confirmation is provided by Figure 
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5.16 and Figure 5.17, which show that the 2PKT produced reasonable estimates of the 

measured displacements when modified to account for the intermediate shear displacement 

and upwards shift of the CoR.  

5.3. Assessing Beam Strength and Shear Transfer Actions 

Using the Five – Spring Model 

The five-spring model provides a full description of the beam deformation, ultimate strength 

and load-deflection response (Mihaylov, 2015). Deformations are obtained based on the two 

parameters 휀𝑡,𝑎𝑣𝑔 and ∆𝑐 and failure is governed by crushing of the concrete in the critical 

loading zone (CLZ). While the procedures described in the five-spring model are relatively 

simple and give accurate estimations, these procedures need modifications to be applicable 

for beams with multiple point loads. This section highlights these differences and suggests 

some modifications.   

For beams with two-point loads near the support, failure can theoretically occur along either 

the inner or outer shear plane. In order to estimate the failure load and to predict the load-

deflection response, both of the shear planes should be investigated to determine the critical 

plane. Some terms in the model depend on the strains in particular locations, like the flexural 

tensile force, the crack opening and the dowel contribution. For one point load within the 

shear span, the five-spring model assumes 휀𝑡,𝑎𝑣𝑔 to be uniform along the shear span. 

However, the equation for average strain requires modification when a second point load is 

introduced within the shear span (see Table 5.1 for the step strain profile). Equations to 

estimate strains, flexural tensile forces and shear strength are modified consequently as 

shown in Table 5.1. 

Using the provisions givens in Table 5.1, the ultimate load, load-deflection response and the 

shear transfer mechanisms can be estimated. As mentioned earlier, the shear strength of 

beams with two-point loads in the shear span must be evaluated for both shear planes to find 

the critical section. The 2PKT assumes the minimum and maximum reinforcement tensile 

forces 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥  are equal, while the five-spring model reduces 𝑇𝑚𝑎𝑥 due to the 

contribution of the stirrups. The strain for beams with a pair of point loads varies based on 

the load configuration, hence, for simplicity; the reduction of the strain due to the 

contribution of the stirrups is ignored in these calculations. The solution procedure for 
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estimating the ultimate shear strength is summarized in Figure 5.18 below with further details 

given in Chapter 2. Table 5.2 shows the predictions of the shear strength and failure plane for 

test beams using the five-spring model. The strength of beams with two-point loads was taken 

as the least corresponding to failure along each shear plane (depicted as predicted failure 

load in Table 5.2). The failure load was also calculated based on the “actual” shear failure 

plane observed in the tests. It can be seen that the model correctly predicts the failure planes 

for the majority of beams loaded with two-point loads except for two beams (namely AT200 

(0.5/0.5) and BT200 (0.5/0.5)), which are notionally similar. The accuracy of the strength 

predictions is very good, particularly for beams with two-point loads. Interestingly, the 

estimated failure loads were also good for beams where the critical shear plane was falsely 

predicted. The accuracy of the predictions for beams with single point load was good (Mean 

= 0.88 and COV = 10) but less accurate compared to predictions of beams with two-point 

loads (Mean = 0.97 and COV = 11). Table 5.2 also compares the measured and predicted 

maximum displacement for the tested beams. It can be seen that the 2PKT underestimated 

the total displacement for all the tested beams. 
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Table 5.1: Modification of the five-spring model to account for beams with multiple point 

loads 

Beams loaded on the tension face Beams loaded on the compression face 

Failure of the outer shear span 

  

휀𝑡,𝑎𝑣𝑔

=
휀𝑡,1𝑎1 + 휀𝑡,2. (𝑎2 − 𝑎1)

𝑎2
 

Equation 5.20 

  

𝑇1 =
𝑃(𝑅1𝑎1 + 𝑅2𝑎2)

0.9𝑑
 

Equation 5.21 𝑇1

=
𝑃(𝑎2 − 𝑅1(𝑎2 − 𝑎1))

0.9𝑑
 

Equation 5.22 

𝛼𝜀 =
휀𝑡,2
휀𝑡,1

 

=
𝑃𝑅2𝑎2

𝑃(𝑅1𝑎1 + 𝑅2𝑎2)
 

Equation 5.23 𝛼𝜀 =
휀𝑡,2
휀𝑡,1

= 1.0 Equation 5.24 

𝑉𝑓𝑙𝑒𝑥 =
0.9𝑑. 𝑇1

 𝑅1𝑎1 + 𝑅2𝑎2
 

Equation 5.25 
𝑉𝑓𝑙𝑒𝑥 =

0.9𝑑. 𝑇1
 𝑎2 − 𝑅1(𝑎2 − 𝑎1)

 
Equation 5.26 

𝐿𝑏1𝑒 = 𝑅2𝐿𝑏1 Equation 5.27 𝐿𝑏1𝑒 = 𝐿𝑏1 Equation 5.28 
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Failure of the inner shear span 

 
 

𝑉𝑓𝑙𝑒𝑥 =
0.9𝑑. 𝑇1

 𝑅1𝑎1 + 𝑅2𝑎2
 

Equation 5.29 
𝑉𝑓𝑙𝑒𝑥 =

0.9𝑑. 𝑇1
 𝑎 1

 
Equation 5.30 

𝐿𝑏1𝑒 = 𝐿𝑏1 Equation 5.31 𝐿𝑏1𝑒 = 𝐿𝑏1 Equation 5.32 
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Figure 5.18: Solution procedures for estimating the ultimate shear strength using the five-

spring model 

Start

Estimate ∆𝑡

Caculate strains 휀𝑡,𝑎𝑣𝑔 𝑒𝑞. 2.90 , 휀𝑡,1𝑎𝑛𝑑 휀𝑡,2 (Table 5.1) 

Using equilibrium, calculate 𝑇1, 𝑇2 and 𝑉𝑓𝑙𝑒𝑥𝑢𝑟𝑒 (𝑇𝑎𝑏𝑙𝑒 5.1)

Calculate the shear actions:
- 𝑉𝐶𝐿𝑍:Based on Feenstra stress distrubution and eq. 2.94.

- 𝑉𝐶𝑖 : Based on the CDM and eq. 2.96.
- 𝑉𝑑: Based on the 2PKT model for built-in beam and eq. 2.97.

-𝑉𝑠 : Based on the stirrups strain and eq. 2.99.

𝑉𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =
𝑉𝐶𝐿𝑍 + 𝑉𝐶𝑖 + 𝑉𝑑 + 𝑉𝑠

𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
= 𝑉𝑓𝑙𝑒𝑥𝑢𝑟𝑒

End

YES 
NO 
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Table 5.2: Predictions of the shear strength and failure plane for test beams using the five-

spring models 

Beam V test (kN) 
Failure plane V Predicted/V test 

𝜹𝟐𝑷𝑲𝑻,𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅

𝜹𝒕𝒆𝒔𝒕
 

Predicted Actual 
Predicted 

plane 
Actual 
plane 

Si
n

gl
e 

p
o

in
t 

lo
ad

 

BT200 (1.0/0) 610 - - 1.01 1.01 0.68 

BT200 (0/1.0) 423 - - 0.78 0.78 0.84 

CT0 (1.0/0) 441 - - 0.91 0.91 0.99 

CT200 (1.0/0) 543 - - 0.83 0.83 0.80 

M
u

lt
ip

le
 p

o
in

t 
lo

ad
s 

AT0 (0.5/0.5) 449 Outer Outer 1.24 1.24 0.81 

AT200 (0.5/0.5) 733 Inner* Outer 0.92 1.01 0.76 

BT200 (0.5/0.5) 648 Inner* Outer 0.94 0.94 0.60 

BT200 (0.3/0.7) 528 Outer Outer 0.89 0.89 0.51 

CT0 (0.6/0.4) 378 Outer Outer 0.87 0.87 0.48 

CT200 (0.6/0.4) 502 Inner Inner 0.93 0.93 0.82 

AC0 (0.5/0.5) 539 Outer Outer 1.01 1.01 0.74 

AC200 (0.5/0.5) 742 Outer Outer 0.89 0.89 0.67 

    Mean 0.93 0.94 0.73 

    SD 0.11 0.11 0.14 

    COV 12.05 12.13 19.24 

* Falsely predicted failure plane. 
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The shear force transferred through the crack by the various shear transfer mechanisms was 

evaluated using the five-spring model. The model assumes a tri-linear response with three 

distinctive points: i) flexural cracking of the concrete, ii) formation of the first diagonal shear 

crack and iii) the sectional capacity of the beam using Level of Approximation III of MC2010 

(See Section 2.3.3). After diagonal shear cracking, the capacity of the beam is determined 

from consideration of the shear transfer mechanisms. This is based on the assumption that 

the shear transfer mechanisms are activated after the critical diagonal shear crack has 

formed. In this work, the third point of the tri-linear response (the sectional capacity of the 

MC2010) was disregarded, as the failure loads given by MC2010 for the majority of the beams 

were greater than the load required to form the critical crack in the tests. Hence, the response 

cannot be linear up to the MC2010 sectional capacity. To estimate the contribution of the 

shear transfer mechanisms and the load-deflection response, the following iterative 

procedure can be used (for an imposed displacement ∆): 

a) Calculate the flexural crack load 𝑉𝑐𝑟,𝑓𝑙𝑥   and the load forming the first diagonal 

crack 𝑉𝑐𝑟,𝑠ℎ with their corresponding deflection to plot the bilinear response. 

b) Estimate ∆𝑡 and calculate ∆𝑐= ∆ − ∆𝑡. 

c) Calculate strains 휀𝑡,𝑎𝑣𝑔, 휀𝑡,1 and  휀𝑡,2 using Table 5.1. 

d) Calculate equilibrium components (𝑇1, 𝑇2 and 𝑉𝑓𝑙𝑒𝑥). 

e) Find the contribution of the shear transfer actions. To calculate 𝑉𝐶𝐿𝑍, the user needs 

to choose a stress-strain formula for the compressive response of the concrete. 

Using ∆𝑐 , 휀𝑐,𝑚𝑎𝑥 can be calculated from Equation 2.93. In this work, the Feenstra 

model (1993) was adopted for concrete compressive behaviour. 

f) If the difference between the summation of the shear transfer actions 𝑉𝑎𝑐𝑡𝑖𝑜𝑛𝑠  and the 

corresponding shear force from equilibrium 𝑉𝑓𝑙𝑒𝑥  is less than the acceptable error, the 

imposed displacement ∆ and the shear force  𝑉𝑓𝑙𝑒𝑥  will be plotted in the non-linear 

part of the curve. Otherwise, return to step b) to estimate a different value of ∆𝑡. 

g) Increase ∆ and repeat steps (b) to (f) until the full load-deflection response is obtained, 

including the post-peak response. 

The contributions of the different shear transfer mechanisms estimated using the five-spring 

model are presented in Figure 5.19. The dominant component was the contribution of the 

CLZ and the least effective component was the dowel contribution. The upper limits of the 
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dowel and shear reinforcement mechanisms governed their contribution for the majority of 

the beams. The selected model for the aggregate interlock (the Contact Density Model (Li, 

1989)) relates the shear resistance provided by aggregate interlock to the ratio 𝛾 between 

the crack sliding and opening displacements (detailed description of the model is available in 

Chapter 2). The crack opening is proportional to the sliding in the five-spring model; this 

resulted in a nearly constant value of 𝛾. The contribution of the CLZ is related to the selection 

of the stress-strain relationship of the concrete uniaxial compressive strength. The choice of 

stress-strain relationship for the concrete in the CLZ is not specified in the five-spring model. 

In this work, the parabolic stress distribution described later in Chapter 6 (Feenstra, 1993) 

was selected to model this behaviour. 
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Figure 5.19: Shear transfer mechanisms evaluated using the five-spring model 

Figure 5.19 shows that, with the exception of CT0 (0.6/0.4), the greater part of the shear force 

is resisted by the CLZ with the other contributions relatively independent of load post 

cracking. In the post-peak phase of the response, the contribution of the CLZ reduced while 

the rest of the components remained almost constant. In beam CT0 (0.6/0.4), which failed 

outside the shear enhancement zone without shear reinforcement, the dominant 

contribution was aggregate interlock. The dowel contribution was limited and the 

contribution of the shear reinforcement increased as the shear span to effective depth 

increased. As well as prediction of the ultimate load and critical shear plane, the five-spring 

model was used to evaluate the load-deflection response for the tested beams. For double 

cantilever beams, to obtain the value of the absolute deflection, corrections described in 
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Section 5.2.2 were implemented. For beams where the predicted failure plane was different 

from the actual ones, load-deflection curves based on the predicted failure plane were 

compared to the actual deformation at the corresponding plane obtained from the DIC to 

facilitate the comparison. 

Figure 5.20 compares the measured load-deflection responses of the tested beams with those 

obtained using the five-spring model. It can be seen from the figure that the five-spring model 

gives reasonable predictions of the response, especially for the pre-peak response. The post-

peak part of the load-deflection response was poorly modelled for the majority of the beams. 

As shown later, the post-peak of the load-deflection response in the five-spring model is 

mainly governed by the CLZ. 
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Figure 5.20: Predictions of the load-deflection response of the test beams using the five-

spring model 

5.4. Validation of Crack Kinematics Assumed in the 2PKT and 

the Five – Spring Model 

Section 5.2 assessed the ability of the 2PKT model to describe the experimentally observed 

deformations of the beams in terms of experimentally derived values of 𝜑𝑏𝑙𝑜𝑐𝑘  and 휀𝑡,𝑎𝑣𝑔 . 

The experimentally measured rotation of the rigid body 𝜑𝑏𝑙𝑜𝑐𝑘  was used to calculate the two 

parameters of the theory as described in the literature (Mihaylov et al., 2013, Kueres, 2018). 

However, when estimating the ultimate load and deflection in 5.3, the rotation 𝜑𝑏𝑙𝑜𝑐𝑘  and 

the shear displacement ∆𝑐 were outputs of the solution procedure. The measured block 
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rotation and shear displacement were compared with the estimated values from the 2PKT. 

Experimentally measured rigid body rotations of double cantilever beams and shear 

displacements were corrected to account for the global rotation of the beam about the 

support. Figure 5.21 compares the measured and estimated rotation 𝜑𝑏𝑙𝑜𝑐𝑘  of the rigid body 

in the 2PKT.  
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Figure 5.21: Comparison between the measured and estimated rotation of the rigid body in 
the 2PKT 

Figure 5.21 shows that the 2PKT consistently underestimates the measured rotation of the 

rigid body. Despite this, the 2PKT broadly captures the measured trend of experimental 

behaviour well in term of the rotation of the rigid body. This is illustrated in Figure 5.22 (a) 

and (b) which show, respectively, rigid body rotations of beams in series 𝐴 obtained 

experimentally and from the 2PKT. Both the measured and predicted rotations are greater 

for the beams of Series A loaded on the compression face than tension face. In addition, there 

are negligible differences in rotation, both experimental and predicted, between beams with 

and without shear reinforcement with the difference least for beams loaded on the 

compression face (beams AC0 (0.5/0.5) and AC200 (0.5/0.5)). The 2PKT relates the flexural 
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displacement to the average tensile strain in the rebar for a given crack angle. The average 

tensile strain is calculated based on the flexural equilibrium of the free body, hence, for a 

similar load configuration, the rotation will be the same for a given beam regardless of the 

presence of the shear reinforcement. This is due to the assumption that 𝑇𝑚𝑖𝑛 ≈ 𝑇𝑚𝑎𝑥, which 

neglects the reduction on the tensile force due to the presence of stirrups for beams without 

shear reinforcement. 

 

 

Figure 5.22: Rotation of the rigid body of beams in series A obtained (a) experimentally and 

(b) from the 2PKT 

The negligible influence of shear reinforcement on the rigid body rotation evident in 

Figure 5.22, particularly for compression face loading, is also apparent in Figure 5.23 for 

beams CT0 (1.0/0) and CT200 (1.0/0), without and with shear reinforcement respectively. 

Both these beams were loaded with a single point load. The rigid body rotations were also 

very similar for beams CT0 (0.6/0.4) and CT200 (0.6/0.4) without and with shear 

reinforcement respectively. Beam CT0 (0.6/0.4) failed in the outer shear plane while beam 

CT200 (0.6/0.4) failed in the inner shear plane. Hence, the rotation of the rigid bodies was 

slightly different. This difference was reflected in the experimental rotation and was captured 
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by the 2PKT as can be seen in Figure 5.23 – b. In the 2PKT, the rotation of the rigid body 

increases with the decrease of the crack angle, hence, it is expected to see the rotation of the 

rigid body of beam CT0 (0.6/0.4), failing in the outer shear span, greater than the rotation in 

beam CT200 (0.6/0.4) failing in the inner shear span. 

 

 

Figure 5.23: Rotation of the rigid body of beams in series C obtained (a) experimentally and 

(b) from the 2PKT 

The effect of applying loads on the outer shear plane of beams in series B (in addition to beam 

AT200 (0.5/0.5) depicted here as AT200 (0.6/0.4) to reflect the actual, rather than intended, 

loading ratio) was studied using the 2PKT kinematics. Applying loads in the outer shear plane 

increased the rotation of the rigid body due to the increase in the flexural displacement; this 

increment was proportional to the amount of the load applied in the outer shear plane. While 

the 2PKT clearly demonstrated this increment in rotation in Figure 5.24 – b, the observed 

increment in the rotations from the test (Figure 5.24 – a) was less noticeable for higher values 

of loads in the outer shear plane. 
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(a) 

 

(b) 

Figure 5.24: Rotation of the rigid body of beams in series B obtained (a) experimentally and 

(b) from the 2PKT 

Figure 5.25 compares the measured and estimated shear displacement in the 2PKT. Unlike 

the rotation of the rigid body, which was underestimated by the 2PKT. Figure 5.25 shows that 

the estimated shear displacements were sometimes greater that the measured ones during 

the test (in four beams) and sometimes greater at late stages of the tests. The estimated shear 

displacement were more accurate compared to the estimated rotations particularly for 

beams AT200 (0.5/0.5), BT200 (0.5/0.5), BT200 (0.3/0.7), CT200 (1.0/0) and CT200 (0.6/0.4), 

which all had shear reinforcement. The Interaction between the estimated block rotation and 

shear displacement with the estimated crack kinematics is discussed next. 
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Figure 5.25: Comparison between the measured and estimated shear displacement in the 

2PKT 

The underestimation of the rotation of the rigid body by the 2PKT suggests that the crack 

displacements might be underestimated by the 2PKT. As stated in Chapter 2, the crack 

opening in the 2PKT varies linearly along the length of the crack while the crack sliding due to 

the shear displacement is constant. However, the observed kinematics reported in Chapter 4 

do not support this. The crack opening takes a parabolic shape which is in agreement with 

similar tests and suggested formula for the crack opening (Poldon et al., 2019). In order to 

facilitate the comparison, measured crack opening and sliding at mid-height of the crack were 

compared to the mid-height values calculated using the 2PKT. The crack opening and sliding 

in the 2PKT are given by Equation 2.91 and Equation 2.92 in Chapter 2. The comparison 

between measured and estimated crack displacements is presented for the test beams in 

Figure 5.26.  
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Figure 5.26:  Comparison between measured and estimated kinematic using the 2PKT for the 

test beams 

Although the calculated block rotations were less than the measured ones (see Figure 5.21), 

the comparison in Figure 5.26 shows that the estimated crack opening and sliding were 

greater than measured ones at the mid-height of the beam. This is largely due to the dominant 

contribution of the shear displacement, which was typically close to or greater than the 
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measured displacement, as shown in Figure 5.25. However, the calculations of the crack 

opening and sliding depend on the crack orientation, whether these were obtained from the 

DIC (Campana et al., 2013) or calculated using the 2PKT. For DIC calculations, crack kinematics 

at the mid-height of the beam were obtained using the actual orientation of the crack at that 

location, while a fixed angle 𝛼 was used in the 2PKT based on the assumption that the crack 

runs directly between the support and the critical loading plate. To investigate the effect this 

assumption on the crack kinematics, the observed and assumed crack patterns were 

compared for the tested beams. For example, the actual and assumed orientation of the 

critical diagonal crack are compared in Figure 5.27 for beam BT200 (0.5/0.5).  Figure 5.27 

shows that the assumed orientation can vary noticeably from the observed one, which can 

have a significant influence of the magnitude of the crack opening and sliding displacements 

as shown in Figure 5.28. 

 

Figure 5.27: Comparison of the orientation of the actual critical crack and the 2PKT assumed 

critical crack – Beam BT200 (0.5/0.5) 

Figure 5.28 assesses the sensitivity of the crack kinematics of the 2PKT to the crack angle for 

beam BT200 (0.5/0.5). In Figure 5.28, the crack opening and sliding were calculated using 

equations of the 2PKT and varying the crack angle 𝛼. The figure demonstrates that, for a given 

load step, block rotation and shear displacement, the crack kinematics varies significantly 

depending on the value of the crack orientation. Hence, it is possible that, even if the 

measured block orientation and shear displacement were greater than the calculated ones, 

the measured crack opening and sliding can be less than the calculated one, based on the 

crack orientation at mid-height of the beam. 

 

Actual critical crack 

Assumed critical crack 
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Figure 5.28: Sensitivity of the crack kinematics at mid height to the selection of the crack 

angle for beam BT200 (0.5/0.5) at 0.8𝑉𝑚𝑎𝑥 

To study the effect of using the mid-height crack displacements to determine the contribution 

of aggregate interlock, the measured and predicted variation of the critical shear crack 

displacements were compared over height of the tested beams. Typical results are shown for 

beam BT200 (0.5/0.5) in Figure 5.29 at 0.8Vmax. This comparison suggests that the 2PKT values 

are overestimated. 
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(a) Crack opening (b) Crack sliding 

Figure 5.29: Variation of the crack kinematics along the height of the critical crack of beam 

BT200 (0.5/0.5) at 0.8𝑉𝑚𝑎𝑥  

The CDM was used to calculate the shear stress along the critical diagonal crack in terms of 

the displacements along the crack. The results are shown in Figure 5.30 for beam BT200 

(0.5/0.5) at 0.8Vmax. Figure 5.30 also shows shear stresses calculated in terms of the measured 

and calculated mid-height crack displacements shown in Figure 5.29. The total vertical shear 

force along the crack was found to be 35.7 kN by summing the contribution of each crack 

segment. Calculating the shear force in terms of the mid-height shear stress determined from 

measured crack displacements gives a very similar shear force of 38.0 KN.  Use of the 

calculated mid-height crack displacements gives a slightly higher shear force of 45.68 KN. 
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Figure 5.30: Shear stress along the crack calculated using variable and mid-height crack 

kinematics at 0.8𝑉𝑚𝑎𝑥  – Beam BT200 (0.5/0.5) 

5.5. Shear Transfer Actions Based on Other Models in the 

Literature 

The shear strength calculated using the five-spring model is the summation of the 

contributions of the shear transfer mechanisms. The calculated strength depends on the crack 

kinematics and the assumed constitutive models for shear transfer actions. There were 

noticeable differences between the measured and estimated rotations and crack kinematics 

as shown earlier. Yet, the five-spring model gave accurate estimations for the ultimate loads 

and deformations of the test beams.  

Equilibrium is always ensured in the five-spring model since the sum of the contributions of 

the shear transfer mechanisms is equated to the shear force derived from moment 

equilibrium in the shear span. The deformation parameters c and t,avg link the shear resisting 

contributions to the external force. The model can give good predictions, even if the 
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contributions of individual mechanisms are not well predicted, so long as the various errors 

compensate for each other. 

Determination of the individual contributions of each shear resisting mechanism is subject to 

error resulting from inaccuracies in measured crack kinematics and modelling assumptions. 

These uncertainties have been investigated by the author (Elwakeel et al., 2018) for similar 

short span beams with multiple point loads (Fang, 2013) as well as the beams tested in this 

research. This study shows that implementing different models for the same shear transfer 

mechanism can lead to significant differences in the estimations. In extreme cases, the 

differences can be up to a factor of ten as shown in Figure 5.31. A merit of the five-spring 

model over simply summing the contributions of each shear resisting mechanism determined 

from measured crack displacements and measured strains is that equilibrium is always 

satisfied in the five-spring model as discussed above.  

  

Beam A2 from Fang (2013)(Elwakeel et al., 

2018) 

Beam CT0 (1.0/0) 

a) Different models of aggregate interlock 



Shear Enhancement in RC Beams Loaded on the Tension Face  Shear Transfer Mechanisms 

 

245 
 

  

Beam A2 from Fang (2013)(Elwakeel et al., 
2018) 

Beam CT0 (1.0/0) 

b) Different models of dowel contribution 

Figure 5.31: Aggregate interlock and dowel contributions estimated using different models 

The shear transfer actions were calculated from consideration of free body diagrams like that 

shown Figure 5.32. In beams loaded with two-point loads, the sum of the shear forces acting 

on the failure plane should ideally be equal to the load applied on the outer plate as shown 

in Figure 5.32. 
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Figure 5.32: Shear transfer actions in a free body diagram of a beam with two-point loads 

5.5.1. S-w curves of the tested beams 

The shear transfer actions in the tested beams were estimated again using alternative shear 

resisting models from the literature and the actual crack shape and kinematics. For this 

purpose, the two-phase Walraven model was used to determine the contribution of 

aggregate interlock. This model is widely used and has been studied by several researchers 

(Campana et al., 2013, Ulaga, 2003, Guidotti, 2010). As mentioned in Chapter 2, the model 

assumes that the crack sliding (s) occurs after the full development of the crack opening (𝑤). 

Guidotti (2010) suggested that only part of the crack opening (𝑤0) is necessary for the sliding 

to initiate, after which both the crack opening and sliding increase at an angle  (𝛾 =

arctan (𝑤𝑓/𝛿) ) where 𝑤𝑓 = 𝑤 − 𝑤0. Ulaga (2003), on the other hand, assumed that cracks 

initiate at an angle (𝛾) with 𝑤0 = 0. The reader is referred to Chapter 2 for further discussion 

of the crack kinematic models. 

This discussion has been revisited for the test beams. From the test results, the angle 𝛾 of the 

s-w curves depended on the location along the crack where the kinematics were measured. 

