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Abstract

We introduce a probabilistic fine scheme into a simple model of a public bad

with negative externalities. As the fine scheme is probabilistic, an agent’s

probability to be fined depends on its relative action level. This induces a

counteracting positive externality into the model because the individual fine

probability depends not only on own actions but also on the actions of other

agents. In our analysis we derive conditions on the primitives of the model

that guarantee the existence of an efficient equilibrium where the negative

externality of the public bad is neutralised by the positive externality from

the fine scheme. We also demonstrate that a fine scheme can always be

designed in such a way that an efficient outcome is induced as a pure strategy

equilibrium.

Key Words: Negative externalities, probabilistic fines, efficiency, equilibrium

existence, lottery contest.
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1 Introduction

Several of the most pressing environmental and social problems are related to the

existence of negative externalities (e.g., global warming caused by greenhouse

gas emissions), where an agent obtains private profits through its actions but si-

multaneously induces negative externalities on all other agents. As agents typ-

ically do not take into account the fact that their actions are a ’public bad’ for

others, the resulting unregulated equilibrium outcome will be inefficient due to

either over-production or over-consumption of the agents. If individual actions

are observable, then a central authority is able to restore an efficient equilibrium

outcome by resorting to simple policies and interventions like mandates or cor-

rective Pigou-taxation that internalise these externalities. If individual actions

are non-observable, however, efficiency-restoring policies (like Vickrey-Clarke-

Groves mechanism and its variants) exist but are less intuitive and therefore harder

to implement in practise.

In this paper we combine a public bad-framework with a simple and intuitive

probabilistic fine scheme, where the probability that a specific agent is fined de-

pends on its relative action in the sense that it is increasing in own action but

decreasing in the aggregate action of all agents. This specific fine scheme can

be interpreted as resulting from an imperfect monitoring system where agents are

inspected randomly to evaluate their actions. If individual detection is more likely

the ’higher’ (in the sense of intensity and/or frequency) the respective individual

action level but less likely the higher the aggregate action level, then the perceived

probability to be detected (and therefore fined) has the mentioned properties. We

discuss two applications to clarify this interpretation of a probabilistic fine scheme

depending on the relative action level of the respective agent.

The first application considers policing in the context of the recent COVID-19

pandemic where several governments issued national restrictions on social inter-

actions to control the spread of the virus. Naturally, violating these restrictions

increases the utility of the violator but induces a negative externality on the com-

munity. In order to preserve rule-abiding behaviour, violations of these restrictions

are monitored and sanctioned, if detected, by the police (in the UK, for instance,

breaches of self-isolation rules can be fined up to GBP 10, 000 ’for the most egre-
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gious breaches’). In this context it makes sense to assume that the probability that

a rule-breaking individual is detected and fined is, firstly, higher the more often

this individual violates the rule, and secondly, lower the higher the total rate of

rule-infringements in the community.1 Hence, from the perspective of an indi-

vidual the fine probability depends on her relative rate of rule-violation which is

captured by the probabilistic fine schemes that we apply in our setup.

The second application is based on the so called non-point pollution control

problem, compare Segerson (1988), as well as Shortle and Horan (2001) and

Xepapadeas (2011) for surveys. Although perfect monitoring on the level of the

individual polluter is assumed to be prohibitively costly in these types of non-

point pollution problems, regulatory authorities are still able to resort to imperfect

monitoring techniques like unexpected inspections of individual polluters. Also

in this context it makes sense to assume that the fine probability is increasing in

the individual emission level and decreasing in total emission by all firms. Hence,

the ex-ante probability of a specific polluter to be detected and fined depends on

the relative emission of this agent in the same ways as in our specification of a

probabilistic fine scheme.

