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The formation of polarons due to the interaction between charge carriers and lattice ions has been
proposed to have wide-ranging effects on charge carrier dynamics in lead–halide perovskites. The
hypothesis underlying many of those proposals is that charge carriers are ‘protected’ from scattering
by their incorporation into large polarons. Following the approach of Kadanoff for scattering due
to polar optical phonons, we derive expressions for the rates of scattering of polarons by acoustic
phonons and ionised impurities, and compute the energy and angular dependent rates for electrons
and holes in MAPbI3, MAPbBr3 and CsPbI3. We then use the ensemble Monte Carlo method to
compute polaron distribution functions which satisfy a Boltzmann transport equation incorporating
the same three scattering mechanisms, from which we extract mobilities for temperatures in the
range 50–500 K. A comparison of the results with those of analogous calculations for bare band
carriers indicates that polaronic effects on the scattering and mobilities of charge carriers in lead–
halide perovskites are more limited than has been suggested in some parts of the recent literature.

Lead–halide perovskites (LHPs) are currently the sub-
ject of intense research, primarily due to their application
as an active layer in next generation semiconductor de-
vices, and photovoltaic cells in particular [1]. However, a
number of fundamental aspects of their (opto)electronic
properties remain under debate, such as the origins of
the observed long carrier lifetimes, the seemingly benign
nature of defects, and the mobility limiting scattering
mechanism(s) [2, 3].

In materials with polar bonding, such as LHPs, the
electrostatic interaction between a charge carrier and the
lattice ions in its vicinity causes the latter to be displaced
from their equilibrium positions. The charge carrier and
the polarised region of the lattice which surrounds it to-
gether comprise a quasiparticle known as a polaron, and
polaronic effects have been suggested to play a central
role in numerous elementary processes underlying charge-
carrier dynamics in LHPs [4–7], including exciton disso-
ciation [8–11], hot carrier cooling [12–17], radiative and
non-radiative recombination [18–24] and steady state mo-
bilities [18, 25, 26].

It is important to note the distinction between the so-
called ‘small’ and ‘large’ polaron. In the former case,
the charge carrier is self trapped and moves through the
lattice via thermally activated hops, leading to mobili-
ties which increase with temperature; in contrast, the
latter is an itinerant species, exhibiting mobilities which
decrease with temperature [27, 28]. The latter scenario
is consistent with experimental measurements of charge-
carrier mobilities in LHPs [3, 29], and it is therefore the
species considered herein.

The most widely recognised consequence of large po-
laron formation is an increase in the effective mass of a
charge carrier from that predicted by conventional band
theory. In LHPs, the increase has been calculated to be
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of the order of 30–70% [25, 30–32] at room temperature.
On the other hand, the hypothesis underlying many of
the proposals of ways in which polaron formation influ-
ences charge carrier dynamics, is that charge carriers are
‘protected’ from interactions with phonons, defects and
other charge carriers by their incorporation into polarons
[4].

The aim of this paper is to provide a quantitative anal-
ysis of that hypothesis, building primarily on the canon-
ical theory of (what are now commonly known as) large
polarons [33–36]. Scattering rates of polarons by acous-
tic phonons and ionised impurities are derived, and their
values, along with those for scattering by polar-optical
phonons, are computed for electron and hole polarons
in MAPbI3, MAPbBr3 and CsPbI3 (where MA stands
for methylammonium, CH3NH3). The rates, along with
the computed polaron masses, are then used to define an
augmented form of Kadanoff’s semi-classical Boltzmann
transport equation for polarons under the influence of a
constant electric field [35, 37]. Finally, the Boltzmann
transport equation is solved for a range of temperatures
using the Ensemble Monte Carlo method [38], and the
drift velocities calculated from the steady state distri-
bution functions are used to determine temperature de-
pendent carrier mobilities. A comparison of the results
of those computations with the results of analogous cal-
culations for bare band carriers suggests that polaron
formation has a much less significant impact on carrier
scattering and mobilities than has been suggested. Due
to the qualitative similarity between the results for both
electrons and holes in the three materials, data for elec-
trons in MAPbI3 only are presented here, and the rest of
the data are provided in the Supplemental Material.