For instance, the crack sliding was more dominant for gauges near the compression face. This 

was the case for beams loaded on both the tension and compression face as shown in 

Figure 5.33, which shows the crack kinematics obtained using the DIC for beam AC0 (0.5/0.5) 

and AT200 (0.5/0.5). 
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Figure 5.33: s-w curves for beam AC0 (0.5/0.5) and AT200 (0.5/0.5) 

Figure 5.33 also shows that for some locations along the crack, the kinematics can lead to an 

initial crack opening 𝑤0 before the crack sliding initiates, while for other locations in the same 

beam the initial crack opening 𝑤0is not clearly defined. Instead of using all the images 

processed during the test with a frequency of 0.2 Hz as in Figure 5.33, the initial crack opening 

𝑤0 and angle α were obtained along the crack length at steps of 0.1𝑉𝑚𝑎𝑥, as described earlier 

in Chapter 4. The results are shown in Figure 5.34 below. 
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Figure 5.34: s-w curves for the test beams based on average readings 

The majority of the beams in Figure 5.34 had an initial crack opening 𝑤0, prior to sliding, as 

suggested by Guidotti (2010). However, the initial crack opening was very small for the 

majority of the beams; hence, it is safe to assume that the Ulaga description (2003) fits the 

observed kinematics. The results of some of the beams (beams AC0 (0.5/0.5), AC200 (0.5/0.5), 

AT0 (0.5/0.5) and CT0 (0.6/0.4)) suggested that these beams had an initial crack sliding prior 

to crack opening. This unrealistic finding is attributed to the fact that the kinematics in Figure 

5.31 are based on averaging results of the gauges along the crack length and the fit line can 

be affected by scattering of the response, particularly near failure. In conclusion, the 

kinematics assumed by Walraven in his original model do not match the measured 

kinematics. Furthermore, the angle 𝛾 of the s-w curves was influenced by the location along 

the crack where the kinematics were measured.  

The kinematics described by Walraven and Ulaga are special cases of those described by 

Guidotti (Guidotti, 2010). If the angle 𝛾 of the s-w curve is set to zero in the Guidotti model, 
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the kinematics follow the original Walraven model while if 𝑤0is set to zero, the kinematics 

follow Ulaga’s provisions. For the test results shown in Figure 5.34, the kinematics of Ulaga 

are closest to the observed behaviour. The influence of 𝛾 on the shear resistance provided by 

aggregate interlock was investigated by calculating the shear resistance provided by 

aggregate interlock along the failure crack using the methods of Walraven, Ulaga and 

Guidotti. Figure 5.35 shows that there are only minor differences between the predictions of 

Walraven, Ulaga and Guidotti for beams AC0 (0.5/0.5) and BT200 (1.0/0) despite the two 

beams having very different s-w curves. No significant crack opening occurred before sliding 

in beam AC0 (0.5/0.5) unlike BT200 (1.0-0) where 𝑤𝑜 was significant.  As shown in Figure 5.35, 

the original Walraven model provides an upper limit while the kinematics proposed by Ulaga 

represent a lower limit, as also shown by (Campana et al., 2013). The behaviour shown in 

Figure 5.32 is representative of that in the other tested beams.  

  

Figure 5.35: Contribution of the aggregate interlock calculated using provisions suggested by 

Walraven, Guidotti and Ulaga for a) beam AC0 (0.5/0.5) and b) BT200 (1.0-0). 

5.5.2. Results of the shear transfer actions 

For the shear transfer mechanisms, the Walraven model (1980) was selected to estimate the 

contribution of aggregate interlock in the tested beams. The contribution of aggregate 

interlock was calculated by integrating the vertical component of the crack shear stress and 

normal stress along the failure shear crack. The total aggregate volume of the concrete was 

taken as 0.75 of the total volume of the concrete as suggested by Walraven (1980) while the 

coefficient of friction was taken as 0.4. As stated earlier in Chapter 3, the maximum aggregate 

size was 20mm. For consistency, the dowel contribution was calculated using the model of 

(Walraven and Reinhardt, 1981) which is a refinement of that originally proposed by Walraven 

(1980). The shear displacements at locations where the diagonal crack intersected the flexural 
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reinforcement as well as the crack opening parallel to the direction of the stirrups were 

obtained using DIC. These measurements were used to obtain the dowel force and the 

stirrups contributions respectively. The contribution of the shear reinforcement was 

estimated using the Sigrist two-step bond model (1995) while the contribution of the critical 

loading zone was estimated using the five-spring model (2015). Figure 5.36 shows the shear 

transfer actions for the test beams during the tests. 
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Figure 5.36: Shear transfer actions for test beams 

It can be seen that, unlike the five-spring model, the summation of the mechanisms can lead 

to a shear resistance greater than the actual applied shear force in the majority of the tests. 

In beams AT0 (0.5/0.5), AT200 (0.5/0.5) and BT200 (0.5/0.5) the estimated resultant shear 

force carried by aggregate interlock, dowel action and the stirrups (if applicable) was greater 

than the total applied load. Although these three beams are similar to beams AT0 (0.5/0.5) 

without shear reinforcement, this overestimation cannot be directly linked to one 

mechanism. While the contribution of the aggregate interlock seems overestimated for 

beams AT0 (0.5/0.5) and AT200 (0.5/0.5), the contribution of the stirrups seems noticeably 

higher in beam BT200 (0.5/0.5). As mentioned earlier, these differences can occur even for 

identical beams because of the sensitivity of the models to the crack kinematics and 

orientation. Generally, the contribution of the shear reinforcement and dowel action 

increased with the increase of the shear span to depth ratio, while the contribution of the 

flexural compression zone was greater for beams with shorter span to depth ratios and when 

greater loads were applied closer to the support. 
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5.5.3. Shear transfer actions based on equilibrium 

As appears in Figure 5.36, the total shear force calculated with different models can 

sometimes be greater than the actual total shear force. To maintain vertical equilibrium, the 

contribution of the compression zone is sometimes defined from the vertical equilibrium of 

the rigid body as the force not expressed by the other mechanisms (Fang, 2013, Elwakeel et 

al., 2018). The contribution of the compression zone in Figure 5.37 was calculated based on 

vertical equilibrium considering the free body shown in Figure 5.32. 
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Figure 5.37: Shear transfer actions at failure based on equilibrium 

The behaviour of beams with pairs of point loads loaded on the tension and compression face 

(the first four beams) is compared below in terms of their shear transfer mechanisms. The 

contributions of dowel action and aggregate interlock were greater in beams loaded on the 

tension face. The increased contribution of the aggregate interlock and dowel action for 

tension face loading resulted from the higher values of the crack sliding compared to beams 

loaded on their compression face. The dowel action contribution was obtained by adding the 

contributions of each layer of reinforcement calculated independently. This requires further 
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consideration but maybe an overestimate as the model used for the dowel contribution 

assumes dowel action to be of minor importance and does not provide an upper limit for it 

(Walraven and Reinhardt, 1981). Other models, for example, the five-spring model, limit the 

contribution to either formation of plastic hinges in the bar or failing of the concrete cover. 

For beams of series B, Beam BT200 (1.0/0), where the load was only applied near to the 

support, the majority of the applied force was carried by arching action as shown in 

Figure 5.36 with negligible contribution from other shear actions. For beams failing in the 

outer shear plane in series B (Beams BT200 (0.5/0.5), BT200 (0.3/0.7) and beam BT200 

(1.0/0)), the proportion of load resisted by aggregate interlock increased as the load applied 

near the support increased. This can be attributed to the increase in the normal stress due to 

the confinement provided by the inner load. Figure 5.38 presents the crack kinematics for 

beams in series B failing in the outer shear plane for 𝑎𝑣2 < 2𝑑. The legend shows the 

percentage of the load applied closer to the support (𝑃1/𝑃) to the load applied in the outer 

shear plane(𝑃2/𝑃). Increasing the load on the inner plate reduced displacements in the 

critical shear crack leading to a greater contribution of aggregate interlock. The contribution 

of the aggregate interlock for these beams during the test are presented in Figure 5.39. 

  

Figure 5.38: Comparison of the crack kinematics for beams failing in outer shear plane inside 

(2d) 
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Figure 5.39: The contribution of the aggregate interlock for beams in series B during the test. 

5.6. Conclusions 

The use of DIC facilitated the validation of the provisions given by the 2PKT to predict the full 

displacement field of the shear span during tests. The two parameters of the theory were 

experimentally obtained using either actual or virtual LVDTs to examine the proposed 

deformation given by the 2PKT. Using measured rotation (𝜑𝑏𝑙𝑜𝑐𝑘) and shear displacement 

(∆𝑐), the 2PKT gave accurate predictions of the deformation for beams loaded on the 

compression face and less accurate predictions for beams loaded on the tension face. 

Modifications of the theory for beams loaded on the tension face were introduced to account 

for the shear displacement resulting from the secondary shear crack and the actual location 

of the CoR. The modified approach gave significantly better perditions of the deformation for 

beams loaded on the tension face. 

The strength, load-deflection responses and the shear transfer mechanisms of the test beams 

were evaluated using the five-spring model. The model provided very good predictions with 

an average accuracy of the predictions for beams with two-point loads  = 0.97 and COV = 11, 

while the average accuracy of the predictions for beams with single point load = 0.88 and COV 

= 10. The load-deflection response was governed by the CLZ as the rest of the contributions 

were either restricted to an upper limit or nearly constant. In the post-peak response, the 
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contribution of the CLZ reduced significantly, while the rest of the components remained 

constant, and hence, the post-peak response was more softened than what was 

experimentally observed. 

The contributions given by the five-spring model for the tested beams were generally 

sensible. The governing contribution for all of the short beams was the contribution of the 

CLZ as expected, while for beam CT0 (0.6/0.4), which failed outside the shear enhancement 

zone without shear reinforcement, the dominant contribution was the aggregate interlock. 

The dowel contribution was limited and the contribution of the shear reinforcement 

increased as the shear span of the critical failure increased. The two kinematic parameters 

estimated by the model were assessed using the test results. It appeared that there were 

noticeable differences between the measured and estimated rotations and crack kinematics. 

Yet, the five-spring model gave accurate estimations for the ultimate loads and deformations 

of the test beams.  

The contributions of the mechanisms were also calculated using various models available in 

the literature. The Walraven model (1980) was used to estimate the contribution of the 

aggregate interlock and the dowel contribution. The contribution of the shear reinforcement 

was estimated using the two steps bond model (Sigrist, 1995) while the contribution of the 

critical loading zone was estimated using the five-spring model (2015).  

The contributions of dowel action and aggregate interlock were greater in beams loaded on 

the tension face. These increased contributions resulted from crack sliding being greater than 

in comparable compression face loaded beams. The contribution of the aggregate interlock 

for beams failing in the outer shear span increased as the load applied closer to the support 

increased. This was linked to the increase in the normal stress due to the confinement 

provided by the inner load, which was experimentally observed. The contribution of the 

dowel action was the least significant while the stirrups were more effective as the shear span 

to effective depth increased. 

Determination of individual contribution of the different mechanisms included some 

uncertainties associated with the accuracy of the obtained crack kinematics and the model 

assumptions. Regardless of this, these models can still be used to compare the contributions 

of the shear mechanisms in test beams as long as the same model for each component has 

been used for all of the beams.
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CHAPTER 6. NON-LINEAR FINITE ELEMENT (NLFE) 

METHODOLOGY 

6.1. Introduction 

Experimental investigation is essential for the development of improved design methods for 

reinforced concrete beams loaded in shear. However, experimental investigation is expensive 

and time-consuming with benefit subject to adequate selection of loading and boundary 

conditions. Properly calibrated nonlinear finite element analysis (NLFEA) can be used to 

identify key parameters influencing behaviour such as loading arrangement, beam geometry, 

concrete strength and support conditions. This helps in deciding on the critical parameters to 

be investigated in laboratory investigations thereby significantly reducing costs and 

enhancing the usefulness of test results. NLFEA can be further refined after testing to conduct 

parametric studies on non-investigated parameters. 

This chapter provides a brief background to NLFEM with emphasise on the smeared crack 

model and the software used in this research (DIANA v10.2 (DIANA, 2017)). Relevant material 

models available in DIANA are discussed for concrete (compressive, tensile and shear 

behaviour) and reinforcement (embedded and bond-slip reinforcement models). Meshing 

considerations are also discussed (element types, mesh size and modelling of loading plate) 

along with the solution procedures used. 

6.2. Discrete and Smeared Crack Modelling 

Cracked concrete is usually modelled using either discrete or smeared crack models. In 

discrete models, cracks are modelled as displacement discontinuities which can be simulated 

using interface element to separate adjacent elements. Conversely, smeared crack models 

treat cracked concrete as a continuum and the stress-strain relationships are derived 

accordingly (Rots, 1991). 

The respective advantages and disadvantages of discrete and smeared crack models have 

been much discussed since the early beginnings of crack modelling. The discrete crack model 

was introduced in 1967 (Ngo and Scordelis, 1967). It reflects the physical nature of the crack 

by identifying the crack as a true discontinuity. However, this representation does not readily 

fit within the finite element method as crack formation requires the introduction of a 

displacement discontinuity in the finite element mesh. Another drawback of the discrete 
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crack model is that it forces the crack to follow a predefined path along the element edges. 

Even so, the discrete crack can still be used in engineering problems where the crack path can 

be pre-imagined (e.g. notched specimens). 

 

Figure 6.1: Nodal separation in Smeared crack model 

The concept of smeared crack modelling was firstly introduced in the late 1960s by Rashid 

(Rashid, 1968) as an alternative to the discrete crack model. As mentioned earlier, the 

smeared crack model deals with cracked concrete as a continuum rather than introducing a 

physical discontinuity in the mesh. Although continuity is favourable in terms of mesh 

topology, and does not impose any restrictions on the crack path, it contradicts the physical 

nature of the material discontinuity in cracks. 

The principle of smeared cracks is justified by the existence of bands of micro-cracks in the 

concrete due to the concrete heterogeneity and the presence of the reinforcement. These 

bands of microcracks have even been recognised as a material property (Bažant, 1983). It is 

only at late stages of loading that those cracks link up to form macro cracks (Borst et al., 2004).  

Furthermore, in particular cases, the macrocracks take the form of smeared cracks as in large 

scale shear walls or panels with dense reinforcement. 

6.3. Smeared Crack Model 

In the smeared crack model, the initial isotropic stress-strain relationship is replaced by an 

orthotropic relationship after crack formation. This orthogonality not only permits a free 

orientation of the initial crack but also preserves the topology of the finite element mesh.  

The axis of orthotropy is determined from the initial crack orientation. After crack formation, 

shear stress can be transferred across cracks through aggregate interlock, and hence, the 

principal stress direction may no longer align with the initial orientation of the crack. The 

orientation of the crack is assumed to be either fixed following the initial crack orientation 
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“fixed-crack model” or the crack may be allowed to co-rotate with the axis of the principal 

strain “rotating-crack model”. A hybrid model between the rotating and fixed crack model is 

the “multi-direction crack model”. 

6.3.1. Fixed smeared crack model 

In fixed crack models, the crack orientation along the crack path is fixed to the initial crack 

orientation. As mentioned before, when a crack propagates, forces can develop in the crack 

surface as the angle of principal stresses deviates from the initial crack orientation.  

In the early days of smeared crack modelling the normal and shear stiffness moduli were set 

to zero upon crack formation in the stiffness matrix causing the crack normal and shear force 

to disappear once the crack is initiated. This not only ignores the tensile and shear forces 

transmitted through cracks but also introduces numerical difficulties imposed by the strong 

discontinuity due to this sudden switch (Rots and Blaauwendraad, 1989).  

Accordingly, values other than zero for the stiffness moduli after crack formation have been 

introduced by many researchers with different reduction approaches for both shear and 

normal stiffness. Further details regarding direct and shear stiffness reduction factors are 

explained in sections (6.4.1) and (6.4.3). 

One of the main merits of the fixed crack model is its consideration of the force transmitted 

through crack surfaces. This is particularly important for members without shear 

reinforcement where a significant portion of the shear force may be transferred through 

cracks (Campana et al., 2013, Mihaylov et al., 2013, Mihaylov et al., 2015). However, 

determining the optimum shear model and its associated values (e.g. the shear retention 

factor) can be troublesome (De Borst and Nauta, 1985, Sagaseta, 2008).  

6.3.2. Multi-directional fixed smeared crack model 

In a multi-directional fixed smeared crack model, the crack orientation is fixed to the initial 

crack orientation and the angle of the principal stresses axis is permitted to rotate up to a 

limiting criterion. After this criterion is violated, a new crack is initiated following the rotation 

of the principal stress, giving rise to the term multi-directional crack model. 

In order to fully formulate a constitutive multi-direction crack model; criteria for the crack 

initiation should be defined along with the stress-strain relationship. A crack is initiated when 

the following two criteria are violated simultaneously: 
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 The principal tensile stress exceeds the tensile strength of the concrete, and 

 The angle between the crack orientation and the axis of the principal stresses exceeds 

a threshold angle. 

On violation of these criteria, a new crack is initiated and the previous crack data are erased 

from memory, unlike the fixed crack model where the initial crack preserves its orientation 

up to the end of the analysis (DIANA, 2017). 

In order for the above two conditions to occur simultaneously, it is possible that the principal 

tensile stress may temporarily become significantly larger than the tensile strength before the 

angle between the crack orientation and the axis of the principal stresses exceeds the 

threshold angle (De Borst and Nauta, 1985). Therefore, attention should be paid when 

defining the threshold angle. An angle of 600 has been found to give reasonable predictions 

(DIANA, 2017, De Borst and Nauta, 1985, Sagaseta, 2008). 

The approach of multi-directional cracks is suitable for cases where the fracture is initiated in 

tension and subsequently proceeds in tension-shear. In this case, the initial crack orientation 

remains fixed for a certain period after which the crack angle rotates. 

The stress-strain relationship is generally defined in smeared crack models in terms of cracked 

concrete without any distinction between cracks and the solid concrete between cracks. 

Forces transmitted through a crack can better be studied using the crack strain instead of the 

total strain. For that reason, many researchers recognise the importance of decomposing the 

total strain (휀) into solid strain (휀𝑐𝑜𝑛) and cracked strains (휀𝑐𝑟) in the so-called principle of 

strain decomposition (Borst et al., 2004, Rots and Blaauwendraad, 1989, Bažant, 1983). 

 ∆휀 = ∆휀𝑐𝑟 + ∆휀𝑐𝑜𝑛 Equation 6.1 

One advantage of strain decomposition is that it allows the use of a separate decomposed 

crack model, which is a step closer to a discrete crack model. Decomposed crack models can 

also be used in combination with other nonlinear phenomena (e.g. plasticity, creep and 

shrinkage) (Rots and Blaauwendraad, 1989, De Borst and Nauta, 1985). 

Another important advantage of strain decomposition is that it allows the decomposed crack 

strain to be further sub-decomposed into a system of non-orthogonal cracks meeting in a 

sampling point (De Borst, 1987) 

 ∆휀𝑐𝑟 = ∆휀1
𝑐𝑟 + ∆휀2

𝑐𝑟 +⋯ Equation 6.2 
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6.3.3. Rotating smeared crack model 

As mentioned earlier, the axis of the principal stresses in a smeared model usually rotates 

after the formation of the initial crack. An alternative version of the smeared crack model is 

the rotating crack model which was first introduced by Cope (Cope et al., 1980) who 

suggested aligning the rotation of the material orthotropy with the crack orientation. A well-

known example of the rotating crack model is the modified compression field theory (Vecchio 

and Collins, 1986) which adopts the concept of coaxiality. 

Introducing material orthotropy directly causes misalignment of the principal stress and strain 

axes (Bažant, 1983). Therefore, the direct use of the stress-strain relationship is inconsistent 

without any correction of this misalignment. To enforce the coaxiality, a key condition must 

be satisfied regarding the tangential shear modulus G12 as follows: 

 
𝐺12 =

(𝜎11 − 𝜎22)

2(휀11 − 휀22)
 

Equation 6.3 

Where 𝜎11 and 𝜎22 are the initial principal stress and 휀11 and 휀22 are the initial principal strains 

in the 1, 2 directions. This condition is derived by maintaining the same change in rotations 

of the principal stress and strain axes in Mohr’s circle following a small strain increment (De 

Borst and Nauta, 1985). 

The concept of the rotating crack model can be extended to a multi-directional crack model 

by setting the threshold angle to zero with no tensile strength criterion and ignoring the 

previous crack history as new cracks form. Although this method is similar to the rotating 

crack method, it allows the use of the strain decomposition as in the multi-directional crack 

model. 

Overall, the fixed cracked model allows force to be transmitted through the crack surface by 

reducing the normal and tangential stiffness moduli after cracking. However, previous studies 

show that the choice of optimum shear retention model is not a straightforward task with 

investigation needed to determine which model and its associated variables are most suitable 

(Sagaseta, 2008, Amini Najafian et al., 2013). The multi-direction fixed crack model updates 

the crack orientation when the difference between the crack orientation and the principal 

stress exceeds a predefined threshold angle. This is of a great significance especially for 

tension-shear types of failure where the crack initiates in tension and then tends to rotate. 

Nevertheless, attention should be taken when deciding the threshold angle as poor choice 
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can cause the principal tensile stress to exceed the tensile strength of the concrete. In rotating 

crack models there are no restrictions on the crack orientation which is updated continuously 

in each load step. The main shortcomings of the concept of coaxiality as introduced in this 

model are that it fails to simulate behaviour in structures where shear slip or shear transfer 

along cracks is predominant (Vecchio, 2000), besides ignoring forces carried along the crack 

surface. 

6.4. NLFEA Using DIANA 

DIANA 10.2 classifies smeared crack models described in section (6.3) into two main 

categories: 

1. Total strain crack model which includes the fixed and rotating crack models without strain 

decomposition. 

2. The multi-directional crack model which involves strain decomposition. 

This section will briefly describe the different material models available in DIANA for its fixed 

and rotating total strain crack models. As described earlier the fixed crack model is suitable 

for cases where shear transfer through cracks is important (e.g. deep beams) and it has been 

reported to give good predictions in similar cases (Fang, 2013, Sagaseta, 2008). 

6.4.1. Compressive behaviour of concrete 

The total strain crack models in DIANA provide several constitutive models to simulate the 

compressive behaviour of the concrete beside the simple models (i.e. the linear elastic and 

multilinear models). Three material models for the compressive behaviour of the concrete 

are discussed in this section and their relevant equations are presented. These models are 

Hognestad parabolic curve (1951), Thorenfeldt curve (1987) and Feenstra parabolic curve 

(1993). 

The compressive behaviour of structural concrete depends mainly on the isotropic stress and 

lateral cracking. Models adopted in DIANA for the effect of lateral confinement and cracking 

will be discussed at the end of this section. 

 

 

 



Shear Enhancement in RC Beams Loaded on the Tension Face  NLFEA 

 

265 
 

Hognestad parabolic compression curve 

The axisymmetric parabolic curve proposed by Hognestad (1951) was one of the earliest 

compressive curves to take into account the softening behaviour of the concrete in 

compression. The whole stress-strain diagram in this curve is stress-dependent only with one 

defining parameter (the strain corresponding to the maximum compressive stress 𝛼𝑃). 

Equations describing this model are given below: 

 
𝑓 = −𝑓𝑐 (2

𝛼

𝛼𝑃
− (

𝛼

𝛼𝑃
)
2

) 
Equation 6.4 

 
𝛼𝑃 = −2

𝑓𝑐
𝐸

 
Equation 6.5 

 

Figure 6.2: Hognestad compression curve in DIANA (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

Thorenfeldt compression curve 

Thorenfeldt (1987) modified the simple compressive curve proposed by Popovic (1973) to 

also account for high strength concrete, especially in the post-peak response. The Thorenfeldt 

compression curve is presented in Figure 6.3. 

The relationship between the compressive stress 𝑓 and the strain 𝛼 is given as follows 

(notations are as described in Figure 6.3 above): 

 

𝑓 = −𝑓𝑃
𝛼

𝛼𝑃
(

𝑛

𝑛 − (1 −
𝛼
𝛼𝑃
)
𝑛𝑘) 

Equation 6.6 

In which  𝑛 = 0.8 +
𝑓𝑐𝑐

17
 and 𝑘 = {

1         𝑓𝑜𝑟 𝛼𝑃 < 𝛼 < 0
0          𝑓𝑜𝑟 𝛼 ≤ 0           
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Figure 6.3: Thorenfeldt compression curve in DIANA (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

Feenstra parabolic compression curve 

Feenstra (1993) proposed a material model for plain and reinforced concrete in which the 

failure mechanism is related to the growth of cracks at the micro-level. The internal damage 

caused by microcracks is modelled using internal parameters generally related to inelastic 

strains. The parabolic curve described by Feenstra is shown in Figure 6.4 below. 

 

Figure 6.4: Feenstra parabolic curve in DIANA (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

The stress-strain relationship in Figure 6.4 above is defined with three characteristic strain 

values: the strain 𝛼𝑐 3⁄  at which the stress in the concrete 𝑓 is third of the concrete 

compressive strength 𝑓𝑐 , the strain 𝛼𝑐 at which the stress in the concrete reaches the 

compressive strength and the strain 𝛼𝑢 at which the concrete is fully softened in compression. 

Equations for these strains are stated below: 

 
(
𝛼𝑐
3
) = −

1

3

𝑓𝑐
𝐸

 
Equation 6.7 
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𝛼𝑐 = −

5

3

𝑓𝑐
𝐸
= 5(

𝛼𝑐
3
) 

Equation 6.8 

 
𝛼𝑢 = 𝛼𝑐 −

3

2

𝐺𝑐
ℎ𝑓𝑐

 
Equation 6.9 

As can be seen from the above equations, the stress-strain relationship is independent of the 

compressive fracture energy 𝐺𝑐  up to the maximum concrete strength. After that, the strain 

depends on the fracture energy and the element size (ℎ). The stress-strain relationship is 

given by: 

𝑓 =

{
 
 
 
 

 
 
 
 −𝑓𝑐

𝛼

𝛼𝑐 3⁄
                                                                          𝑓𝑜𝑟 𝛼𝑐 3⁄ < 𝛼 ≤ 0     

−𝑓𝑐
1

3
(1 + 4(

𝛼 − 𝛼𝑐 3⁄

𝛼𝑐 − 𝛼𝑐 3⁄
) − 2(

𝛼 − 𝛼𝑐 3⁄

𝛼𝑐 − 𝛼𝑐 3⁄
)

2

)    𝑓𝑜𝑟 𝛼𝑐 < 𝛼 ≤ 𝛼𝑐 3   ⁄

−𝑓𝑐 (1 − (
𝛼 − 𝛼𝑐
𝛼𝑢 − 𝛼𝑐

)
2

)                                                  𝑓𝑜𝑟 𝛼𝑢 < 𝛼 ≤ 𝛼𝑐        

0                                                                                 𝑓𝑜𝑟 𝛼 ≤ 𝛼𝑢          

 Equation 6.10 

A significant advantage of the Feenstra model is that the compression softening behaviour 

depends on the compressive fracture energy 𝐺𝑐 thereby introducing a degree of mesh 

independency. The compressive fracture energy is usually obtained as a multiple of the tensile 

fracture energy 𝐺𝑓.  Feenstra used a value of 100 𝐺𝑓 for the compressive fracture energy 

(Feenstra, 1993) and DIANA suggests a value in the range of (50-100)  𝐺𝑓 (DIANA, 2017).  