We now discuss our setup and approach in more detail and relegate the discus-

sion of potential extensions and generalisations to the last section of this paper. In

the following, we adopt an environmental economics terminology inspired by the

non-point pollution control problem mentioned before to guide intuition; however,

our approach is applicable to any public bad situation with negative externalities

where probabilistic fine schemes might be of relevance. We consider a simple

model of negative externalities induced through strategic emissions based on a

quasi-linear framework with identical agents. Each agent derives positive profit

from individual production which is linked one-to-one to individual emissions

inducing a damage on the entire community. As each agent decides about its

individual production/emission level strategically taking into account individual

profit and individual damage instead of total damage, the unregulated equilibrium

results in inefficient emission levels that are higher than the optimal amount.

1The last mentioned characteristic can be attributed to congestion in law enforcement, see

Ferrer (2010), Freeman et al. (1996) and Ehrlich (1973), for contributions that make a similar

assumption and discuss its implications.
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We then introduce a probabilistic fine scheme into this setting where an agent’s

probability to be fined depends on a relative measure of its emission level. The

fine scheme is modelled based on a modified lottery contest success function in

the style of Tullock (1980), where we allow for affine transformations of individ-

ual emission levels as in Dasgupta and Nti (1998). Based on this specification, the

fine probability is increasing and concave in own emission levels and decreasing

in aggregated emission levels. This generates a positive externality (a higher in-

dividual fine probability also implies a lower fine probability for all other agents),

which has the potential to counterbalance the negative externality stemming from

the public bad characteristic of individual emissions. This mechanism has been

applied in a ’dual’ way in the literature that considers the financing of public

goods by the means of lotteries or raffles, compare Morgan (2000) for the semi-

nal contribution, where the positive externality of the public good is balanced to

some extent by the negative externality of the lottery. However, there is no direct

equivalence in the sense that one approach is the ’negative’ reverse version of the

other: Although we apply a similar (slightly more general) probability function

as in Morgan (2000), the resulting payoff-function in our case is not globally con-

cave (because the expected fine payment in convex in individual emission). This

complicates the analysis because we cannot rely on standard techniques to char-

acterise equilibria as the existence of pure-strategy equilibria is not guaranteed for

this setup. In our analysis we therefore identify necessary and sufficient condi-

tions on the primitives of the model that guarantee the existence of a symmetric

pure-strategy equilibrium for a given level of total emissions. Using these condi-

tions it is then straight-forward to verify whether the efficient emission levels can

be induced as a pure-strategy equilibrium and to derive the corresponding efficient

fine level.

We demonstrate that our characterization is tight by considering two special

cases: If the fine probability is modelled as a simple Tullock lottery contest suc-

cess function, then we can show that it is not possible to achieve the efficient emis-

sion levels as a pure-strategy equilibrium using this scheme. Nevertheless, the

conditions are instrumental for a second-best approach because they facilitate the

characterisation of the least inefficient total emission level that is still achievable

as a pure-strategy equilibrium in this case. If the fine probability incorporates also
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affine transformations of individual emission levels, then an appropriately speci-

fied fine scheme can induce efficient emission levels in equilibrium. Comparing

both cases suggests that an agent’s fine probability has to be bounded away from

zero even for small emission levels in order to allow for efficient emission in equi-

librium. This insight is verified in an extended setup, where the central authority

is assumed to have more discretionary power over the details of the fine scheme

(beyond setting only the appropriate fine level). For this extended setup we can

demonstrate that the efficient total emission level can be obtained as the unique

pure strategy equilibrium for any well-behaved damage function using appropriate

values for the parametrised fine scheme.

The rest of the paper is organised as follows. In section 2 we introduce our

formal model, before we deal with equilibrium existence and characterisation for

a given probabilistic fine scheme in section 3. In section 4 we analyse the question

whether equilibrium existence is guaranteed if the fine scheme parameters can be

designed appropriately. In section 5 we conclude by discussing the robustness of

our results with respect to potential extensions and generalisations.