The starting point of our analysis is the simplest model
of an electron in a semiconductor, namely that defined
by the effective mass Hamiltonian:

H0 =
~2|k|2

2m∗
. (1)
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In the remainder of the paper, particles described by
Equation 1 are referred to as ‘bare band’, or simply
‘band’, electrons.

In the Feynman model of a polaron, a second particle is
coupled via an harmonic potential to the electron, repre-
senting the effects of the ‘cloud of virtual phonons’ asso-
ciated with the polarised region of the lattice surrounding
it [33], so that the Hamiltonian takes the following form
[35, 37]:

HF =
~2|k|2

2m∗
+

~2|kc|2

2mc
+

1

2
κ (r− rc)

2

=
~2|K|2

2M
+ ~ωosc

3∑
i=1

(
(aosc)

†
i (aosc)i + 1

2

)
.

(2)

In Equations 1 and 2, r, k and m∗ are the position, wave
vector and effective mass of the electron, with analogous
quantities for the phonon cloud being identified with a ‘c’
subscript, and κ is the spring constant of the harmonic
potential. M and K are the total mass and wave vector of

the polaron; (aosc)
†
i and (aosc)i are the ladder operators

for the polaron’s internal harmonic oscillator state, with
the index i labelling the three Cartesian directions; and
ωosc is the angular frequency of the harmonic oscillator.

Despite the simplicity of the Feynman Hamiltonian,
its description of large polaron dispersion relations has
been shown to compare very well with the results of di-
agrammatic Monte Carlo calculations over a wide range
of coupling strengths [42]. Furthermore, we note that it
contains essential physics that commonly used electronic
structure methods, such as density functional theory, do
not, despite recent developments [43, 44]. In particular,
the degrees of freedom of the ionic cores—the quantised
vibrations of which constitute phonons—are treated clas-
sically in DFT calculations, whereas the electron and the
phonon cloud are treated on an equal quantum mechan-
ical footing in Equation 2.

The eigenfunctions of the Feynman Hamiltonian have
the form of a plane wave in the centre-of-mass co-
ordinates, multiplied by a three dimensional harmonic

TABLE I. Material parameters for (electrons in) MAPbI3 that
were used in our study. Parameters were chosen to align with
comparable previous studies, and sourced entirely from ab
initio calculations reported in the literature. The elastic con-
stant cL was calculated from the mean value of C11, C22 and
C33 presented in Ref. [39]).

Parameter Value

Band effective mass m∗ = 0.15me [40]

Polar optical phonon frequency ωpop/2π = 2.25 THz [30]

Low frequency permittivity εLF = 25.7ε0 [40]

High frequency permittivity εHF = 4.5ε0 [41]

Acoustic deformation potential Ξ = −2.13 eV [39]

Elastic constant cL = 32 GPa [39]

oscillator state in the relative co-ordinates, and thus de-
scribe delocalised, itinerant states of a composite particle.
We use the notation |K,n〉 for the eigenstates, where K
is the polaron wave vector and n = (nx, ny, nz) labels the
polaron’s internal oscillator state.

Equation 2 contains two free parameters, which we
choose to be the total polaron mass M and the oscillator
frequency ωosc. Following previous theoretical studies on
large polarons in LHPs [25, 30], we determine their values
as functions of the lattice temperature by minimising the
expression for the free energy derived by Y. Osaka [34].
The derivation of that expression assumes the presence
of a single optical phonon branch, while the real phonon
band structure consists of numerous branches. In order
to circumvent that problem, we follow Frost [30] in using
a single effective optical phonon angular frequency, ωpop,
which is derived from the full optical phonon spectrum
via the ‘B’ scheme of Hellwarth and Biaggio [45].

The results of minimising the electron-polaron free en-
ergy, using the material parameters for MAPbI3 con-
tained in Table I, are presented in Figure 1a; they are
essentially identical to those presented in Ref. [30], al-
though there is a small discrepancy due to the conduc-
tion and valence band effective masses being swapped in
that paper. The temperature dependent mass of the po-
laron, M , has a maximum value of ∼ 2.3m∗, which it
assumes at ∼ 35 K. However, it decreases monotonically
for temperatures above that value, such that at 300 K it
is only ∼ 1.4m∗. We also note that the angular frequency
of the polaron harmonic oscillator, ωosc, increases quasi-
linearly with temperature above ∼ 15 K, which results in
the equilibrium probability of a polaron being in its in-
ternal ground state n = 0 being essentially independent
of temperature. The probability for an electron-polaron
in MAPbI3 is plotted in Figure 1b, from which it can be
seen that its value remains greater than 99.7 % up to a
temperature of 500 K; this result has significant impli-
cations for the scattering rates of the polaron, which we
now go on to discuss.