Compression behaviour with lateral confinement 

The strength and ductility of concrete are highly affected by the level of confinement provided 

(Binici, 2005). This was first recognised by Richart who studied the failure in concrete subject 

to uniaxial, biaxial and tri-axial stress (Richart et al., 1928). Figure 6.5 below shows the 

increment of the compressive stress with the level of confinement. The failure surface cannot 

be reached at high tri-axial stresses. 

In experimental works, concrete under loading plates is usually subject to tri-axial stress. In 

2D plane stress elements, this confinement effect can be simulated in DIANA using the model 

proposed by Selby and Vecchio (Selby and Vecchio, 1997). This model is based on Hsieh-Ting-

Chen failure surface model which is used to evaluate the required compressive stress in the 

major direction in a biaxial or triaxial stress state. 
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Figure 6.5: influence of lateral confinement (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

One of the suggested solutions to simulate the confinement effect is to add out of plane 

reinforcement in the concrete adjacent to loading plates. However, this can result in 

numerical instabilities in the FEM (Selby and Vecchio, 1997). Another approach to deal with 

this effect is to increase the concrete strength locally beneath loading plates. This was done 

by Fang (2013) who found that adoption of Selby and Vecchio's model in DIANA did not 

prevent premature failure of the concrete adjacent to loading plates (Fang, 2013). Premature 

failure of the concrete adjacent to loading plates can also be avoided by providing an interface 

element between the loading plates and the concrete beneath as discussed in section 6.5 

Influence of lateral cracking on the compressive strength 

Vecchio and Collins (Vecchio and Collins, 1986) showed that the principal compressive stress 

in cracked concrete depends not only on the principal compressive strain but also on the co-

existing principal tensile strain. Cracked concrete experiences a reduction in both 

compressive strength and stiffness compared to its cylinder behaviour when subject to high 

tensile strains in a direction normal to the compression (Vecchio and Collins, 1986). 

Many strain softening models are proposed in the literature of which DIANA adopts the 

models of the Japanese Society of Civil Engineering model (2007), Vecchio and Collins (1986) 

and Vecchio and Collins (1993). These three models are briefly reviewed below. 

Japanese Society of Civil Engineering 

Transverse tensile strain and associated cracking reduces the concrete compressive strength. 

DIANA simulates this reduction by introducing stress and strain reduction factors 𝛽𝜎𝑐𝑟 =

𝛽𝜎𝑐𝑟(𝛼𝑙𝑎𝑡) and 𝛽𝜀𝑐𝑟 = 𝛽𝜀𝑐𝑟(𝛼𝑙𝑎𝑡). The parameter (𝛼𝑙𝑎𝑡) takes account of the internal damage 

caused by lateral cracking. Figure 6.6 shows the lateral reduction model proposed by the 

Concrete Standard Specification for Concrete Structures by the JSCE. The internal damage 



Shear Enhancement in RC Beams Loaded on the Tension Face  NLFEA 

 

269 
 

parameter (𝛼𝑙𝑎𝑡) here represents the total maximum tensile strain. The strain reduction 

factor 𝛽𝜀𝑐𝑟  is taken as 1.0. 

 

Figure 6.6: Lateral reduction model - JSCE(DIANA, 2017) - figure reproduced with permission 

of the rights holder, TNO-DIANA. 

Vecchio and Collins (1986) 

This is based on the Hognestad parabolic stress-strain relationship described earlier in section 

(6.4.1). The lateral reduction effect solely depends on the principal tensile strain 휀1. The 

tensile strain 휀0 is also kept unchanged here. The equation describing this model is presented 

below: 

 

Figure 6.7: Lateral reduction model - (Vecchio and Collins, 1986). . Figure reproduced with 

permission of the rights holder, ACI Structural Journal. 

 
𝛽𝜎𝑐𝑟 =

1

0.85 − 0.27
𝛼
𝛼𝑙𝑎𝑡

≤ 1 
Equation 6.11 

𝛽𝜎𝑐𝑟  is the compressive strength softening parameter due to lateral cracking and 𝛼𝑙𝑎𝑡  is the 

lateral strain. 

 

Hognestad (1951) 

Curve 

Reduced Curve 𝜷𝝈𝒄𝒓 

𝒇𝒄
′  
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Vecchio and Collins (1993) 

Vecchio and Collins extended their 1986 model for use with high and low strength concrete 

by changing the compression curve into the Thorenfeldt curve described in section (6.4.1). 

The Thorenfeldt curve was adopted since it gives a better correlation for high and low 

strength concrete (Vecchio and Collins, 1993). 

Vecchio and Collins (1993) proposed two alternative strength reduction factors. Approach A 

relates the reduction factor to both principal tensile and compressive strain while Model B 

just accounts for principal tensile strain. DIANA adopts Model B which can be described as: 

 
𝛽𝜎𝑐𝑟 =

1

1 + 𝐾𝑐
≤ 1 

Equation 6.12 

 𝐾𝑐 = 0.27(−
𝛼𝑙𝑎𝑡
휀0

− 0.37) Equation 6.13 

In this study, the model proposed by Vecchio and Collins (Vecchio and Collins, 1993) is used 

as it provided good estimates for similar studies (Sagaseta, 2008, Fang, 2013) based on the 

sensitivity analysis performed in section 6.8.3. 

6.4.2. Tensile behaviour of the concrete 

Concrete is usually treated as a softening material in both tension and compression. The 

stress-strain relationship is modelled in tension assuming elastic behaviour up to the tensile 

strength followed by a softening branch as in Figure 6.8 below (Hordijk et al., 1986). In the 

tension softening phase, the stress distribution in the concrete in the vicinity of the crack tip 

is associated with the deformation and softening characteristics.  

 

Figure 6.8: tensile behaviour of the concrete (Hordijk, 1992) 

In DIANA, the relation between crack stress (𝜎𝑛𝑛
𝑐𝑟 ) and the crack strain (휀𝑛𝑛

𝑐𝑟 ) in the softening 

branch is written as: 
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𝜎𝑛𝑛
𝑐𝑟 (휀𝑛𝑛

𝑐𝑟 ) = 𝑓𝑡 . 𝑦 (
휀𝑛𝑛
𝑐𝑟

휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 ) 

Equation 6.14 

In which 𝑓𝑡  is the tensile strength of the concrete and 𝑦(휀𝑛𝑛
𝑐𝑟 휀𝑛𝑛,𝑢𝑙𝑡

𝑐𝑟⁄ ) represents the general 

softening function. The softening function depends mainly on the tensile fracture energy (𝐺𝑓) 

– the energy required to form a unit area of a crack – and element size characterized by the 

crack bandwidth (ℎ). The fracture energy is modelled in DIANA using the following expression: 

 
𝐺𝑓 = ℎ∫ 𝜎𝑛𝑛

𝑐𝑟 (휀𝑛𝑛
𝑐𝑟 ). 𝑑휀𝑛𝑛

𝑐𝑟
𝜀𝑛𝑛
𝑐𝑟 =∞

𝜀𝑛𝑛
𝑐𝑟 =0

 
Equation 6.15 

It can be seen from Equation 6.15 above that the tensile fracture energy, and hence the 

tensile softening behaviour depends on the element size (or the crack bandwidth). The crack 

bandwidth was first introduced by Bazant (Bažant, 1983) as the width of a strip along the 

element representing the crack in which the strain is constant and equal to the crack strain. 

DIANA gives the user the option of calculating the crack bandwidth based on the element size 

automatically using formulae given by Rots (1988) or Govindjee (1995). Alternatively, the user 

may define the value of the crack bandwidth manually. The most common approach, 

however, is to use Rots approximation where the crack bandwidth is calculated in a two-

dimensional configuration as the square root of twice the total element size (Fang, 2013, 

Sagaseta, 2008). 

Tensile behaviour can be modelled in DIANA using the 16 alternative models shown in 

Figure 6.9. Details are presented below of the Hordijk model (Hordijk, 1992)which is used in 

this research. Details of the other models can be found in the DIANA Material library (DIANA, 

2017).  

Hordijk tensile softening model 

The nonlinear softening model of Hordijk (1992) has widely been used in NLFEA over the past 

two decades due to its good performance (Hendriks and A. de Boer, 2017, Fang, 2013). It is 

characterised by the ultimate crack strain (휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 ) at which the stress reduces to zero, and 

the reduced tensile strength (𝑓𝑡) as follows: 
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𝜎𝑛𝑛
𝑐𝑟 (휀𝑛𝑛

𝑐𝑟 )

𝑓𝑡
=

{
  
 

  
 
(1 + (𝑐1

휀𝑛𝑛
𝑐𝑟

휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 )

3

) 𝑒
(−𝑐

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 )

−⋯                        

휀𝑛𝑛
𝑐𝑟

휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 (1 + 𝑐1

3)𝑒−𝑐2               𝑓𝑜𝑟0 < 휀𝑛𝑛
𝑐𝑟 < 휀𝑛𝑛,𝑢𝑙𝑡

𝑐𝑟

 
           0                                    𝑓𝑜𝑟 휀𝑛𝑛,𝑢𝑙𝑡

𝑐𝑟 < 휀𝑛𝑛
𝑐𝑟 < ∞

 

Equation 6.16 

With 𝑐1 =3 and 𝑐2 =6.93. The ultimate strain (휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 ) and the reduced tensile strength (𝑓𝑡) are 

given by: 

 
휀𝑛𝑛,𝑢𝑙𝑡
𝑐𝑟 = 5.136

𝐺𝑓
𝑓𝑡ℎ

 
Equation 6.17 

 

𝑓𝑡 = (0.739
𝐺𝑓𝐸

ℎ
)

1
2

 

Equation 6.18 
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Figure 6.9: predefined tension softening for Total Strain crack models (DIANA, 2017) - figure 

reproduced with permission of the rights holder, TNO-DIANA. 
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6.4.3. Shear behaviour of the concrete 

In a fixed smeared crack model, the shear force can be transmitted through the crack surface 

by means of aggregate interlock and dowel action. As mentioned earlier in section (6.3.1), the 

shear stiffness is reduced in the FEA to consider the reduction in the shear strength due to 

the formation of cracks. This reduction can be modelled in DIANA using either constant or 

variable shear retention models. 

Constant shear retention models 

The constant shear retention model is commonly used to simulate the concrete behaviour in 

shear. It assumes a constant reduction based on a user-defined value for the shear retention 

factor (𝛽) – Figure 6.10 with a typical range of 0.1 to 0.2 (Rots, 1988, Sagaseta, 2008). 

 

Figure 6.10: Constant shear retention for total strain crack model (DIANA, 2017) - figure 

reproduced with permission of the rights holder, TNO-DIANA. 

Varying the shear retention factor can influence strength and stiffness noticeably. Several 

researchers conducted sensitivity studies to investigate this effect on the results of FEA in 

both 2D and 3D models. According to these studies (Fang, 2013, Eder et al., 2010, Rots and 

Blaauwendraad, 1989, Khwaounjoo et al., 2000) the shear strength and ductility increase with 

increasing shear retention factor. Experimental evidence suggests that the shear stiffness 

does not remain constant after cracking and reduces as the crack opens (Fang, 2013). 

Variable shear retention models 

Besides the constant shear retention model, DIANA offers several variable shear retention 

models where the shear stiffness reduces with the increase of the crack width. The Multi-

linear shear stress-strain model and the multi-linear shear retention strain model are solely 

user-defined models in which the key points of the diagram need to be defined by the user. 

The Damage based shear retention model is built on the work done by Selby and Vecchio 

(Selby and Vecchio, 1993) on modelling three dimensional reinforced concrete elements 
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where they consider the effect of lateral expansion. In the aggregate size based shear 

retention model, introduced by Hendriks in 2012, the shear stiffness tends to zero as the crack 

opens wider than half the mean aggregate diameter (𝑑𝑎𝑔𝑔). The shear retention factor is 

given by (Belletti et al., 2012, DIANA, 2017),: 

 
𝛽 = 1 − (

2

𝑑
)휀𝑛𝑛

𝑐𝑟 ℎ 
Equation 6.19 

DIANA includes various variable shear retention models including the Contact Density model 

(Li et al., 1989) and Maekawa Decay of Shear Transfer model (Maekawa et al., 2003). The 

Contact Density model (CDM) defines different relationships between the crack shear stress 

and the normalised crack strain for every crack shear direction in cases of loading or 

unloading. In DIANA, it is advisable to define a minimum value for the shear retention 

factor 𝛽𝑚𝑖𝑛 ≤ 0.01. If no value is assigned to 𝛽𝑚𝑖𝑛, this can yield a zero value for the shear 

stiffness. The Maekawa Decay of Shear Transfer model is identical to the Contact Density 

model but the crack shear stress obtained from the Contact Density model (𝜏𝑐𝑟) is further 

reduced if the crack shear strain (𝛾𝑐𝑟) exceeds a limiting value (𝛾𝑐𝑟,𝑢𝑙𝑡 ). The reduced crack 

shear stress is given by: 

 
𝜏𝐷𝑆𝑇
𝑐𝑟 = 𝜏𝑐𝑟 (

𝛾𝑐𝑟,𝑢𝑙𝑡
𝛾𝑐𝑟

)
𝑐

 
Equation 6.20 

The same recommendations regarding the minimum shear retention factor apply here also. 

DIANA also includes the variable shear retention model proposed by Al-Mahaidi (al-Mahaidi, 

1978) who linked the shear retention factor linearly to the total strain (휀𝑛𝑛) as follows: 

 
𝛽 = 0.4

𝑓𝑡
𝐸휀𝑛𝑛

 
Equation 6.21 

Where 𝑓𝑡  is tensile strength and E is the elastic modulus of the concrete. 

Discussion regarding the concrete shear behaviour in FEA 

The choice of the shear retention model has a significant influence on the behaviour of the 

FEM (Khwaounjoo et al., 2000). Although the constant shear retention model is often used in 

NLFEA, experimental evidence supports the use of variable shear retention models 

particularly for beams without shear reinforcement where the behaviour after cracking is 

governed by the crack roughness and kinematics. A constant shear retention model implies 

that the shear stiffness is constant after cracking regardless of the increase in the crack 

opening. On the other hand, several researchers claim that variable shear retention models 
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return overly high values for the shear retention factor resulting in overly stiff responses (Rots 

and Blaauwendraad, 1989, Sagaseta, 2008). However, these studies did not include any of the 

variable shear retention models adopted by DIANA. Using a constant shear factor is 

inconsistent with the experimental observation that the stiffness of shear transfer through 

aggregate interlock reduces with increasing crack width.  

6.4.4. Reinforcement modelling 

The interaction between the concrete and reinforcement in reinforced concrete is highly 

complex and depends on bond-slip between the reinforcement and concrete. There are two 

main approaches to model reinforcement in DIANA: embedded reinforcement and bond-slip 

model. 

Embedded reinforcement models 

Embedded reinforcement is modelled by adding stiffness to the mother concrete element in 

which the reinforcement is embedded. The embedded element does not have any extra 

degrees of freedom and its strain is obtained from the total strain of the mother element. 

This implies a perfect bond relationship between the embedded reinforcement and the 

surround mother elements (concrete). 

Embedded reinforcement can be modelled with either discrete embedded elements (bar 

reinforcement) or continuous embedded elements (grid reinforcement). Bar reinforcement 

is suitable for structural elements with widely dispersed reinforcement (e.g. beams 

without/with low shear reinforcement), whereas grid reinforcement is preferred in cases of 

large areas of evenly distributed reinforcement (e.g. solid slabs and beams highly reinforced 

for shear). 

The optimum selection of embedded reinforcement model (smeared or discrete) is case 

dependent. While the smeared model reduces the running time significantly, it fails to predict 

the actual crack patterns if used to model elements where the location of the critical crack is 

important such as short beams for example. This is due to the “smearing” of tensile stress 

within the shear span as reported by Sagaseta - Figure 6.11 (Sagaseta, 2008). Apart from 

predicting crack patterns. Sagaseta concluded that both of the embedded models discussed 

can be used to model short shear span beams failing in shear (Sagaseta, 2008). 
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Figure 6.11: Smeared and discrete models for reinforcement (Sagaseta, 2008) . Figure 

reproduced with permission of the rights holder, Sagaseta J. 

DIANA provides various material models for reinforcement of which the Von Mises Plasticity 

is most applicable for non-cyclic loading. A powerful feature that has been introduced in 

DIANA 10.2 for reinforcement modelling is the ability to input the full stress-strain curve data 

obtained from the tensile test of the reinforcement. 

Bond-slip reinforcement models 

As well as perfect bond, DIANA provides five alternative bond-slip reinforcement models in 

which the interaction between the reinforcement and the concrete (bond-slip relationship) 

can be defined.  The cubic bond-slip relationship proposed by Dorr (DÖRR 1980) is a 

polynomial function with a shear limit when the slip reach a certain value ∆𝑢𝑡
𝑜. The power law 

proposed by Naokowski (Noakowski 1978) is a stick-slip model of the shear-slip relationship. 

Similar to this model are the two models proposed by Shima et al. (Shima al. 1987). 

Bond-slip models can provide a realistic description of the interaction between the 

reinforcement and surrounding concrete, which is influenced by transverse and longitudinal 

cracks. Yet, as shown by Fang in Figure 6.13, the response of reinforced concrete beams can 

be realistically simulated assuming perfect bond between the reinforcement and surrounding 

concrete (Fang, 2013). 

 

Beam 

BL1 

Smeared 

reinforcement 

Discrete 

reinforcement 
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Figure 6.12: Bond-slip reinforcement models (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

 

Figure 6.13: Strain predictions in the reinforcement using the Von Mises plasticity model 

(Fang, 2013) 

6.4.5. Solution procedures for non-linear systems 

When concrete cracks, the relationship between the force and displacement vectors become 

nonlinear leading to a system of the nonlinear equations. Unless very small load steps are 

used, a purely incremental solution will often lead to inaccurate results (DIANA, 2017). In 

order to achieve equilibrium between external and internal forces, an incremental-iterative 

solution must be used. A typical iterative solution algorithm is shown in Figure 6.14 below. In 

an iterative process, the external load step  𝑓𝑒𝑥𝑡  is applied while the total displacement 

increment ∆𝑢 is kept to zero initially. The iterative displacement increment 𝛿𝑢 is obtained 
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using the out of balance force vector 𝑔. After obtaining the new internal force 𝑓𝑖𝑛𝑡 , if the error 

is within the assumed limit, the increment ends, otherwise, the out of balance force 𝑔 is used 

again to calculate the iterative increment 𝛿𝑢. 

 

Figure 6.14: Typical iterative process in NLFEA (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

DIANA presents three numerical methods for predicting the displacement increment (𝛿𝑢𝑖) 

and constructing the stiffness matrix. These methods are Newton–Raphson, Quasi-Newton 

and the Constant Stiffness method. The Newton-Raphson method has two subclasses: regular 

Newton-Raphson and modified Newton-Raphson. In the regular method, the stiffness matrix 

is updated at each iteration, which increases the processing time per iteration. However, 

convergence is obtained in relatively few iterations. The modified Newton-Raphson evaluates 

the stiffness matrix at the start of each load increment. This reduces the processing time per 
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iteration, yet, leads to a relatively higher number of iterations to converge. The Quasi-Newton 

method – also called the Secant method – evaluates the stiffness matrix from the last known 

position at the equilibrium path, unlike the previous Newton-Raphson methods. This sustains 

a balance between the number of iterations needed to reach convergence and iterations time 

consumption. 

The constant stiffness method can be used if the above methods fail to converge after a 

number of successive iterations. This method uses the stiffness matrix obtained from the last 

increment. If this method is used from the start of the analysis, it starts with a linear stiffness 

matrix. This method obtains the slowest convergence time (DIANA, 2017). 

In this research, the Quasi-Newton (Secant) method is used to solve the system of nonlinear 

equations as it resulted in both reasonable numbers of iterations to converge and reasonable 

iteration running time. 

The iteration process performed with one of the above methods needs to be combined with 

a convergence criteria to stop the process. DIANA provides three convergence norms: Force, 

Displacement and Energy norms. The use of proper norms depends on the type of analysis. 

In this research, an Energy norm is used as it showed good predictions in similar cases 

(Sagaseta, 2008, Fang, 2013, Khwaounjoo et al., 2000). Based on sensitivity studies, a 

relatively strict tolerance of 1 × 10−3 is adopted in this research owing to the softening 

response of concrete in compression and tension. 

The iteration process stops when the convergence criteria are satisfied. Besides, the analysis 

also stops if the number of iterations reaches a pre-defined maximum number. Lastly, the 

analysis may also stop if divergence occurs, although divergence of the solution does not 

necessarily relate to structural failure as it can occur due to numerical difficulties especially 

for brittle materials (De Borst and Nauta, 1985). 

Newton’s method is very efficient in solving mechanical problems for materials that do not 

exhibit a “snap-through” or a “snap back” resulting from buckling or work softening near 

failure (Vasios, 2015). The proper identification of structural failure of concrete can only be 

verified by tracing the post-peak response. Newton methods alone cannot accurately predict 

the solution if a snap-through or a snapback occurs (see Figure 6.15). 
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Figure 6.15: Difference between the actual behaviour and Newton's solution 

Snap through and snap back can be followed using the arc-length technique (Figure 6.16), 

which was introduced by Riks (Riks, 1979) and modified by several scholars since then. The 

advantage of the arc length method over Newton’s is that it captures the post-peak behaviour 

and ensures that the analysis does not stop because of any numerical difficulties near failure 

in finding the next point of the equilibrium path. 

 

Figure 6.16: Arc-length control (DIANA, 2017) - figure reproduced with permission of the 

rights holder, TNO-DIANA. 

The effect of introducing the arc-length technique to the analysis is demonstrated in 

Figure 6.17 for beam AT200 (0.5/0.5) where only arc length control captured the snap though. 

The analysis without arc length control stopped prematurely as a result of the analysis failing 

to converge at the point of snap through. Further examples are presented in section 6.6. 
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Figure 6.17: The effect of introducing the arc-length technique to the analysis of beam AT200 

(0.5/0.5) 

6.4.6. Elements and mesh considerations 

Shear failure in reinforced concrete is typically modelled using either 2D plane stress elements 

or 3D solid elements. Plane stress elements “also called membrane elements” must satisfy 

three conditions: i) the coordinates of their nodes must be in a flat plane, ii) the thickness 

should be relatively small compared to other dimensions and iii) the load must be applied at 

the plane of the elements (DIANA, 2017). 

Fang (Fang, 2013) examined the sensitivity of the results obtained using a lower order 

element of four nodes which is based on a linear integration (Q8MEM) compared to the 

higher-order element CQ16M in DIANA. The use of the lower element reduces the running 

time for the model, however, the higher element was reported to give better results. Besides, 

using linearly interpolated elements in a non-linear analysis can cause parasitic shear and 

volumetric locking to occur (DIANA, 2017). 

In this research, an eight-node quadrilateral isoparametric plane stress element (CQ16M) is 

used to model the behaviour of beams in shear – Figure 6.18. This element is based on a 

quadratic interpolation and a default 2 × 2 Gaussian integration scheme. 

Last converged 
step 

Un-converged 
step 
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Figure 6.18: 2D Plane stress element used in the FEM (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

As mentioned in section (6.4.4), reinforcement can be modelled using embedded 

reinforcement bars. These bars consist of several particles (Figure 6.19) that must completely 

be inside structural elements. The location points in the bars define the position of the 

particles which is determined automatically by the software. 

 

Figure 6.19: The topology of a reinforcement bar (DIANA, 2017) - figure reproduced with 

permission of the rights holder, TNO-DIANA. 

6.5. Model Calibration and Baseline Parameters 

In this research, the NLFEA was initially calibrated using similar previous studies on short span 

beams (Fang, 2013, Sagaseta, 2008), of which, the beams tested by Fang (2013) with multiple 

point loads were the most pertinent beams for this experimental program in the currently 

available literature. This section reviews the FEA procedure used by Fang in his analysis of his 

tested short shear span beams. Fang’s analysis is replicated and attempts to address 

difficulties reported by Fang are described. The calibrated model and relevant modifications 

are considered as the baseline model for the sensitivity analysis following later and are 

validated using test results presented in Chapter 4. 
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6.5.1. Description of NLFEA performed by Fang 

Fang tested 12 beams in two series of six (see Table 6.4). The first series contained beams 

with single point loads (B1-25 and B1-50), beams with two point loads (B2-25 and B2-50) and 

beams with four point loads (beams B3-25 and B3-50) applied to the compression face, all 

without shear reinforcement. The second series contained beams with two point loads (A-1, 

S1-1 and S2-1) and beams with four point load (A-2, S1-2 and S2-2). Beams A-1 and A-2 were 

without shear reinforcement while the other four beams contained shear reinforcement. The 

beams tested by Fang (2013) are comparable to the author’s beams in terms of shear span, 

shear reinforcement, test configuration for beams loaded on the compression face and cross 

sectional dimensions, apart from the width of the beam. 

Fang used DIANA (DIANA v9.4) for his NLFEA. Regarding material models; Fang used the 

parabolic compression curve for concrete suggested by Feenstra (Feenstra, 1993) with the 

lateral reduction factor proposed by Vecchio and Collins (Vecchio and Collins, 1993). The 

Hordijk tension softening model (Hordijk, 1992) was adopted for the tensile behaviour of the 

concrete. A constant shear retention model was used with a shear retention factor of 0.25 for 

all of the beams. The reinforcement was modelled using Von-Mises plasticity model with no 

strain hardening. A linear elastic model was assumed for the loading plates. In the solution 

algorithm, an automatic load stepping of a force-control analysis was performed with a 

Newton-Raphson solver. An energy based convergence criteria was adopted with iterations 

to stop at an energy norm less than 1%.  Table 6.1  gives details of the material properties he 

used in his analyses which were either calculated in terms of the concrete compressive 

strength (𝐸𝑐  using EC2 2004, 𝐺𝑓 using MC2010) or obtained from material tests (𝑓𝑡
′ , 𝐸𝑠 and 

𝑓𝑦). Poisson’s ratio was assumed to be zero for concrete and 0.3 for the reinforcement and 

steel plates. More details of Fang’s work can be found elsewhere (Fang, 2013). 
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Table 6.1: Properties of materials used in the FEA for beams tested by Fang (Fang, 2013)  

Beam 
𝑓𝑐
′  

(MPa) 
𝑓𝑡
′  

(MPa) 
𝐸𝑐  

(MPa) 
𝐸𝑠 

(GPa) 
𝐺𝑓  

(N/mm) 

𝑓𝑦,𝑡𝑒𝑛𝑠𝑖𝑜𝑛  

(MPa) 

𝑓𝑦,𝑐𝑜𝑚𝑝.  