2 The Model

There is a group N = {1, . . . , n} of identical agents that have access to a production

process where individual output is denoted by xi ≥ 0 for each agent i ∈ N. Output

can be sold on a competitive market at a fixed (normalized) prize of 1. The pro-

duction of output is linked one-to-one to the emission of pollutants such that indi-

vidual output and emission levels are strategically equivalent. Individual produc-

tion induces (through individual emissions) negative externalities on all agents,

which is captured by an individual damage function D(X) with X =
∑

j∈N x j de-

noting total emission, that satisfies standard assumptions: D′(X) > 0, D′′(X) > 0

and D′′′(X) ≥ 0. Individual payoff can therefore be expressed as a well-behaved

quasi-linear function of individual emissions:

u(xi, x−i) = xi − D(X) for all i ∈ N.
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As the payoff function is concave, the total equilibrium emission level X∗ is char-

acterized by first-order conditions:

D′(X∗) = 1. (1)

Due to the quasi-linear form of the payoff function, the efficient total emission

level X̂ is obtained by maximizing the sum of individual payoff functions which

yields the following Samuelson-condition:

D′(X̂) = 1/n. (2)

Comparing the two equations it is obvious that there is inefficient over-emission

in equilibrium: X∗ > X̂.

We now consider a sanction mechanism that induces a probabilistic but fixed

fine F > 0 on polluting agents. For each x = (x1, . . . , xn) we denote the set of

polluting agents by N x
+ = {i : xi > 0} with corresponding cardinality nx

+ =
∣

∣

∣N x
+

∣

∣

∣.

The individual probability to be fined is proportional to an affine transformation

of the respective emission levels:

Pri(xi, x−i) =



















a+bxi

nx
+a+bX

for xi > 0 where a ≥ 0, b > 0,

0 otherwise.

Note, that Pri(xi, x−i) is a well-behaved probability function, which is increas-

ing and concave in xi and decreasing in x j for j , i.2 This specification also

contains (for a = 0 and b = 1) the simple proportional rule as special case, which

coincides with the well-known lottery contest success function.

We assume that the proceeds of the sanction scheme are redistributed to pol-

luting agents on a lump-sum basis, which yields the following expected payoff

function:

u(xi, x−i; F) =



















xi − D(X) − a+bxi

nx
+a+bX

F + F
nx
+

if xi > 0,

−D(X) otherwise.
(3)

2For a > 0 the probability function has a discontinuity at xi = 0. This property is one of the

two technical assumptions needed to rule out asymmetric equilibria at the boundary.
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A brief discussion of the properties of this modified payoff function should be in

order at this point. Note first, that non-polluting agents are neither fined nor benefit

from redistribution of the collected fine.3 Note secondly, that due to the concavity

of the probability function Pri(xi, x−i), the resulting function u(xi, x−i; F) might be

neither concave, nor quasi-concave in the interior of the strategy space. In fact,

depending on the curvature of the damage function and the parameters (a, b, n, F),

the payoff function can have several local maxima in the interior of the strategy

space that might be payoff-dominated by strategies at the boundary. Hence, the

existence of an equilibrium in pure strategies is not guaranteed without further

restrictions on the primitives of the setup.

3 Equilibrium Analysis

Before addressing the question of efficiency, we first have to identify conditions

that guarantee the existence of an equilibrium in pure strategies.4 The following

result provides these conditions for a given target level X̃ of total emissions. The

idea behind this result is to bound the curvature of the damage function in such a

way that the target level X̃ coincides with a local maximum of the payoff function

while guaranteeing at the same time that unilateral deviations are not profitable.

Based on this result it is then straight-forward to address the question whether the

efficient level X̂ can be induced as a pure-strategy equilibrium and to derive the

corresponding fine level in the subsequent corollary.