FIG. 1. (a) Temperature dependence of the mass M (in units
of m∗, the bare band electron effective mass) and oscillator
frequency ωosc (in units of ωpop, the effective polar optical
phonon frequency) of the large electron polaron in MAPbI3.
Both quantities were calculated using the the material param-
eters compiled in Table I. (b) Temperature dependence of the
occupancy of the internal harmonic oscillator ground state of
the large electron polaron in MAPbI3.
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After the work of Kadanoff [35], the scattering rates for
polarons are calculated using Fermi’s golden rule, with
eigenstates of Equation 2, |Ki,ni〉 and |Kf ,nf〉, as the
initial and final states. We restrict ourselves to the case
in which the polaron is in its internal ground state both
before and after the scattering event, i.e. nf = ni = 0,
which, in light of the discussion in the previous para-
graph, we expect to be a valid approximation close to
equilibrium.

The scattering rates S(Ki → Kf) are therefore calcu-
lated according to the following general expression:

S(Ki → Kf) =
2π

~
|〈Kf ,0|Hpert|Ki,0〉|2

× δ(EKf ,0 − EKi,0 −∆E).
(3)

In Equation 3, Hpert is a time-dependent perturbing
Hamiltonian, the forms of which are well known for
the main scattering mechanisms in polar semiconduc-
tors, namely acoustic and polar optical phonons, and
ionised impurities [38]. The magnitude of ∆E in Equa-
tion 3 depends on the scattering mechanism; for (quasi-
)elastic scattering, such as that due to acoustic phonons
and ionised impurities, ∆E = 0, while for polar optical
phonon scattering, ∆E = ~ωpop.

The derivations of the scattering rates are pro-
vided in the Supplemental Material, and the result-
ing forms compared with the corresponding rates for
bare band carriers. In short, the differences be-
tween the scattering rates for polarons and those for
band electrons amount to replacing k in the band-
electron expressions with K, and then multiplying
by exp

(
−~mred|Kf −Ki|2/2(m∗)2ωosc

)
, where mred =

m∗mc/M is the reduced mass of the polaron. As pre-
viously noted for the case of polar optical phonon scat-
tering [35, 37], the exponential factor should act to sup-
press large changes in momentum, ostensibly supporting
the hypothesis that polarons are protected from scatter-
ing in comparison to their band carrier counterparts. We
begin investigating the validity of this hypothesis by ex-
amining the total scattering rates for each mechanism, as
functions of the particle’s wave vector before scattering,
which are calculated by integrating over all possible final
states:

W (Ki) =

∫
d3KfS(Ki → Kf). (4)

Total scattering rates for electron polarons in MAPbI3
are plotted in Figure 2 at 100 and 300 K; to enable a
direct comparison with the analogous rates for band elec-
trons, also plotted in Figure 2, the rates are plotted as
functions of the initial kinetic energy of the particle. For
scattering due to ionised impurities, a density of such
defects of 1016 cm−3 is assumed, which is towards the
upper end of the range of values measured in polycrys-
talline LHP solar cells [18, 46, 47].

Of the mechanisms considered, the acoustic phonon
scattering rate is the most significantly affected by po-
laron formation, while the effects on polar optical and

FIG. 2. Total scattering rates of large electron polarons (solid
lines) and bare band electrons (dashed lines) in MAPbI3, at
100 and 300 K. Total (i.e. integrated over all final states) scat-
tering rates due to polar optical phonon absorption and emis-
sion (P. optical abs. and em, respectively), acoustic phonons
and ionised impurities are shown. The rates are calculated
using the material parameters compiled in Table I, and the
polaron mass, M , for the relevant temperature.

impurity scattering rates are essentially negligible. In
all cases, the differences between scattering rates for the
bare band electron and the electron polaron are reduced
at 300 K with respect to 100 K. We also note that polar
optical phonon scattering is dominant for both band elec-
trons and electron polarons, in contrast to assumptions
made in some previous studies [48].