(MPa) 

𝑓𝑦,𝑤  

(MPa) 

B1-25 45.7 2.23 36426 200 0.085312 520 - - 

B1-50 45.7 2.23 36426 200 0.085312 520 - - 

B2-25 45.7 2.23 36426 200 0.085312 520 - - 

B2-50 45.7 2.23 36426 200 0.085312 520 - - 

B3-25 45.7 2.23 36426 200 0.085312 520 - - 

B3-50 45.7 2.23 36426 200 0.085312 520 - - 

A-1 33.1 1.90 33613 200 0.070722 560 540 540 

A-2 34.6 1.94 33971 200 0.072493 560 540 540 

S1-1 33.7 1.92 33767 200 0.071483 560 540 540 

S1-2 36 1.98 34321 200 0.074246 560 540 540 

S2-1 35.2 1.96 34122 200 0.073247 560 540 540 

S2-2 36.7 2.00 34468 200 0.074992 560 540 540 

Fang restrained the beams vertically at the centre of the supporting plates. Horizontal 

restraint was provided at the central node of the left hand bearing plate. A mesh of 8-node 

quadrilateral plane stress elements with element size of 25 mm was used to model both the 

concrete and steel plate elements as shown in Figure 6.20. Loads were applied directly on the 

top of the loading plates as a pressure load.  

 

Figure 6.20: Geometry, mesh, boundary conditions and loading of beam S1-1 (Fang, 2013) 

6.5.2. Challenges faced Fang and model enhancements 

Fang reported several issues related to the modelling of his beams. The most significant issue 

was the premature failure occurring in a quarter of his beams, arising from stress 

concentrations below the loading plates. Other difficulties encountered were numerical 

difficulties arising from the brittle behaviour of concrete, selection of user-defined 

parameters for the different concrete models and the slightly stiff response of the FE models. 
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The author repeated the NLFEA of Fang using the same model parameters and solution 

procedures. The results were very similar to those obtained by Fang with the same issues of 

premature failure and overly stiff response.  A major drawback of the FE presented by Fang is 

the failure to simulate the post peak behaviour, which gives rise to concerns that the analysis 

might not have continued to failure. To capture the descending part of the post peak 

response, arc length control is used in this research. This enables the descending branch of 

the load deflection response to be captured. It is also worth mentioning that convergence is 

better achieved using the Quasi-Newton Raphson solver instead of the Newton Raphson 

solver used by Fang. A more strict energy convergence tolerance of 0.001 was used with a 

maximum number of iterations of 300. Fang attributed the premature failure of his analyses 

to localised stress concentration near the loading plates. Therefore, an interface element was 

introduced between loading plates and concrete beams in this research as described later in 

the modelling of the loading plates (section 6.7). 

6.5.3. Enhanced results and baseline model parameters 

This section summarizes the enhanced procedure adopted by the author to replicate the FEA 

of the beams tested by Fang. The final parameters from this study were adopted as a baseline 

for the sensitivity analysis of the author’s beams presented in Section 6.8.  

The parabolic compressive stress strain response of Feenstra was adopted in conjunction with 

a fixed crack model. A baseline constant shear retention factor of 0.25 was adopted. The 

DIANA default value of 0.15 for Poisson’s ratio was used as recommended for similar cases 

(DIANA, 2017) instead of zero as used by Fang. This had a slight effect on the stiffness of the 

response. The Hordjik tensile model was adopted for tensile behaviour. Reinforcement was 

modelled using the Von-Mises Plasticity model with strain hardening. Elastic behaviour was 

assumed for the steel loading and support plates.  Regarding the solution procedures, explicit 

load steps were used (maximum step size of 0.05 of the total load) with an arc length 

technique to capture the descending part of the load deflection response. The quasi Newton 

Raphson solution algorithm was used with an energy norm of 0.001. 

Overall, these assumptions were found to give reasonable predictions for the response of 

Fang’s beams. Introducing interface elements and arc-length techniques overcame the issue 

of premature failure and enabled simulation of the post peak response. The final results for 

the FE of the beams are presented in Figure 6.21 and Table 6.2. The failure loads are in 
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reasonable agreement with the test results and on average better than obtained by Fang. The 

accuracy of displacement prediction is variable with predictions tending to be overly stiff. 

Surprisingly, given the similarity in input parameters, the load deflection responses are in 

some cases significantly stiffer than obtained by Fang.  

Table 6.2:  Comparison of the FE results obtained by Fang (2013) and in this work 

Beam Failure Load 
Fang (2013) – DIANA v9.4 Author (DIANA v10.1) 

FE Load FE/Exp. FE Load FE/Exp. 

B1-25 368 371 1.01 397 1.08 

B1-50 352 359 1.02 363 1.03 

B2-25 977 646 0.66 930 0.95 

B2-50 929 737 0.79 847 0.91 

B3-25 480 609 1.27 646 1.35 

B3-50 580 546 0.94 670 1.16 

A1 823 640 0.78 829 1.01 

A2 350 469 1.34 370 1.06 

S1-1 1000 810 0.81 703 0.70 

S1-2 601 625 1.04 660 1.10 

S2-1 1179 828 0.70 1200 1.02 

S2-2 820 662 0.81 960 1.17 

Average 0.93  1.04 

CoV 23.0 14.96 
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Figure 6.21: Replication and comparison of Fang’s beams FEA 
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6.6. Constructing the FE Models for the Tested Beams 

This section describes the FE mesh, loads and boundary conditions used to model beams 

tested in this research. Regarding the model mesh, an element size of 25 mm was used for 

the majority of the beams with a few beams modelled with an element size of 12.5mm to 

maintain regular mesh when geometrical constraints are present. The model mesh, load and 

support configurations are presented in Figure 6.22.  

 

(a) Beams Loaded in the compression face. 

 

(b) Beams Loaded in the tension face. 

 

(c) Beams Loaded partly outside (2d) in the tension face. 

Figure 6.22: Finite element mesh, loading and boundary conditions of beam 

For beams loaded on the compression face, loads were applied linearly on all of the top plates 

with a roller and a hinge on the right and left hand support plates respectively (see Figure 6.22 

– a). For balanced cantilevers (see Figure 6.22 b and c), the load was applied linearly on the 
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RHS top plates while rollers were placed on the top LHS plates. The bottom support of the 

balanced cantilevers was modelled as a hinge support. 

Although these configurations were adopted in the FEA to simulate the exact test setup in the 

laboratory, the partial movement between the rig parts observed in the test resulted in a 

global rotation for the balanced cantilever beams. In the FEA, however, the vertical 

displacement in the LHS of the beams were almost zero. The measured deflections presented 

in this section are all corrected for global rotation about the support as described in 

section 4.3.3. 

 

Figure 6.23: Vertical displacement of beam AT200 (0.5/0.5) 

6.7. Modelling of the Loading Plates 

Stress concentration under loading plates has been reported in previous studies of short and 

deep beams (Sagaseta, 2008, Fang, 2013). This stress concentration is believed to cause 

premature failure in FEA and has previously been overcome by increasing the concrete 

strength beneath the loading plates or decreasing the thickness of the loading plate (Sagaseta, 

2008, Fang, 2013) – Figure 6.24.  

Failure of short span and deep beams is mainly associated with crushing of the concrete in 

the flexural compression zone which is depicted by the presence of significant plastic strains 

in these locations. While increasing the concrete strength beneath loading plates mitigates 

the stress concentration problem, it also changes the behaviour of the concrete in the 

compression zone. To overcome this, a structural interface element between the concrete 

beam and loading plates is used in this research. The structural interface element describes 

the interface behaviour in terms of a relation between the normal and shear tractions and 

the normal and shear relative displacements across the interface. 
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(a) (b) 

 

Figure 6.24: Stress concentration below loading plates a) no strength enhancement b) 

strength enhanced c) load-deflection response (Fang, 2013) 

The interface element used in this research was an elastic interface element depicted CL12I. 

An interface with normal and shear stiffness of 1 × 107 𝑁/𝑚𝑚3 and 1 × 105 𝑁/𝑚𝑚3 

respectively was used as recommended for similar cases (DIANA, 2017). Beam B2-25 

modelled by Fang (2013) was re-modelled using the same parameters as he adopted in his 

work but without and with interface elements. Introducing interface elements was found to 

significantly improve the prediction of both ultimate load and stiffness. The ratio of predicted 

to actual failure load increased from 0.66 (Fang, 2013) to 0.96 when using interface elements. 

Additionally, the introduction of interface elements eliminated the stress concentration 

under the loading plate (Figure 6.26) visible in Figure 6.24 – a. 

(c) 
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Figure 6.25: Enhancement of the response of beam B2-25 due to the interface element 

 

 

Figure 6.26: Stress variation under the loading plate with the use of an interface element. 

6.8. Sensitivity Analysis of the Model 

In this section, the test results presented in Chapter 4 are used to calibrate the NLFEM and to 

conduct sensitivity analysis of several parameters. The sensitivity of the analysis to the 

parameters of the base model presented in the previous section is investigated here. 

6.8.1. Element size 

The results of the NLFEA depend on the element size. Previous NLFEA suggests the use of 

elements size of 50mm (Sagaseta, 2008, Fang, 2013). However, it has also been reported that 

finer mesh enhances the performance of the NLFEA, yet, increases the running time (Fang, 

2013). In this research, a sensitivity analysis was performed to examine the sensitivity of the 

FE to the element size. Elements with sizes (100mm, 50mm, 25mm and 12.5mm) were 

investigated and the analysis showed that results were similar for a mesh of an element size 

Exp. failure load =974kN (Fang, 2013) 
FE failure load =933kN (with an interface) 
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25mm and smaller (see Figure 6.27). Hence, an element size of 25 mm was used for the 

majority of the beams with a few beams modelled with an element size of 12.5mm to 

maintain regular mesh when geometrical constraints are present. 

 

Figure 6.27: Sensitivity of the FEA to the element size (Beam AC200 (0.5/0.5)) 

6.8.2. Fixed and rotating crack model 

For deep beams where the direction of crack propagation from the load to the support is 

almost predefined, the use of a fixed crack model is advocated by several previous studies 

(Sagaseta, 2008, Fang, 2013). To validate this assumption, the tested beams were modelled 

using the fixed, rotating and fixed to rotating crack models of to examine the sensitivity of the 

analysis to the model selection and to compare the observed and predicted crack pattern. 

Results are shown in Figure 6.28 for beams AC0 (0.5/0.5) and AC200 (0.5/0.5) without and 

with shear reinforcement respectively. The crack pattern is possibly most realistically 

captured with the fixed crack model but differences in crack patterns are minor. 
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a) Fixed crack model 

 
 

b) Rotating crack model 

 
 

c) Fixed to rotating crack model 

Figure 6.28: Crack patterns obtained using FEA with a) fixed, b) rotating and c) fixed to 

rotating crack modelsS 

Figure 6.29 shows the sensitivity of the load deflection response to the crack model for beams 

AC0 (0.5/0.5) without shear reinforcement and for beam AC200 (0.5/0.5) with shear 

reinforcement. Although the results are similar, the fixed crack model gives the best estimate 

of the ultimate shear resistance. The disadvantage of the fixed crack model is that it is 

sensitive to the choice of shear retention model. Beam AC0, without shear reinforcement, 

was modelled using a variable shear retention model while beam AC200 (0.5/0.5), with shear 

reinforcement, was modelled used a constant shear retention model. More details regarding 

the selection of the shear retention model are provided in section 6.8.5. 
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Figure 6.29: Sensitivity of the FEA to the crack model 

6.8.3. Compressive behaviour of the concrete 

The Feenstra model (1993) was adopted in the author’s baseline FEM on the basis of 

calibration studies described earlier and the previous NLFEA studies of deep beams using 

DIANA (Sagaseta, 2008, Fang, 2013). Of the models considered, Feenstra’s compressive model 

gave noticeably the best responses for the tested beams. A comparison between different 

constitutive models for the compressive behaviour of the concrete is shown in Figure 6.30 for 

comparable beams loaded on the compression (AC200 (0.5/0.5)) and tension face (BT200 

(0.5/0.5)). 

  

Figure 6.30: Comparison of the different compressive models in FEA for the concrete in 

predicting the failure 
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6.8.4. Compressive fracture energy 

Several studies indicate that there is no general agreement on the ideal value of the 

compressive fracture energy  𝐺𝑓𝑐  (Ožbolt and Reinhardt, 2002, Sagaseta, 2008). However, the 

compressive behaviour of the selected compressive model depends significantly on it 

(Feenstra, 1993). A reasonable justification for this is that the effect of the compressive 

fracture energy on the post-peak stiffness is case dependent (Sagaseta, 2008). 

Several values have been suggested for  𝐺𝑓𝑐 as a multiple of the fracture energy 𝐺𝑓. 

Commonly adopted values are 50 𝐺𝑓, 100 𝐺𝑓 and 200 𝐺𝑓 (Fang, 2013). Figure 6.31 shows that 

the FE analysis carried out using the baseline parameters was less sensitive to the value of the 

compressive fracture energy. Accordingly a value of 100 𝐺𝑓 was used as it gave the best 

estimates consistently and it has also been reported to provide good predictions in similar 

cases (Sagaseta, 2008, Fang, 2013).  

  

  

Figure 6.31: The sensitivity of the FE analysis to the compressive fracture energy for beams 

without shear reinforcement 
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6.8.5. Shear retention model 

As mentioned in section (6.4.3) earlier, the concrete shear behaviour is affected by the choice 

of shear retention model, particularly for beams without shear reinforcement. The sensitivity 

of the analysis to the shear retention model for beams without shear reinforcement is 

examined in Figure 6.32. Generally, the aggregate size-based model gives the highest 

strengths, while the damage based model (Selby and Vecchio, 1993) gives the lowest 

strengths. The decay shear transfer model (Maekawa et al., 2003) provides the best strength 

estimates with an average FE/Exp  

 
 

  

Figure 6.32: Sensitivity of the FEA to the shear retention models for beams without shear 

reinforcement (Beam AC0 (0.5/0.5)) 

For beams with shear reinforcement, a constant shear retention model was used with a 

𝛽=0.25 which gave the best estimates for the test beams with shear reinforcement and in 

previous studies (Fang, 2013, Sagaseta, 2008). This the sensitivity of the analysis to the 

constant shear retention value is presented in Figure 6.33 
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Figure 6.33: Sensitivity of the analysis to the constant shear retention value 

6.9. Finally Adopted Parameters  

The final choice of modelling parameters was based on the sensitivity analyses described in 

section 6.8 as well as calibration studies made using the author’s test results. The chosen 

constitutive models and associated parameters are summarised in Table 6.3 below. The 

material properties used in the NLFEA are summarised Table 6.4. The concrete fracture 

energy and elastic modulus were calculated in accordance with EC2 and MC2010 using the 

equations below: 

𝐺𝑓 = 𝐺𝑓0 (
𝑓𝑐𝑚
𝑓𝑐𝑚0

)
0.7

 
Equation 6.22 

𝐺𝑓0 = 0.0204+ 6.625 × 10−4 −𝐷𝑚𝑎𝑥
0.95  Equation 6.23 

𝐸𝑐𝑚 = 22(
𝑓𝑐𝑚
10
)
0.3

 
Equation 6.24 

𝐷𝑚𝑎𝑥  is the maximum aggregate size, 𝑓𝑐𝑚 is the mean concrete compressive strength and 

𝑓𝑐𝑚0=10MPa. 
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Table 6.3: Material models and properties used in the FEA 

Material Type Materials Model Parameters 

Concrete Compressive strength: 
Parabolic 

𝑓𝑐𝑘  

𝐺𝑓𝑐  

𝐸𝑐 

Compressive strength reduction: Vecchio and 
Collins (1993) 

Confinement effect: Selby and Vecchio (1997) 

Tensile Strength: Hordjik 𝑓𝑡  (Obtained from the Brazilian tests) 

𝐺𝑓  

Poisson ratio (𝑣 = 0.15) 

Poisson Reduction: Damaged based 

Shear retention (Constant) 
Shear retention (Variable) 

𝛽 = 0.25 
𝛽 𝑓𝑟𝑜𝑚 (!!!  INVALID CITATION !!! ) 

Reinforcement Linear Elasticity 𝐸𝑠 = 210,000 MPa 

Von Mises Plasticity  
 (Total strain hardening) 

𝑓𝑦 = 570𝑀𝑃𝑎 

Steel Plates Linear Elasticity 𝐸𝑠 = 210,000 MPa 

Poisson ratio (𝑣 = 0.3) 

Interface 
element 

Linear Elasticity (2D line 
interface) 

Normal stiffness=1.00E+07 𝑁/𝑚𝑚3 

Shear stiffness=1.00E+05 𝑁/𝑚𝑚3 

Table 6.4: Material properties used in the NLFEA 

Beam 𝑓𝑐𝑚 (MPa) 𝑓𝑡𝑚(𝑀𝑃𝑎) 𝐸𝑐  (MPa)  𝐺𝑓 (N/mm) 𝐺𝑓𝑐 (N/mm) 

AC0 (0.5/0.5) 29.80 2.505 32784.63 0.08068 8.07 

AC200 (0.5/0.5) 30.30 2.608 32914.12 0.08143 8.14 

AT0 (0.5/0.5) 30.60 2.660 32991.26 0.08187 8.19 

AT200 (0.5/0.5) 31.20 2.764 33144.27 0.08276 8.28 

BT200 (0.5/0.5) 28.43 2.58 32423.54 0.07862 7.86 

BT200 ( 1.0/0) 28.89 2.72 32545.82 0.07932 7.93 

BT200 ( 0/1.0) 29.24 2.82 32638.15 0.07984 7.98 

BT200 ( 0.3/0.7) 28.78 2.68 32516.68 0.07915 7.91 

CT0 (1.0/0. 0) 26.90 2.59 32008.87 0.07630 7.63 

CT200 (1.0/0) 28.04 2.59 32319.01 0.07803 7.80 

CT0 ( 0.6/0.4) 28.90 2.60 32548.47 0.07933 7.93 

CT200 (0.6/0.4) 28.33 2.60 32396.81 0.07847 7.85 
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A quasi-Newton solution method was used with a user-specified step maximum size of 0.05 

of the total measured failure load in conjunction with arc length control. This maximum step 

size is automatically reduced if the analysis failed to converge in late stages of the analysis. 

An energy convergence criterion was used with a convergence tolerance of 0.001 and a 

maximum iteration limit of 300. The importance of using arc length control was highlighted 

earlier in section 6.4.5. Figure 6.34 shows the effect of introducing the arc-length technique 

for the analysis of the beams in series (A) which includes beams with/without shear 

reinforcement loaded on the compression/tension face. The inclusion of arc length control is 

seen to capture the post-peak responses and result in enhanced predictions of the failure 

load.  

  

  

Figure 6.34: Effect of introducing the arc-length technique to the analysis of the beams in 

series A 
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6.10. Results of the FEA 

Test results presented in Chapter 4 were used to calibrate the baseline FEA as described 

earlier to give a best fit of the predictions for all the tested beams. The selected models and 

solution procedures discussed above were used to model the test beams. A summary of the 

FE results is presented in Table 6.5. The analysis accurately predicted the failure loads of the 

beams with an average FE to actual failure load of 1.0 and a COV of 9. As shown in Figure 6.35, 

the FEA gave reasonable predictions of maximum displacement for the majority of the beams 

tested in this research.  

Table 6.5: Summary of the results of the FEA 

Beam FE/Exp. 

Load Disp. 

AC0 (0.5/0.5) 1.02 0.69 

AC200 (0.5/0.5) 1.08 1.09 

AT0 (0.5/0.5) 1.14 1.07 

AT200 (0.5/0.5) 1.04 1.27 

BT200 (0.5/0.5) 0.86 0.84 

BT200 (1.0/0) 1.03 1.53 

BT200 (0/1.0) 1.12 1.39 

BT200(0.3/0.7) 0.98 1.07 

CT0 (1.0/0) 0.81 1.15 

CT200 (1.0/0) 1.02 1.03 

CT0 (0.6/0.4) 0.95 1.80 

CT200 (0.6/0.4) 1.01 1.15 

Average  1.00 1.17 

St Dev 0.09 0.28 

COV % 9.19 24.22 
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Figure 6.35: Prediction of the load-deflection using FEA 
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6.11. Conclusions 

This chapter describes the NLFEA used in this research.  An overview of discrete and smeared 

cracking models is given with a particular focus on the various types of the smeared crack 

model available in DIANA. The concrete and reinforcement material models available in 

DIANA are critically reviewed. The models adopted in this research are justified on the basis 

of sensitivity analyses and comparisons of measured and predicted responses for beams 

tested by Fang (2013) as well as the author. 

A fixed crack approach is used in this work. To model the concrete behaviour in compression, 

the Feenstra parabolic curve (1993) is used with a compressive fracture energy of 100𝐺𝑓,𝑡. 

The models of Selby and Vecchio (1997) and Vecchio and Collins (1993) are used to model the 

effect of lateral confinement and cracking respectively on the compressive behaviour of 

concrete. The Hordijk tensile model (1992) is used to model the tension softening behaviour 

of concrete. Following a sensitivity analysis, the variable shear retention model suggested by 

Maekawa (2003) is used for beams without shear reinforcement while the constant shear 

retention model with 𝛽 = 0.25 is used for beams with shear reinforcement. Interface elements 

are introduced between the beam and the loading/support plates to prevent the 

development of localised stress concentrations at the plate corners. This in turn prevents 

premature failure. Reinforcement is modelled using embedded bars and Von Mises plasticity 

with strain hardening. 

Regarding the solution procedure, a user-specified maximum step size of 0.05 of the total 

load with an arc length technique is used. To solve the system of the nonlinear equations, a 

quasi-Newton method is used with an energy convergence criterion. A convergence tolerance 

of 0.001 is used with a maximum number of iterations of 300. 

The authors test results were utilised to calibrate the FEA. The resulting NLFEA modelling 

procedure predicted the failure loads of the beams with an average FE to actual failure load 

of 1.0 and COV of 9%. The FEA was also able to predict the maximum displacement and the 

load-deflections response fairly good for the majority of the beams.
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CHAPTER 7. ANALYSIS OF EXPERIMENTAL RESULTS 

7.1. Introduction 

The shear strength of RC beams is significantly enhanced by arching action when loads are 

applied within around twice the beam effective depth (2d) of supports. Apart from the tests 

of Brown and Bayrak (2007) and Vollum and Fang (2014), little attention has been given to 

the case of beams with multiple point loads applied to the flexural compression face within 

2d of supports. This research considers shear enhancement in cantilever beams with multiple 

point loads applied to the tension face.  

Shear enhancement in beams loaded within 2d of supports is most simply modelled using 

simplified semi-empirical methods such as that of EC2 (BSI, 2004), the superseded UK code 

BS8110 (BSI, 1997) and fib Model Code 2010 (fib, 2013). The test results presented in Chapter 

4 show some differences in the strength of comparable beams loaded on the flexural tension 

and compression faces. However, current design provisions for shear enhancement do not 

distinguish between beams loaded on the flexural tension and compression faces. 

Alternatively, and more rationally, shear enhancement can be modelled with mechanically 

based models such as the strut and tie method (Sagaseta and Vollum 2010, Vollum and Fang, 

2015). The STM of Vollum and Fang (2015) is applicable to short shear span beams with pairs 

of loads applied to the compression face within 2d of the support. Refined STMs can be 

developed on the basis of compressive stress fields determined using NLFEA. The analysis 

shows that stress fields determined with NLFEA are different for comparable beams of series 

A, described earlier in section 3.2.1 and Figure 3.3, loaded on the flexural compression and 

tension faces. As discussed previously, tension face loading can arise in structures like 

crosshead girders and continuous beams. 

This chapter considers the test results presented in Chapter 4 and assesses the practical 

significance of differences in shear strength arising from tension and compression face 

loading. The shear strength of the tested beams is assessed in this chapter using the 

provisions given in various design codes, strut-and-tie models and NLFEA. 
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7.2. Assessment of Beam Strength Using Codified Sectional 

Methods 

This section considers the shear enhancement design methods given in the superseded UK 

code BS8110 (BSI, 1997), EC2 (BSI, 2004) and fib Model Code 2010 (MC2010) (fib, 2013). These 

methods apply to beams loaded on the top face within 𝑎𝑣 ≤ 2𝑑. EC2 and MC2010 reduce the 

contribution to the design shear force of loads applied within 𝑎𝑣 ≤ 2𝑑 by the multiple 𝛽 =

𝑎𝑣

2𝑑
. The multiple 𝛽 is limited to a minimum value of 0.25 in EC2 and 0.5 in MC2010. Unlike EC2 

and MC2010, BS 8110-97 enhances the shear resistance provided by concrete 𝑣𝑅𝑑,𝑐  for beams 

loaded within 𝑎𝑣 ≤ 2𝑑 by the multiple 𝛽 =
2𝑑

𝑎𝑣
 ≥ 0.5. The design methods of BS8110 and EC2 

are only equivalent of: i) a single load is applied within a distance of 𝑎𝑣 ≤ 2𝑑 from the support 

and ii) the shear resistance is not increased by shear reinforcement. In addition, the 

application of the design provisions for the shear enhancement in EC2 is unclear for beams 

with shear reinforcement and multiple point loads applied within 𝑎𝑣 ≤ 2𝑑 as discussed by 

Vollum and Fang (2015). Further details regarding codes provisions are provided in Chapter 2. 

Vollum and Fang (2015) introduced some modifications to the equations of shear capacity 

provided in EC2, BS8110 and MC2010 to account for shear enhancement in beams with two-

point loads applied within 2𝑑 of the support. The basic assumption was to investigate two 

different failure planes as illustrated in Figure 2.14. For a beam with two-point loads 

within 𝑎𝑣 ≤ 2𝑑, failure is checked in BS8110 for each of the failure planes shown in 

Figure 2.14 as follows (equations shown are for BS8110):  

𝑉𝐸𝑑 ≤ 𝑉𝑅𝑑,𝑐 .
2𝑑

𝑎𝑣1
+ 𝑛𝑎𝑣1𝐴𝑠𝑤𝑓𝑦𝑑

𝑑

𝑎𝑣1
 Equation 7.1 

𝑅2𝑉𝐸𝑑 ≤ 𝑉𝑅𝑑,𝑐 .
2𝑑

𝑎𝑣2
+ 𝑛𝑎𝑣2𝐴𝑠𝑤𝑓𝑦𝑑

𝑑

𝑎𝑣2
 

Equation 7.2 

In which 𝑉𝐸𝑑  is the design shear force, 𝑉𝑅𝑑,𝑐 is the shear strength without shear reinforcement 

and 𝑛𝑎𝑣𝑖  is the number of the stirrups within shear span 𝑖. In BS8110, the shear resistance 𝑉𝐸𝑑  

is checked for both the shear planes indicated in Figure 2.14.  