Proposition 3.1 Let X̃ > 0 with x̃ = X̃
n

be a given total emission level. There exists

a finite fine level F̃ > 0 such that (x̃, . . . , x̃) is the unique pure strategy equilibrium

if and only if the following two conditions are satisfied:

(i)
2b

na + bX̃
≤

D′′(X̃)

1 − D′(X̃)
;

(ii)
D(nx̃) − D((n − 1)x̃)

nx̃ − (n − 1)x̃
≤ 1 −

n(a + bx̃)(1 − D′(nx̃))

na + (n − 1)bx̃
.

3This is the second technical assumption that is necessary to rule out asymmetric equilibria at

the boundary. Without these two assumption most of our results except uniqueness would still be

valid.
4The issue of mixed-strategy equilibria is discussed in the last section.
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Proof. The proof consists of three parts. In the first part we show that if F̃

is a fine that induces (x̃, . . . , x̃) as the unique pure strategy equilibrium, then the

two conditions (i) and (ii) have to be satisfied. The second part proves that any

unilateral deviation from (x̃, . . . , x̃) satisfying these two conditions will induce a

lower payoff. Hence, (x̃, . . . , x̃) is a pure strategy symmetric equilibrium. The

third part demonstrates that the equilibrium is unique.

Part 1: Suppose F̃ is a fine such that (x̃, . . . , x̃) is the unique pure strategy

equilibrium. Then it has to satisfy first-order conditions that can also be used to

derive a closed form expression for F̃ using symmetry:

1 − D′(X̃) −
(n − 1)bF̃

n2(a + bx̃)
= 0 (4)

⇒ F̃ =
n2(a + bx̃)(1 − D′(nx̃))

(n − 1)b
.

Second-order conditions have to be satisfied locally for (x̃, . . . , x̃) to be an equi-

librium. Using symmetry and substituting F̃ then yields condition (i).

−D′′(X̃) +
2b2(n − 1)F̃

n3(a + bx̃)2
≤ 0 (5)

⇒
2b

n(a + bx̃)
≤

D′′(X̃)

1 − D′(X̃)
.

Moreover, as (x̃, . . . , x̃) is an equilibrium, a unilateral deviation of agent i suffi-

ciently close to the lower boundary of the strategy space cannot induce a higher

payoff.5 Hence, the following inequality has to hold, which can be simplified

further using symmetry and substituting F̃, which yields condition (ii):

lim
xi→0

u(xi, x̃−i; F̃) ≤ u(x̃, x̃−i; F̃)

⇒ 0 − D((n − 1)x̃) −

(

a

na + b(n − 1)x̃

)

F̃ +
F̃

n
≤ x̃ − D(nx̃)

⇒ D(nx̃) − D((n − 1)x̃) ≤ x̃ −

(

1

n
−

a

na + b(n − 1)x̃

)

F̃

5In the second part of the proof we also show that any other unilateral deviation to the interior

of the strategy space induces lower payoff.
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⇒ D(nx̃) − D((n − 1)x̃) ≤

(

1 −
n(a + bx̃)(1 − D′(nx̃))

na + (n − 1)bx̃

)

x̃. (6)

Note, that neither a unilateral deviation to zero can be profitable because it can

be verified that:

u(0, x̃−i; F̃) = 0 − D((n − 1)x̃)

< 0 − D((n − 1)x̃) −

(

a

na + b(n − 1)x̃

)

F̃ +
F̃

n

= lim
xi→0

u(xi, x̃−i; F̃) ≤ u(x̃, x̃−i; F̃)

Part 2: Let F̃ =
n2(a+bx̃)(1−D′(nx̃))

(n−1)b
and assume that conditions (i) and (ii) are

satisfied. Then it can be checked that (x̃, . . . , x̃) corresponds to a local maximum

of the payoff function because eq. (4) and (5) are satisfied. Moreover, eq. (6)

is satisfied as well implying that unilateral deviations to the lower boundary of

the strategy space are not profitable. It remains to be shown that other unilateral

deviations to the interior of the strategy space are not profitable as well. If there

is a profitable deviation in the interval (0, x̃), then there must also exist another

local maximum in (0, x̃) because we already ruled out profitable deviations at

the boundary. We will therefore first demonstrate (by contradiction) that a local

maximum at x̄ ∈ (0, x̃) does not exist. We will then demonstrate that deviations

x̄ > x̃ can neither be profitable.