In order to understand these results, we must examine
the probability distributions of final states arising from
a scattering event due to a given mechanism. Following
a scattering event, a particle’s final wave vector, Kf , can
be fully described by its spherical coordinates in a ref-
erence frame defined by its initial wave vector, Ki. The
magnitude of Kf is determined by the delta function in
Equation 3, so that the relevant function is the probabil-
ity density per unit solid angle of Kf being at an angle θ
to Ki following a scattering event:

S(Ki, θ) =

∫
d|Kf ||Kf |2S(Ki → Kf)

W (Ki)
. (5)

Note that the distribution of the azimuthal angle is con-
stant due to the cylindrical symmetry of the reference
frame (assuming isotropy of the underlying material, as
we do here); therefore, only the dependence on the mag-
nitude of the initial wave vector, and the (polar) angle
between the final and initial wave vectors, need be con-
sidered.

The final state distributions at 100 and 300 K for both
bare band electrons and polarons are plotted in Figure 3,
as functions of the polar angle θ, and the initial kinetic
energy, which is used as the radial co-ordinate rather
than the magnitude of the initial wave vector in order
to facilitate comparison. In accordance with the total
scattering rates plotted in Figure 2, the most strongly
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affected distribution is that of acoustic phonon scatter-
ing, which is isotropic in the band electron case but ex-
hibits the expected suppression of large changes in mo-
mentum in the polaron case. However, the impurity and
polar optical phonon distributions are already strongly
forward scattering for band electrons, so that the effects
of the suppression of large changes in momentum in the
polaron case are minor. Thus, although the concept of
charge carriers being protected from scattering does sur-
vive some scrutiny, the effects appear to be non-negligible
only in the case of acoustic phonon scattering at low tem-
peratures. Furthermore, we expect their influence to be
marginal in MAPbI3, since polar optical phonons remain
the dominant cause of scattering.

Finally, as the simplest example of a measurable quan-
tity that depends on scattering, we consider polaronic

FIG. 3. Probability densities, per unit solid angle, of particle
states after scattering in MAPbI3 at 100 K and 300 K, as a
function of the initial kinetic energy (in eV; radial co-ordinate)
and the angle between the initial and final wave vectors (in
radians; polar co-ordinate). The distributions for bare band
electrons (BE) and large electron polarons (EP) are plotted
on the left and right halves of each polar plot. The contours
delineate divisions of 50 meV. The probabilities are calculated
using the material parameters compiled in Table I and the
polaron mass, M , for the relevant temperature.

effects on the mobility of charge carriers in MAPbI3, at
temperatures in the range 50–500 K. The temperature
dependence of the mobility has been measured experi-
mentally using a variety of techniques, and despite a rel-
atively large spread in absolute values, a ∼ T−1.5 depen-
dence has been consistently observed [49–52]. According
to textbook semiconductor theory, a T−1.5 dependence is
indicative of acoustic phonons being the dominant cause
of carrier scattering, but the values of mobility around
room temperature calculated under that assumption are
significantly greater than those observed [26, 53]. On
the other hand, if polar optical phonon scattering is as-
sumed to be dominant, which is usually the case in po-
lar semiconductors such as MAPbI3, the calculated room
temperature mobilities are of the correct order of magni-
tude, but the temperature dependence approaches T−0.5

in the high temperature limit. The formation of large
polarons has been proposed as one possible explanation
for this apparently anomalous behaviour [4, 26, 48].

We modelled polaron transport under the influence of
an electric field using an augmented form of Kadanoff’s
semi-classical Boltzmann transport equation [35, 37]. For
an ensemble of electron polarons subject to a constant
electric field E in an otherwise homogeneous system (such
as the bulk of a semiconductor, as considered here), the
Boltzmann transport equation reads

∂f

∂t
− e
~
E· ∂f

∂K
=

(
∂f

∂t

)
pop

+

(
∂f

∂t

)
aco

+

(
∂f

∂t

)
imp

, (6)

where f(K, t) is the one-particle distribution function.
The three terms on the right hand side of Equation 6 rep-
resent the change in the distribution function due to each
of the three scattering mechanisms considered above,
namely polar optical phonons (pop), acoustic phonons
(aco) and ionised impurities (imp); it is the final two of
the three terms that are additional to Kadanoff’s Boltz-
mann transport equation for polarons [35].