Shear Enhancement in RC Beams Loaded on the Tension Face Analysis of the Results 

 

307 
 

 

Figure 7.1: Expected failure planes for beams loaded with two points within 2d 

EC2 does not explicitly define the enhanced shear strength of a beam loaded with multiple 

point loads within 2d of supports. However, neglecting self-weight, a natural interpretation 

(Vollum and Fang, 2015) of the code requirements for a symmetrically loaded beam with two-

point loads within 2d of each support is to take the failure load as the most critical of:  

𝛽1𝑃1 + 𝛽2𝑃2 ≤ 𝑉𝑅𝑑1 = max (𝑉𝑅𝑑,𝑐 , 𝑉𝑅𝑑,𝑠1) Equation 7.3 

𝛽2𝑃2 ≤ 𝑉𝑅𝑑2 = max (𝑉𝑅𝑑,𝑐 , 𝑉𝑅𝑑,𝑠2) Equation 7.4 

In which 𝑃1 and 𝑃2 are the loads applied in the inner and outer load plates. The shear 

resistances 𝑉𝑅𝑑,𝑐 and 𝑉𝑅𝑑,𝑠 are defined in Section 2.3 of EC2. 

Vollum and Fang (2015) showed that taking the total failure load (P1+P2) as the least of the 

values corresponding to equations 7.3 and 7.4 gives nonsensical results for beams with shear 

reinforcement where 𝑉𝑅𝑑,𝑠2 >  𝑉𝑅𝑑,𝑐. This is the case because of the application of an 

infinitesimally small load 𝑃1 causes the shear resistance to reduce from 𝑉𝑅𝑑,𝑠2 to 

max (𝑉𝑅𝑑,𝑐 , 𝑉𝑅𝑑,𝑠1) which is less than 𝑉𝑅𝑑,𝑠2. 

To circumvent this, Vollum and Fang (2015) proposed replacing equation 7.3 for failure along 

the inner plane with the interaction equation below: 

𝛽1𝑃1

𝑚𝑎𝑥(𝑉𝑅𝑑,𝑐; 𝑛𝑎𝑣1𝐴𝑠𝑤𝑓𝑦𝑑)
+

𝛽2𝑃2

𝑚𝑎𝑥(𝑉𝑅𝑑,𝑐; 𝑛𝑎𝑣2𝐴𝑠𝑤𝑓𝑦𝑑)
≤ 1.0 

Equation 7.5 

MC2010 defines the control section for shear as the most critical of 𝑑 from the face of the 

support or 𝑑 from the face of the load. In MC2010, the shear resistance depends on the 

reinforcement strain as described in Section 2.3.3 of Chapter 2. The reinforcement strain due 

to flexure is enhanced by shear but cannot exceed the reinforcement strain at the section of 

maximum moment. Therefore, the strain given by equation 2.41 was limited to a maximum 
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of 
𝑀𝑚𝑎𝑥

2𝐸𝑠𝐴𝑠𝑧
 in the analysis of the tested beams. This limit governed for the tension face loaded 

beams where 𝑀𝑚𝑎𝑥  was calculated at the centreline of the support. For beams loaded on the 

tension face the critical section for shear is consequently at d from the face of the inner load 

unless av < d in which case MC2010 suggests that the shear resistance should be calculated as 

if the load were at d from the face of the support. For members loaded on the tension face, 

where 𝑎𝑣 < 𝑑, the control section was taken at the support face where the flexural 

reinforcement strain is greatest. For beams loaded in the compression face, when 𝑎𝑣 < 𝑑, 

the control section was taken at 𝑑 from the face of the support as if the load was applied at a 

distance (𝑑 + load plate width/2) – see Figure 7.2 a.  

 

Figure 7.2: Control section for cases where a) 𝑎𝑣 < 𝑑 and b) control section at 𝑑 from the 

face of the concentrated load. 

The EC2, BS8110 and MC2010 strength predictions are presented in Table 7.1, which shows 

that the predictions are all safe and rather conservative. The EC2 shear strengths of beams 

with two point loads in the shear span were calculated using equations 7.3 and 7.4 as 

suggested by Vollum and Fang (2015).  For purposes of comparison, 𝑉𝑅𝑑𝑐  was calculated with 

EC2 when applying the BS 8110 shear enhancement method. Overall, MC2010 level of 

accuracy (LoA) III gave the best estimates with an average of 0.75 and a COV of 0.18 and EC2 

gave the worst estimates. One point to highlight here is that none of the considered design 
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methods explicitly accounts for the influence of loading face (i.e. whether the load is applied 

on the flexural tension or compression face of the beam). Unlike BS8110 and EC2, MC2010 

relates shear resistance to the flexural reinforcement strain. Consequently, the calculated 

shear resistance given by MC2010 is different for notionally identical beams with the 

AC (0.5/0.5) and AT (0.5/0.5) loading arrangements.  

Table 7.1: Predictions of the shear strength of the test beams calculated with different 

design codes 

Beams Exp. BS 8110 EC2 
MC 2010 

Exp./LoA.II Exp./LoA.III 

AC0 (0.5/0.5) 539 0.58 0.40 0.38 0.55 

AC200 (0.5/0.5) 742 0.66 0.41 0.48 0.61 

AT0 (0.5/0.5) 449 0.75 0.51 0.47 0.70 

AT200 (0.5/0.5) 733 0.67 0.42 0.49 0.64 

BT200 (0.5/0.5) 648 0.74 0.46 0.53 0.70 

BT200 (1.0/0) 610 0.79 0.54 0.75 0.98 

BT200 (0/1.0) 423 0.69 0.53 0.65 0.92 

BT200(0.3/0.7) 528 0.79 0.55 0.59 0.79 

CT0 (1.0/0) 441 0.47 0.47 0.47 0.71 

CT200 (1.0/0) 543 0.64 0.52 0.68 0.92 

CT0 (0.6/0.4) 378 0.56 0.44 0.44 0.67 

CT200 (0.6/0.4) 502 0.70 0.60 0.58 0.80 

 Average 0.67 0.49 0.54 0.75 

 SD 0.09 0.06 0.11 0.13 

 COV 0.14 0.11 0.20 0.18 

 

Table 7.2 shows an assessment of the code predictions in Table 7.1. The results are indicative 

and should be treated with caution due to the limited extent of test data.  
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Table 7.2: Assessment of code predictions of the strength of beams tested in this program 

Beams with single point load (No of beams = 4) 

 Exp./BS8110 Exp./EC2 Exp./MC2010(II) Exp./MC2010(III) 

Average 0.65 0.52 0.64 0.88 

SD 0.14 0.03 0.12 0.12 

COV 0.21 0.07 0.19 0.14 

Beams with multiple point loads – All beams (No of beams = 8) 

Average 0.68 0.47 0.50 0.68 

SD 0.08 0.07 0.07 0.08 

COV 0.12 0.16 0.14 0.12 

Beams with multiple point loads -Stirrups (No of beams = 5) 

Average 0.71 0.49 0.53 0.71 

SD 0.06 0.08 0.05 0.08 

COV 0.08 0.17 0.09 0.11 

Beams with multiple point loads - No stirrups (No of beams = 3) 

Average 0.63 0.45 0.43 0.64 

SD 0.11 0.06 0.04 0.06 

COV 0.17 0.13 0.10 0.12 

Beams with multiple point loads - compression face  (No of beams = 2) 

Average 0.62 0.41 0.43 0.58 

SD 0.05 0.01 0.07 0.04 

COV 0.09 0.02 0.17 0.07 

Beams with multiple point loads - Tension face  (No of beams = 6) 

Average 0.70 0.50 0.52 0.72 

SD 0.08 0.07 0.06 0.06 

COV 0.12 0.14 0.12 0.09 

 

Overall the MC2010 (LoA III) predictions are best but the BS8110 predictions are also 

reasonable. EC2 and MC2010 LoAII gave the most conservative estimations particularly for 

beams loaded on the compression face with multiple point loads as reported previously by 

Fang (Fang, 2013). For beams with multiple point loads, strength estimates were less 

conservative for beams with shear reinforcement than without shear reinforcement but there 

are insufficient results to draw firm conclusions. However, this trend is also evident in Fang’s 
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strength estimations of his beams with multiple loads within the shear span (Fang, 2013). The 

better estimates for tension face loaded beams results from the lower observed shear 

strengths of the beams loaded in the tension face. The significance of this is explored in 

section 7.4.5. 

7.3. Evaluation of the Shear Strength Using Strut-and-tie 

Models 

The strut-and-tie method (STM) is a popular tool for estimating the strength of discontinuity 

regions in which plane sections do not remain plane. Several design codes suggest using STM 

to account for shear strength enhancement in deep beams (BSI, 2004, ACI-Committee, 2014, 

CSA, 2004, fib, 2010).  

The model developed by Sagaseta and Vollum (Sagaseta and Vollum, 2010) (depicted here as 

STM1) for beams with vertical shear reinforcement simplifies the principal of nodal sub-

division. To avoid considering stirrups individually, the stirrups can be replaced by a single tie, 

positioned at the centroid of the effective stirrups, with the same cross sectional area as the 

effective stirrups.  This model (presented here in Figure 2.32) has been used and modified by 

several researchers (Amini Najafian et al., 2013, Vollum and Fang, 2015). 

This model (STM1) was developed to calculate the strength of simply supported short shear 

span beams with either a central point load or two symmetrically positioned point loads 

applied to the compression face of the beam. Clearly, the model is also applicable if the beam 

shown in Figure 7.3 if turned upside down to represent a cantilever beam with a single point 

load applied to the tension face. The load is transmitted to the supports in this model through 

a combination of a direct strut (Strut I) and a truss (Strut II and strut III) equilibrated by 

vertical stirrups. Strut I carries 𝜆𝑃 while the remainder of the load (1 − 𝜆)𝑃 is carried by the 

vertical stirrups. The shear reinforcement is assumed to yield at failure unless preceded by 

flexural failure or disappearance of the direct strut. Stirrups within the central ¾ of the shear 

span are considered effective. The direct strut resists a proportion 𝛽 of the total tensile force 

in the reinforcement at the bottom node. Once 𝜆 and 𝛽 are known, the geometry of the nodes 

can be defined. 
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Figure 7.3: Sagaseta and Vollum model for deep beams with vertical shear reinforcement 

(Sagaseta and Vollum, 2010) 

When using the STM design recommendations of EC2, the stresses under the load plate (the 

CCC node) and the support plate (the CCT node) are limited to 𝑣′𝑓𝑐𝑑  and 0.85𝑣′𝑓𝑐𝑑  

respectively, where 𝑣′ = (1 −
𝑓𝑐𝑘

250
). The stress at the rear face of the CCC node is limited to 

𝑣′𝑓𝑐𝑑  while no check is made on the stress at the rear face of the CCT node as permitted by 

EC2. Failure is assumed to occur at the lowest load corresponding to bearing failure at either 

the top or bottom node, crushing of strut I at either the top or the bottom node to strut 

interface or flexure. The strength of Strut I is reduced due to the presence of the cracks and 

transverse tensile strain. EC2 accounts for this with a strength reduction factor of 0.6𝑣′. 

Further details of the STM geometry and solution algorithm can be found elsewhere 

(Sagaseta, 2008).  

Sagaseta and Vollum (2010) used STM1 to assess the strength of 47 deep beams with a shear 

span to effective depth ranging between 1 and 2. This was done with the strength of the direct 

strut calculated using both the EC2 and the MCFT provisions. Overall, the STM was found most 

accurate for beams with stirrups and gave the most consistent results if the strength of the 

direct strut was calculated using the provisions of the MCFT. 

A similar approach to STM1 was adopted by Mihaylov et al. (2013) who proposed the STM 

shown in Figure 7.4. The model can be seen as a simplification of STM1 proposed by Sagaseta 

(2008) with the strut D representing the resultant of the struts I and III in STM1. A merit of 

this model is its simplicity, which does not greatly jeopardise the accuracy of results compared 

with STM1. 
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Figure 7.4: STM for beams with a single point load (Mihaylov et al., 2013). Figure reproduced 

with permission of the rights holder, ACI Structural Journal. 

The procedure for solving the STM of Mihaylov et al. is straightforward as described below: 

1. Evaluate stirrup force 

𝑇𝑣 = 𝑓𝑦𝑤𝜌𝑣(0.75𝑎𝑐𝑙) Equation 7.6 

 

2. Assume height of the compression zone (c) and calculate P from equilibrium, 𝑇1 and 

the angle 𝜃 

𝑃 =
𝑓𝑐𝑛𝑡𝑏𝑐(𝑑 − 0.5𝑐)

𝑎
 

Equation 7.7 

 

𝑇1 =
𝑃𝑎 − min(𝑇𝑣 , 𝑃) (0.5𝑎𝑐𝑙 + 0.5𝑙𝑡)

𝑑 − 0.5𝑐
 

Equation 7.8 

 

𝜃 = atan (
𝑃

𝑇1
) 

Equation 7.9 

 

3. Calculate the stress 𝑓𝑠𝑏  at the bottom of the strut: 

𝑓𝑠𝑏 =
𝑃

𝑏𝑤𝑠𝑏sin (𝜃)
  

Equation 7.10 

In which 𝑏 is the beam width and 𝑤𝑠𝑏  is the width of the strut at the bottom node. 

4. Repeat until the tolerance (𝑓𝑠𝑐𝑏 − 𝑓𝑠𝑏 ) is acceptable where 𝑓𝑠𝑐𝑏  is the design strength 

of the strut at the bottom node which Mihaylov et al. (2013) calculated with the MCFT. 
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Figure 7.5 compares beam strengths calculated using STM1 and the model provided by 

Mihaylov et al. (2013) for the tested beams with a single point load with EC2 provisions. The 

results show both models gave conservative estimations of the failure load with SMT1 

providing slightly higher estimates. Results were calculated based on the measured concrete 

strength of the beams. 

 

Figure 7.5: Comparison of the strength calculated using STM1 and the model provided by 

Mihaylov (2013) for beams with single-point load. 

STM1 is unsuitable for estimating the shear strength of beams with multiple point loads 

within the shear span. Fang (2013) developed the STM shown in Figure 2.33 for simply 

supported deep beams that are symmetrically loaded with four-point loads as in tests 

AC0 (0.5/0.5) and AC200 (0.5/0.5). The model is depicted STM2 in this work and is applicable 

to beams without and with shear reinforcement. The reason for adopting STM2 in this 

research for beams loaded on the compression face was the good agreement between the 

stress fields obtained with NLFEA and the assumed strut orientation in STM2 (see Figure 2.33 

c and d). 

 
 

(a) 

(b) 
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Figure 7.6: STMs proposed by Fang for beams with four-point loads (Fang, 2013): a) 𝑃2 <

𝑇𝑠1 + 𝑇𝑠2, b) 𝑃2 < 𝑇𝑠1 + 𝑇𝑠2, c) no shear reinforcement and d) stress fields of beam AC0 

(0.5/0.5) 

For beams with shear reinforcement, the geometry of the model depends on whether the 

total shear force 𝑇𝑆1 + 𝑇𝑆2 resisted by the stirrups is less or greater than the applied force 𝑃2 

(Figure 2.33 a and b). The load is carried out in this model through a combination of direct 

struts and an indirect truss mechanism equilibrated by shear reinforcement. Similar to STM1, 

the direct strut resists a proportion 𝛽 of the tensile force in the reinforcement at the bottom 

node. Forces 𝐶𝐼𝐼𝐼 , 𝐶𝐼𝑉𝑎𝑛𝑑 𝐶𝑉𝐼 are the horizontal components of the forces in struts 

𝐼𝐼𝐼, 𝐼𝑉 𝑎𝑛𝑑 𝑉𝐼 respectively. The depth of the compression zone at 𝑃2 can be obtained from 

flexural equilibrium assuming that the stress at the rear face of the node equals the strength 

of the CCC (i.e.  𝑣𝑓𝑐𝑑  in EC2). Stirrups within the clear shear span (av1) and between the point 

loads are replaced by ties  𝑇𝑆1 and  𝑇𝑆2 with resistance  𝑇𝑆𝑖 = 𝑓𝑦𝑛𝑖𝐴𝑠𝑤, where 𝑛𝑖 is the number 

of stirrups in tie  𝑇𝑆𝑖. 

The failure load of STM2 is the least of the flexural capacity, the crushing strength of strut 𝐼𝐼𝐼 

or the bearing capacity at the plates. Further details about the STM geometry and solution 

algorithm is available elsewhere (Fang, 2013, Vollum and Fang, 2014). 

7.3.1. STM for beams loaded in the tension face (STM3) 

STM2 is not applicable for cases where multiple loads are applied to the tension face of the 

beam within the shear span, as it is not compatible with the reinforcement arrangement. This 

is reflected in differences in the observed behaviour and strength of notionally identical 

beams loaded on the tension and compression faces as well as the FE results presented in 

Section 7.4. 

(c) (d) 
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The STM shown in Figure 7.7 (depicted STM3) was developed by the author for the analysis 

of the cantilever beams tested in this program with two-point loads applied to the critical 

shear span. The total load (P) applied to the tension face is divided into loads 𝑅2.P applied to 

the outer load plate and load 𝑅1.P applied to the inner plate. The inner load (𝑅1P) is 

transferred directly from the inner plate to the support through direct strut (4) as shown in 

Figure 7.7. The outer load (𝑅2.P) is transferred through a combination of a direct strut (2) and 

an indirect truss mechanism that is equilibrated by the vertical stirrups.  

 
(a) 

 
(b) (c) 

Figure 7.7: STM3 for beams loaded in the tension face. a) Geometry, b) bottom CCC node 

and c) top outer CCT node 
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The two discrete vertical ties shown in Figure 7.7 represent the centroid of the stirrups placed 

within the inner and outer shear spans, which are assumed to be at 0.25av2 and 0.75av2 

respectively for the tested loading arrangement. Nodes in this model were assumed non-

hydrostatic. The stress distribution is assumed uniform at the node boundaries. The geometry 

of the CCC node at the central support is defined by the horizontal components (𝐻𝑖) of the 

force in struts associated with the nodes and the width of the support. As shown in Figure 7.7 

– b, the height of the compression zone x calculated from equilibrium is divided into several 

parts corresponding to the proportions of the horizontal components of the struts in the CCC 

node. The geometry of the CCT nodes under the loads is defined by the distance to the 

centroid of the flexural reinforcement and width of the loading plates. Force in the outer 

loading plate is transferred to the bottom plate through a combination of the direct strut 2 

and the truss of the stirrups in the outer shear span and struts 1 and 3. The STM is defined by 

the following equations of geometry and equilibrium (𝑋𝑖  and 𝑌𝑖  are the horizontal and vertical 

projections of strut I and 𝑙𝑡1 = 𝑙𝑡2 = 𝑙𝑡): 

Strut (1) 

𝑋1 = 0.5𝑎𝑣2 + 𝑙𝑡(1 −
0.5(𝑇𝑠1 + 𝑇𝑠2)

𝑃2
) 

Equation 7.11 

 

𝑌1 = ℎ − 2𝑑
′ + 𝛾𝑑′ − 0.5𝛽1𝑥 

 

Equation 7.12 

 

𝐻1 =
𝑋1
𝑌1
(𝑇𝑠1 + 𝑇𝑠2) 

Equation 7.13 

 

𝛽1 = 𝐻1/𝐶 Equation 7.14 

 

𝛾 =
𝐻1

𝐻1 +𝐻2
 

Equation 7.15 

 

Strut (2) 

𝑋2 = 𝑎𝑣2 + 0.5
𝑃2 − (𝑇𝑠1 + 𝑇𝑠2)

𝑃1 + 𝑃2
𝑙𝑏 + 0.5(1 −

𝑇𝑠1 + 𝑇𝑠2
𝑃2

)𝑙𝑡 
Equation 7.16 

 

𝑌2 = ℎ − (𝛽1 + 0.5𝛽2)𝑥 − 𝑑′(1 − 𝛾) Equation 7.17 
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𝐻2 =
𝑋2
𝑌2
(𝑃2 − 𝑇𝑠1 − 𝑇𝑠2) 

Equation 7.18 

 

𝛽2 = 𝐻2/𝐶 Equation 7.19 

 

Strut (3) 

𝑋3 = 0.75𝑎𝑣2 +
(𝑃2 − 𝑇𝑠1 − 0.5𝑇𝑠2)

𝑃1 + 𝑃2
𝑙𝑏 

Equation 7.20 

 

𝑌3 = ℎ − (𝛽1 + 𝛽2 + 0.5𝛽3)𝑥 Equation 7.21 

 

𝐻3 =
𝑋3
𝑌3
𝑇𝑠2 

Equation 7.22 

 

𝛽3 = 𝐻3/𝐶 Equation 7.23 

 

Strut (4) 

𝑋4 = 𝑎𝑣1 + 0.5𝑙𝑡 +
0.5𝑃1 + 𝑃2 − 𝑇𝑠1

𝑃1 + 𝑃2
𝑙𝑏  

Equation 7.24 

 

𝑌4 = 𝑑 − (𝛽1 + 𝛽2 + 𝛽3 + 0.5𝛽4)𝑥 Equation 7.25 

 

𝐻4 =
𝑋4
𝑌4
𝑃1 

Equation 7.26 

 

𝛽4 = 𝐻4/𝐶 Equation 7.27 

 

Strut (5) 

𝑋5 = 0.25𝑎𝑣1 + 𝑙𝑏(1 −
𝑇𝑠1

𝑃1 + 𝑃2
 

Equation 7.28 

 

𝑌5 = 𝑑 − (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 − 0.5𝛽5)𝑥 Equation 7.29 

 

Moment equilibrium 

𝑀 = 𝑃2𝑎2 + 𝑃1𝑎1 − 0.5(𝑃1 + 𝑃2)𝑙𝑏 Equation 7.30 
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𝑥

𝑑
= 1 − √1 − 2𝑘 Equation 7.31 

 

𝑘 =
𝑀

𝑏𝑑2𝑓𝑐𝑘
 

Equation 7.32 

𝑤 = 𝑙𝑠𝑖𝑛𝜃 + 𝑢𝑐𝑜𝑠𝜃 Equation 7.33  

In the above equations, 𝛽𝑖  is the contribution of the horizontal component of the force in 

strut (i) to the total compression force in the flexural compression zone, C is the flexural 

compressive force at the central support and 𝑇𝑠𝑖 is the tensile force carried by stirrups set 𝑖. 

Failure in STM3 is governed by the crushing either strut (2) or (4). The strut width (w) is 

calculated using Equation 7.33 in terms of the vertical and horizontal projections of the strut 

normal to its centreline at the top and bottom nodes. The vertical and horizontal projections 

of the strut to node interface are given in Table 7.3 for each strut at its top and bottom ends. 

The axial resistance of each direct strut was calculated in accordance with the 

recommendations of EC2 and the Modified Compression Field Theory (Vecchio and Collins, 

1986). Following the example of Sagaseta and Vollum (2010) and Collins and Mitchell (1991), 

different concrete strengths were adopted at the intersection of struts with CCC and CCT 

nodes as described in Table 7.3. 

If the total tensile force carried by the stirrups (𝑇𝑠1 + 𝑇𝑠2) is greater than the outer load (R2P), 

as was the case in beam CT200 (0.6/0.4), the force in strut 2 is set to zero and the failure is 

governed by crushing of strut 3 or 1 at top. In this case, the stirrups do not yield at failure.  

Table 7.3: Height and width of struts 2 and 4 

 
Strut 2 Strut 4 

Top Bottom Top Bottom 

Width 
𝑃2 − 𝑇𝑠1 − 𝑇𝑠2

𝑃2
𝑙𝑡 

𝑃2 − 𝑇𝑠1 − 𝑇𝑠2
𝑃1 + 𝑃2

𝑙𝑏 𝑙𝑡 
𝑃1

𝑃1 + 𝑃2
𝑙𝑏 

Height 2𝑑′(1 − 𝛾) 𝛽2𝑥 2𝑑′ 𝛽4𝑥 

EC2 strut 

strength 
0.6 (1 −

𝑓𝑐𝑘
250

)𝑓𝑐𝑘 𝛼 (1 −
𝑓𝑐𝑘
250

)𝑓𝑐𝑘 0.6 (1 −
𝑓𝑐𝑘
250

) 𝑓𝑐𝑘 𝛼 (1 −
𝑓𝑐𝑘
250

)𝑓𝑐𝑘 

MCFT strut 

strength 

𝑓𝑐𝑘
(0.8 + 170휀1)

 0.85𝑓𝑐𝑘 
𝑓𝑐𝑘

(0.8 + 170휀1)
 0.85𝑓𝑐𝑘 
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7.3.2. Solution procedure for STM3 

The shear resistance in STM3 can be readily obtained using a nonlinear equation solver like 

the Generalized Reduced Gradient (GRG) solver in Microsoft Excel or an iterative procedure 

like the following: 

1. Estimate an initial value of P and calculate P1 and P2 where 𝑃1 = 𝑅1 × 𝑃 and 𝑃2 =

𝑃2 × 𝑃.  𝑅1 and 𝑅2 and known. 

2. Calculate the compression depth 𝑥 from Equation 7.31 and calculate the total 

compressive force (C) respectively. 

3. Assume stirrups yield and calculate X1, X2, X3 and X4 using equations: Equation 7.11, 

Equation 7.16, Equation 7.20 and Equation 7.24. 

4. Estimate unknowns H1, H2, H3, H4 

5. Calculate 1, 2, 3, 4, using equations: Equation 7.14, Equation 7.19, 

Equation 7.23, Equation 7.27 and Equation 7.15. 

6. Vary H1, H2, H3, H4 in solver until estimated and calculated values are equal (use 

Equation 7.13, Equation 7.18, Equation 7.22 and Equation 7.26 for the calculating 

Hi). 

7. Vary P until strut (2) or strut (4) fails. 

STM3 reduces to STM1 if the inner load is not present in which case strut (4) vanishes.  

7.3.3. Results of the STM 

The tested beams were analysed with the appropriate STM as indicated in Table 7.4, which 

presents failure loads for strut strengths calculated with both EC2 and the MCFT. STM3 is 

applicable to all the tested cantilever beams since it reduces to STM1 for the beams with 

single point loads in the shear span. All the stirrups in the clear shear span were assumed to 

yield, which is reviewed later in section 7.4.2, unless the resulting direct strut force was 

negative in which case the stirrup force was calculated from equilibrium assuming that the 

direct strut force was zero.  

Results are presented in Table 7.4 for STM 3 EC2 with α = 1.0 (as adopted by Sagaseta and 

Vollum (2010) and Vollum and Fang (2015) for beams loaded on their compression face) and 

α = 0.85 which gives improved predictions for STM3 where failure at the CCC node governs 

(where 𝛼 (1 −
𝑓𝑐𝑘

250
) 𝑓𝑐𝑘 defines the strength of struts 2 and 4 at the CCC node (see Table 7.3)). As 
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shown in Table 7.4, the overall accuracy of the STM predictions is good particularly if strut 

strengths are calculated using EC2 with α = 0.85 (mean/covariance of Pcalc/Ptest = 0.87/17%). 