Suppose there exists a local maximum for agent i at x̄ ∈ (0, x̃) given that all

other agents j , i choose x̃. Then it must be the case that

−D′′((n − 1)x̃ + x̄) +
2b2(n − 1)(a + bx̃)

(na + b((n − 1)x̃ + x̄))3
F̃ ≤ 0,

which implies together with D′′′ ≥ 0 that for all x > x̄ the following inequality

holds:

−D′′((n − 1)x̃ + x) +
2b2(n − 1)(a + bx̃)

(na + b((n − 1)x̃ + x))3
F̃ < 0.

Note that both x̃ and x̄ correspond to local maxima; hence, there must exist at

least one x′ ∈ (x̄, x̃) where the payoff function is (at least weakly) convex in a
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neighbourhood of this point:

−D′′((n − 1)x̃ + x′) +
2b2(n − 1)(a + bx̃)

(na + b((n − 1)x̃ + x′))3
F̃ ≥ 0.

As x′ > x̄ this is a contradiction to the previously established strict inequality

We now prove that there cannot exist a profitable deviations x > x̃. As x̃

corresponds to a local maximum, it must be the case that the payoff function is

strictly concave on (x̃,∞) because a similar argument to the one above gives us

−D′′((n − 1)x̃ + x) +
2b2(n − 1)(a + bx̃)

(na + b((n − 1)x̃ + x))3
F̃ < 0 for all x > x̃.

Hence, payoff must be lower for all x > x̃ which implies that a deviation from x̃

to x > x̃ cannot be profitable.

Part 3: Let F̃ be as defined at the beginning of Part 2 such that (x̃, . . . , x̃) is a

pure strategy equilibrium.

Step 1: Suppose x = (x1, . . . , xn) , (x̃, . . . , x̃) is also a pure strategy equilibrium.

Let X =
∑

j∈N x j. Clearly, X > 0. We first show by contradiction that x j > 0 for

all j ∈ N. Suppose to the contrary that there exists j such that x j = 0. Then it can

be verified that

u(0, x− j; F̃) = 0 − D(X)

< 0 − D(X) −

















a

(nx
+ + 1)a + bX

















F̃ +
F̃

nx
+ + 1

= lim
x j→0

u(x j, x− j; F̃),

which implies that it is profitable for agent j to unilaterally deviate from x = 0,

a contradiction. Hence, xi > 0 for all i ∈ N. Thus, it follows from the first-order

conditions that x1 = . . . = xn, i.e., x is a symmetric pure strategy equilibrium.

Therefore, every pure strategy equilibrium corresponding to the fine F̃ is symmet-

ric.

Step 2: Given Step 1, we only need to show that there does not exist a symmetric

pure strategy equilibrium that is distinct from (x̃, . . . , x̃).
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Suppose 0 < Z̃ , X̃ with z̃ = Z̃
n

is such that (z̃, . . . , z̃) is also a pure strategy

equilibrium for the fine level F̃. Then we have the following FOCs and SOCs for

a local maximum:

1 − D′(X̃) −
b(n − 1)F̃

n2(a + bx̃)
= 0 (7)

1 − D′(Z̃) −
b(n − 1)F̃

n2(a + bz̃)
= 0 (8)

−D′′(X̃) +
2b2(n − 1)F̃

n3(a + bx̃)2
≤ 0 (9)

−D′′(Z̃) +
2b2(n − 1)F̃

n3(a + bz̃)2
≤ 0. (10)

Define G(X) = 1 − D′(X) −
b(n−1)F̃

n(na+bX)
for all X > 0. Then we have:

G′(X) = −D′′(X) +
b2(n − 1)F̃

n(na + bX)2
for all X > 0 (11)