Essentially exact steady state solutions to Equation 6
were obtained using the ensemble Monte Carlo method
[38, 54]; further details of the calculations can be found in
the Supplemental Material. The magnitude of the drift
velocity vd was then determined from the ensemble av-
erage wave vector K, and the mobility µ calculated ac-
cording to

|vd| =
~
∣∣K∣∣
M

= µ|E|, (7)

where M is the (temperature dependent) polaron mass.
Analogous calculations were also carried out for bare
band electrons, using the appropriate mass and scatter-
ing rates.

The calculated mobilities for large electron polarons
and bare band electrons are plotted in Figure 4, along
with data from several experimental studies of charge
carrier mobility in MAPbI3 for reference. For bare
band electrons, fitting a power law to the theoretical
data points for temperatures above 200 K recovers the
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FIG. 4. Temperature dependent mobilities of bare band elec-
trons and large electron polarons in MAPbI3 (blue and red
circles, respectively), calculated from steady state solutions
to Boltzmann transport equations obtained using the ensem-
ble Monte Carlo method, the material parameters compiled
in Table I and the polaron mass, M , for the relevant temper-
ature. Experimental data from the literature are also shown:
squares from Ref. [49], diamonds from Ref. [50], upward tri-
angles from Ref. [51] and downward triangles from Ref. [52].
Lines between data points are plotted as guides to the eye
only. Dashed lines are fits to the theoretical data for temper-
atures above 200 K.

expected T−0.50 dependence, with a value of ∼ 130
cm2V−1s−1 at room temperature. Turning to the data
for polarons, we see that the mobility at room tem-
perature is reduced by almost a factor of 2, to ∼ 70
cm2V−1s−1, but more significantly, the temperature de-
pendence of the mobility extracted for values above 200
K gives T−0.18, which is further removed from the exper-
imentally observed ∼ T−1.5 dependence.

Several other possible microscopic mechanisms have
been proposed as possible explanations for the observed
temperature dependence of the mobility, namely (i) the
enhancement of acoustic phonon scattering and suppres-
sion of polar optical phonon scattering due to Rashba
splitting in the electronic band structure [55], (ii) vi-
brational anharmonicity and non-linear electron–phonon
coupling [56], (iii) the presence of multiple low energy op-
tical phonon modes [57] and (iv) microstructural disor-
der [58]. While our results indicate that polaronic effects
alone do not provide an explanation for the apparently

anomalous temperature dependence of carrier mobilities
in MAPbI3, that does not necessarily preclude their play-
ing a role in a quantitative theory of carrier dynamics in
LHPs in which one or more of the effects listed above, or
indeed, others which have not yet been considered, are
included.

In conclusion, we have presented an analysis of the
effects of large polaron formation in MAPbI3 on car-
rier scattering and mobilities, by direct comparison of
bare band electrons with large electron polarons on an
equal theoretical footing. Our results show that, of the
three mechanisms considered here, scattering of polarons
due to acoustic phonons is the most significantly dif-
ferent from that of bare band carriers, with the final
state distribution exhibiting a striking change from an
isotropic to an anisotropic one upon polaronic effects be-
ing taken into account. In contrast, the rates and final
state distributions for scattering by polar optical phonons
and ionised impurities, both of which are significantly
stronger sources of scattering than acoustic phonons, are
not significantly affected by polaron formation. We also
found that the polaron mobility exhibits a smaller nega-
tive exponent for the temperature dependence than band
electron mobility (T−0.18 vs T−0.50) in the high temper-
ature limit, which suggests that other possible explana-
tions should be considered for the ∼ T−1.5 dependence
of carrier mobility in MAPbI3 observed in experiments.
The results for holes in MAPbI3, and electrons and holes
in MAPbBr3 and CsPbI3, which are given in the Supple-
mental Material, are qualitatively similar, and indicate
that our conclusions apply generally to LHPs.

Finally, while our study provides evidence challenging
the growing consensus that polaronic effects play a cen-
tral role in understanding the optoelectronic properties of
this important class of material, quantitative investiga-
tions of other critical aspects of charge-carrier dynamics,
such as trapping and recombination, are required before
a definitive conclusion as to the overall significance of
polaronic effects can be reached.
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