STM3 EC2 gives good estimates of failure load for the 10 cantilever beams (including 4 with 

single point loads for which STM3 reduces to STM1). Only the strength of beam AT0 (0.5/0.5) 

is significantly overestimated with 𝑃𝑐𝑎𝑙𝑐/𝑃𝑡𝑒𝑠𝑡 =1.2. For the six cantilever beams with two 

point loads, the mean/covariance of 𝑃𝑐𝑎𝑙𝑐/𝑃𝑡𝑒𝑠𝑡  are  0.97/13% for EC2 (α = 0.85) and 0.84/23% 

for MCFT. STM3 EC2 with α = 0.85 correctly predicts shear failure to occur in the outer shear 

span due to crushing of strut 2 for all relevant beams except CT200 (0.6/0.4).  

Table 7.4: Experimental failure load and estimations of Pcalc/Ptest using STMs and FEA 

Beam ID 

STM
 

RHS 

Failure 

loads (kN) 

STM 𝑃𝑐𝑎𝑙𝑐/𝑃𝑡𝑒𝑠𝑡  (total) five - 

spring 

model 

𝑃𝑐𝑎𝑙𝑐/𝑃𝑡𝑒𝑠𝑡 

FE

Test
 

EC2 

MCFT 
 = 1  = 0.85 

AC0(0.5/0.5) 2 539 0.74 0.74 0.61 1.01 1.02 

AC200(0.5/0.5) 2 742 0.70 0.70 0.70 0.78 1.08 

AT0(0.5/0.5) 3 449 1.43 1.20 1.15 0.91 1.14 

AT200(0.5/0.5) 3 733 0.94 0.86 0.83 0.83 1.04 

BT200(0.5/0.5) 3 648 1.05 0.87 0.88 1.24 0.86 

BT200(1.0/0) 1/3 610 0.78 0.78 0.91 1.01 1.03 

BT200(0/1.0) 1/3 423 0.90 0.90 0.77 0.94 1.12 

BT200(0.3/0.7) 3 528 1.03 1.01 0.88 0.89 0.98 

CT0(1.0/0) 1/3 441 0.73 0.73 0.63 0.87 0.81 

CT200(1.0/0) 1/3 543 0.75 0.75 0.72 0.93 1.02 

CT0(0.6/0.4) 3 378 0.93 0.93 0.60 1.01 0.95 

CT20 (0.6/0.4) 3 502 0.94 0.94 0.67 0.89 1.01 

Average 0.91 0.87 0.78 0.94 1.0 

SD 0.20 0.14 0.16 0.12 0.09 

COV 0.22 0.17 0.21 0.13 0.09 
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The accuracy of the models presented earlier is compared in Figure 7.8 below. STM1 proposed 

by Sagaseta (2008) was used to estimate the strength of beams with single point load 

(BT200(1.0/0), BT200 (0/1.0), CT0 (1.0/0) and CT200 (1.0)) while the STM2 (Vollum and Fang, 

2014) was used to estimate the strength of beams AC0 (0.5/0.5) and AC200 (0.5/0.5) loaded 

with two point loads on the compression face. The strength of the remaining six beams loaded 

with two point loads on the tension face was calculated using STM3. Figure 7.8 shows the 

accuracy of the estimated strength for the tested beams obtained using relevant STM in terms 

of the mean and the range of predictions. It can be seen that the proposed STM3 gives the 

best estimates if the provisions of the MCFT are used to estimate the strength of the strut. 

 

Figure 7.8: Comparison of STM results obtained using the MCFT and EC2 with α = 0.85.  

STM3 can be readily adapted for the analysis of beams loaded on the compression face like 

beams AC0 (0.5/0.5) and AC200 (0.5/0.5). The required STM modification is illustrated in 

Figure 7.9 below for beam AC0 (0.5/0.5). Also shown in Figure 7.9 is STM3 for beam AT0 

(0.5/0.5) which was loaded on its tension face. In each case, strut 2 was critical with failure 

occurring at the interface with the CCT node as shown in the figure. For purposes of 

comparison STM3 is drawn for beam AT0 (0.5/0.5) with the intended loading ratio of (0.5/0.5) 

rather than the actual loading ratio of (0.6/0.4). The concrete strengths of both beams were 

assumed to equal that of beam AC0 (0.5/0.5) for purposes of analysis. STM3 incorrectly 

estimates the strength of beam AC0 (0.5/0.5), loaded on the compression face 

(𝑉𝑆𝑀𝑇3=382/279 KN for EC2 and MCFT), to be slightly less than the strength of beam AT0 
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(0.5/0.5) loaded on the tension face (𝑉𝑆𝑀𝑇3=399/300 KN for EC2/MCFT). The predicted 

strength of beam AT0 (0.5/0.5) is greater than AC0 (0.5/0.5) since the width of strut 2 

perpendicular to the strut centreline at the CCT node is greatest for AT0 (0.5/0.5) due to its 

greater bearing length (100 mm compared with 75 mm). In reality, the tests suggest that the 

strength of tension face loaded beams like AT0 (0.5/0.5) is less than compression face loaded 

beams like AC0 (0.5/0.5). As discussed later in Section 7.4.5, this is predicted by NLFEA but 

not STM, which appears to be overly sensitive to node dimensions as suggested by Vollum 

and Fang (2015).  

 

Figure 7.9: STM3 adopted for beam AC0 (0.5/0.5) loaded on the compression face 

 

7.3.4. The geometry of the STM of the tested beams  

In this section, the geometry of the implemented STMs is shown in Figure 7.10 superimposed 

onto the major crack patterns observed prior to failure. These STM geometries shown in 
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Figure 7.10 were obtained using the measured concrete strengths. Figure 7.10 shows that in 

most cases the STM geometry is consistent with the stress flow assumed in the STMs. 

Typically, a diagonal crack passes through the direct struts of the STMs. This supports the 

earlier assumption that the strength of the direct struts is reduced due to crack penetration.  
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Figure 7.10: Overlay of the STMs on the major crack pattern for test beams 

7.4. Comparison between STM, Test Behaviour and NLFEA. 

Nonlinear finite element analysis (NLFEA) was performed using DIANA finite element analysis 

software (v10.2) to estimate the shear strength of the test beams and to conduct parametric 

studies. Further details about the software, models used, calibration and sensitivity analysis 

are found in Chapter 6 and in Diana Users’ Manual (DIANA, 2017). The analysis was carried 

out with an Intel ® core ™ i7 processor and an installed RAM memory of 64GB. Predictions of 

failure loads and load-deflection response obtained using the NLFEA were presented in 

Chapter 5. Furthermore, beam strength has been estimated in this chapter using design codes 
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and STMs. As shown in Table 7.4 the NLFEA predictions were most accurate of the considered 

assessment methods (STMs and design codes) while the design codes provided the most 

conservative estimates.  

7.4.1. Comparison of the stress fields and crack patterns 

This section compares the stress fields assumed in the STM with those obtained with NLFEA 

at peak load. The geometry of the STMs varies dependent on the concrete strength provisions 

used. While EC2 relates the strength of the cracked strut to the compressive strength only, 

the MCFT relates its strength to the state of the strain of associated reinforcement and to the 

strut inclination. The geometry of STMs was calculated based on the MCFT, as the results 

were similar for the MCFT and EC2 (with 𝛼 = 0.85). 

The principle stress vectors obtained from the FEA were overlaid on the STMs and 

experimental crack patterns as shown in Figure 7.11 and Figure 7.13. The strut locations of 

the proposed STM coincide well with the stress fields, particularly for beams without shear 

reinforcement where the stress field is most clearly defined. Clear differences can be seen in 

the NLFEA stress fields for beams loaded on the tension and compression face (e.g. Beams 

AC0 (0.5/0.5) and AT0 (0.5/0.5)). 
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Figure 7.11: FEA principal stress, STMs and experimental cracks for the test beams 
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Failure in the STMs presented in this work is assumed to be due to concrete crushing in the 

struts. This assumption was investigated by examining the plastic strains in the concrete at 

failure obtained from the NLFEA. Figure 7.12 below shows the plastic strains in beams AC200 

(0.5/0.5) and BT200 (0.5/0.5), which indicated crushing of the concrete in these locations. 

Beam AC200 (0.5/0.5) was loaded on the compression face with multiple point loads, and 

hence, its strength was evaluated using STM2 (Fang, 2013). STM2 assumes plastic stresses to 

develop at the back of the top CCC and the governing failure criteria was crushing of strut𝐼𝐼𝐼. 

The appearance of plastic strains in strut 𝐼𝐼𝐼 and at the back of the top CCC node is consistent 

with the assumed failure load and the use of the plastic strength for the CCC node. Similar 

conclusions also apply to STM3 for beams loaded on the tension face as shown in Figure 7.13 

for beam BT200 (0.5/0.5). Failure of SMT3 is assumed to occur due to crushing of either strut 

2 or 4 depending on the loading ratio.  

  
a) AC200 (0.5/0.5) b) BT200 (0.5/0.5) 

Figure 7.12: Plastic strain at failure for beams a) AC200 (0.5/0.5) and b) BT200 (0.5/0.5) 

 

Figure 7.13 shows the crack normal strains and the experimentally observed crack patterns 

for the tested beams. For beams loaded on the compression face (i.e. beams AC0 (0.5/0.5) 

and AC200 (0.5/0.5)), the FE predicted the cracks to propagate at a steeper angle than 

observed between the bottom support and the inner load plate. In the tests, only the lower 

part of the crack was oriented at the crack angle determined by the FEA. At later stages of 

testing, the inclination of the crack in the top half of the beam became shallower forming a 

dogleg as shown in Figure 7.13. A more detailed description of the development of cracking 

in beams AC0 (0.5/0.5) and AC200 (0.5/0.5) can be found in Chapter 4. The crack pattern in 

beams loaded on the tension side was consistent with the NLFEA crack normal strains for the 

majority of the beams. For beams loaded with multiple point loads, the two cracks observed 
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on the tests between the inner and the outer loading plate and the support were observed in 

the FEA. 
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Figure 7.13: FEA principal strains, STMs and experimental cracks for the test beams 

7.4.2. Comparison of measured, STM and NLFEA reinforcement strains 

This section compares the strains measured during the tests using strain gauges with those 

predicted using NLFEA and STM if applicable. These comparisons include flexural strains and 

stirrup strains. The strains at the supports and loading plates are discussed separately in 

section 7.4.3 

Flexural strains 

Flexural tensile strains obtained from the experimental program were compared to strains 

obtained from STM for both EC2 and MCFT strut strength provisions. Maximum experimental 

flexural strains were obtained by averaging readings of strain gauges SG1, SG2, SG3 and SG4 

for beams loaded on the compression and tension face. Strain gauges SG1 and SG2 measured 

the strains in the extreme flexural layer while SG3 and SG4 measured strains of the inner 

reinforcement layer (more detail regarding positioning of strain gauges (see Figure 3.25, 

Figure 4.22, Figure 4.36 and Figure 4.52) and strain measurements are available in Chapters 

3 and 4). A similar approach was adopted regarding the strains in the FEA, which were 

extracted at the same positions as the strain gauges in the tests. The measured strains in the 
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two layers of flexural reinforcement were averaged to facilitate comparison with the STM 

strain.  These results were also compared to the results obtained from the FEA as shown in 

Figure 7.14. This figure shows that both STM and FEA strains were comparable to the 

experimental results. Strains obtained with STM were sometimes greater than obtained from 

the tests but that is to be expected, since the STM does not take tension stiffening from the 

concrete into consideration. 

  

  

  



Shear Enhancement in RC Beams Loaded on the Tension Face Analysis of the Results 

 

332 
 

  

  

  

Figure 7.14: Maximum flexural tensile strains obtained from the experimental program, 

STM3 (EC2 and MCFT) and FEA 

Stirrup strains 

In the STM, the direct strut contribution is calculated assuming that the stirrups yield. The 

validity of this assumption was investigated by examining the strains measured in selected 

stirrups of each beam as well as the results of the NLFEA simulations. Strain gauges were 
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positioned on all the stirrups between the support and outer load at locations where NLFEA 

suggested strains would be greatest. Additionally, stirrup strains were estimated from 

measured crack widths using the method proposed by Sigrist (Sigrist, 1995) as described in 

Chapter 2. In this model, all the tension force is transferred by the stirrups at locations where 

cracks intercept the stirrups and reduce in regions of bonded concrete. In the elastic zone of 

the stirrups, the bond is assumed constant and equal to twice the concrete tensile strength. 

The bond reduces to the concrete tensile strength if the stirrups yield. The stresses and forces 

of the stirrups in this work was estimated based on the measured crack widths and crack 

locations. In practice, the strain gauge positions did not always coincide with the critical shear 

cracks in the tested beams due to differences between the observed and estimated crack 

patterns. Therefore, the peak strains would usually have been greater than measured. The 

difference between observed and NLFEA crack patterns is to be expected since the geometry 

of the critical shear crack varies randomly between notionally identical beams. Despite this, 

the measured and calculated strains agree reasonably well as shown in Figure 7.16 for beams 

with shear reinforcement. Table 7.5 summarises the number and position of stirrups that 

yielded in each test according to the measured strains, Sigrist (Sigrist, 1995) and NLFEA. Based 

on the greatest of the measured and NLFEA strains, at least one stirrup yielded in all the 

beams. By way of comparison, it is assumed in the STM that all the stirrups yield apart from 

beam CT200 (0.6/0.4) where stirrups only yield within the inner clear shear span 𝑎𝑣1. Despite 

this, the STM gives reasonable yet conservative estimates of beam strength as shown in 

Table 7.4. 
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Figure 7.15: Locations and names of stirrups in the tested beams 

Table 7.5: Location and number of stirrups yielded in the test and NLFEA 

Beam ID 
Total No. of stirrups 

in shear span 

Location of stirrups that yielded (STR 1 near to 

the support) 

Strain Gauges Sigrist NLFEA 

AC200 (0.5/0.5) 4 STR 2, 3 - - 

AT200 (0.5/0.5) 4 STR 3 STR 3 - 

BT200 (0.5/0.5) 4 STR 2, 3, 4 STR 2, 3 STR 1 

BT200 (1.0/0) 2 STR 2 STR 1 - 

BT200 (0/1.0) 4 STR 2, 3 STR 2, 3 STR 1, 2, 3 

BT200 (0.3/0.7) 4 STR 2,3 STR 2 STR 1, 2, 3 

CT200 (1.0/0) 3 - - STR 1, 2 

CT200 (0.6/0.4) 6 STR 2 STR 2 STR 2 

 

The strain gauge measurements presented in Table 7.5 and Figure 7.16 show that the majority 

of the yielded stirrups are the ones in the middle of the shear span, which was previously 

reported on fibre optics strain measurements of short span beams (Poldon et al., 2019). This 

finding is supported by the strains obtained from the observed crack kinematics except for 

beam BT200 (1.0/0) where STR1 yielded based on Sigrist model (1995). 
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Figure 7.16: Comparison between FE and experimentally obtained shear reinforcement strain 

7.4.3. The effect of the transfer compression on the bond force 

The presence of transverse pressure (or confinement) increases the bond strength between 

the reinforcement and the concrete in two ways: it delays the splitting failure which occurs in 

planes perpendicular to the applied stress and it increases the friction force in the interface 

between the concrete and the reinforcing bar (Cairns et al., 2015).  

The rate of increase in bond strength due to lateral confinement is most pronounced at low 

transverse pressures where an increase of confinement delays splitting. At high transverse 

pressures, the increase in bond strength with increasing pressure is less pronounced since 

increasing the transverse pressure only serves to prevent the pull through by increasing 

friction. A schematic representation of this is shown in Figure 7.17 

The increase in bond strength (or the reduction of bond length) due to applied pressure is 

particularly beneficial at the supports of deep beams and at loading points of corbels. In this 
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research, strain gauges were positioned to measure the axial force before and after the 

support/load plates in the flexural tension face. In Figure 7.18, the applied pressure is 

assumed uniform along the load/support plate and fans at an angle 45𝑜 until it intersects the 

reinforcing bar. The transfer pressure 𝑃𝑡𝑟  is then given as: 

 

Figure 7.17: The influence of transverse pressure on the bond strength during loading – 

adapted from MC2010  

𝑝𝑡𝑟 =
𝑃

𝑏𝐿𝑐𝑜𝑚𝑝
 Equation 7.34 

In which 𝑃 is the load acting on the load/support plate, 𝑏 is the beam width and 𝐿𝑐𝑜𝑚𝑝 is the 

length of the reinforcement bar over which the load is spread.  

Strain gauges were attached to the reinforcement bars to either side of the load/support 

plates at a spacing 𝐿𝑆𝐺 . The bar force at these gauges reduces from 𝐹𝑚𝑎𝑥 to 𝐹𝑚𝑖𝑛 through 

bond between the reinforcement and concrete.  
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Figure 7.18: Measurement of reduction in axial force along the support/load plates 

MC2010 and EC2 account for this enhancement differently. MC2010 explicitly relates the 

enhanced bond strength to the transverse pressure whereas EC2 reduces the required 

anchorage length by a multiple 𝛼5, which depends on the transverse pressure. Although these 

two approaches look different, they can be put into the same format by rearranging the EC2 

equations.  EC2 estimates the design value of the ultimate bond stress 𝑓𝑏𝑑  as: 

𝑓𝑏𝑑 = 2.25𝜂1𝜂2𝑓𝑐𝑡𝑑  Equation 7.35 

The coefficient 𝜂1 relates to the quality of the bond condition and the position of the bar 

during concreting and is taken as 1.0 in this work, while 𝜂2 depends on the bar diameter 𝜙 

and is taken as 1.0 for 𝜙 < 32𝑚𝑚. 𝑓𝑐𝑡𝑑  is the design value of concrete tensile strength.  

The basic anchorage length 𝑙𝑏,𝑟𝑞𝑟𝑑  is calculated in terms of 𝑓𝑏𝑑  as: 

𝑙𝑏,𝑟𝑞𝑑 =
𝜙

4
(𝜎𝑠𝑑/𝑓𝑏𝑑  ) Equation 7.36 

In which 𝜎𝑠𝑑  is the applied stress and 𝜙 is bar diameter. 

The required anchorage length 𝑙𝑏𝑑  is given by the product of the basic anchorage length 

𝑙𝑏,𝑟𝑞𝑟𝑑  and the multiple 𝛼1𝛼2𝛼3𝛼4𝛼5, in which the coefficients  𝛼1 to  𝛼5 account for the 

shape of the bar, concrete cover, confinement by transverse reinforcement, confinement by 

welded reinforcement and the effect of transverse pressure respectively. The design 

anchorage length 𝑙𝑏𝑑  can be expressed in terms of 𝛼5 as follows: 

𝑙𝑏𝑑 = 𝑘𝛼5𝑙𝑏,𝑟𝑞𝑟𝑑 Equation 7.37 

In which 𝑘 =   𝛼1𝛼2𝛼3𝛼4. 

Beam 

 

Support 

 

Strain gauges 

 

P 

P 
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The maximum design force that can be developed by the bond over an anchorage length 𝑙𝑏𝑑  

is given by: 

𝐹𝑏𝑑 =
𝑙𝑏𝑑𝜋𝜙𝑓𝑏𝑑
𝑘𝛼5  

 Equation 7.38 

Equation 7.38 can be expressed in terms of the transverse pressure 𝑓𝑡𝑝  as: 

𝐹𝑏𝑑 =
𝑙𝑏𝑑
𝑘
𝜋𝜙𝑓𝑏𝑑(1 +

𝑓𝑡𝑝
𝑓𝑏𝑑
)  Equation 7.39 

𝑓𝑡𝑝
𝑓𝑏𝑑

= (
1

𝛼5
− 1)

 

 Equation 7.40 

EC2 gives the coefficient 𝛼5 as: 

𝛼5 = 1 − 0.04𝑝𝑡𝑟 ≤ 0.7 Equation 7.41 

Where 𝑝𝑡𝑟  is the transverse pressure. Hence, the enhanced bond strength is given by: 

𝑓𝑏𝑑,𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 =
𝑓𝑏𝑑
𝑘
(1 +

0.04𝑝𝑡𝑟
1 − 0.04𝑝𝑡𝑟

)  

Unlike EC2, estimating the enhanced bond strength due to transverse pressure is 

straightforward in MC2010 as can be seen in: 

𝑓𝑏𝑑 = (𝛼2 + 𝛼3)𝑓𝑏𝑑,0 − 2𝑝𝑡𝑟 < 2𝑓𝑏𝑑,0 − 0.4𝑝𝑡𝑟  < 1.5 √𝑓𝑐𝑘) Equation 7.42 

The coefficients 𝛼2 and 𝛼3 account for the passive confinement from the cover and the 

transverse reinforcement and 𝑓𝑏𝑑,0 is the basic bond strength. Further details regarding the 

effect of the other parameters on the bond strength can be found in the design codes (fib, 

2010, BSI, 2004). 

Strain measurements were obtained to either side of the support for the beams loaded on 

the compression face and to either side of the load plates for beams loaded in the tension 

side. Due to malfunctioning of strain gauges, results are not available for beams BT200 (1.0/0), 

BT200 (0/1.0) and CT0 (1.0/0).  

To evaluate the reduction of the axial force along the length 𝐿𝑆𝐺 , results from the FE analysis 

were also used. Figure 7.19 shows the maximum tensile force at the plate edge and the 

reduction along the length 𝐿𝑆𝐺  (i.e. 𝐹𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐹𝑎𝑓𝑡𝑒𝑟) for the tested beams. Results are 

presented for forces determined from the measured strains as well as FEA at the same 

locations. Figure 7.15 also shows the maximum available bond force along the length 𝐿𝑆𝐺  

calculated using both EC2 and MC2010. These forces were calculated with partial factors 
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equal to 1.0. It is worth mentioning that 𝐿𝑆𝐺  is larger for beams loaded on the compression 

face, and hence, the change in force along it is also larger. 

Generally, there was reasonable agreement between the trends of measured and NLFEA 

tensile forces but the measured forces were consistently greater than calculated. However, 

for beams loaded on the compression face, the FE suggested that the majority of the tensile 

force was anchored along the length 𝐿𝑆𝐺  while test results show otherwise. This is reasonable 

given that the FE assumes a perfect bond between the concrete and the reinforcement.  

Regarding the code estimations, the maximum design force that can be developed along the 

length 𝐿𝑆𝐺  is greater than the measured change in force for all of the beams when calculated 

using MC2010. This was also the case for EC2 apart from beams AT200 (0.5/0.50) and CT200 

(1.0/0) where the maximum transferred force was slightly greater than the code limit. 
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Figure 7.19: Effect of transverse pressure on the bond strength for the tested beams 
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The basic bond strength given by MC2010 is around half that calculated with EC2 but, the 

influence of transverse pressure is significantly greater according to MC2010 than EC2. 

Consequently, the maximum force developable along the length 𝐿𝑆𝐺  is always greater for 

MC2010 than EC2. The MC2010 pull-through mode bond strength was not critical in any of 

the tested beams. However, in some cases the maximum force transferred along 𝐿𝑆𝐺  

exceeded the design strength given by EC2. There was no visible evidence of bond failure in 

any of these tests. 

7.4.4. Prediction of critical failure plane for tested beams  

In this research, the shear strength of beams loaded with multiple point loads was estimated 

using several methods (the five-spring model discussed in Chapter 5, NLFEA described 

in Chapter 6, design codes and STM). Dependent on the ratio between the inner (P1) and outer 

(P2) loads, beams loaded with two point loads can fail in shear along the inner or outer shear 

planes depicted in Figure 2.14. This section reviews the accuracy of these methods in 

predicting the failure plane and their sensitivity to the ratio between 𝑃1 and 𝑃2. 

As mentioned earlier, the shear strength of beams with two-point loads calculated using the 

five-spring model must be evaluated for both shear planes to find the critical section. Both 

EC2 and BS8110 indicate the location of the critical shear plane while the maximum shear 

force is always critical with MC2010. Two different STMs were used to estimate the strength 

of beams with pairs of point loads. STM2, which used for beams loaded on their compression 

face, does not indicate a failure plane as it assumes shear failure to occur due to crushing of 

strut III at its bottom end – see Figure 2.33. Contrarily, in STM3 the outer shear span is critical 

when the failure load is governed by strut 2 (Figure 7.7). The situation is less clear with the 

NLFEA, which does not give any direct indication of the critical failure plane. In the tests, 

failure occurred in the outer shear span of all specimens except CT200 (0.6/0.4). Table 7.1 

compares the predicted failure plane obtained using different methods. For beams with 

multiple point loads, the strength for failure along the outer and inner shear planes was 

estimated using equations Equation 7.4 and Equation 7.5 for EC2, following the 

recommendations of Vollum and Fang (2014). 
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Table 7.6: Predicted and actual failure plane for different models 

Beam 
Actual failure 

plane 

Predicted failure plane 

Five-Spring STM3 (EC2) STM3 (MCFT) BS 8110 EC2 

AC0 (0.5/0.5) Outer Outer N/A N/A Outer Inner 

AC200 (0.5/0.5) Outer Outer N/A N/A Inner Inner 

AT0 (0.5/0.5) Outer Outer Outer Outer Inner Inner 

AT200 (0.5/0.5) Outer Inner Outer Inner Inner Inner 

BT200 (0.5/0.5) Outer Inner Outer Inner Inner Inner 

BT200 (0.3/0.7) Outer Outer Outer Outer Outer Inner 

CT0 (0.6/0.4) Outer Outer Outer Outer Inner Inner 

CT200 (0.6/0.4) Inner Inner Inner Inner Inner Inner 

 

STM3 (EC2) correctly predicts the failure plane for all relevant beams while STM3 (MCFT) and 

the five-spring model fail to predict the failure plane of beams AT200 (0.5/0.5) and BT200 

(0.5/0.5), which are notionally identical. EC2 falsely predicted shear failure to be critical in the 

inner shear span for all specimens with two-point loads apart from CT200 (0.6/0.4). BS8110 

similarly fails to predict the correct failure plane with the exception of beams AC0 (0.5/0.5) 

and BT200 (0.3/0.7). 

The influence of P1/P on the measured and predicted failure loads P2 is illustrated in 

(Figure 7.20 – a) for series B and beam AT200 (0.5/0.5). The predicted failure mode is depicted 

in (Figure 7.20– a) by open symbols for failure in the inner shear span and solid symbols for 

failure in the outer shear span. Figure 7.20a shows that the shear resistance of the critical 

outer shear span 𝑃2 reduced as P1 was increased while Figure 7.20b shows the maximum 

shear force P increased with increasing P1/P despite the reduction in shear resistance P2 of 

the outer shear span. This interaction between P1 and P2 is most realistically captured by 

STM3 EC2 ( = 0.85) and NLFEA but all the strength predictions are reasonable. 
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(a) (b) 

Figure 7.20: Influence of P1/P on normalised failure loads a) P2 and b) P for Series B 

Figure 7.21a and b show the influence of P2/P on the measured and predicted failure loads 

according to BS8110 and EC2 respectively. Strengths are shown in each figure for beams 

without and with shear reinforcement. Failure is predicted to occur at the least of the loads 

corresponding to failure along the inner and outer shear planes. Figure 7.21 also shows the 

measured strengths of beams in Series A and B in which the outer shear plane was always 

critical in the tested beams. 