G′′(X) = −D′′′(X) −
2b3(n − 1)F̃

n(na + bX)3
< 0 for all X > 0. (12)

Now, (7) and (8) imply:

G(X̃) = 1 − D′(X̃) −
b(n − 1)F̃

n(na + bX̃)
= 1 − D′(X̃) −

b(n − 1)F̃

n2(a + bx̃)
= 0

G(Z̃) = 1 − D′(Z̃) −
b(n − 1)F̃

n(na + bZ̃)
= 1 − D′(Z̃) −

b(n − 1)F̃

n2(a + bz̃)
= 0.

Also, (9), (10) and (11) imply:

G′(X̃) = −D′′(X̃) +
b2(n − 1)F̃

n(na + bX̃)2
= − D′′(X̃) +

b2(n − 1)F̃

n3(a + bx̃)2

< − D′′(X̃) +
2b2(n − 1)F̃

n3(a + bx̃)2
≤ 0

G′(Z̃) = −D′′(Z̃) +
b2(n − 1)F̃

n(na + bZ̃)2
= − D′′(Z̃) +

b2(n − 1)F̃

n3(a + bz̃)2

< − D′′(Z̃) +
2b2(n − 1)F̃

n3(a + bz̃)2
≤ 0 .
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However, G′(X̃) < 0, G′(Z̃) < 0 and G′′(X) < 0 for all X > 0 imply that it is

not possible to have both G(X̃) = 0 and G(Z̃) = 0, a contradiction. Therefore,

there does not exist a symmetric pure strategy equilibrium that is distinct from

(x̃, . . . , x̃). �

Proposition 3.1 does not address the issue of efficiency. However, using the

Samuelson condition from eq. (2) to simplify conditions (i) and (ii) leads to the

following corollary which provides the respective conditions for the existence of

an equilibrium that yields the efficient emission level.

Corollary 3.2 Given fine F̂ =
n(a+bx̂)

b
with x̂ = X̂

n
, the efficient total emission level

X̂ can be achieved as the unique pure strategy equilibrium (x̂, . . . , x̂) if and only if

the following two conditions are satisfied:

(iii)
2b(n − 1)

n2(a + bx̂)
≤ D′′(X̂);

(iv)
D(nx̂) − D((n − 1)x̂)

nx̂ − (n − 1)x̂
≤

a

na + (n − 1)bx̂
= lim

xi→0
Pri(xi, x̂−i).

Condition (iv) can be used to derive the following negative result with re-

spect to a specific class of probabilistic fine schemes that include linear (instead

of affine) transformations of emissions.

Corollary 3.3 A probabilistic fine scheme with a = 0 (which includes the simple

lottery contest success function as special case) cannot induce the efficient total

emission level X̂ as equilibrium outcome.

Proof. For a = 0 condition (iv) reduces to
D(nx̂)−D((n−1)x̂)

nx̂−(n−1)x̂
≤ 0. This is a contradic-

tion because the left-hand side of this inequality is positive as D(·) is increasing. �

In order to gain further intuition with respect to these conditions, we now con-

sider two special cases. The first case is related to Corollary 3.3 and considers

the standard lottery contest success function (or, alternatively, a simple propor-

tional fine probability). While Corollary 3.3 implies that the efficient emission

level cannot be obtained as a pure strategy equilibrium, the two conditions (i) and
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Figure 1: Case 1 with u(x1, x̂2; F̂)

(ii) can be used to identify a fine that leads to the most efficient emission level that

is achievable as a pure strategy equilibrium. The second case demonstrates that a

simple modification of the lottery contest success function is sufficient to restore

efficiency in equilibrium. Hence, we are able to demonstrate that there exist well-

behaved damage functions and fine schemes such that conditions (i) and (ii), and

also (iii) and (iv) respectively, are both satisfied.

Case 1. Consider the following specification that corresponds to a proportional

fine probability function: (a, b, n) = (0, 1, 2) with D(X) = 1
2
X2. For this specifi-

cation the efficient emission level is X̂ = 1
2

which is lower than the equilibrium

emission level without fine: X∗ = 1. Condition (iii) of Corollary 3.2 is violated

(2 ≤ 1) as well as condition (iv) (3/8 ≤ 0). Figure 1 shows the payoff function

of agent 1, given that agent 2 extracts the efficient amount x̂2 = 1/4. Note, that

x̂1 = 1/4 corresponds to a critical point, which is neither a local maximum nor a

global maximum (instead, x̂1 = 1/4 corresponds to a local minimum).

Nevertheless, Proposition 1 can be used to derive the lowest total emission

level that is achievable as a pure strategy equilibrium. Setting X̃ = 4/5 implies

that condition (i) is satisfied with strict inequality (5/2 < 5), while condition

(ii) is satisfied by equality. Hence, X̃ = 4/5 is the lowest total emission level

that is achievable in this case. The corresponding fine level is F̃ = 8/25 and

the respective payoff function for agent 1 is presented in Figure 2. Note that the

second-best emission level x̃1 = 0.4 now corresponds to a global maximum.

Case 2. Consider the following slight modification of the previous specifica-

tion: (a, b, n) = (1, 1, 2) with D(X) = 1
2
X2. Now the fine probability is bounded
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Figure 2: Case 1 with u(x1, x̃2; F̃)
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Figure 3: Case 2. u(x1, x̂2; F̂)

away from zero for any individual emission level: Pri(xi, x−i) =
1+xi

2+X
> 0 for all

xi > 0. Note that the efficient emission level from Case 1 remains unaltered be-

cause the damage function is the same. For this specification it can be verified

that conditions (iii) and (iv) from Corollary 3.2 are satisfied. Hence, based on

the corresponding fine F̂ = 5/2 the efficient emission level can be achieved as

a symmetric equilibrium in pure strategies. Figure 3 shows the respective payoff

function for this case and demonstrates that the individual emission level x̂1 = 1/4

corresponds to a global maximum.

4 Designing An Efficient Fine Scheme

Until now all parameters except the fine level F have been assumed to be given.

Alternatively, the parameters (a, b) that determine the affine transformation in the

13



fine scheme could be interpreted as additional choice variables in a design problem

of the central authority. In this case the design problem is to choose (a, b, F) ∈

R+ × R++ × R+ in order to implement a specific emission level Z ∈ (0, X∗) as

a unique pure strategy equilibrium.6 The next result demonstrates that this is

possible for any emission level Z ∈ (0, X∗) using appropriate values for the choice

variables.

Proposition 4.1 Let Z be any total emission level in the interval (0, X∗) and let

z = Z
n
. Then there exists (aZ , bZ, FZ) ∈ R+ × R++ × R+ such that the symmetric

emission vector (z, . . . , z) is the unique pure strategy equilibrium.

Proof. Let Z ∈ (0, X∗) and z = Z
n
. Because we have derived a closed form

expression for the fine level in the proof of Proposition 1, it is sufficient to show

that there exists (aZ , bZ) ∈ R+×R++ such that conditions (i) and (ii) in Proposition

1 are satisfied.

Let us pick any bZ ∈ R++ and consider each of the two conditions in turn.

Since lima→∞
2bZ

na+bZZ
= 0, condition (i) is satisfied for sufficiently large a. Next, it

can be verified that lima→∞

[

1 −
n(a+bZz)(1−D′(nz))

na+(n−1)bZz

]