  

Figure 7.21: Influence of failure plane for series A and B according to a) BS8110 and b) EC2 
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Beams loaded on the compression face (i.e. beams AC0 (0.5/0.5) and AC200 (0.5/0.5) are 

identified in the graphs. All other beams were loaded on the tension face. For both BS8110 

and EC2, the experimental failure load corresponds most closely to the predicted failure load 

for failure along the outer shear span. The overall failure load is underestimated because both 

codes underestimate the shear resistance for failure along the inner shear plane. 

7.4.5. Influence of tension face loading on shear resistance 

The predicted influence of compression/tension face loading was investigated by comparing 

the resistance of matching pairs of beams, with four-point loads, identical to those tested in 

Series A but with all specimens having the same concrete strength of fc = 30 MPa.  Partial 

factors were taken as 1.0 for steel and concrete. Beam strengths were calculated for both 

tension and compression face loading using NLFEA, the 5 spring model and STM3 EC2 (with  

= 0.85 for beams without shear reinforcement (i.e. strut strength at CCC node equals 0.85(1-

fck/250)fck) and = 1 for beams with shear reinforcement). The geometrical arrangements for 

the tension and compression face loading were the same as adopted in test series A. 

Consequently, the width of the loading plates was 100 mm irrespective of whether the load 

was applied to the flexural tension or compression face. Similarly, the width of the support 

plate was 300 mm for cantilever beams and 150 mm for simply supported beams. The 

consequence of this is that the node geometries of beams with loading ratios (1.0/0) and 

(0/1.0) are different for tension and compression face loading. This is reflected in the STM 

results as discussed further below. The strength of tension face loaded beams was calculated 

with STM3, which is equivalent to STM1 for loading ratios of (1.0/0) and (0/1.0) so long as the 

inner load is assumed zero. Compression face loaded strengths were calculated with STM1 or 

STM2 as appropriate. The measured and predicted failure loads P are plotted in Figure 7.22a 

and b for beams without and with shear reinforcement respectively. The experimental and 

NLFEA results in Figure 7.22 suggest that tension face loaded beams have lower shear 

resistance than comparable compression face loaded beams. However, the five - spring model 

and STM incorrectly predict the shear resistance of the tension face loaded beams to be 

greater than that of comparable compression face loaded beams. It appears that the adopted 

STM are overly sensitive to variations in node dimensions as found by Vollum and Fang (2015) 

as discussed later. 
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Of previous tests with compression face loading, only those of Vollum and Fang (2015) are 

comparable with the current campaign. Vollum and Fang (2015) tested five simply supported 

beams with pairs of concentrated loads applied within 2𝑑 of supports. The geometry and 

loading arrangement of these beams were almost identical to beams AC0 (0.5/0.5) and 

AC200 (0.5/0.5) apart from the beam width being 165 mm instead of 250 mm. A 

straightforward method of assessing the influence of loading face on shear enhancement is 

to compare Ptest/Pcalc for the tests of Vollum and Fang as well as this campaign using BS8110 

which of the code methods gives the most consistent predictions of strength. In total, there 

are seven beams with pairs of equal loads on the compression face and three beams with 

pairs of equal loads on the tension face. The mean value of Ptest/Pcalc for BS8110 is 1.50 for all 

beams loaded on the compression face and 1.39 for all beams loaded on the tension face. 

Whilst inconclusive, this suggests that the influence of loading face is sufficiently small that it 

can be neglected in practical design. 

  

Figure 7.22: Influence of loading face on measured and predicted shear resistance for beams 

a) without and b) with shear reinforcement  

(Note: T refers to beams loaded on the tension face while C refers to beams loaded on the 

compression face). 

Neglecting the effect of self-weight, which is minimal, the differences in strength predictions 

for compression and tension face loading in Figure 7.22 for 𝑃2/𝑃 =  0 and 1.0 arise because 

of differences in the widths of the load/support plates. In the case of compression face 

loading, the width of the supports (CCT nodes) is 150 mm while the loading plates are 100 

(a) (b) 
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mm wide (CCC nodes). For tension face loading, the support is at a CCC node and the loading 

plates at CCT nodes. Despite the clear shear span being unchanged, the NLFEA and STM 

predict different strengths for tension and compression face loading. The differences in 

strength can be attributed to differences in the width of the loading and support plates for 

tension and compression face loading of otherwise identical beams as discussed earlier in 

section 7.3.4 

For the tested beams, the STM3 predictions for tension face loading are more accurate than 

those of STM2 for compression face loading. Figure 7.22 shows that STM2 gives lower 

strength predictions for compression face loading than STM3 for tension face loading 

whereas the test data suggests the opposite. Compared with STM, the five - spring model is 

simpler to implement if just used ultimate strength. Furthermore, the five – spring model is a 

powerful tool if used to estimate the load-deflection response and contributions of the shear 

transfer actions. 

The data in Figure 7.22 are explored in more detail below. To illustrate the effect of varying 

the load ratio within the shear span, the test results of beams containing shear reinforcement 

are plotted against 𝑃2/𝑃 for tension face loading in Figure 7.23 a. The test results indicate 

that the total failure load (P) increased as the load ratio 𝑃2/𝑃 increased from 0 to 0.4. 

Subsequently, the total failure load reduced as 𝑃2/𝑃 was increased from 0.4 to 1.0. Test 

results are unavailable for load ratios 𝑃2/𝑃 between 0 and 0.4. Figure 7.22a also shows 

predicted strengths. The change in slope of the STM3 results at 𝑃2/𝑃 = 0.5 is associated with 

the predicted failure plane switching from outer to inner for 𝑃2/𝑃 ≤ 0.5. In reality, the 

transition would have occurred for the tested beams at  𝑃2/𝑃 <  0.4. In general, the ratio 

𝑃2/𝑃 at which the failure plane switches from outer to inner depends on the shear 

reinforcement ratio since shear reinforcement has a greater influence on the strength of the 

outer than inner shear plane. Figure 7.23 a also shows that the general trend of the observed 

behaviour was captured by the NLFEA, STM and five - spring model. 

Figure 7.23 b, c and d show the predicted effect on resistance of varying the load ratio (P2/P) 

tension (T) and compression (C) face loading of beams with stirrups (S) and without stirrups 

(NS). Predicted strengths are shown for FEA, STM and the five – spring model. For the FEA, it 

can be seen that the maximum strength occurs at  𝑃2/𝑃 = 0 for tension face loading of beams 

without shear reinforcement. The FEA gives greater strengths for compression than tension 
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face loading for beams both with and without shear reinforcement with the difference most 

pronounced for beams with stirrups. 

  

a) Test results + all the models b) FEA 

  

  

c) STM d) 5 – spring model 

Figure 7.23: The effect of varying the load ratio within the shear enhancement zone for 

beams loaded on the tension face predicted using several models 

Figure 7.23a shows that STM3 captured the general trend of the test data for tension face 

loaded beams with shear reinforcement. However, the reduction in 𝑃 as 𝑃2/𝑃 reduces from 

0.5 to 0 is overestimated. STM2 gives lower strengths for compression face loading than given 

by STM3 for tension face loading for load ratios 𝑃2/𝑃 between 0.2 and 0.8, which is 

inconsistent with the experimental data shown in Figure 7.22.  
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When using the five - spring model to assess the resistance of beams with two point loads 

within the shear span, it is necessary to assess the strength of both shear planes. For cases 

where higher load ratios are applied on the inner loading plate with𝑃1/𝑃 ≥ 0.7, the strength 

of the inner shear plane governs the capacity of the beam. As mentioned in Chapter 5, the 

dominant shear transfer mechanism in the five - spring model is the contribution of the critical 

loading zone (CLZ), particularly for small ratios of 𝑎𝑣/𝑑. When the inner shear plane governs, 

the effective width of the CLZ (𝐿𝑏1𝑒) for beams loaded on the tension face (150mm) is greater 

than that of beams loaded on the compression face (100mm). Hence, when the inner shear 

plane governs, the predicted strength of beams loaded on the tension face were greater. The 

effect of changing 𝐿𝑏1𝑒  on the strength of a beam with 𝑃1/𝑃 = 1 is shown in Figure 7.24 (a) 

for beams with and without shear reinforcement, where the increase of the failure load is 

proportional to the increase of 𝐿𝑏1𝑒 .  

  

(a) (b) 

Figure 7.24: The effect of changing 𝐿𝑏1𝑒  on the strength of a beam with 𝑃1/𝑃 = 1 

The contributions of the other mechanisms are either constant or reduce with increasing  𝐿𝑏1𝑒  

as shown in Figure 7.24 (b), which is drawn for a beam with shear reinforcement. The 

contribution of the shear reinforcement diminishes for higher values of 𝐿𝑏1𝑒  as the effective 

number of stirrups reduces due to the reduction in clear shear span. 

When the outer failure plane governs, the difference in the predicted strength reduces for 

tension and compression face loading. The reason for this is that for beams loaded on the 

tension face; the effective width of the CLZ (𝐿𝑏1𝑒) reduces from 𝐿𝑏1 to 𝑅2𝐿𝑏1 when the outer 

plane governs. Accordingly, the contribution of the CLZ reduces (𝐿𝑏1 =150mm).  A schematic 

Lb1e=150mm Lb1e=100mm 
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representation is presented in Figure 7.25 below, which shows the change of the effective 

width and the contribution of the CLZ as the failure plane changes. The effective width 𝐿𝑏1𝑒  

for beams loaded on the compression face is constant for both failure planes and equal to 

100mm. 

The strength predictions are sensitivity to the dimension of the CLZ in the five-spring model. 

This is in agreement with the above investigation and with the observations in the original 

five – spring model (Mihaylov, 2015). Due to this over sensitivity, the five-spring model, as 

well as the STM, gives higher strengths for beams loaded on the tension face than 

compression face, whereas the test results and NLFEA suggest the opposite. 

 

Figure 7.25: Change of the effective width and the contribution of the CLZ with the change of 

the failure plane  

7.5. Conclusions  

This chapter investigates the test results presented in Chapter 4 using design codes, STM and 

NLFEA. A STM, depicted STM3, is developed for tension face loading. Comparisons are made 

between these methods to assess how they perform for various load arrangements and 

loading ratios. Good predictions of shear resistance were obtained with NLFEA, the five- 

spring model and STM with the former most accurate. However, it should be noted that the 

NLFEA was calibrated using the test data while no such calibration was required for either the 

5 spring model or STM. 

Inner plane 
governs 

Outer plane 
governs 
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Regarding design codes, the strengths of the tested beams were compared with the 

predictions of BS8110, EC2, and MC2010. These methods do not differentiate between 

tension and compression face loading or boundary conditions. The code predictions were all 

safe and with EC2 particularly conservative. Overall, MC2010 LoA III gave the best strength 

estimates with an average of 0.75 and a COV of 18% and EC2 the worst. 

For beams loaded on the tension face with two-point loads, the ratio of the inner load (P1) to 

the outer load (P2) point loads was varied in the tests. Investigations of the beams in series B 

in addition to beam AT200 (0.5/0.5) showed that the shear resistance of the outer shear span 

reduced as the inner load was increased but the total failure load increased as the ratio of 

inner to outer load increased. 

Beams loaded with pairs of loads, positioned within around 2𝑑 of supports, may fail along 

either the inner or outer shear plane both running between the support and load. Failure 

occurred in the outer shear span of all the tested beams except CT200 (0.6/0.4). The influence 

of P1 on the shear resistance of the outer shear span is captured by STM3 and NLFEA but not 

by BS8110, EC2 or MC2010. Among the design methods, the suggested strut-and-tie model 

(STM3) was the only method to correctly predict the failure plane for all relevant beams. 

BS8110 and EC2 underestimate the maximum shear resistance and consequently falsely 

predict shear failure to occur along the inner shear plane in the majority of the tests with two-

point loads within the shear span. 

The shear resistance of short shear span beams may be reduced if loads are applied to the 

flexural tension face rather than compression face. The reduction appears greatest for beams 

without shear reinforcement but the difference does not appear sufficient to be considered 

in practical design. 

Test results and FE were also used to study the effect of the transverse pressure on the 

enhancement of the bond strength along the width of the load or support plate (𝐿𝑆𝐺) and to 

assess the relevant provisions given in the EC2 and MC2010. Generally, there was good 

agreement between the measured and predicted tensile force using FEA with the FE 

predictions being consistently lower. The basic bond strength given by MC2010 is around half 

that calculated with EC2 but, the influence of transverse pressure is significantly greater 

according to MC2010 than EC2. Consequently, the maximum force developable along the 

length 𝐿𝑆𝐺  is always greater for MC2010 than EC2. The MC2010 pull-through mode bond 



Shear Enhancement in RC Beams Loaded on the Tension Face Analysis of the Results 

 

353 
 

strength was not critical in any of the tested beams. However, in some cases the maximum 

force transferred along 𝐿𝑆𝐺  exceeded the design strength given by EC2. There was no visible 

evidence of bond failure in any of these tests. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

This thesis considers the influence of loading arrangement and boundary conditions on shear 

enhancement in beams loaded on either their flexural compression or tension face. Shear 

enhancement occurs when beams are loaded on their top face within around twice the beam 

effective depth of supports. The vast majority of tests on short span beams have been done 

on top loaded simply supported beams where the top face is in compression. Such tests are 

also representative of the end supports of beams on simple supports. However, in practice, 

beams are typically continuous with moment restraint at end supports. In this case, the top 

face is in tension as in the cantilever beams tested in this program. The study includes 

laboratory investigation, nonlinear finite element analysis, analysis using the 2PKT of 

Mihaylov et al (2013) and strut-and-tie modelling. The main parameters investigated in this 

work are the influence of loading face, the ratio of the loads applied within the shear 

enhancement zone (2𝑑 from the face of the support) and the influence of loading the beam 

partly within and partly outside of the shear enhancement zone. This chapter provides a 

summary of this research, highlights key conclusions, design recommendations and suggested 

further work. 

8.1. Background Overview 

The shear strength of RC deep beams remains a subject of considerable research. The 

literature presented in Chapter 2 describes key studies relevant to this research and identifies 

pertinent gaps in the literature, as summarized below. 

 Cracked concrete can resist applied shear through different shear transfer actions. 

These actions, namely aggregate interlock, dowel contribution, residual tensile 

strength, the contribution of the compression zone and stirrups if present are highly 

dependent on the kinematics and shape of the shear cracks. Evaluation of these 

contributions includes two levels of uncertainties: the accuracy of the obtained crack 

kinematics and the validity of the models used. In recent years, several researchers 

have re-evaluated currently available design models in light of detailed measurements 

of crack kinematics obtained using digital image correlation (DIC) systems. 

  While the majority of code provisions are based on empirical equations (e.g. EC2 for 

members without shear reinforcement, BS8110 and ACI-318), a few have recently 



Shear Enhancement in RC Beams Loaded on the Tension Face Conclusions 

 

355 
 

adopted physical models for the prediction of the shear strength (MC2010 and 

AASHTO _LRFD). The shear strength of RC beams exhibits significant enhancement 

when loads are applied close to the support due to arching action. Design codes 

express shear strength enhancement of beams loaded within 2𝑑 from the support in 

terms of the shear span 𝑎𝑣 to effective depth 𝑑 ratio. BS 8110 enhances the shear 

resistance provided by the concrete for beams loaded within 𝑎𝑣 ≤ 2𝑑 by the 

multiple 
2𝑑

𝑎𝑣
 . Conversely, EC2 and MC2010 reduce the contribution to the design shear 

force of loads applied within 𝑎𝑣 ≤ 2𝑑 by the multiple 𝛽 =
𝑎𝑣

2𝑑
 where 𝛽 is limited to a 

minimum of 0.25 in EC2 and 0.5 in MC2010. Although these approaches appear 

similar, there can be significant differences between the enhanced shear resistances 

given by EC2, MC2010 and the BS8110. Moreover, application of the EC2 shear 

enhancement design provisions are unclear for beams with shear reinforcement and 

multiple point loads applied within 𝑎𝑣 ≤ 2𝑑 as discussed by Vollum and Fang (2015). 

These sectional methods are also not sensitive to the load application face or the 

boundary conditions.  

 The modified compression field theory (MCFT) is one of the earliest and most 

comprehensive theories for describing the behavior of RC panels under membrane 

action. The method can be implemented into finite element programs or sectional 

analysis programs like Response 2000 (Bentz and Collins, 2000) for the calculation of 

shear resistance in sections where plane sections remain plane. The two-parameter 

kinematic theory (2PKT) (Mihaylov et al., 2013) and the associated five-spring model 

(Mihaylov, 2015) are pertinent to the analysis of deep beams. They can predict the full 

displacement field of the shear span during loading but are case sensitive needing 

modifications to account for variations in load arrangement and boundary conditions. 

 A popular method for estimating the shear capacity of members with discontinuity 

regions is the strut-and-tie model. The model developed by Sagaseta and Vollum 

(2010) for the stress fields utilizes the principle of nodal sub-division and has been 

used and modified by several researchers to account for different loading 

arrangements (Amini Najafian et al., 2013, Vollum and Fang, 2015). Vollum and Fang 

(2015) developed an STM for beams with two concentrated loads applied to the 

flexural compression face within 2d of supports. The STM geometry was based on the 
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geometry of the compressive stress field determined with NLFEA. The STM of Vollum 

and Fang is only valid for compression face loading of simply supported beams since 

the assumed dog-leg geometry of the direct strut is incompatible with the 

reinforcement arrangement for tension face loading. Furthermore, the orientation of 

the compressive stress field changes for tension face loading of cantilever beams 

loaded with pairs of loads within 2d of supports. The research in this thesis was 

motivated by these differences in stress field for compression and tension face loading 

which were confirmed by preliminary FE investigation prior to the experimental 

investigation. 

8.2. Description of the Experimental Program and Summary of 

the Test Results 

The experimental program of this research consists of 12 beams designed to investigate the 

effect of loading arrangement and loading face on shear enhancement in top-loaded beams. 

All the beams measured 2800 mm long by 250mm wide by 500mm deep. The flexural tension 

reinforcement, in all the beams, consisted of two layers of three bars of 25 mm diameter (ρ = 

2.36%). The effective depth measured to the centroid of the tension reinforcement was 429.5 

mm. Two 16 mm diameter bars were provided in the flexural compression zone of all beams 

(ρ’ = 0.322%). In all the tests, additional shear reinforcement was provided in the left-hand 

shear span to ensure that failure occurred in the right-hand shear span. Where provided, 

shear reinforcement in the critical shear span consisted of high strength (Grade 500) 8 mm 

diameter links at 200 mm centres. 

The beams were cast in three groups of four, depicted A to C, with each group cast from a 

single batch of ready-mixed concrete specified to have strength class C25/30, consistency 

class S3 and limestone aggregate with a maximum size of 20mm. Each series of four tests had 

separate objectives. Series A was designed to investigate the influence of loading the tension 

or compression face of otherwise identical beams without and with shear reinforcement. 

Series B examined the effect of varying the ratio between the inner and outer loads on the 

shear strength of balanced cantilever beams with stirrups. Series C compared the shear 

resistance of beams loaded inside and partly outside the shear enhancement zone. The beams 

were loaded in displacement control to capture the post-failure response. Detailed 
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measurements of displacements and crack kinematics were obtained by means of Digital 

Image Correlation (DIC). Transducers were also used as a cross-check on displacements 

calculated with DIC. Up to 24 strain gauges were fixed to the reinforcement at locations 

selected based on nonlinear finite element analysis. The results of the experimental program 

are summarized below: 

Series A consisted of two beams loaded with an equal pair of loads on the compression face 

and comparable two beams loaded on the tension face. The load ratios of beams loaded on 

the tension face were slightly unequal (0.58/0.42 instead of 0.5/0.5) due to rotational friction 

in the loading arrangement, which was eliminated in subsequent tests. All the four beams 

failed on the outer shear span. The test results showed that the shear force at the failure of 

the critical shear span of comparable beams was less for tension face loading. This suggests 

that the shear resistance of top face loaded short span beams may be reduced if loads are 

applied to the flexural tension face rather than compression face. The reduction appears 

greatest for beams without shear reinforcement but the difference does not appear sufficient 

to be considered in practical design. When crack patterns of comparable beams loaded on 

the tension and compression face were superimposed (crack patterns were inverted for the 

beams loaded on the tension face), the patterns were very similar in the beams loaded on the 

tension and compression faces despite the apparent reduced strength of beams loaded on 

the tension face.  

Series B investigated the effect of loading ratio for loads applied within the shear 

enhancement zone of beams loaded on the tension face. In all the tests, the first crack 

developed in the inner shear span but the crack causing failure extended from the support to 

the outermost loading plate. Failure of beams in Series B was typically characterised by 

concrete crushing in the compression zone. The result of this beam in addition to the last 

beam from series 𝐴, with identical geometry and shear reinforcement but a different loading 

ratio, suggested that the shear resistance of the outer critical shear span reduced as the inner 

load was increased for beams failing in the outer shear span. 

Series C contained four beams, the first two beams were with and without shear 

reinforcement loaded with a single point load applied at an equivalent lever arm to that of 

two equal point loads loaded on the tension face. In the other two beams of series C, another 

point was applied outside 2𝑑 for the beams with and without shear reinforcement. The 
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critical shear plane was the outer for the beam without shear reinforcement while the shear 

plane was the inner for the beam with the shear reinforcement. The results showed that 

applying an additional point load outside the shear enhancement zone (2d) reduced the shear 

strength of the beam. Results also showed that the strength of beams loaded with a pair of 

equal point loads within 2d of the support was greater than the strength of beams loaded 

with a single point load positioned at the centroid of the pair of loads.  

8.3. Analysis of the Results and Shear Transfer Actions 

The experimental results described earlier were used to study the deformation of the beams 

and the shear transfer actions. Strengths of the tested beams were evaluated using the five-

spring model, codes provisions (BS8110, EC2 2004 and MC2010), nonlinear FEA and strut and 

tie models.  

The following conclusions were reached regarding deformed shapes and shear transfer 

mechanisms: 

 Results obtained using the DIC were used to validate the provisions given by the 2PKT 

to predict the full displacement field of the shear span during tests. These results were 

used to calculate crack kinematics, rotation of the free body of the beams and the 

shear displacement of the 2PKT. The 2PKT gave accurate predictions of the 

deformation for beams loaded on the compression face and less accurate predictions 

for beams loaded on the tension face. Modifications of the theory for beams loaded 

on the tension face were introduced to account for the shear displacement resulting 

from the secondary shear crack and the actual location of the centre of rotation of the 

free body. The modified approach gave significantly better predictions of the 

deformation for beams loaded on the tension face. 

 Modifications were also introduced to the five-spring model in order to obtain shear 

strength, load-deflection responses and the shear transfer mechanisms of the tested 

beams with two-point loads within the shear span. The modified model provided very 

good strength predictions for beams with two-point loads. In all beams loaded within 

2d of supports, the load-deflection response was largely governed by the response of 

the critical loading zone (CLZ) as the rest of the contributions were either curtailed by 

their upper limit or nearly constant. In the post-peak response, the contribution of the 
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CLZ reduced significantly, while the rest of the components remained constant. 

Consequently, the post-peak response softened more rapidly than experimentally 

observed. 

 The dowel contribution was limited in the 2PKT by the formation of plastic hinges in 

the bar. The contribution of the shear reinforcement to shear resistance increased 

with increasing shear span due to the mobilisation of more stirrups. The two kinematic 

parameters (block rotation 휀𝑡,𝑎𝑣𝑔 and shear displacement ∆𝑐) of the five-spring model 

were evaluated using the DIC measurements. This revealed noticeable differences 

between the measured and estimated values. Although the calculated block rotations 

were less than the measured ones, the estimated crack opening and sliding were 

greater than measured ones at the mid-height of the beam. This is largely due to the 

dominant contribution of the shear displacement, which was typically close to or 

greater than the measured displacement. Despite this, the five-spring model gave 

accurate estimations for the ultimate loads and deformations of the test beams. 

 The only beam in which the CLZ response did not govern was beam CT0 (0.6/0.4), 

without shear reinforcement, which failed outside the shear enhancement zone. In 

this case, aggregate interlock was the dominant contribution.  

 The shear transfer actions were also determined using various models available in the 

literature. The models of Walraven were used to estimate the contribution of the 

aggregate interlock (Walraven, 1980) and the dowel contribution (Walraven and 

Reinhardt, 1981). The contribution of the shear reinforcement was estimated using 

the two-step bond model (Sigrist, 1995) while the contribution of the flexural 

compression zone was estimated using the CLZ model from the five-spring model 

(Mihaylov, 2015). The contributions of dowel action and aggregate interlock were 

greater in beams loaded on the tension face than comparable compression face 

loaded beams. These increased contributions resulted from crack sliding being greater 

in the tension face loaded beams than in comparable compression face loaded beams. 

Further beam tests are required to determine the generality of this finding due to 

scattering in test results for notionally identical beams. The total contribution of 

aggregate interlock to the shear resistance of beams failing in the outer shear span 

increased as the load applied closer to the support increased. With increasing ratio of 
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shear span to effective depth, the relative contribution of dowel action reduced while 

that of stirrups increased. Determination of the individual contribution of the different 

mechanisms includes some uncertainties associated with the accuracy of the obtained 

crack kinematics and the shear resisting model assumptions. Regardless of this, 

consistent use of shear resisting models for analysis of tested beams gives useful 

insights into the relative contributions of each shear resisting mechanism. 

Apart from the five-spring model, the shear strength of the tested beams was estimated using 

design codes, STM and NLFEA. Comparisons were made between these methods to assess 

how they perform for the different load arrangements and ratios. The following conclusions 

were drawn from this analysis. 

 Overall, the best predictions of shear resistance were obtained with NLFEA, the five 

spring model and STM. The enhanced beam shear predictions of EC2 were overly 

conservative. 

 Regarding design codes, the strength of the tested beams was compared with the 

predictions of BS8110, EC2, and the MC2010. These methods do not differentiate 

between tension and compression face loading or boundary conditions. The code 

predictions were all safe and rather conservative. Overall, MC2010 gave the best 

estimates while EC2 gave the worst. 

 For beams loaded on the tension face with two-point loads, the ratio of the load 

applied in the inner load plate to the outer load plate was varied in the tests for five 

identical beams containing shear reinforcement. All beams loaded with two-point 

loads inside the shear enhancement zone failed along the outer shear span. These 

results showed that the shear resistance of the critical outer shear span reduced 

consistently as the inner load increased. 

 The influence of the inner load on the shear resistance of the outer shear span is 

captured by the newly developed strut and tie model (STM3), the modified five-spring 

model and the NLFEA but not by the BS8110, EC2 or MC2010. Of the considered 

design methods, only the suggested strut and tie model (STM3) was the only method 

to correctly predict the failure plane for all relevant beams. BS8110 and EC2 

underestimate the maximum shear resistance and consequently falsely predict shear 
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failure to occur along the inner shear plane in the majority of the tests with two-point 

loads within the shear span. 