= D′(nz). Also, it follows from

strict convexity of D(·) that
D(nz)−D((n−1)z)

nz−(n−1)z
< D′(nz). Hence, condition (ii) is also

satisfied for sufficiently large a. Therefore, given any bZ ∈ R++, there exists suffi-

ciently large aZ such that conditions (i) and (ii) are satisfied. �

The insights from the proof of this proposition confirm the intuition from the

two cases provided in the previous section of the paper: Setting parameter a suf-

ficiently high (bounding the fine probability away from zero even for small indi-

vidual emission levels) is crucial to induce an efficient equilibrium outcome.7

6The efficient emission level X̂ derived in eq. (2) is contained in this set (0, X∗), where X∗ is the

equilibrium emission level without any fine characterised in eq. (1). Hence, the following result

holds also for the efficient emission level.
7This result has a dual expression in the contest literature: In Dasgupta and Nti (1998) it is

demonstrated that setting a positive value for a will lead to less total effort in the respective contest

game.
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5 Concluding Discussion

Our approach demonstrates that probabilistic fine schemes can be designed in such

a way that efficient outcomes result in equilibrium under negative externalities.

Naturally, the simple setup applied here facilitates the analysis but also raises

issues of robustness with respect to potential generalisations and extensions. In the

following we discuss some potential extensions regarding other types of negative

externalities, heterogeneity of agents, and the issue of mixed-strategy equilibria,

which open up further research possibilities.

In our setup negative externalities are captured by an additive-separable dam-

age function which allows for sufficient tractability. However, our approach is

potentially also applicable in the context of alternative specifications. Consider,

for instance, the classical common pool resource extraction game as specified in

Ostrom et al. (1992), where the following functional form (adapted to our nota-

tion and ignoring wealth constraints) is applied: ui(x) = xi

X
f (X)− xi, where f (X) is

a concave function. In this specification individual profit (i.e. the first term) is in-

creasing in own resource extraction but negatively affected by aggregate extraction

levels. In contrast to our specification individual profit and aggregate damage are

not additively separable. However, the resulting tragedy of the commons implies

that there is still inefficient over-extraction in the symmetric Nash-equilibrium.8

As the setup is well-behaved with a concave payoff-function, it can be modified

accordingly by adding the same probabilistic fine scheme as in our setup. We

conjecture that the exact conditions to guarantee the existence of an efficient sym-

metric pure strategy equilibrium will be more complex but could be derived using

the same approach: Firstly, guaranteeing local concavity in equilibrium and, sec-

ondly, excluding unilateral deviations to the boundary by restricting the curvature

of the profit function.

Our analysis relies on equilibrium symmetry which will not hold if agents are

heterogeneous. Hence, it is unlikely that a symmetric probabilistic fine scheme

can restore efficiency in a setup with heterogeneous agents9 because this would

8Ostrom (1990) analyses real instances of successfully governed commons and demonstrates

that these mechanisms typically entail monitoring of extraction levels and sanctioning of over-

extracting agents through fines.
9Applying a symmetric probabilistic fine scheme in a model with heterogeneous agent might
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require either idiosyncratic fines specifically designed for each agent (using a

Lindahl-pricing approach) or biased probability functions (as used in Franke and

Leininger (2014) in a public good context). Designing those idiosyncratic fines or

biases would require complete information with respect to individual preference

parameters of the agents. This leads to the typical problem of truthful preference

revaluation which goes beyond the scope of this paper.

In our analysis we focused on the identification of conditions that guarantee

the existence of an equilibrium in pure strategies and did not address the issue of

mixed-strategy equilibria. Although Glicksberg (1952) is not directly applicable

due to the discontinuity of the payoff function at xi = 0 (comp., footnote 2), there

might still exist equilibria in mixed strategies if the conditions for a pure-strategy

equilibrium are not met. Unfortunately, the characterisation of such an equilib-

rium is not trivial (comp. Ewerhart (2015) for some recent work on mixed-strategy

equilibrium analysis in the case of standard Tullock contest games). Analysing

whether probabilistic fine schemes might restore efficiency in specifications where

mixed-strategy equilibria exist might therefore constitute an interesting research

possibility that we plan to address in the future.

still lead to pareto-improvements, see Morgan (2000) for the case of public good provision through

lotteries.
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