 Strain gauge measurements and NLFEA were used to study the effect of the 

transverse pressure on the enhancement of bond strength along the width of the load 

or support plate. Generally, there was a reasonable agreement between measured 

and predicted variation in tensile forces near the load/support plates, but the FEA 

predictions were consistently lower than measured. The average bond stress across 

the load/support plates was compared with the bond strengths given EC2 and 

MC2010. 

 The basic bond strength given by MC2010 is around half that calculated with EC2 but 

the influence of transverse pressure is significantly greater according to MC2010 than 

EC2. Consequently, the maximum force developable along the length 𝐿𝑆𝐺  is always 

greater for MC2010 than EC2. The MC2010 pull-through mode bond strength was not 

critical in any of the tested beams. However, in some cases, the maximum force 

transferred along 𝐿𝑆𝐺  exceeded the design strength given by EC2. There was no visible 

evidence of bond failure in any of these tests. 

8.4. Design Observations and Recommendations  

Engineers and practitioners commonly use design codes, strut-and-tie models and in certain 

cases, NLFEA to design and check deep beams for shear. This research considers the influence 

of tension face loading on shear enhancement in short shear span beams loaded with pairs 

of point loads. The following design recommendations are suggested based on the work 

conducted in this thesis: 

1. Of the design codes, B8110 and MC2010 LoAIII gave the best strength predictions. The 

accuracy of the BS8110 predictions was relatively uniform for all the tested beams. 

The method was slightly more conservative for tension face than compression face 

loading but the difference is sufficiently small not to be considered significant for 

practical design. The accuracy of the MC2010 LoAIII predictions was more variable 

with results most accurate for beams with single-point loads and least accurate for 

compression face loaded beams with multiple point loads. EC2 gave the most 

conservative estimations. For beams with multiple point loads, estimates were better 
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across the board for beams with shear reinforcement than without shear 

reinforcement. 

2. The observed reduction in shear resistance of short shear span beams loaded on the 

flexural tension face does not appear sufficient to be considered in practical design 

but further investigation is suggested to confirm this finding. 

3. STM3 developed in this research is a practical tool for estimating the shear strength 

of short shear span cantilever beams loaded with pairs of point loads. The method is 

readily extendable to the calculation of enhanced shear resistance at internal supports 

of continuous beams. Additionally, the model can be readily modified in the future to 

deal with more than two-point loads. STM3 correctly predicts the failure plane of the 

relevant tested beams. The assumed stress field is shown to be consistent with the 

experimentally observed crack patterns and stress fields obtained with NLFEA.  The 

strut and tie models developed for beams loaded with pair of load provided 

acceptable predictions with a relatively easy procedure to follow, particularly if the 

EC2 provisions were used to evaluate the strength of the strut. The calculations of the 

ultimate strength using the 5-spring model are easier. However, the five – spring 

model is a powerful tool if used to evaluate the load-deflection response and the shear 

transfer actions during the tests, which is tedious particularly for beams loaded with 

pair of load. 

Although the NLFEA provided the best estimates of the shear capacity of the tested 

beams, the FEA was sensitive to the adopted modelling parameters and required careful 

calibration against test results before use in design. Some modelling recommendations 

from this work, which are thought to be generally useful for similar cases, are summarized 

below: 

1. For shear critical elements such as deep beams, the FEA can be very sensitive to 

the selection of shear retention model and associated input parameters. Based on 

this work, the use of a variable shear retention factor is suggested for modelling 

beams without shear reinforcement as recommended in the Dutch Guidelines for 

NLFEA (Hendriks et al., 2017). For beams with shear reinforcement, the best 

strength predictions were obtained using a constant shear retention factor of 0.25. 
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2. When modelling loading and support plates, introducing an interface element 

overcomes the reported issue of stress concentration at plate corners. Interface 

elements give better stress distribution under the plates without the need to 

introduce out of plane reinforcement or to enhance the concrete strength beneath 

the plates, which changes the properties of the modelled member. 

3. Using the arc-length technique in load controlled modelling captures localised 

snap-through as well as the post-peak response. This avoids premature numerical 

failure as well as demonstrating that the peak load has been reached.  

This research is the first research to consider the application of multiple point loads 

applied within and partly outside the shear enhancement zone on the tension face. It will 

be of great value to the available shear database and sheds lights on the importance of 

this load configuration. However, as the first piece of research for such configuration, 

some of the findings are not comprehensive and need further investigation to support 

them.  

8.5. Suggestions for Further Work  

Recommendations for further work include: 

1. The observed reduction of the shear strength for beams loaded on the tension 

face was relatively small but was also predicted by NLFEA. Further experimental 

investigation is required to quantify the reduction in strength more definitively 

but the difference appears sufficiently small that it can be neglected in practice. 

However, as codes become more refined it may become necessary to 

differentiate between tension and compression face loading in top-loaded beams.  

2. The beam tests show that a pair of equal point loads applied within 2𝑑 from the 

face of the support can conservatively be treated as an equivalent point load. 

Nevertheless, it was also shown in this research that the shear strength of the 

critical outer shear plane reduces with the increase of the load at the inner loading 

plate. Hence, generalizing this finding for pairs of unequal point loads is 

questionable and merits further experimental investigations. 
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3. Test results showed that pairs of equal point loads applied within 2d from the face 

of the support can conservatively be treated as an equivalent point load applied 

at the centroid of the two loads. This observation was made by comparing beams 

CT0 (1.0/0) and CT200 (1.0/0) with beams AT0 (0.5/0.5) and AT200 (0.5/0.5). 

However, confirmation of the generality of this finding requires further 

experimental and numerical investigation. 

4. The double cantilever case discussed in this research is a simpler form of a 

continuous beam. STM3 presented in this work can be modified to calculate the 

enhanced shear resistance at internal supports of continuous beams loaded both 

within and outside 2𝑑 of supports. 

5. A common case of the double cantilever beams is the bridge crosshead girders. 

These structures sometimes contain more than two-point load. The proposed 

design methods should be extended to general solutions that deal with any 

numbers of point loads. 
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APPENDIX I  

This appendix describes the procedures followed to obtained crack kinematics from the digital 

images correlation (DIC) system. DIC captures images at a predefined frequency during the 

test and calculates displacements of subset in the two directions. In order to obtain the crack 

opening and sliding from these results, a post processing procedures were used as described 

below (This description is based on Davis 10.0 provided by LaVision, and may vary according 

to software used): 

1. Export the deformation files for each frame from the DIC software as a B***.dat file. 

The file contains the X, Y and Z coordinates of each subset  and associated 

deformations (see Figure I.1) 

 
Figure I.1: Sample of deformation file exported from Davis 10 

2. Export a reference image from the DIC. Scale and reference it in AutoCAD to obtain 

coordinates of the beams boundaries, locations of reinforcement, crack points and 

plates. 

3. Using a suitable number of station points to define the crack (e.g. 25 points along the 

length of the crack), generate the crack ordinates file CrackXYs.xls shown in FigureI.2 

below. 

 

Figure I.2: File CrackXYs.xls 
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4. Generate the file 'Beam Geometry.xls' that contains the boundary and plates 

coordinates. This is used in plotting and in ensuring that the virtual demecs are placed 

corrected fit inside the beam before the calculations start. 

 

Figure I.3: 'Beam Geometry.xls' 

5. Use the MATLAB code provided below to obtain the crack opening and sliding. 

 

% This script calculates the crack opening and sliding using DIC data 
 clear all 
clc 
File='BT(0.5-0.5)'; %Beam Name 
D=date;  
Crack_Points = readtable('CrackXYs.xls'); %Reads cracks cordinates. See Figure I.2   
O=0;% DEMEC orientation 0 or pi()/4 ONLY. (0 for horz and vert gauges) 
DEMECs=size(Crack_Points,1); %Number of points along the crack 
%% Generating the DEMEC's point matrix (DEMECxys) 
DEMECxys(DEMECs,8)=zeros; 
for pt=1:DEMECs 
L=Crack_Points(pt,4); % Read gauge length for each point(mm) 
DEMECxys(pt,1)=Crack_Points(pt,1)-L/2*cosd(O);%X1 
DEMECxys(pt,2)=Crack_Points(pt,2)-L/2*sind(O);%Y1 
DEMECxys(pt,3)=Crack_Points(pt,1)+L/2*sind(O);%X2 
DEMECxys(pt,4)=Crack_Points(pt,2)-L/2*cosd(O);%Y2 
DEMECxys(pt,5)=Crack_Points(pt,1)+L/2*cosd(O);%X3 
DEMECxys(pt,6)=Crack_Points(pt,2)+L/2*sind(O);%Y3 
DEMECxys(pt,7)=Crack_Points(pt,1)-L/2*sind(O);%X4 
DEMECxys(pt,8)=Crack_Points(pt,2)+L/2*cosd(O);%Y4  
end 
%% Plot Crack and Gauge lines at first step to check 
% This is not necessary and is not of the core code 
%Properties of the plot 
Gridweight=0.4; 
Testlineweight=0.5; 
axislabelfont=12  ;           
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Titlefont=12; 
axisnumberingfont=12; 
Legendfont=12; 
axis equal 
% Plotting the beam 
Beam=xlsread('Beam Geometry.xls','f2:h5'); % Reads beams edges during the test, See Figure 
I.3 
% Constructing loading plates 
Plates(1:2,:)=xlsread('Beam Geometry.xls','k2:l3'); 
Plates(3,:)=Plates(2,:)+[0,50]; 
Plates(4,:)=Plates(1,:)+[0,50]; 
Plates(5,:)=Plates(1,:); 
Plates(6:7,:)=xlsread('Beam Geometry.xls','k4:l5'); 
Plates(8,:)=Plates(7,:)+[0,50];Plates(9,:)=Plates(6,:)+[0,50]; 
Plates(10,:)=Plates(6,:); 
Plates(11:12,:)=xlsread('Beam Geometry.xls','k6:l7'); 
Plates(13,:)=Plates(12,:)-[0,50];Plates(14,:)=Plates(11,:)-[0,50]; 
Plates(15,:)=Plates(11,:); 
BeamPlot1=plot(Beam(:,1),Beam(:,2),'k-','LineWidth',1,'HandleVisibility','off'); 
axis equal 
hold on 
plot(Plates(1:5,1),Plates(1:5,2),'k-','LineWidth',1,'HandleVisibility','off'); 
axis equal 
hold on 
plot(Plates(6:10,1),Plates(6:10,2),'k-','LineWidth',1,'HandleVisibility','off'); 
axis equal 
hold on 
plot(Plates(11:15,1),Plates(11:15,2),'k-','LineWidth',1,'HandleVisibility','off'); 
hold on 
plot(Crack_Points(:,1),Crack_Points(:,2),'-k'); 
set(gca,'fontsize',axisnumberingfont); 
set(gca,'gridlinestyle',':'); 
set(gca,'LineWidth',Gridweight) 
xlabel('X (mm)','fontsize',axislabelfont,'fontname','Times New 
Roman','fontweight','bold','color','k'); 
ylabel('Y (mm)','fontsize',axislabelfont,'fontname','Times New 
Roman','fontweight','bold','color','k'); 
axis equal 
hold on 
% Writing point names on the plot 
min_y=min(Beam(:,2)); 
for i= 1:DEMECs 
 x = [DEMECxys(i,1) DEMECxys(i,5)]; 
 y =  [DEMECxys(i,2) DEMECxys(i,6)]; 
 x2 = [DEMECxys(i,3) DEMECxys(i,7)]; 
 y2 =  [DEMECxys(i,4) DEMECxys(i,8)]; 
plot(x,y,'r'); 



Shear Enhancement in RC Beams Loaded on the Tension Face APPENDIX I 

 

374 
 

plot(x2,y2,'r'); 
text(Crack_Points(i,1),Crack_Points(i,2),['G',num2str(i)],'FontSize',8); 
Demecs_hights(i,1)=Crack_Points(i,2)-min_y; 
hold on 
end 
hold off 
axis off 
saveas(BeamPlot1,['Beam ',num2str(File),'-',num2str(D),'SGs.png']); 
  
%% Extracting the closest points from the DIC subsets in the first image 
files=dir ('B*.dat'); 
numfiles=size(files,1); 
filename=files(1).name; 
A=dlmread(filename,' ',3,0); 
A=real(A); 
Arows=size(A,1); 
for j=1:DEMECs 
DEMECxy1=DEMECxys(j,1:2); 
dist2=(A(:,1)-DEMECxy1(1)).^2+(A(:,2)-DEMECxy1(2)).^2; 
[mind2,DEMEC1(j)]=min(dist2); 
DEMECxy2=DEMECxys(j,3:4); 
dist2=(A(:,1)-DEMECxy2(1)).^2+(A(:,2)-DEMECxy2(2)).^2; 
[mind2,DEMEC2(j)]=min(dist2); 
DEMECxy3=DEMECxys(j,5:6); 
dist2=(A(:,1)-DEMECxy3(1)).^2+(A(:,2)-DEMECxy3(2)).^2; 
[mind2,DEMEC3(j)]=min(dist2); 
DEMECxy4=DEMECxys(j,7:8); 
dist2=(A(:,1)-DEMECxy4(1)).^2+(A(:,2)-DEMECxy4(2)).^2; 
[mind2,DEMEC4(j)]=min(dist2); 
X1(1,j)=A(DEMEC1(j),1); 
X2(1,j)=A(DEMEC2(j),1); 
X3(1,j)=A(DEMEC3(j),1); 
X4(1,j)=A(DEMEC4(j),1); 
Y1(1,j)=A(DEMEC1(j),2); 
Y2(1,j)=A(DEMEC2(j),2); 
Y3(1,j)=A(DEMEC3(j),2); 
Y4(1,j)=A(DEMEC4(j),2); 
Lh0(j) = sqrt((X3(1,j)-X1(1,j))^2+(Y3(1,j)-Y1(1,j))^2); % initial length of horizontal gauge 
Lv0(j) = sqrt((X4(1,j)-X2(1,j))^2+(Y4(1,j)-Y2(1,j))^2); % initial length of vertical gauge 
end 
%% Extracting points from the rest of the images 
step=1;%Here the script will read a file every (step)files 
n=1; 
Load=abs(dlmread('Load.dat',' ',3,0)); % Read loads from the load file exported from DIC 
[MaxL,lastimg]= max(abs(Load(:,3))); 
for i=1:step:numfiles 
files=dir ('B*.dat'); 
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filename=files(i).name; 
A=dlmread(filename,' ',3,0); 
Arows=size(A,1); 
for j=1:DEMECs 
dx1(i,j) = A(DEMEC1(j),4);dx3(i,j)=A(DEMEC3(j),4); 
dx2(i,j)=A(DEMEC2(j),4);dx4(i,j)=A(DEMEC4(j),4); 
dy1(i,j)=A(DEMEC1(j),5);dy3(i,j)=A(DEMEC3(j),5); 
dy2(i,j)=A(DEMEC2(j),5);dy4(i,j)=A(DEMEC4(j),5); 
a1=[1 0 -Y1(j);... 
    0 1  X1(j);... 
    1 0 -Y4(j);... 
    0 1  X4(j)]; 
c1=[dx1(i,j);dy1(i,j);dx4(i,j);dy4(i,j)]; 
r1=(inv(transpose(a1)*a1))*(transpose(a1)*c1); 
w1=[r1(1,1)-r1(3,1)*Crack_Points(j,2);r1(2,1)+r1(3,1)*Crack_Points(j,1)]; 
a2=[1 0 -Y2(j);... 
    0 1  X2(j);... 
    1 0 -Y3(j);... 
    0 1  X3(j)]; 
c2=[dx2(i,j);dy2(i,j);dx3(i,j);dy3(i,j)]; 
r2=(inv(transpose(a2)*a2))*(transpose(a2)*c2); 
w2=[r2(1,1)-r2(3,1)*Crack_Points(j,2);r2(2,1)+r2(3,1)*Crack_Points(j,1)]; 
W=w1-w2; 
sc = 150; 
dx(i,j) = W(1); 
dy(i,j) = W(2); 
X_Coord(n,j) = Crack_Points(j,1) + W(1)*sc; 
Y_Coord(n,j) = Crack_Points(j,2) + W(2)*sc; 
Theta=Crack_Points(j,3); 
w(i,j)=-W(1)*sin(Theta)+W(2)*cos(Theta); 
s(i,j)=W(1)*cos(Theta)+W(2)*sin(Theta); 
if w(n,j)<0.001 %excluding values less than the threshold 
    w(n,j)=0; %excluding negative values  
end 
if s(n,j)<0.001 
    s(n,j)=0; 
end 
Header1(1,j)={'DEMEC'}; 
Header2(1,j)=(j); 
end 
Proc_files(n,1)=i; 
LStep(n,1)=abs(Load(i,3)); 
Vi(n,1)=round(LStep(n,1)/MaxL,2); % Rounds load factor to 2 dicimels to use it in the steps of 
0.1Vmax (next step) 
n=n+1; 
end 
% By this steps, crack opening matrix (w) and sliding (s) marices have been 



Shear Enhancement in RC Beams Loaded on the Tension Face APPENDIX I 

 

376 
 

% generated for all of the crack points and load steps. If needed, next 
% section will generate a reduced form in steps of 0.1Vmax. 
%% Steps of 0.1V max 
for i=1:10 
Ratio_in_tens(i,1)=i/10; 
end 
% Addin pre-peak kinematics 
k=1; 
for i=1:size(Ratio_in_tens,1) 
    LR=Ratio_in_tens(i,1); 
for j=1:lastimg 
    if Vi(j,1)==LR 
    Final_w(k,1)=Vi(j,1);Final_s(k,1)=Vi(j,1); 
    Final_w(k,2:size(w,2)+1)=w(j,1:size(w,2)); 
    Final_s(k,2:size(s,2)+1)=s(j,1:size(s,2)); 
    Final_X(k,1)=Vi(j,1);Final_Y(k,1)=Vi(j,1); 
    Final_X(k,2:size(w,2)+1)=X_Coord(j,1:size(w,2)); 
    Final_Y(k,2:size(w,2)+1)=Y_Coord(j,1:size(w,2)); 
    k=k+1; 
    end 
end 
end 
% Adding post-peak kinematics 
i=1; 
for j=1:numfiles-lastimg+1 
    if Vi(lastimg-1+j,1)==1 
    else 
        postFinal_w(i,1)=Vi(lastimg-1+j,1);postFinal_s(i,1)=Vi(lastimg-1+j,1); 
        postFinal_w(i,2:size(w,2)+1)=w(lastimg-1+j,1:size(w,2)); 
        postFinal_s(i,2:size(s,2)+1)=s(lastimg-1+j,1:size(s,2)); 
        postFinal_X(i,1)=Vi(lastimg-1+j,1);postFinal_Y(i,1)=Vi(lastimg-1+j,1); 
        postFinal_X(i,2:size(w,2)+1)=X_Coord(lastimg-1+j,1:size(w,2)); 
        postFinal_Y(i,2:size(w,2)+1)=Y_Coord(lastimg-1+j,1:size(w,2)); 
        Ratio_in_tens(10+i,1)=-postFinal_w(i,1); 
        i=i+1; 
    end 
end 
% As the load factor Vi is rounded up to two decimals, it is expected to 
% have several images with the same load factor of a multiple of 0.1V. Here, 
% the script averages load factors for the same multiple of 0.1V. 
  
% Pre-failure 
k=1;    q=0; 
for i=1:10 
    count=0; 
    for j=1:size(Final_w,1) 
    if Final_w(j,1)==i/10 
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        count=count+1; 
    end 
    Count(i,1)=count; 
    end 
    Count(i,2)=q+1; 
    Count(i,3)=q+Count(i,1); 
    q=Count(i,3); 
    KINEMATICS_w(i,1)=i/10; 
    KINEMATICS_s(i,1)=i/10; 
    KINEMATICS_X(i,1)=i/10; 
    KINEMATICS_Y(i,1)=i/10; 
    if Count(i,1)==1; 
    KINEMATICS_w(i,2:size(Final_w,2))=Final_w(Count(i,2),2:size(Final_w,2)); 
    KINEMATICS_s(i,2:size(Final_s,2))=Final_s(Count(i,2),2:size(Final_w,2));    
    KINEMATICS_X(i,2:size(Final_X,2))=Final_X(Count(i,2),2:size(Final_w,2)); 
    KINEMATICS_Y(i,2:size(Final_Y,2))=Final_Y(Count(i,2),2:size(Final_w,2));         
    else 
    
KINEMATICS_w(i,2:size(Final_w,2))=mean(Final_w(Count(i,2):Count(i,3),2:size(Final_w,2))); 
    KINEMATICS_s(i,2:size(Final_s,2))=mean(Final_s(Count(i,2):Count(i,3),2:size(Final_s,2)));    
    KINEMATICS_X(i,2:size(Final_X,2))=mean(Final_X(Count(i,2):Count(i,3),2:size(Final_X,2))); 
    KINEMATICS_Y(i,2:size(Final_Y,2))=mean(Final_Y(Count(i,2):Count(i,3),2:size(Final_Y,2))); 
    end 
end 
%% Post-failure 
KINEMATICS_w(11:size(postFinal_X,1)+11-1,:)=postFinal_w; 
KINEMATICS_s(11:size(postFinal_Y,1)+11-1,:)=postFinal_s; 
KINEMATICS_X(11:size(postFinal_X,1)+11-1,:)=postFinal_X; 
KINEMATICS_Y(11:size(postFinal_Y,1)+11-1,:)=postFinal_Y; 
%% Maximum crack kinematics 
strat_hight(1:size(Crack_Points(:,2),1),1)=16.9-Crack_Points(1,2); 
DEMEC_h=Crack_Points(:,2)+strat_hight; 
for i=1:10 
Max_Kin(i,1)=KINEMATICS_s(i,1); 
Max_Kin(i,2)=max(KINEMATICS_w(i,2:size(KINEMATICS_w,2))); 
[~,demec_maxw]= max(KINEMATICS_w(i,2:size(KINEMATICS_w,2))); 
Max_Kin(i,3)=DEMEC_h(demec_maxw,1); 
Max_Kin(i,4)=Crack_Points(demec_maxw,3)*180/pi(); 
Max_Kin(i,5)=max(KINEMATICS_s(i,2:size(KINEMATICS_w,2))); 
[~,demec_maxs]= max(KINEMATICS_s(i,2:size(KINEMATICS_s,2))); 
Max_Kin(i,6)=DEMEC_h(demec_maxs,1); 
Max_Kin(i,7)=Crack_Points(demec_maxs,3)*180/pi(); 
end 
%% Plotting strain gauges 
figure 
set(gca, 'Visible', 'off') 
axis equal 
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BeamPlot=plot(Crack_Points(:,1),Crack_Points(:,2),'k-','LineWidth',2,'HandleVisibility','off'); 
hold on 
X_Coord=KINEMATICS_X(:,2:size(Final_X,2)); 
Y_Coord=KINEMATICS_Y(:,2:size(Final_Y,2)); 
cracl_locxt=transpose(X_Coord); 
cracl_locyt=transpose(Y_Coord); 
for c=1:size(Ratio_in_tens,1)-3 
Vi2(c)=Ratio_in_tens(c); 
    if Vi2(c)==1.000 
        plot(cracl_locxt(:,c),cracl_locyt(:,c),'--','LineWidth',1.25) 
        axis equal 
        hold on 
    else 
        plot(cracl_locxt(:,c),cracl_locyt(:,c),'LineWidth',1.0) 
        axis equal 
        hold on 
    end 
end 
legend(strcat('Vi/V=',num2str(Vi2')),'Location','northwest'); 
for c=1:DEMECs 
plot(X_Coord(1:size(Ratio_in_tens,1)-3,c),Y_Coord(1:size(Ratio_in_tens,1)-
3,c),'HandleVisibility','off'); 
hold on 
end 
one_mm=[475,475;475+1*sc,475]; 
plot(one_mm(:,1),one_mm(:,2),'k-','LineWidth',2,'HandleVisibility','off'); 
hold on 
text(500,525,'1 mm') 
% Plotting the beam 
Beam=xlsread('Beam Geometry.xls','f2:h5'); 
% Constructing loading plates 
Plates(1:2,:)=xlsread('Beam Geometry.xls','k2:l3'); 
Plates(3,:)=Plates(2,:)+[0,50]; 
Plates(4,:)=Plates(1,:)+[0,50]; 
Plates(5,:)=Plates(1,:); 
Plates(6:7,:)=xlsread('Beam Geometry.xls','k4:l5'); 
Plates(8,:)=Plates(7,:)+[0,50];Plates(9,:)=Plates(6,:)+[0,50]; 
Plates(10,:)=Plates(6,:); 
Plates(11:12,:)=xlsread('Beam Geometry.xls','k6:l7'); 
Plates(13,:)=Plates(12,:)-[0,50];Plates(14,:)=Plates(11,:)-[0,50]; 
Plates(15,:)=Plates(11,:); 
plot(Beam(:,1),Beam(:,2),'k-','LineWidth',1,'HandleVisibility','off') 
hold on 
plot(Plates(1:5,1),Plates(1:5,2),'k-','LineWidth',1,'HandleVisibility','off') 
hold on 
plot(Plates(6:10,1),Plates(6:10,2),'k-','LineWidth',1,'HandleVisibility','off') 
hold on 
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plot(Plates(11:15,1),Plates(11:15,2),'k-','LineWidth',1,'HandleVisibility','off') 
for i= 1:DEMECs 
text(Crack_Points(i,1),Crack_Points(i,2),['G',num2str(i)],'FontSize',8); 
Demecs_hights(i,1)=Crack_Points(i,2)-min_y; 
hold on 
end 
axis off 
axis off 
saveas(BeamPlot,['Beam ',num2str(File),'-',num2str(D),'Full Crack_plot.png']); 
%% Writing the kinematics as an excel sheet 
Header3={'Vi/Vmax'}; 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Proc_files,'Processed files'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],LStep,'Processed files','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header1,'Opening - full','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header1,'Sliding - full','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header2,'Opening - full','b2'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header2,'Sliding - full','b2'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header3,'Opening - full','a1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header3,'Sliding - full','a1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],round(transpose(Vi),2),'Opening - full','a3'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],round(transpose(Vi),2),'Sliding - full','a3'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],round(w,3),'Opening - full','b3'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],round(s,3),'Sliding - full','b3'); 
% Reduced 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header1,'Opening Reduced','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header1,'Sliding Reduced','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header2,'Opening Reduced','b2'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Header2,'Sliding Reduced','b2'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],KINEMATICS_w,'Opening Reduced','a3'); 
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xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],KINEMATICS_s,'Sliding Reduced','a3'); 
  
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],'w_max','Max Kinematics','b1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],'s_max','Max Kinematics','c1'); 
xlswrite(['Reduced Crack Kinematics ',num2str(File),'-',num2str(D),' 
Processed.xlsx'],Max_Kin,'Max Kinematics','a2'); 
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